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Abstract

Cellular networks serve billions of users globally, yet con-
cerns about reliability and security persist due to weaknesses
in 3GPP standards. However, traditional analysis methods,
including manual inspection and automated tools, struggle
with increasingly expanding cellular network specifications.
This paper investigates the feasibility of Large Language
Models (LLMs) for automated cellular network specification
refinement. To advance it, we leverage 200,000+ approved
3GPP Change Requests (CRs) that document specification
revisions, constructing a valuable dataset for domain tasks.
We introduce CR-EVAL, a principled evaluation framework,
and benchmark 16 state-of-the-art LLMs, demonstrating that
top models can discover security-related weaknesses in over
127 out of 200 test cases within five trials. To bridge potential
gaps, we explore LLM specialization techniques, including
fine-tuning an 8B model to match or surpass advanced LLMs
like GPT-40 and DeepSeek-R1. Evaluations on 30 cellular
attacks identify open challenges for achieving full automa-
tion. These findings confirm that LLMs can automate the
refinement of cellular network specifications and provide
valuable insights to guide future research in this direction.

1 INTRODUCTION

Cellular networks connect over five billion users worldwide,
relying on extensive 3GPP specifications to ensure function-
ality and reliability [1, 2]. However, these specifications have
long been known to suffer from design flaws and underspec-
ification, making them susceptible to security threats such
as DoS attacks and user tracking [3-5]. Strengthening the re-
liability of cellular networks requires proactive specification
refinement, a continuous process of identifying and treat-
ing potential weaknesses to enhance standards [6, 7]. While
manual weakness analysis [4, 8, 9] has traditionally been
effective, it is increasingly infeasible due to the escalating
complexity of cellular systems and the rapid expansion of
specification documents!. Automated approaches, such as
formal verification[10-12] and NLP [13-15], offer valuable
insights but still require significant expert involvement, lack
scalability, and struggle to adapt to evolving specifications.

13GPP standards expanded from 59,258 pages in Release 8 (LTE) to 117,951
pages in Release 15 (5G) and 195,752 pages in Release 18 as of March 2025.

More critically, they focus primarily on detecting weaknesses,
which is only the first step in refinement. Effective specifica-
tion refinement extends beyond mere detection—it requires
scalable, automated approaches to systematically address
and resolve weaknesses within evolving standards.

Recent advancement of Large Language Models (LLMs) [16
18] has led to their remarkable applications, from solving
complex computer tasks [19] to accelerating scientific discov-
eries [20]. In this context, we investigate automated cellular
specification refinement, a previously unthinkable yet now
plausible concept with LLMs. Beyond their emergent abili-
ties [21], several key observations suggest they can: 1) Ad-
vanced natural language processing abilities [22-24], strong
knowledge retention [25-27], and reasoning capabilities [28-
30] enable interaction with intricate cellular specifications; 2)
Scalability via in-context learning and fine-tuning [23, 31, 32]
allows adaptation to evolving standards. 3) Early research
has demonstrated LLMs’ potential in related tasks, such as
identifying inconsistencies in specifications [15] and extract-
ing security-relevant clauses [33].

Despite their potential, refining cellular specifications
presents unique challenges, including understanding obscure
technical jargon, systematically analyzing lengthy and com-
plex specification fragments to identify or modify weak-
nesses, and inferring implicit background knowledge not
explicitly stated in the context. These complexities, often be-
yond those listed, may not be fully captured by LLMs during
their general-purpose training. To understand this gap, we
focus on the security aspects of cellular specifications
and critically investigate three research questions:

e RQ1: How well can modern LLMs perform the task of
refining cellular specifications?

e RQ2: How can general-purpose LLMs be better adapted
to the domain-specific tasks?

e RQ3: What challenges remain before LLMs can be reliably
deployed for refining active specifications?

We first address the challenge of domain data scarcity,
which poses a significant constraint on the application of
data-driven LLMs. Unlike the well-established CVE database
for software security, there is currently no widely recog-
nized dataset dedicated to cellular specification refinement.
The GSMA’s CVD program [34] hosts only limited known
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vulnerabilities with minimal details, while disclosed vulner-
abilities are typically reported in academic literature case
by case. To address this, we leverage 200,000+ approved
Change Requests (CRs) from 3GPP standards, which docu-
ment specification revisions along with expert comments.
Our key insight is that revisions correcting prior clauses
inherently reveal weaknesses in earlier specification
versions, tightly aligning with our goal of refining cellular
specifications. We apply LLM-based semantic filters to iden-
tify the CRs pertinent to specification weaknesses, especially
those security-related ones. This strategic use of CRs forms
the foundation for our answering the research questions.

To systematically evaluate LLMs’ domain-specific capabil-
ities (RQ1), we propose CR-EVAL, a principled evaluation
framework for cellular specification refinement. Leverag-
ing CRs, we formalize the abstract specification refinement
goal into three LLM-tractable sub-tasks: fill-cr (uncover-
ing potential weaknesses in specifications), outline-revision
(proposing necessary revisions given weaknesses), and diff-
analysis (ensuring revisions address identified weaknesses).
Our benchmark comprises 200 high-quality security-related
test cases. Using LLM-as-a-Judge [35], validated via human
studies, we comprehensively evaluate ten open-source LLMs,
four proprietary models, and additionally three SOTA reason-
ing models. CR-EvAL effectively differentiates the domain-
specific abilities of these models. Even in the hardest yet
imperative sub-task, fill-cr, the state-of-the-art reasoning
model GPT-03-mini can discover weaknesses in over 127
out of 200 test cases within five trials. Meanwhile, a meta-
analysis of model release timelines further indicates that
newer LLMs exhibit progressively stronger domain-specific
capabilities. These findings suggest that LLMs hold promise
for automating cellular specification refinement.

To address how general-purpose LLMs can be effectively
adapted for refining cellular specifications (RQ2), we explore
two approaches: domain-adaptive fine-tuning and prompt-
ing. We highlight our successful fine-tuning of open-source
LLMs using a three-stage training recipe—continual pre-
training, fine-tuning, and preference enhancement—coupled
with our novel rationale augmentation technique. The re-
sulting domain-specialized 8B LLM achieves remarkable im-
provements, nearly tripling the performance of its base coun-
terpart (LLaMA-3.1-8B) in the diff-analysis task and even
surpassing advanced models like GPT-40 and DeepSeek-V3
in the fill-cr task. Various experiments are conducted to ex-
plore the recipe, including its scalability and extensibility
to more advanced base models. However, we also pinpoint
that general-purpose LLMs are not off-the-shelf solutions for
refining active cellular specifications. For RQ3, we study our
domain-specialized LLM’s detection performance on 30 ex-
isting cellular attacks. Although it successfully identifies all

SpecNumber| CRNum | RevNum |Currentversion X.y.z

Title A descriptive title Date Written date

Categorgy e.g., 'F” -> Correction | Release e.g., Rel-18

Reason for change Filled in free text

Summary of change Filled in free text

Consequences if not approved Filled in free text

Track

changes Revised statements
—

Original statements

Figure 1: Structure of 3GPP Change Request coversheet
(see Tables 12 and 13 in Appendix G for an example).

cases, the study reveals key challenges with LLMs in inspect-
ing active specifications, including the need for additional
calibration mechanisms to ensure reliability and implicit
reliance on the completeness of analyzed clauses.

As the emerging 6G technology integrates additional fea-
tures [36, 37], it inevitably drives the evolution of 3GPP stan-
dards and raises security concerns about new specifications.
Our study demonstrates that LLMs present a timely and
effective opportunity for automated cellular specification
refinement. Our main contributions are three-fold:

e New insight. We pioneer LLM adoption for cellular spec-
ification refinement and strategically leverage CRs as do-
main data to form the foundation of a systematic study.

e Principled domain-specific evaluation. We establish
an evaluation framework, CR-EvAL, which enables the
community to understand the domain-specific abilities of
modern LLMs. Using CR-EVAL, we conduct an extensive
measurement across 16 representative frontier LLMs.

e Towards domain-specialized LLMs. We explore av-
enues for domain specialization, including an effective
fine-tuning recipe. We test on known cellular attacks to
identify areas for further improvements in steering LLMs.

2 BACKGROUND
2.1 Change Request

Cellular specifications, standardized by the 3rd Generation
Partnership Project (3GPP), define the operation of cellular
network systems, ensuring interoperability across vendors.
As cellular networks evolve from 2G through 5G and beyond,
specifications undergo updates through a structured process
involving technical specification groups (TSGs) and indus-
try stakeholders. To manage these updates, 3GPP employs
a Change Request (CR) procedure to revise specifications
for various purposes, including keeping consistent with a
change in an earlier release (A), addition of feature (B), func-
tional modification of feature (C), editorial modification (D),
and correction (F) [38]. 3GPP individual members (e.g., Qual-
comm, Apple) raise CRs using a template coversheet [39].



As illustrated in Figure 1, each CR has key blocks, including
meta-information, expert rationales that explain the neces-
sity of revisions, and the proposed clause modifications. The
modifications are tracked by the word processor software’s
“revision mode” and surrounded by proposer-decided context
statements. The approved CRs are implemented in newer
versions, which are used in this work.

2.2 Specification Weakness

Cellular specifications suffer from weaknesses, ranging from
minor ambiguities and undefined behaviors to fundamen-
tal design flaws. While these weaknesses may go unnoticed
under typical conditions, they can become threatening in
specific scenarios. A large number of CRs aim to address
weaknesses in the specifications, motivating our research
in this work. Broadly speaking, these weaknesses can lead
to various negative consequences, including performance
degradation, interoperability failures, and security vulner-
abilities. In this work, we focus primarily on those weak-
nesses that pose security risks, among which the severest
ones may be exploited by malicious entities to disrupt nor-
mal service operations. While we focus on specification-level
weaknesses, their implications are far-reaching. Design flaws
within specifications lead to vulnerabilities in compliant im-
plementations and thus propagate through the whole cellular
network system. Issues like under-specification lead to im-
plementations and configurations that fail to meet essential
requirements. We provide a survey of common specification
weaknesses and, if exploitable, their associated attack vectors
in Appendix H. However, it would be unfair to place blame
solely on specification drafters, particularly when observing
the immense volume and complexity of cellular specifica-
tions. Current refinement practices depend on human experts
to identify weaknesses and propose CRs, a labor-intensive ap-
proach that lacks a systematic evaluation framework. These
challenges highlight the critical need for automated tools
capable of refining cellular specifications.

2.3 Large Language Model

We identify LLMs as an opportunity for automated cellu-
lar specification refinement. Modern LLMs (e.g., GPT [24]
and LLaMA [40]) utilize the decoder-only Transformer ar-
chitecture [41] and are trained on the next-token-prediction
task [24] formulated as:

N
P(xl"">xN):l—[P(xi|xl"">xi—l)’ (1)
i=1

where P(x;|xy, -+, xi_1) represents the probability of pre-
dicting token x; given the preceding sequence xy, - - - , x;_1,
with tokens typically operating at the subword level. During
inference, LLMs can be used for left-to-right text completion

or, more frequently, responding to user queries provided
as prompts. A standard prompt structure [42], compatible
with most mainstream LLMs, consists of system instruc-
tion and user message. The LLM generates an appropriate
response to the given input. Typically, users can resort to
prompting in a zero/few-shot manner, articulating demands
precisely [27] and providing demonstrations [43]. However,
relying on these prompting techniques suffers inherent limi-
tations, for example, performance bottleneck and poor scal-
ability [44, 45]. To obtain better performance, fine-tuning—
updating model parameters for specific tasks—provides a
promising avenue [46, 47].

3 SPECIFICATION REFINEMENT GUIDED
BY CHANGE REQUESTS

3.1 Key Insight

Effective application of LLMs in domain tasks requires high-
quality domain data, whether for evaluation or training pur-
poses. However, large-scale human labeling for our task of
specification refining is largely impractical due to the high
demand for expertise. To address this, we propose to utilize
CRs as valuable data sources. Specifically, CRs that correct
existing statements are especially suited for our purpose as
they inherently reflect specification weaknesses in earlier
versions. Categories such as F (correction), D (editorial mod-
ification), and potentially others, encompass various speci-
fication weaknesses discussed in this work?. Key elements
of our focus include expert rationales R (reason for change R,
and consequences if not revised R.”), summary of change S/,
original statements S,;4, and revised statements Sy.,.

3.2 Dataset Curation

Before diving into RQs, we detail our curation of four do-
main datasets used for different purposes, illustrating the CR
processing pipeline in Figure 2. These datasets include:

e CR-EvAL: A benchmark of 200 security-related CRs for
evaluating domain-specific capabilities.

e CR-INsTRUCT: All CR-converted data for fine-tuning
open-source LLMs on domain tasks.

e CR-sEc: Security-related CR data for enhancing LLMs’
focus on security weaknesses.

e CR-mIx: A dataset for domain-specific continual training.

3.2.1 CR-EVAL

Collection. We first query the official database? to obtain a
complete list of CRs, filtering only those approved by TSGs to

2To maximize the usage of constrained data, we operationally sustain all
valid CRs and employ semantic filtering to identify those security-related
ones and those benefiting our domain training, as detailed in Section 3.2.
3In the following, it is equivalently used as “Consequences if not revised”.
4https://www.3gpp.org/ftp/Information/Databases/
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Figure 2: Overview of the data-processing pipeline with change requests.

ensure content reliability. A parallel crawler queries the CR
search service®, retrieves FTP paths, and downloads raw CR
files from the 3GPP FTP server®, yielding 205,374 valid CRs.
Revisions within doc/docx files are tracked via Office Word’s
Track Changes mode. Despite format evolution, 3GPP has
maintained standardized CR coversheets. We implemented a
parsing script to extract key elements, discarding CRs that
failed to process. This resulted in 189,904 structured CRs.
Annotating security relevance. We implement an LLM-
based process to annotate the security relevance of CRs based
on expert rationales R. Using LLaMA-3.1-70B with the in-
struction in Prompt 3, this approach identifies 4,869 security-
related CRs. To ensure precision, we cross-reference these
annotations with security-related CRs documented by [48],
yielding 529 intersecting cases. This is followed by a man-
ual verification as a small portion of CRs prove unsuitable
as task instances. For example, CRs proposing entirely new
statements have empty original statements S,;4, rendering
them invalid for the fill-cr task. Ultimately, we curate a set
of 2007 high-quality security-related CRs for CR-EVAL.

3.2.2 CR-INsTRuUCT and CR-sEc

After obtaining security-related CRs for evaluation, we have
185,035 security-unrelated CRs and 4,669 security-related
CRs for the training set. We convert all the CRs into task
instances based on task formatting templates, which we in-
troduce in Section 4.2.

Decontamination. To precisely reflect the benefits of domain-
adaptive fine-tuning, we try our best to minimize leakage of
test cases in CR-EvAL. Following established practices [16,
27, 43], we employ a rigorous and proactive decontamination
strategy at the level of task instances. We exclude training
samples that exhibit 20-gram overlaps with any test case
answers, where a gram is defined as a lowercase, whitespace
delimited word. This approach prevents both direct test case
leakage and the occurrence of suspicious task instances. Fur-
thermore, we remove training samples associated with exist-
ing attacks discussed in Section 6 using the same 20-gram

Shttp://netovate.com/cr-search/

Shttps://www.3gpp.org/ftp

"The success of compact benchmarks like HumanEval [49] (164 examples)
and GPQA [25] (448 examples) demonstrates that small benchmarks can be
effective, with faster and cheaper evaluation as an additional advantage.

matching criterion. From this point on, the task instances of
CR-EvAL are frozen and isolated.

Cleaning. Invalid task instances, as discussed in processing
CR-EVAL, are also present in the training set. To address
this, we down-sample task instances through a two-step fil-
tering process. First, we exclude invalid instances based on
heuristic rules (e.g., extremely short queries and missing task
placeholders). Second, inspired by [18, 50, 51], we implement
another semantic filtering to remove low-quality samples
and those irrelevant to specification weaknesses. We use
LLaMA-3.1-70B to evaluate their educational value for spec-
ification analysis, following Prompt 4. Instances deemed to
lack educational value are removed, and the remaining sam-
ples constitute our CR-INSTRUCT dataset. We clone security-
related samples to create CR-SEC, comprising three subsets,
each aligned with a specific domain task.

3.2.3 CR-mix

We incorporate 3GPP standards to enhance the LLM’s com-
prehension of cellular networks. Concretely, we utilize the
python-docx library to extract the main body of 2,445 spec-
ifications from the TSpec-LLM dataset [52]. These speci-
fications, spanning the 21 to 55 series and ranging from
Release 8 to Release 19, cover essential aspects of cellular
networks. We retain tables and figure captions while omit-
ting figures due to intractability. We also borrow a general-
domain reasoning enhancement dataset, the CoT collection
dataset [53]. To mitigate catastrophic forgetting [54], we in-
clude the Wikipedia dataset [55] and the ArXiv split from
the RedPajama dataset [56]. We filter these general-domain
datasets using keyword-based heuristics to identify docu-
ments specifically relevant to cellular networks and security,
ensuring focused domain adaptation.

4 BENCHMARKING LLMS FOR CELLULAR
SPECIFICATION REFINEMENT

In this section, we introduce our evaluation framework, CR-
EVAL. We present high-level design principles of our domain-
specific evaluation (Section 4.1), formulate specification re-
finement as LLM-tractable tasks (Section 4.2), establish a
benchmark (Section 4.3), and explain our LLM-as-a-Judge
metric (Section 4.4). After conceptual explanations, we delve
into the setup and results of our measurements.
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4.1 Design Principles of CR-EvAL

Ideally, we request that CR-EVAL satisfies the following
criteria before providing a reliable evaluation:

e Practical utility: The evaluation should emphasize real-
world utility by directly assessing LLMs’ performance
in scenarios that mirror actual specification refinement
workflows in production environments.

Certifiable correctness: Each involved test case should
incorporate a reference answer with the confirmation of
human experts to ensure reliability.

Security focus: While weaknesses may incur various
negative consequences like operational inefficiency, this
evaluation focuses on security-related ones.

Automatic evaluation: The evaluation should be highly
accessible and ensure a high standard of evaluation quality.
Thus, an effective automatic metric is in high demand.

4.2 Formalizing Specification Refinement
into LLM-Tractable Tasks

In response to practical utility, we devise three domain sub-
tasks that mirror the real-world process of refining cellular
specifications, as illustrated in Figure 3.

o Fill CR (Sorig — R): This task positions LLMs as expert re-
viewers, requiring them to discover potential weaknesses
in given statements. This task is relatively challenging as
models receive minimal contextual information.

Outline Revision (Soriy + R — S/,,): Once specification
weaknesses are identified, the next step is to revise the
corresponding clauses. To simplify the task, we require
the model to outline a revision plan.

Diff Analysis (|Sm, - Sorig| — R): This task serves as a
posterior verification step, supporting real-world scenar-
ios where editors assess whether revisions exactly imply
the identified weaknesses.

Our study emphasizes scenarios where LLMs operate in
a zero-shot setting, meaning that no examples appear in
prompts. LLMs receive a general task instruction without
any case-dependent inductive information (see Prompt 1 of
the fill-cr task), honestly reflecting their intrinsic ability to
handle the given task instance with minimal human inter-
vention. This aligns with our pursuit of a fully automated
pipeline. We use pre-defined task templates to transform
CRs into task instances, each comprising a well-documented
instruction, a structured test case, and a reference answer.
An illustrative example is provided in Figure 3.

4.3 Benchmark Establishment

The use of CRs, which expose real-world specification weak-
nesses in 3GPP standards, aligns with our requirement for
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E] Original | == E] - D/

Original

statements statements
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i Reason for Diff Analysis
" change
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B Summary || | —>] | =
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c | You are a cellular network protocol expert. {Instruction of diff-analysis} |

m [-] if the UE is unable to comply with (part of) the configuration included

<>’ | in the RRCReconfiguration message:

[+] if the UE is unable to comply with (part of) the configuration included
in the RRCReconfiguration message or if the NAS indicates that the confi-
guration received in nas-Container is invalid:

E >>> SUMMARY OF CHANGE
— | UE considers it a RRCReconfiguration failure if NAS indicates an invalid nas-
Container.

>>> REASON FOR CHANGE
... This AS behaviour is not what is normally expected with transparent NAS
containers and hence needs to ...

>>> CONSEQUENCES IF NOT REVISED
If the UE receives an invalid nas-Container, the UE may apply wrong keys
and be unable to continue ...

G _/
Figure 3: Illustration of task formulation on CR-EvAL.

certifiable correctness. The semantic categorization opera-
tion in Section 3.2.1 ensures adherence to the security focus
principle. Examples of the fill-cr task are provided in Exam-
ples 1 to 3. Qualitatively, the test cases in CR-EVAL feature
well-structured, focused specification clauses rich in cellular
network terminology (e.g., AUTS, VLR/SGS, and synchroniza-
tion failure message). To assess the representativeness of the
200 selected test cases, we conduct a comprehensive struc-
tural analysis. The benchmark exhibits extensive release and
specification coverage, progressive difficulty levels, and long-
context complexity. Further details and statistical results are
in Appendix E. CR-EVAL serves as a holistic assessment of
LLM capabilities, encompassing extensive domain knowl-
edge, systematic reasoning, precise instruction following,
effective long-context processing, a deep understanding of
cellular specification weaknesses, and acute awareness of
security-related vulnerabilities.

4.4 Automatic Metric: LLM-as-a-Judge

We require an effective metric to evaluate the correctness of
LLM responses. Although we have reference answers derived
from CRs, conventional string-matching-based metrics like
ROUGE or BLEU have been widely reported to correlate
poorly with human evaluation in text generation tasks [57-
59]. Recent research has shown promising results in utilizing
GPT models to assess LLM outputs [35, 51, 60], a paradigm



termed LLM-as-a-Judge. This paradigm has been successfully
applied to security tasks [61, 62], including evaluating LLMs’
reasoning about code vulnerabilities. We adopt LLM-as-a-
Judge to enable an effective automatic evaluation.

Following prior work [35, 61, 62], we use a reference-
aware, point-wise LLM-as-a-Judge setting, where each LLM-
generated answer is scored by comparing it to the reference
answer provided at the start of the context. As the reference
answers are typically self-contained, we omit the original
questions from the context. LLM-as-a-Judge evaluates re-
sponses using a 5-point Likert scale [63], where the positive
two points indicate acceptance, allowing differentiation be-
tween varying degrees of acceptance. The detailed prompt
template is shown in Prompt 5, with minor task-specific vari-
ations. We instantiate the LLM-as-a-Judge with GPT-40 [17],
the most advanced LLM at the time of writing. For consistent
scoring, we prompt LLM-as-a-Judge to directly give back the
scoring and greedily decode with temperature as 0.

We validate the reliability of our final LLM-as-a-Judge
setup through a human study, involving eight participants,
all PhD students majoring in network security. The study
includes two rounds: an alignment test and a judgment ap-
proval test. Detailed settings and results are provided in Ap-
pendix F. Key findings include:

o Availability: Manual checking is extremely labor-intensive,
underscoring the need for efficient automatic methods.
LLM-as-a-Judge is rather fast and accessible.

e Conformity: Human participants frequently disagree on
accepting LLM responses while LLM-as-a-Judge typically
yields agreements with the majority of participants.

o Reliability: Although human participants may have dis-
tinct judgment criteria, most LLM-as-a-Judge’s evalua-
tions are acceptable for them after calibration.

4.5 Evaluation Setup

Models. Our evaluation captures the currently highest achiev-
able performance of LLMs within three categories: 1) medium-
sized LLMs with 7-14 billion parameters, 2) advanced LLMs,
including giant-sized and closed-source models, and 3) SOTA
reasoning models. Table 6 details the models.

Metrics. We evaluate LLM performance on CR-EVAL using
pass@k [49]. The pass@k metric measures the success rate
by allowing k independent attempts and considering the best
result among the k completions. Given n > k completions,
where ¢ < n completions are correct (i.e., accepted by the

LLM-as-a-Judge), the unbiased pass@k score is computed as:

pass@k =1 — (Zi;) Specifically, we report the cumulative
k

pass@k score over all test cases, with a maximum of 200. Fol-
lowing established practices [49, 64, 65], we set the sampling
temperature to 0.8 and top-p to 0.95. Balancing reliability
and cost, we sample n = 10 completions.

4.6 Evaluation Results

General performance. As shown in Table 1, the three tasks
vary in difficulty, from the easiest outline-revision to the
hardest fill-cr. The outline-revision task, primarily a sum-
marization task, is well-handled by most models, with some
smaller models (Qwen-2.5-7B, GLM-4-9B) even outperform-
ing closed-source counterparts (e.g., GPT-40). In contrast, the
diff-analysis task reveals a significant gap between medium-
sized and advanced LLMs, highlighting the challenge of iden-
tifying implicit specification weaknesses even when given
structured version comparison. The fill-cr task emerges as an
extremely challenging task, with even advanced models like
GPT-4o0 achieving limited success. Recent reasoning models
(GPT-03-mini, Gemini-2.0-flash-thinking) demonstrate
superior performance, particularly in the diff-analysis and
fill-cr tasks. This suggests that reasoning-optimized LLMs
hold a significant advantage in tasks requiring deep contex-
tual understanding and structured reasoning.
Propagation of LLM improvements to domain tasks.
A meta-analysis of LLM release timelines and their per-
formance in CR-EVAL (e.g., pass@?5 scores in diff-analysis
across progressively released GPT models) reveals a clear
trend: Improvements in general-purpose LLMs indeed trans-
fer to domain-specific tasks. This highlights their growing
potential in tackling tasks of mobile systems, at least for
refining cellular specifications as explored in this study.
Failures of certain well-recognized LLMs. Meanwhile,
we also notice that certain widely recognized LLMs, e.g.,
DeepSeek-R1 and Claude-3.5-Sonnet, perform relatively
poorly in the fill-cr task. Another intriguing phenomenon
is an inverse scaling [66] observed in the Qwen-2.5 fam-
ily, where the largest 72B model performs the worst in the
fill-cr task compared to its smaller-sized cousins. These un-
derscores the potential gap between general-purpose LLMs
and domain-specific task requirements while emphasizing the
importance of CR-EVAL in helping practitioners identify
models with the strongest domain-specific capabilities.
Domain-specialized LLM. While we defer a detailed discus-
sion of our efforts for LLM domain specialization to the next
section, we report in Table 1 the performance of our domain-
specialized LLM, CRrTIC-LLaMA-3.1-8B8, which is obtained
by fine-tuning LLaMA-3.1-8B on domain datasets. CRITIC-
LLaMA-3.1-8B nearly triples pass@5 scores of its base model
in the diff-analysis and fill-cr tasks. Notably, it outperforms
its contemporary proprietary models like GPT-40, solving
almost twice as many fill-cr test cases. Despite these advance-
ments, we have to acknowledge that state-of-the-art LLMs,
particularly the most recent reasoning models, continue to
improve at an unprecedented pace. At the time of writing, the

8We name it CRITIC, for the model can act as a critic for cellular specifica-
tions, and its power can be attributed to Change Requests.



Table 1: LLMs’ performance in CR-evaAL, highlighting the best results for reasoning and non-reasoning models.

Fill CR Outline Revision Diff Analysis
Model Sorig — R Sorig + R = Sleo Sreo — Sorig] = R
pass@1 pass@3 pass@5 pass@l pass@3 pass@5 pass@l pass@3 pass@5
Medium-sized LLMs
GLM-4-9B 2024/06 145 23.3 27.8 172.7 1883 191.0 28.7 50.1 61.3
Mistral-7B-v0.3 2024/06 9.1 16.1 19.8 1634 1825 186.5 26.0 44.9 54.9
InternLM-2.5-7B 2024/07  12.9 25.9 33.5 158.9 1853 190.8 21.9 42.4 54.7
Qwen-2.5-7B 2024/09  13.9 24.9 29.9 175.5 189.3 191.6 32.0 55.7 68.2
Qwen-2.5-14B 2024/09  17.6 27.4 30.8 183.6 193.9 196.0 85.8 119.1 130.1
“LLaMA-3.1-8B  2024/07 61 132 181 1264 1642 1740 274 483 598
CRiTIC-LLaMA-3.1-8B Ours  [27.2] [42.3] [57.8] 1605 1824 1867 [106.4] [137.9] [148.4]
Advanced LLMs (giant-sized/closed-source)
LLaMA-3.1-70B 2024/07 7.4 13.4 16.4 1444  168.9 174.8 40.5 64.3 76.1
Qwen-2.5-32B 2024/09  18.0 28.8 33.7 183.2 190.6 192.6 77.2 106.7 116.6
Qwen-2.5-72B 2024/09  15.2 22.4 25.7 1862  [195.5| [197.7 79.4 105.5 114.1
DeepSeek-V3 2024/12 84 13.8 16.7 188.4]  195.1 197.0 95.6 121.5 1288
" GPT-35-turbo  2024/01 112 201 242 1462 1663 1707 422 636 717
GPT-40-mini 2024/07 182 27.5 31.2 173.0 182.3 183.5 52.4 74.0 81.8
GPT-40 2024/08  16.0 25.3 29.2 176.8 186.3 188.0 88.0 113.5 122.6
Claude-3.5-Sonnet 2024/06 9.5 16.2 19.3 172.6 182.5 184.9 77.7 106.3 118.1
Reasoning models

DeepSeek-R1 2025/01 9.2 15.8 194 1920 [197.2] [198.3] 1192 1437 1513
GPT-03-mini 2025/01 [89.0| [116.6] [127.9] 1868 1925 1940 1325 1544 1620
Gemini-2.0-flash-thinking ~ 2025/01  79.0 114.8 127.3 166.8 177.6 1792 [139.8] [164.0] [169.5]

most advanced reasoning models like GPT-03-mini have sur-
passed our domain-specialized model, which was trained on
earlier, medium-sized foundation models. We further demon-
strate in Section 5.1.4 that fine-tuning on domain-specific
data can be effectively extended to more powerful founda-
tion models, demonstrating its future utility. Overall, these
results highlight the impact of domain-specific fine-tuning
in bridging the gap between general LLM capabilities and
domain-specific requirements.

B Takeaway. LLMs demonstrate varying degrees of abili-
ties in the specification refinement tasks. Specifically, newer
models with stronger general-domain abilities usually lead to
stronger domain-specific abilities as well. CR-EVAL enables
the practitioners to understand which LLM is better.

5 DOMAIN-SPECIALIZED LLMS FOR
SPECIFICATION REFINEMENT

We explore strategies to adapt general-purpose LLMs for
domain specialization, focusing on two key methods: domain-
adaptive fine-tuning and lightweight prompting.

5.1 Method 1: Fine-Tuning

Building on previous successful practices in developing spe-
cialized LLMs in other domains [26, 67, 68], we resort to

fine-tuning to achieve domain specialization, with its advan-
tages explained in Appendix A. We propose a three-stage
expertise training framework that mirrors human expert
development. We also propose a necessary data augmenta-
tion operation (rationale augmentation in Section 5.1.2) for
converting CRs into high-quality training data.

5. 1.1

This framework, as illustrated in Figure 4, cultivates domain

knowledge, problem-solving abilities for refining cellular

specifications, and sensitivity to security-related weaknesses.
Stage 1: Domain-Adaptive Continual Training (DACT).
LLMs typically undergo pre-training on massive text cor-
pora, through which they develop general-purpose capabili-
ties rather than become adept in specific domains. Domain-
Adaptive Continual Training (DACT) refines an LLM’s learned
distribution through incremental training on domain data [46,
69, 70]. As we cannot assume that foundation models have

adequately acquired domain knowledge during their initial

pre-training, we incorporate a DACT stage, which shares the

same paradigm with pre-training as follows:

Three-stage training framework

LDACT(G) = _EXNDDACT lz IOgPH (xi|x<i)l s (2)

i=1
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Figure 4: High-level overview of the training framework for domain specialization.

where x is a sequence from the domain dataset Dpacr, x;
is its i-th token, x; represents preceding tokens, and pg is
the probability distribution modeled by parameters 6. This
objective minimizes the expected negative log-likelihood of
predicting the next token given the context. We instantiate
Dpact with CR-MIx introduced in Section 3.2.

Stage 2: Task-Specialized Tuning (TST). After the contin-
ual pre-training stage, we fine-tune LLMs in domain tasks
during the Task-Specialized Tuning (TST) stage. This stage
is designed to help LLM master the basic ability to analyze
cellular specifications. Fine-tuning during this stage utilizes
our CR-INSTRUCT dataset, which encompasses all CR data,
and relies on labeled samples:

Ty
-ETST(G) = _E(x,y)~DTST Z IOgPB(yt | X, y<t) 5 (3)

t=1

where Drst represents the CR-INSTRUCT dataset. The model
is trained to minimize the conditional negative log-likelihood
of the target output y given the input x, as determined by its
parameterized distribution pg. The CR-INSTRUCT dataset
incorporates diverse task formulations, enabling the model
to learn each CR through multiple contexts. This multi-task
learning paradigm encourages the model to generalize rea-
soning skills across the three target tasks.

Stage 3: Security-Centric Tuning (SCT). We expect the
model to analyze specifications from the security perspective.
Inspired by [71], we frame security-centric analysis as a style-
controlled text generation problem. This approach leverages
security-related CRs, which reveal real-world security issues,
to shape security-centric analysis, enhancing operational

feasibility. The objective for the SCT stage is defined as:

Ty
Lsc1(80) = —E(x,y)~Dser Zlogpa+5e(yt | x,y<)|, (4)

t=1

where Dscr denotes security-related task instances of the
target task from CR-sEc. The parameter 560 corresponds to
the additional adapter implemented using Low-Rank Adapter
(LoRA) [72], which allows for parameter-efficient adaptation
and preserves most of the model’s original capabilities[73].

5.1.2  Rationale augmentation

Manual inspection reveals a limitation of training samples
derived from CRs: expert rationales R in CRs are mainly
concise declarative statements, rather than detailed reason-
ing (see Figure 5 for an example). This gap hinders effec-
tive LLM training, as insufficient rationales lead models to
memorize answers instead of developing problem-solving
skills [47, 53, 74]. This impact is pronounced in CR-EVAL
tasks (cf. Section 5.1.4), where fine-tuning directly on CR-
converted data alone degrades performance.

To address this issue, we introduce rationale augmentation,
generating refined, rationale-rich responses for LLM training.
Following prior work on training with rationales [30, 53, 75],
we adopt a backward-rationalization strategy: A rationale
generator P, processes a complete task instance—comprising
task instruction T, test case Q, and original answer A—and ap-
plies backward reasoning to produce a rationale-augmented
answer A*, following augmentation principles C, as formu-
lated by A* « Po(T | Q | A;C). We enforce pedagogically
oriented principles C to enhance instructional effectiveness
while preserving answer consistency (cf. Prompt 2). This



>>> REASON FOR CHANGE
The <selected-user-profile-index> element requires correction.

>>> SUMMARY OF CHANGE
The element is defined in the <anyExt> element of the <mcvideo-Params> element.

>>> CONSEQUENCES IF NOT REVISED
The spec is inconsistent because based on the current definition the element cannot

be security protected.
' Augment

rationales
>>> REASON FOR CHANGE
The <selected-user-profile-index> element requires correction due to its current
placement within the <anyExt> element of the <mcvideo-Params> structure. This
positioning can lead to ambiguity in the security handling of this element,
particularly concerning its confidentiality and integrity protection. Elements
intended to carry sensitive information should be clearly defined and not buried
within less specific structures like <anyExt>, which may not be adequately
safeguarded under the current specifications.

>>> SUMMARY OF CHANGE
The <selected-user-profile-index> element should be explicitly defined as a direct
child of the <mcvideo-Params> element, rather than being nested within <anyExt>...

>>> CONSEQUENCES IF NOT REVISED
If the proposed changes are not made, the specification will remain inconsistent and
potentially insecure...

Figure 5: Example of rationale augmentation.

improves domain data quality, aligning CR-based training
with the high reasoning demands of specification refinement.
Moreover, rationale augmentation introduces a new scalabil-
ity dimension: Multiple distinct rationales can support the
same correct answer. By sampling rationale generators with
high temperatures, we generate diverse rationale-augmented
answers per task instance, maximizing the value of each CR.

5.1.3 Implementation

Rationale augmentation. We employ LLaMA-3.1-70B and
GPT-4o0 for rationale augmentation of CR-INSTRUCT and
CR-sEC, respectively. We prompt the rationale generators
with a 0.8 temperature to encourage rationale diversity and
a top-p of 0.95 to minimize sampling noise. Our default ratio-
nale number per instance is three for TST and five for SCT.
Note that the reference answers on CR-EVAL are not aug-
mented as we wish to align with human experts completely.
Training configurations. Constrained by resource limit,
our experiments are primarily on LLaMA-3.1-8B [18], the
most powerful 8B model at the inception of this project. We
fine-tune all parameters for DACT and TST while integrating
LoRA adapters[72] (r = 256, @ = 512) for SCT. We provide
our exhaustive training choices in Appendix C, including
learning rates and batch sizes.

Compute infrastructure. All experiments were conducted
on a server running Ubuntu 20.04.5 LTS operating system.
The machine is equipped with an Intel Xeon Platinum 8468V
processor (96 cores, 192 threads), 2 TB of system memory,
and 8 NVIDIA H800 GPUs with 80 GB of VRAM each.
Software. Our project is implemented based on Python
3.12, CUDA 11.8, PyTorch 2.4.0, and HuggingFace’s trans-
former library. To accelerate training, we achieve data paral-
lel through DeepSpeed [76]: we adopt ZeRO stage-2 with a
world size of 4 for 8B models and stage-3 with a world size
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Figure 6: Extensibility to advanced base models.
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Figure 7: Rationale-dimension scalability.

of 8 for 70B models. We use Flash-Attention 2 [77] to im-
prove throughput and use gradient checkpointing to reduce
memory requirements. For evaluation, we deploy inference
endpoints using vLLM [78]. The entire project consumes
around 12,800 lines of code, decomposed in Table 7.

5.1.4  Performance analysis of fine-tuning

While the excellent performance of the resulting model has

been reported in Section 4.6, We explore the recipe’s extensi-
bility to advanced base models and evaluate the effectiveness

of rationale augmentation in this section.

Extensibility to advanced base models. We extend the

domain-adaptive fine-tuning to closed-sourced GPT-40-mini’
and the LLaMA-3.1-7@B with a larger parameter count, using

the CR-sEc. As shown in Figure 6, domain-adaptive fine-
tuning yields performance improvements across all models.
Interestingly, LLaMA-3.1-8B and LLaMA-3.1-70B converge

to similar levels, indicating that domain data quality, rather

than model size, is the primary bottleneck in certain cases.
Meanwhile, GPT-40-mini consistently maintains superior

performance, particularly on the fill-cr task. This suggests

that applying our training methodology to advanced foun-
dation models could further specialize LLMs.

Scaling along rationale!’ dimension. Beyond increasing

model size and training data, rationale augmentation offers

9Fine-tuning GPT models is officially accessible via https://platform.openai.
com/finetune. Considering cost affordability, we select GPT-40-mini as a
representative example of closed-source models.

WOFor clarity, we use the term "rationales” as a shorthand to refer to those
distinct rationale-augmented answers in the following contents.
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https://platform.openai.com/finetune

another scaling dimension to enhance performance, enabling
better utilization of constrained domain data. We evaluate
this approach using CR-sEc in the diff-analysis task with
various rationale generators. The landscape of scaling up
rationales is depicted in Figure 7. Training without ratio-
nales degrades performance, confirming that raw task
instances offer limited learning value, underscoring the
necessity of rationale augmentation. Typically, more capable
rationale generators bring about more performance improve-
ment, potentially due to better knowledge distillation [79].
In most cases, the benefits of incorporating more rationales
show evident gains and then reach a plateau. An exception
is observed with LLaMA-3.1-8B, where training with highly
diverse rationales (e.g., 20) generated by itself leads to model
collapse (see Appendix D.3 for a preliminary explanation).

We also explore the ability transfer between CR-EVAL
tasks (Appendix D.1), track the behaviors of the domain-
specialized model (Appendix D.2), ablate the three training
stages (Appendix D.4), and scale up model training along the
data dimension (Appendix D.5).

5.2 Method 2: Prompting Methods

Another potential method to achieve domain specialization is
prompting, which involves crafting well-suited instructions
to steer general-purpose LLMs. Prompting is lightweight, as
it requires no additional model training. However, it also suf-
fers from limitations, including model capacity bottleneck,
lack of systematic methodology, reliance on human exper-
tise, limited performance scalability, restricted transferability
across models, and sometimes practical policy constraints.
We conduct experiments to assess the effectiveness of var-
ious prompting methods on CR-EvAL. Due to space limit,
we present details in Appendix B and summarize the main
results here: (1) We ask one author to manually rephrase
instructions or query GPT-4o0 to refine instructions. These
types of prompt engineering yield limited performance im-
provements, as shown in Table 2. (2) We further explore ad-
vanced prompting techniques, including zero-shot CoT [29]
and few-shot CoT [28]. While zero-shot CoT enhances rea-
soning density and offers slight improvements (up to 4% in
the best cases), these gains remain modest. Few-shot CoT can
even degrade performance, particularly for GPT-40-mini,
likely due to increased context length and the lost-in-the-
middle effect [80]. (3) We also investigate prompting in a
human-in-the-loop scenario to assess whether LLMs can
effectively leverage expert guidance in the fill-cr task:

e Distilled references: Emulating expert guidance, we
use GPT-40 to condense reference answers into single-
sentence root cause analyses without weakness disclosure.

e Enumerable directions: From 1,922 common root causes
of specification weaknesses (e.g., “poor failure managem
ent”), GPT-4o0 selects the five most relevant as guidance.
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Table 2: Impact of prompt refinement on diff-analysis.
“Inst” represents Instruction.

LLaMA-3.1-8B  CRiTic-LLaMA-3.1-8B

pass@1 pass@5 pass@1 pass@5
Default Inst. 27.4 59.8 106.4 148.4
Manual Inst. 22.0 49.8 106.3 146.3
GPT Inst. 1 18.5 45.2 106.4 150.2
GPT Inst. 2 22.0 48.3 105.3 143.7

Distilled references (pass@5: 103.2)
The potential root cause that incurs problems lies in mismatched
authentication methods or unsupported features across devices and
network components.

Enumerable hints (pass@5: 81.4)
The potential specification issues are: inadequate authentication,
authentication mechanisms, protocol misalignment, authentication
flaws, specification updates.

Figure 8: Results and examples of incorporating exper-
tise. We test on the fill-cr task and the pass@?5 of the
tested checkpoint with no hint is 57.8.

We present examples and corresponding results in Figure 8.
The findings show that LLM like CRrTIC-LLaMA-3.1-8B
can benefit significantly from additional guidance, achiev-
ing up to a 78.5% improvement in the challenging fill-cr
task and making the augmented LLM comparable to reason-
ing models. We hypothesize that expert knowledge serves
as external hints, whereas reasoning models generate such
hints by themselves, enabling more directed reasoning about
specification weaknesses. It is worth noting that while the
distilled reference approach assumes access to preliminary
high-quality expert analysis, enumerable directions remain
easily accessible in production environments. These results
highlight another promising pathway for enhancing domain
specialization in LLMs by incorporating expert knowledge.

B Takeaway. Appropriately implementing domain-adaptive
fine-tuning can effectively bolster LLM specialization in do-
main tasks. While prompting methods can provide a light-
weight means of adaptation, their impact is sometimes limited.

6 CAN LLMS REPLACE HUMANS IN
SPECIFICATION REFINEMENT?

To stress-test LLMs, we conduct case studies on known cellu-
lar attacks to assess how far LLMs are from fully automating
specification refinement. As observed earlier, the bottleneck
of LLM-driven specification refinement lies in weakness de-
tection (fill-cr), which is the focus of this section.

We evaluate CR1TIC-LLaMA-3.1-8B on existing attacks.
Since fill-cr focuses on identifying weaknesses rather than
synthesizing attacks, we decide to separate it: 1) CRITIC-
LLaMA-3.1-8B analyzes potential weaknesses across 10 trials.



Table 3: Evaluation of known attacks using CR1TIC-
LLaMA-3.1-8B (). Hermes results () are self-
reported in Al Ishtiaq et al. [14]. We indicate the ver-
sion where the flawed specification was identified. We
use symbols () (implementation flaw), © (configura-
tion flaw), and ¥ (non-deterministic).

ID Attack Protocol
1 AUTH REJECT Attack [81] AGNAS (150.0) v v
2 Blind DoS Attack [82] 4GRRC (14.2.2) X v
3 Cutting off the Device [10] 5G NAS (16.2.0) X v
4 Deletion of allowed CAG list [14] 5GNAS (17.8.0) v v
5  DoS with RRCSetupRequest attack [10] 5GRRC (15.5.1) X v
6  Denying all network services [4] 4G NAS (12.8.0) v v
7  Denying selected service [4] 4G NAS (12.8.0) X v
8  DETACH REQUEST attack [3] AGNAS (1280) v v
9  Downgrade to non-LTE services [4] 4G NAS (12.8.0) v v
10 Downgrade via ATTACH REJECT [4] 4G NAS (128.0) Vv v
11  Energy Depletion with RRCSETUP [14] 5GRRC (17.0.0) v v
12 Exposing NAS Sequence Number [10]  5G NAS (16.0.2) v v
13 Exposure of SQN [83] 3G AKA (15.0.00 v v
14 IMSI Catching [84] AGNAS (127.0) v v
15  IMSI Cracking [9] 4GRRC (15.0.0) X v
16 IMSI Cracking [9] 5GNAS (15.00) X
17 Incarceration with RRCRELEASE [10] 5G RRC (15.5.1) v v
18 Installing Null Cipher/Integrity [10] 5GRRC (15.5.1) v v
19 Lullaby Attack [10] 5GRRC (15.5.1) v v
20 Measurement report [4] 4GRRC (123.0) X v
21 NAS COUNT update attack [14] 5G NAS (16.4.0) v v
22 NAS Counter Reset [10] 5G NAS (16.0.2) v v
23 Neutralizing TMSI Refreshment [10] 5G NAS (16.2.0) X v
24 Paging channel hijacking [3] 4GRRC (12.5.0) X 4
25 SERVICE REJECT attack [4] AGNAS (12.80) v
26  Signaling DoS Attack [85] 4G NAS (16.8.0) v v
27  SUCI Catching Vulnerability [86] 5G NAS (15.0.0) X v
28  Synchronization Failure Attack [81] 4G NAS (15.0.0) X v
29  Uplink NAS Counter Desync [10] 5G NAS (16.0.2) v v
30  5G AKA DoS Attack [87] 5GNAS(1520) ¢
31 AKA Bypass [82] 5G RRC (D) X -
32 EMM Information Vulnerability [88] 4G NAS (D) v -
33 Impersonation attack [89] 4G NAS (©) X -
34 Malformed Identity Request [90] 4G NAS (D) X -
35 RLF report [4] 5G RRC (D) v -
36  S-TMSI Catching [82] 4G NAS (N) v -

2) GPT-4o0 evaluates each analysis according to Prompt 6, de-
termining whether combining the discovered weakness with
the corresponding threat model sufficiently derives the final
attack. 3) We manually validate accepted analyses for reli-
ability. Following Al Ishtiaq et al. [14], we examine totally
36 types of existing attacks, collecting relevant specification
statements, threat models, and attack descriptions for each.
Specification statements were successfully located for 30
attacks, forming the basis of our case studies, while the re-
maining 6 were excluded due to reliance on implementation
or configuration flaws.

The attack list and results are presented in Table 3. CRITIC-
LLaMA-3.1-8B successfully detects all 30 types of attacks.
In comparison, the formal analysis method Hermes [14]
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Table 4: Examples of CRiTic-LLaMA-3.1-8B analyses
for the Incarceration with RRCRELEASE attack [10].

Accepted CRrTIC-LLaMA-3.1-8B response

The current specification allows the RRCRelease message to be
sent unprotected under certain conditions. This poses a signifi-
cant security risk, particularly if these messages contain sensitive
information or instructions that could be intercepted or modified
by malicious entities. The inclusion of optional fields such as
de-prioritisation information and cell reselection priorities in the
RRCRelease message further exacerbates this risk, as these fields
can convey critical operational data that, if leaked, could disrupt
network performance or lead to unauthorized access.

Rejected CRITIC-LLaMA-3.1-8B response

The current specification allows the RRCRelease message to be
sent unprotected, which can lead to significant security vulner-
abilities. Since the RRCRelease message may contain sensitive
information, such as redirected carrier information or suspend
configuration details, sending it unprotected could allow unau-
thorized entities to intercept this data.

identifies 19 of these attacks. Representative examples of
CRiTIiCc-LLaMA-3.1-8B’s responses are shown in Table 4.
It demonstrates the ability to reason about potential weak-
nesses diversely, which we attribute to the incorporation of
multiple rationales during training. Remarkably, even the
rejected responses provide valuable insights, unveiling other
negative consequences with unprotected RRCRelease mes-
sage. While these results are promising, we also identify key
challenges that hinder the direct deployment of LLMs for
automated cellular specification refinement.

¢ Requirements for effective calibration: While LLMs’
ability to produce diverse interpretations can be useful, it
inevitably increases false positives. Their inherent hallu-
cination issues [91] further exacerbate this, making blind
reliance infeasible. For weakness verification, current prac-
tices primarily delegate this responsibility to human an-
alysts [3, 10, 13]. Extending this practice to LLM-based
analysis would be impractical due to the sheer volume
of generated weaknesses. Crucially, we argue that even
with full autonomy, decision-making should not be ceded
to LLMs. Rather than blaming LLMs, the focus should be
on developing effective calibration mechanisms to reduce
human effort. Without them, unverified proposals risk
overwhelming analysts instead of aiding them.

Completeness of analyzed clauses: Our manually cu-
rated set of attack-related specification clauses provides
an idealized benchmark, containing sufficient context for
analysis. This partially explains why CRrT1c-LLaMA-3.1-
8B achieves perfect detection of known attacks despite its
limitations in addressing all test cases in CR-EvAL. How-
ever, practical challenges emerge when refining active



specifications, particularly in identifying vulnerabilities
arising from complex interactions across multiple sources.

B Takeaway. Despite their potential, LLM-driven cellular spec-
ification refinement should not be over-relied on. At the current
stage, human-in-the-loop oversight is still necessary to validate
LLM-provisioned proposals of specification refinements.

7 LIMITATIONS AND FUTURE WORKS

Due to cost constraints, our measurement study does not
cover all existing LLMs; instead, we focus on recent state-of-
the-art models as representative examples. Future work may
include newly released LLMs. Our systematic exploration
consumed over 32,120 H800 GPU hours, but computational
constraints prevented us from exploring other promising
directions, e.g., scaling to giant LLMs like LLaMA-3.1-405B.
Nevertheless, our experiments in Section 5.1.4 demonstrate
the feasibility of extending domain specialization to stronger
base models. This work mainly explores fine-tuning and
prompting to enhance LLMs’ domain-specific capabilities.
Alternative approaches such as reinforcement learning and
agentic Al may further boost domain specialization, which
we leave for future work. Additionally, while our focus is on
the security aspects of cellular specifications, our future work
could extend LLM-driven specification refinement to address
other types of weaknesses following similar methodologies.

8 RELATED WORKS
8.1 Weakness Discovery of Cellular Specs

Although cellular specification refinement is rarely studied,
well-established practices exist for weakness discovery.
Manual inspection by domain experts has led to numerous
vulnerability findings, including data plane attacks [8, 92, 93],
attacks against emergency systems [94, 95], key reinstalla-
tion [96], user tracking [4, 86, 97], side channel attacks [9, 98],
and fingerprinting [99, 100]. While it allows for the discov-
ery of sophisticated attacks, relying on manual inspection
cannot ensure covering all aspects of cellular networks, es-
pecially as cellular networks grow increasingly complicated
and specifications become more voluminous. That’s why
automated tools are in demand.

Formal verification is widely used in evaluating cellular
protocols [3, 10-12, 14, 101, 102]. However, their applica-
tions require significant manual effort to build formal models
and craft verification properties, inherently limiting automa-
tion and scalability. Moreover, a huge semantic gap exists
between abstract formal models and natural language speci-
fications, leading to incomplete exploration of complicated
cellular systems. This challenge is further exacerbated by
the inherent state explosion problem of formal methods.

12

NLP techniques have been adopted to uncover specification
flaws [13-15, 48, 103]. Atomic [13] applies textual entailment
to detect risky descriptions in 3GPP standards. Several ap-
proaches fine-tune encoder-based transformer models (e.g.,
RoBERTa [104]) for different purposes: CREEK [48] identifies
security-related CRs, CellularLint [15] detects inconsisten-
cies, and Hermes [14] constructs state machines for formal
analysis. These methods focus on information extraction
rather than direct vulnerability detection, still relying on
human expertise and facing scalability challenges.

8.2 LLMs for Cellular Network

The human-like intelligence of modern LLMs, specifically
generative ones such as GPT [17], has catalyzed numerous
studies on their potential applications in cellular networks,
raising the question of whether they can serve as key en-
ablers of network automation. Existing research predomi-
nantly investigates whether LLMs can comprehend domain
knowledge through question-answering tasks. For example,
GSMA has officially launched the Open-Telco LLM Bench-
mark project [105] to evaluate LLMs on interacting with com-
plex standards. Similar efforts include SPEC5G [33], TSpec-
LLM [52], and TeleQnA [106]. Beyond knowledge compre-
hension, preliminary studies explore whether LLMs can fa-
cilitate real-world scenarios. For instance, Wen et al. [107]
employ LLMs to detect and explain runtime anomalies in
the O-RAN data plane, while Kotaru [108] investigate their
potential for enabling natural language interfaces to retrieve
and analyze 5G operator network data. In this work, we
stress-test LLMs in a productive setting, evaluating their
effectiveness in refining cellular specifications—a task that
directly impacts the efficiency of practitioners, particularly
those working with voluminous cellular specifications.

9 CONCLUSION

Currently, cellular network specification refinement remains
labor-intensive and unsystematic. In this work, we pioneer
the adoption of LLMs for automated cellular specification re-
finement. To advance it, we tackle the domain data scarcity
challenge by transforming change requests of 3GPP stan-
dards into utilizable task instances. We establish a principled
evaluation, CR-EVAL, enabling the community to assess the
domain-specific capabilities of the rapidly advancing LLMs.
In this context, we enhance LLM domain specialization by
contributing an effective domain-adaptive training recipe
and understanding the efficacy of various prompting meth-
ods. Our case studies on 30 known cellular attacks reveal
the remaining challenges in achieving fully automated LLM-
based cellular specification refinement. This study sheds light
on the potential of LLMs in refining cellular specifications
and provides a foundation for future advancements.
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A  Why Fine-Tuning?

In this work, we explore fine-tuning methods to improve
LLMs in cellular specification refinement. Several compelling
reasons motivate our resorting to fine-tuning: @ Refining cel-
lular specifications is reasoning-heavy, knowledge-intensive,
and expertise-driven. There exists a gap between LLMs’
general-purpose training objectives and the task’s specialized
requirements. @ As we cannot assume that general-purpose
LLMs inherently possess all the fundamental components
necessary for expert-level analysis, we demand an approach
that enables building these capabilities from the ground up.
© The cellular security community continuously evolves
with ongoing research and new discoveries. This necessi-
tates a scalable approach capable of knowledge ingestion.
Fine-tuning effectively fulfills all the expectations outlined
above [47, 109, 110]. ® Furthermore, for domain-specific
tasks, fine-tuned models may achieve either higher perfor-
mance at fixed cost or lower cost at fixed performance. These
benefits align with the success of specialized LLMs in various
fields, including medicine [26], finance [67], and math [68].
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B Limits of Prompting Methods

B.1 Why Prompting Methods Fall Short

As for the usage of LLMs, the naive method is to prompt ad-
vanced LLMs to solve target tasks in either zero-shot or few-
shot manners. However, this approach suffers several critical
limitations. @ Prompting remains an art instead of a system-
atic science, making it challenging to easily craft effective
prompts. @ Crafting prompts is not effort-free while the effec-
tiveness heavily relies on human expertise. This contradicts
our objective of automated analysis. ® Prompts are typically
model- and case-dependent, limiting their scalability and
transferability across different scenarios and different mod-
els. Moreover, the effectiveness of even well-crafted prompts
fundamentally depends on the underlying model’s capabil-
ities. As such, model limitations will bottleneck outcomes.
Our fine-tuning methods directly enhance model abilities.
® For more practical considerations, weakness analysis is a
sensitive topic, and utilizing third-party LLM services intro-
duces the risk of information leakage. Besides, LLM service
providers often enforce strict regulations and may restrict or
block security-related queries. This calls for the development
and local deployment of specialized LLMs.

B.2 What If Using Prompting Methods

Prompt baselines. As we cannot enumerate all possibilities
of prompts, we empirically show the performance of sev-
eral representative prompt settings. First, we ask one project
member to rephrase the default instruction to test the im-
pact of phrasing variance on LLM performance. Second, we
utilize GPT-4o0 to refine the default instruction provided in
CR-EvAL tasks by requesting more LLM-friendly variants,
generating two stronger prompt baselines. We follow de-
fault testing configurations with only the task instruction
altered. The results are shown in Table 2. Comparing differ-
ent prompt settings, we observe the sufficiency of the default
instruction, which simply describes the task plainly. We also
notice that the performance of CRiTic-LLaMA-3.1-8B is
not strongly dependent on the default instruction, which
CRiTIC-LLaMA-3.1-8B encounters in the training stage. Be-
sides the powerful ability obtained through domain-adaptive
fine-tuning, another implicit benefit is that it eliminates the
need for users to engage in extensive prompt engineering
to achieve optimal performance. This is evidenced by the
smaller variance of CRrTIC-LLaMA-3.1-8B’s performance
across multiple prompt settings.

CoT prompting. We explore the impact of recognized reasoning-

enhancing techniques. Specifically, we evaluate two rep-
resentative approaches, few-shot CoT [28] and zero-shot
CoT [29], applying them to LLaMA-3.1-8B, GPT-40-mini,
and CRrTic-LLaMA-3.1-8B. We instantiate few-shot CoT
with three randomly sampled training samples, each with



Table 5: Training configurations for CRiTic-LLaMA-3.1-8B.

Stage 1 (DACT)

Stage 2 (TST) Stage 3 (SCT)

Corpus CR-MIx CR-INSTRUCT CR-sEC
Training method Pre-training Supervised Supervised
Learnable parameters Full parameters Full parameters LoRA (r = 128, a = 256)
Learning rate 2e-6 2e-5 le-4
Global batch size 256 128 64
Weight decay 0% 10% 0%
Gradient clipping 1.0 1.0 1.0
Training epoch 1 1 1
Parameter precision BF16 + TF32 BF16 + TF32 BF16 + TF32
Warmup ratio 10% 3% 3%
Scheduler type Cosine Cosine Cosine
Max sample length 512 12,000 12,000
LLaMA-3.1-88  GPT-40-mini CRiticLM as recommendgd by Bldern}an et al. [73]. We apply I:‘O'RA
97 /200 128 /200 184 / 200 adapters tolall lmdear layers in the rFodeil. Allht;ree trammg
-y — -y stages employ AdamW optimizer [111] with f; as 0.9 an
§ £ 1A6 249 § £ 1A4 = § £ 1A8 ) B2 as 0.999. The settings of learning rates are 2 X 107 for
2% 2% 2% DAPT, 2 x 10> for TST, and 1 x 10~* for SCT. For batch size,
qé) £ 117 E g £ 83 1V2 g £ 17 :5) we employ 256 for DAPT, 128 for TST, and 64 for SCT. All
NE NE NE the training stages consume one epoch with the analogous
| t C t | t C t | t C t . . . .
Instruction Only Instruction Only Instruction Only learning scheduler: the learning rate is linearly warmed up
o o o for several training steps and then cosine decreases to 1/20
§ £ 19 W § £ Zvl 80 § £ 3 104 of the peak learning rate. Gradient accumulation is adopted
22 23 22 to achieve large batch sizes with constrained GPU memory.
?¢1114 19 ?e| 76 23 ?¢| 32 61
25 25 25
g g A e A
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Figure 9: Impact of CoT prompting, conducted on diff-
analysis. We use pass@ 10 to ease the sample-wise com-
parison and report the overall performance under di-
verse CoT settings for model-level comparison.

augmented rationales. As shown in Figure 9, the incorpora-
tion of zero-shot CoT enhances reasoning density, leading
to higher pass rates across all three models. We observe that
introducing few-shot CoT may adversely impact the per-
formance of models. The task instances typically span long
context, e.g., the 3-shot setting additionally costs 8,287 to-
kens of GPT-40-mini. We hypothesize that the performance
degradation stems from the lost-in-the-middle phenomenon
inherent in LLMs [80], where long or irrelevant context will
lead LLMs to behave worse. Besides, the inference cost also
increases when employing additional shots.

C Complementary Experimental Setup

We list all main training configurations in Table 5. We choose
a high rank r = 256 for the LoRA adapter and set a = 2r
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Table 6: Models evaluated in this work.

Model Model size Open-source Context window
LLaMA-3.1-8B 8B Y 128K
Qwen-2.5-7B 7B Y 128K
GLM-4-9B 9B Y 128K
InternLM-2.5-7B 7B Y 1M
Mistral-7B-v0.3 7B Y 128K
LLaMA-3.1-70B 70B Y 128K
GPT-3.5-turbo Unknown N 16,385
GPT-40-mini Unknown N 128K
GPT-40 Unknown N 128K
Claude-3.5-Sonnet Unknown N 200K
DeepSeek-R1 671B Y 128K
GPT-03-mini Unknown N 200K
Gemini-2.0-flash-thinking  Unknown N 1M

Table 7: Module-level lines of code counted using cloc.

Component LoC
Data collection and processing 4,946
Training 3,419
CR-EvAL 2,203
User study 2,241
Total 12,809
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Figure 10: Patterns of diversity gain when augmenting rationales using different models: LLaMA-3.1-8B, GPT-40-mini,
GPT-40, and LLaMA-3.1-70B. The rationales correspond to the diff-analysis task. We use Euclidean distance to
measure the similarity between rationales while the sample-level diversity gain is measured as the minimal
distance of the i-th rationale against the set of the previous (i — 1) rationales plus the original answer. We plot the

variance across different task instances.

D Additional Experiment Results

D.1 Correlation between CR-evaL Tasks

We explore the correlation between the CR-EvAL tasks by
evaluating whether the knowledge acquired by training on
the source task can transfer to the target task. We train base
models with CR-sEc of the source task and evaluate the
trained model in the target task. The results are shown in Ta-
ble 8. We notice that the knowledge is clearly transferable
between tasks, which substantiates the efficacy of our multi-
task learning design in the TST stage.

Table 8: Cross-task performance: models are trained
on source tasks with CR-sec and evaluated on target
tasks using pass@5.

Source

Outline Revision Diff Analysis Fill CR

4 | Outline Revision 177.9 183.6 169.8
‘g’ Diff Analysis 77.8 124.2 74.4
& | FillCR 31.9 27.2 33,5

D.2 Tracking Model Behaviors

We study why CRiTic-LLaMA-3.1-8B can excel in cellular
specification refinement and, consequently, on CR-EvaL. We
analyze the model’s behavior by collecting next-token pre-
dictions during processing the diff-analysis task of CR-EVAL.
Formally, we obtain a set of softmax-normalized next-token

distribution within each sample (% Zfi 1 plj ), and then av-
eraging across all N samples. This processing condenses
the LLM’s behavior on CR-EVAL into a single probabil-
ity distribution Py € RVl where each dimension rep-
resents the model’s averaged behavior for a vocabulary to-
ken. Due to the huge vocabulary size, e.g., |V| = 131,072
for LLaMA-3.1 models, we focus on tokens with probabil-
ities higher than ﬁ which represent frequently used vo-
cabulary in LLM outputs. We conduct a comparative analy-
sis between PcRrric—LLaMA-3.1-8B and Prrava-3.1-88, with key
observations presented in Table 10. Significantly, CRITIC-
LLaMA-3.1-8B yields higher probabilities for security-related
tokens, and notably transitions from employing generic de-
scriptions (e.g., “_errors” and “_risks”) to more specific ter-
minologies (e.g., “_interception” and “_confidentiality”). As
the Prpym is normalized, an increase in certain token prob-
abilities inevitably results in the reduction of others. This
transition aligns with our objective of developing a more
domain-specialized model.

D.3 Exploring Diversity Gain of Rationales

Building upon our scalability analysis rationales in Section 5.1.4,
we study why training with more rationale-augmented an-
swers can benefit CR1T1c-LLaMA-3.1-8B and why this im-
provement finally plateaus. We analyze the semantic differ-
ences between rationales by measuring their distances in

prediction probabilities denoted as p{ eRVlie [1,S;],j € [1, N],the embedding space. We employ a feature extractor (i.e.,

where N denotes the number of test cases in CR-EVAL, S;
represents the sequence length of predicted tokens for the
Jj-th test case under greedy search, and |V| is the vocabulary
size. To mitigate varying completion lengths, we perform
hierarchical aggregation: computing the mean prediction

OpenAT’s text-embedding-3-large) to project each rationale
into the embedding space. We then observe the diversity gain
brought by progressively adding new rationales. The diver-
sity gain corresponding to the i-th rationale of the j-th task
instance is defined as the minimum distance between the new



Table 9: Impact of training stages, with rigorous decon-
tamination to minimize memorization.

Diff Analysis Fill CR
pass@1 pass@5 pass@1 pass@5
LLaMA-3.1-8B 27.4 59.8 6.1 18.1
+SCT 733 124.2 12.7 33.5
+TST+SCT 958 145.3 25.3 49.9
+DACT + TST + SCT  106.4 148.4 27.2 57.8

rationale and the union of existing rationales and the orig-
inal answer, formalized as: ming; [r;j — 1 jl2 U |rij — ajl2
where r;; denotes the i-th rationale for the j-th task in-
stance, a; is the original answer, and | - |, represents the
Euclidean distance in the embedding space. Our analysis
in Figure 10 reveals that the marginal diversity gain per
new rationale diminishes as the number of rationales in-
creases. This trend correlates with the observed improve-
ment of CR1TIC-LLaMA-3.1-8B as we increase the rationale
number. We stipulate that this convergence occurs because
additional rationales fail to introduce new insights, and the
remaining diversity gains stem from the altered wordings.
Notably, when using LLaMA-3.1-8B as the rationale gener-
ator, we observe diversity gains with both a higher mean
and significantly greater variance compared to other models.
This observation partially explains the inferior performance
of LLaMA-3.1-8B as the rationale generator and provides
insights for choosing appropriate rationale generators.

D.4 Ablating Training Stages

To assess the contributions of each training stage, we con-
duct an ablation study. As shown in Table 9, each stage
positively contributes to CRrTIc-LLaMA-3.1-8B’s perfor-
mance on CR-EvAL tasks. The SCT stage, closely aligned
with security-centric analysis, yields the most significant im-
provement. Training with security-irrelevant samples in TST
also boosts performance by enhancing generalization in tack-
ling specification weaknesses. The DACT stage, designed to
complement LLMs with domain knowledge, provides modest
gains, likely because base LLMs (e.g., LLaMA-3.1-8B) already
possess relevant domain knowledge [69].

D.5 Scaling Along the Data Dimension

We examine how model performance evolves with increas-
ing training data volume. We focus on the diff-analysis task,
as it is the most distinguishing task in RQ1. Training data
scales approximately logarithmically, with each data point
representing a full training run using default hyperparame-
ters. As illustrated in Figure 11, results reveal two key trends:
1) performance consistently improves with more data, and
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Figure 11: Data-dimension scalability.

2) performance gains exhibit diminishing returns, aligning
with observations of established scaling laws [18, 23, 31].

D.6 Examining Existing Attacks

Considered threat models. The settings of the threat model
strictly follow their corresponding original papers. In gross,
we consider both passive and active attacker models.

o Passive Adversary: This attacker can eavesdrop on over-
the-air radio broadcast channels, such that they can ana-
lyze and deduce information from intercepted messages.

e Active Adversary: This attacker can establish and oper-
ate a rogue base station to inject malicious traffic directed
at UEs. While they are assumed to have full knowledge
of the protocol specifications, they lack access to crypto-
graphic keys, except for public keys.

For certain scenarios, we suppose the attacker also knows
some identity information of the victim UE, like the C-RNTL
Alternatively, the attacker might have a hypothesis about
the victim’s identity information and seek to verify it.

E Structural Analysis of Datasets

We demonstrate the representativeness of CR-EvAL for eval-
uating cellular specification refinement. We also provide
statistics about the training dataset size.

Sample length of CR-EvaL. We analyze the sample length
distribution of test cases in CR-EVAL at the token level, as
demonstrated in Figure 12. The test cases of CR-EVAL typ-
ically contain thousands of or even tens of thousands of
tokens, presenting rigorous challenges that specifically test
models’ long-context capabilities. Moreover, LLMs suffer the
problem of lost-in-the-middle, meaning that the models claim-
ing long context cannot effectively leverage the information
given in their context [80]. Models without sufficiently ef-
fective long context (less than the claimed maximum token
number) cannot tackle the test cases in a single inference.
Release coverage of CR-EvAaL. We provide the statistics of
the target releases of CRs in CR-evAL, which is illustrated
in Figure 13. CR-EvAL demonstrates extensive release cov-
erage and excellent diversity, with its involved CRs spanning
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Figure 12: Distribution of token counts of test cases in
CR-EvAL, with three tasks combined.
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Figure 13: Release distribution of CRs in CR-EVAL.

# Samples # Tokens # Response tokens

Series 33 (50) ] CR-EVAL (outline-revision) 200 898,521 15,642
Series 24 (67) . .

CR-EvAL (diff-analysis) 200 1,194,454 73,239

CReeval CR-gvaL (fill-cr) 200 883,054 73,239

(200) CR-MmI1x (shared) 3,729,713 1,433,683,482 1,433,683,482

Series 29 (19) CR-INSTRUCT (shared) 1,123,692 4,892,550,046 661,498,363

’Others (6) CR-sEc (outline-revision) 13,860 44,085,131 3,087,016

Series 23 (33 Serie::ge(slj)e (12) CR-sEc (diff-analysis) 14,325 56,114,617 5,427,157

CR-skec (fill-cr) 15,370 53,544,878 6,305,663

Figure 14: (Left) Distribution of CRs in CR-EVAL across different specification series. (Right) Token statistics of the
datasets at both the sample and token level, based on the tokenizer of the LLaMA-3.1 herds [18].

from Release 5 to Release 17. Covering CRs of old releases in
CR-EVAL is necessary as historical security vulnerabilities
can provide insights for refining contemporary cellular spec-
ifications. Intriguingly, we observed more security-related
CRs during Release 8 and Release 15, which correspond to
the introductions of LTE and 5G, respectively [48]. This un-
derscores the importance of automated cellular specification
refinement methods, particularly during major technologi-
cal transitions. To ensure rigorous identification of security-
relevant CRs, we cross-referenced our annotations with those
from Chen et al. [48]. While this early decision enhanced
the reliability of our security relevance annotations, it also
brought about an unexpected consequence, specifically, CR-
EVAL currently excludes test cases from Release 18 onward.
Future work will address this by developing an extended
version of CR-EVAL incorporating more recent CRs.

Specification coverage of CR-EvaL. CR-EVAL encom-
passes 200 CRs distributed across 74 distinct specifications,
demonstrating its extensive scope. We provide a coarse-
grained summary of the specification distribution according
to the belonging to standard series in Figure 14 (left). Un-
like previous works that primarily focus on a limited set
of specifications such as NAS and RRC, CR-EVAL provides
comprehensive coverage across the 3GPP ecosystem. Yet the
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broad coverage makes it impractical for us to establish a
human-level baseline on CR-EVAL.

Token number of all datasets. We present the dataset
decomposition in Figure 14 (right). Note that we count the
token number of data after rationale augmentation. As the
auto-regressive LLMs are trained through the next token
prediction task [24], the dataset size at the token level can
more precisely show how much the LLMs can learn from the
training. For the continual pre-training paradigm, e.g., DACT
in our framework, all tokens are learnable while only the re-
sponse tokens can be learned for the supervised fine-tuning
paradigm. Scaling law [23, 31, 32] demonstrates that LLMs
can consistently gain benefits through continual training in-
vestment. An implicit side of the scaling law is what the train-
ing dataset teaches the model. That’s the rationale behind
our finding that a limited number of security-related domain
data CR-sEc contributes significantly to the performance
improvement on CR-EvVAL. This underscores the crucial im-
portance of developing high-quality domain datasets closely
relevant to our target task, cellular specification refinement.
Difficulty of CR-EvAL. The difficulty of test cases can be
naturally measured through their global solving rate, defined
as the proportion of model trials capable of solving them. We
reuse the model predictions in Section 4.6 and aggregate the



Table 10: Full list of CR1TIC-LLaMA-3.1-8B’s token pre-
diction behavior on CR-EvAL. The ratios are relative to
base model (LLaMA-3.1-8B). Note: ’’ denotes the blank

Outline Revision

1
g 1007~~~ Mean: 0.835 i character in tokens.
§ 75 !
w0 1
; 50 1 i Token Ratio Token Ratio
i 25 - | _safeguard 138.70% _degrade 79.21%
0- _improper 58.78x Failure 61.47x
0.0 0.2 0.4 0.6 0.8 1.0 _mistakenly 39.49% _challenges 47.90%
. . _interception 32.64% _interruptions 24.07%
| Diff Analysis _inadvertently = 21.85X _reuse 16.60X
b 100 1 ! —==- Mean: 0.280 _misuse 13.98% _operational 16.38%
§ 75 : _susceptible 12.34% _cryptographic 10.98%
@ : _legal 10.49% _degraded 10.07%
% 501 ! _disrupt 6.90x _misunderstanding  6.5X
© 25 ! _unintended 6.77% _privacy 5.43%
* % _fail 4.66% _protecting 4.66%
00_0 0.2 0.4 0.6 0.8 1.0 _unprotected 4.31X _risk 3.82%
. _ambiguity 3.70% _invalid 3.73%X
150 | Fill CR _spoof 3.41x _trust 3.62X
2 120 : —==- Mean: 0.095 _reliability 3.29% _disruptions 3.10%x
% ! _incorrectly 2.88% _confidentiality 2.96X
I 90 ! _legitimate 2.84% _protected 2.86%X
% 60 | _unauthorized  2.62Xx _compromise 2.83%
(S : _integrity 2.62X _dereg 2.56X
* I _leaks 2.51% _ambigu 2.36X
00.0 0.2 0.4 06 08 10 _breaches 2.35%X _compliance 2.34%
Global Solving Rate _intercepted 2.27X _manipulation 2.32%X
_authenticity 2.14x _inconsistency 2.23%
Figure 15: Solving rates of all models on the three tasks. _disruption 1.97% _threats 211x
. . . _rejection 1.85% _degradation 1.95%
solving rates across all model trials (10 trials per model). We “securely 1.77% “vulnerability 1.77%
provide the statistics in Figure 15. The final CR-EVAL aligns lack 1.67% ambiguous 1.70%
with our design principle of progressive challenge levels. At a _safety 1.63% _authenticated 1.66X
macro level, the three tasks exhibit distinct difficulty tiers, as _failures 1.62% _robust 1.61X
evidenced by their mean solving rates. For example, the fill-cr _attacks 1.56X _interoper 1.54%
task presents the highest challenge by providing the model _compromising  1.48x _inability 1.52%
with minimal information while demanding an in-depth un- —authorized 1.46x —malicious 1.47x
derstanding of potential weaknesses within the specification failed 1.40x —lnt',sndEd 1.46x
. . _unable 1.32x _Privacy 1.34X
clauses. At a micro level, each task comprises test cases of ; .

R R R K _incorrect 1.27X _consistency 1.23%
varying difficulty, as substantiated by our demonstrations _availability 1.21x _compromised 1.29%
in Section 4.6. While all test cases passed our manual verifi- _authenticate 1.15% _confusion 1.14x
cation process, ensuring that they provide sufficient informa- _secure 1.11% _authentication 1.14%
tion for task completion, they incorporate different implicit _security 1.07% _consistent 1.05%
confounding factors, e.g., the provided context specification _predictable 0.96%x _unexpected 0.97x
statements and the expected response quality. Among the _attacker 0.91x _certificate 0.91x
three tasks, both the diff-analysis and fill-cr are challeng- _inconsis.ten.cies 0.86x _disabled 0.88%
ing enough to differentiate LLMs’ domain-specific abilities, _authorlzgt}(?n 0.81x . error 0.81x
despite rapid advances in LLM development _vulnerabilities  0.81x _inconsistent 0.80%

’ _vulnerable 0.72%x _errors 0.71x
_risks 0.64x _comply 0.54x

_unclear 0.53% _reliable 0.52%

_barred 0.45% _compatibility 0.43%

_flexibility 0.42x _negative 0.41x

_damage 0.40%x _difficulties 0.20%x
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F Human Study for LLM-as-a-Judge

We conducted the human study with eight PhD students
specializing in network security. Their research experience
in the field ensures the quality of our evaluation. The human
study concerning the reliability of LLM-as-a-Judge consists
of two rounds, whose system snapshots are presented in Fig-
ure 19 and Figure 20: 1) Alignment test: Participants were
presented with 25 samples, each consisting of an LLM re-
sponse and the corresponding reference answer. Participants
are tasked to accept or reject the LLM responses based on
their alignment with the reference answers. This round eval-
uates Human-as-a-Judge under the fair setting with LLM-
as-a-Judge, aiming to test their alignment. 2) Judgment ap-
proval test: Participants are additionally presented with the
LLM-as-a-Judge’s judgment and its posterior explanation.
Participants are asked to approve or disapprove the LLM-as-
a-Judge’s judgment. This round aimed to calibrate the rigor
degree of humans and show the acceptableness of LLM-as-a-
Judge’s decisions from the perspective of human annotators.

The 25 LLM responses used in the human study belong
to GPT-40 and a preview version of CR1TIC-LLaMA-3.1-8B
for diff-analysis and fill-cr. We randomly sample 12 accept-
able and 13 unacceptable samples based on the LLM-as-a-
Judge to ensure representativeness. We collected a total of
8 % 25 * 2 = 400 responses, which are presented in Table 11.
The time consumed by the LLM and each participant during
the study is shown in Figure 16. The LLM completed the task
in 36 seconds, significantly faster than the participants, who
averaged 77 minutes and 12 seconds. This suggests the un-
availability of a large-scale study with human judgments and
highlights the LLM-as-a-Judge’s potential for time-efficient
automation in evaluating LLM responses [35, 51, 60]. The
percentage of agreement between each participant and the
LLM-as-a-Judge with the remaining participants is shown
in Figure 17. For example, we compare Participant 1 and
LLM-as-a-Judge with the consensus of Participants 2-8. The
LLM generally achieved a higher agreement rate, compa-
rable to the participants’ average of approximately 82.5%.
This indicates that the LLM’s judgments align closely with
participant consensus, supporting its reliability as an auto-
mated judge. Figure 18 presents participants’ agreement with
the LLM before and after receiving its explanations. Of 200
decisions, 163 consistently align with the LLM. Notably, 19
cases shifted from approval to rejection after the explanation,
10 shifted the opposite way, and 8 remained disapproved.
These patterns suggest that human participants and the LLM-
as-a-Judge may hold different judgment criteria, which are
effectively calibrated through the explanations provided in
the judgment approval test. These findings demonstrate our
finally instantiated LLM-as-a-Judge’s reliability in automat-
ing the evaluation of model answers at a notable expert level.
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Figure 16: Time consumed (in minutes) by the LLM and
each participant during the study.

M Participant U, B LLM-as-a-Judge

S

10
Pa.rtlclpants Average 82.5%

7 8

Partlclpant ID

Agreement (%)
[\ = [N
S (=) S

(=]

Figure 17: Results of the leave-one-annotator-out ex-
periments comparing agreement between individual
annotators and majority decisions. For each test case,
we evaluate the agreement between a single annotator
(either a human participant or LLM-as-a-Judge) and
the majority vote of the remaining N — 1 participants.
The majority vote serves as the consolidated judgment
from the excluded annotators.
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Figure 18: Participants’ agreement with the LLM before
and after receiving the LLM’s explanations.
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Inefficiency in Network Limiting to ports alone
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Figure 19: System snapshot of the first round of human study, Alignment Test.
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The revisions address the ambiguity regarding the handling of SIP messages related to

the call (not related to the access transfer) received from a remote UE during an ongoing
access transfer. Previously, there was a lack of clarity on when these messages should be

discarded or forwarded, leading to potential undefined actions in the SCC AS and MSC

server. The only exception was in subclause 12.3.4.3, which provided some guidance for
PS to CS access transfer for calls in an early phase on the originating side. By specifying

the exact moments for discarding and acting on SIP messages, the revisions aim to
prevent inconsistent call states and ensure proper call handling. Furthermore, the
revisions clarify the handling of SIP messages related to the call received from the SC
UE and MSC server, ensuring consistent and predictable behavior across different
implementations.

- Consequences if not Revised

Without these revisions, different implementations might handle SIP messages from the
are forwarded towards the SC UE
prematurely, it could lead to inconsistent call states between the SCC AS and SC UE,
especially if the SC UE has already transitioned to the CS domain. Additionally, if SIP
messages are delayed in being sent to the MSC server, it could result in unnecessary call

remote UE i ly. For instance, if

2 ly ing user exp

these issues, there is a risk of

loss and network reliability. By not addressing

I i iencies and dq ded service quality.

@ Disapprove

These modifications address critical flaws and ambiguities in the existing specifications
regarding session management and media forwarding during access transfers. The
changes ensure that:

SIP Messages Handling: By specifying the conditions under which SIP messages
should be forwarded or discarded, the revision mitigates issues related to message drops
or inappropriate session handling during access transfers.

Session C : The updates
ongoing sessions, especially during transitions between different access technologies
(e.g, PSto CS).

Reliability of Communication: The inclusion of specific procedures for managing SIP

the necessity of maintaining continuity for

responses and requests ensures that communication remains robust, particularly when
dealing with multiple simultancous sessions.

- C if not Revised

Failure to implement these changes could lead to several negative outcomes, including:
Disrupted Call Continuity: Without the revised SIP message handling procedures,
there is a risk of lost messages and interruptions in ongoing calls, especially during
access transfers. This can lead to dropped calls or poor user experience.

Increased Call Setup Failures: Ambiguities in the existing process might lead to
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Figure 20: System snapshot of the second round of human study, Judgment Approval Test.
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Table 11: The raw data of human study. Each column corresponds to one human annotator. Each row corresponds
to one sample and we cluster the samples based on LLM-as-a-Judge’s decisions for readability.

Idx LLM-as-a-Judge 1 2 3 4 5 6 7 8
1 Accept Accept | R— A | Reject | R— A | Accept | Accept | R= A | R— A
4 Accept Accept | Accept | Accept | Accept | R— A | Accept | Accept | R— A
5 Accept Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept
7 Accept Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept
9 Accept Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept
11 Accept Accept | R— A | Reject | Accept | Accept | Accept | Accept | Accept
15 Accept Accept | Accept | Accept | Accept | Accept | Accept | Accept | R— A
16 Accept Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept
18 Accept Accept | Accept | Accept | Accept | Accept | R— A | Accept | Accept
22 Accept Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept
24 Accept Accept | Accept | Accept | Accept | R— A | Accept | Accept | Reject
25 Accept Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept
2 Reject Reject | Reject | Reject | Reject | Reject | Reject | Reject | Reject
3 Reject Reject | Reject | Reject | Reject | Reject | Reject | Reject | A— R
6 Reject Reject | Reject | Reject | Reject | Reject | Reject | Reject | Reject
8 Reject Reject | Reject | Reject | Reject | Reject | Reject | Reject | Reject
10 Reject A— R | Reject | Reject | Reject | AR | AR | A—> R | Reject
12 Reject A— R | Reject | Reject | Reject | Reject | Reject | Reject | A= R
13 Reject A— R | Reject | Reject | Reject | Reject | Reject | Reject | Reject
14 Reject Reject | Accept | Accept | Reject | Reject | Reject | Reject | Reject
17 Reject Reject | Accept | Reject | Reject | Reject | A— R | Reject | A— R
19 Reject Reject | Reject | Accept | Reject | AR | AR | AR | A—R
20 Reject Reject | Reject | Reject | Reject | Reject | Reject | Reject | Reject
21 Reject Reject | Reject | Reject | Reject | Reject | Reject | Reject | A— R
23 Reject A— R | Accept | A—> R | Reject | A—-R | A— R | Reject | Reject
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G Prompts Used and Example Artifacts

Prompt 1: Fill CR

You are a cellular network protocol expert. Given a segment of the 3GPP specifications, you should envision what bad things may
happen when following the statements, and analyze its potential design weakness. Then, you prepare a change request, which should
include:

1. REASON FOR CHANGE: Explain why the identified flaws need to be addressed.

2. SUMMARY OF CHANGE: Provide a summary of the necessary changes to the specifications.

3. CONSEQUENCES IF NOT REVISED: Describe potential negative impacts if the proposed changes are not made.

You should avoid missing important statements and try your best to return detailed responses rich in reasoning.

Prompt 2: Rationale Augmentation

You will be given a task instance composed of TASK INSTRUCTION, USER QUERY, and ASSISTANT RESPONSE. Your task is to revise
the ASSISTANT RESPONSE by adding reasoning contents to it. The reasoning contents should explain how the response was generated
and act as chain of thoughts for reaching the responses.

Note that

- The task will be related to network protocols, and you should leverage your knowledge in this domain.

- The revised response should be coherent with the original response.

- The revised response should perfectly fit the TASK INSTRUCTION and USER QUERY.

- The revised response should be informative and helpful to the user.

- The revised response should be rich in thoughts and smooth in logic.

- The revised response should be fruitful in educating other assistants.

- You should not alter the original response format.

- You should only return the revised response, which can directly replace the original response.

# TASK INSTRUCTION

{t
# USER QUERY

{t
# ASSISTANT RESPONSE

{t

Prompt 3: Evaluating Security Relevance of CR

You will be given a reasoning segment concerning analyzing problems of cellular network protocol. You should determine whether the
implied problem is high-risk, meaning that it strongly relates to security, user privacy, attacks, or any threats to normal service. You
should meticulously analyze the given task instance and end up with a judgment. If the problem discussed by the instance is high-risk,
you should finally respond with "High-Risk’; otherwise, respond with 'Low-Risk’.

>>> REASON FOR CHANGE

{t
>>> CONSEQUENCES IF NOT REVISED

{t
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Prompt 4: Distinguishing Educational Task Instances

You will be given a task instance concerning analyzing problems of cellular network protocol. The sample is composed of three
parts, SYSTEM INSTRUCTION, USER QUERY, and ASSISTANT RESPONSE. You should determine its educational value for a
student whose goal is to learn reasoning about the potential flaws in cellular network protocols. You should consider the following aspects:

1. The ASSISTANT RESPONSE is self-contained, meaning that it does not depend on other external information too much
and is easy to understand without additional context.

2. The USER QUERY is meaningful and is a suitable analytic target under the SYSTEM INSTRUCTION.

3. The ASSISTANT RESPONSE is logically coherent and conforms well to the requirements of the SYSTEM INSTRUCTION.

4. The ASSISTANT RESPONSE is informative and provides a detailed analysis of the USER QUERY.

You should analyze the given task instance and end up with a judgement. DO NOT make your response too verbose. If it is
educational, meaning that it is helpful for a student to learn reasoning about the potential flaws in cellular network protocols, you
should finally respond with "Educational’; otherwise, respond with 'Non-educational’.

# TASK INSTRUCTION

{t
# USER QUERY

{
# ASSISTANT RESPONSE

{

Prompt 5: Evaluating Fill CR

You are given two reports concerning a weakness analysis of the 3GPP protocol: the Reference Report (which should considered
**acceptable™ in quality of understanding the protocol problems) and the Drafted Report. Both reports aim to explain the weaknesses
and reasons for certain revisions. Your task is to evaluate the claim the Drafted Report identifies the hidden problems in the protocol,
compared to the Reference Report.

Conclude your evaluation with a judgment score (s) from:

* **-2 (Strongly Disagree):** The Drafted Report contains significant misunderstandings, misrepresents the issues, or omits critical
weaknesses.

* **-1 (Weakly Disagree):** The Drafted Report shows a partial understanding but includes notable errors or omissions in identifying
the weaknesses.

***0 (Neutral):** The Drafted Report identifies the main weaknesses correctly but lacks depth or accuracy in some areas.

* **1 (Weakly Agree):** The Drafted Report largely understands the weaknesses but has minor discrepancies.

* **2 (Strongly Agree):** The Drafted Report demonstrates a near-perfect understanding of the potential problem, with only trivial
deviations from the Reference Report.

Note that:

* The Reference Report provides a basic understanding of the protocol problems. The Reference Report is not perfect. So the Drafted
Report does not need to match exactly with the Reference Report.

* You should focus on the protocol problems only. Ignore information unrelated to protocol problems in Reference Report, e.g. reference
to other documents.

* Superficial reports, those with speculative analysis, and those that lack focus should be rated lower. In contrast, reports that are
decisive, informative, and facilitate further investigation by human experts are preferred.

* Focus on the content and the understanding of the protocol issues, not on the presentation or formatting.

Do not do anything else other than scoring. Only the final score (x) should be returned in the form of ‘s: x°.

## Reference Report

{

## Drafted Report

{t
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Prompt 6: Weakness-to-Attack Verification

You are an expert in verifying the correctness of a vulnerability analysis. You must be extremely rigorous and thorough in your
verification process. Analyze and verify whether a given vulnerability analysis (V) enables an attacker, operating within a specified
threat model (T), to execute the described attack (A). In other words, whether V + T -> A. Your verification must be comprehensive and
consider:

1. Logical completeness - Are all necessary steps and conditions accounted for?

2. Technical accuracy - Are the technical details precise and correct?

3. Exploitability - Can the vulnerability be exploited within the constraints of the threat model?

4. Attack feasibility - Does the analysis conclusively demonstrate the attack’s viability?

Note that both T and A are trustworthy and you should evaluate the vulnerability analysis based on them.

1. Vulnerability Analysis (V): Identified weaknesses from the specification
2. Threat Model (T): Attacker capabilities and assumptions
3. Attack Description (A): Attack procedure and implications

ANALYSIS SECTIONS

# Vulnerability Analysis
{t

# Threat Model
{

# Attack Description

{t

OUTPUT FORMAT

Please provide your detailed analysis in the following XML format:

<result>

<correctness_reason>

Provide a thorough analysis addressing:

1. Logical completeness of the vulnerability analysis

2. Technical accuracy of all claims and assumptions

3. Whether the vulnerability can be exploited given the threat model constraints
4. Clear demonstration of attack feasibility

5. Any gaps or inconsistencies found

Support your conclusion with specific references to the input components.
</correctness_reason>

<correctness>true/false</correctness>

</result>

Note: Default to false if there is ANY uncertainty or gaps in the logical chain from vulnerability to attack.
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Example 1: Fill-CR Task Instance in CR-EVAL (Index: 29, CR: $3-190376, Design Flaw), Part: 1/2

Task Instruction

You are a cellular network protocol expert. Given a segment of the 3GPP specifications, you should envision what bad things may
happen when following the statements, and analyze its potential design weakness. Then, you prepare a change request, which should
include:

1. REASON FOR CHANGE: Explain why the identified flaws need to be addressed.

2. SUMMARY OF CHANGE: Provide a summary of the necessary changes to the specifications.

3. CONSEQUENCES IF NOT REVISED: Describe potential negative impacts if the proposed changes are not made.

You should avoid missing important statements and try your best to return detailed responses rich in reasoning.

Test Case

>>> Original Specification Statements:

6.3.3 Authentication and key agreement
The purpose of this procedure is to authenticate the user and establish a new pair of cipher and integrity keys between the VLR/SGSN
and the USIM. During the authentication, the USIM verifies the freshness of the authentication vector that is used.

Figure 8: Successful UMTS Authentication and Key Agreement

The VLR/SGSN invokes the procedure by selecting the next unused authentication vector from the ordered array of authentication
vectors in the VLR/SGSN database. Authentication vectors in a particular node are used on a first-in / first-out basis. The VLR/SGSN
sends to the USIM the random challenge RAND and an authentication token for network authentication AUTN from the selected
authentication vector.

Upon receipt the user proceeds as shown in Figure 9.

Figure 9: User authentication function in the USIM

Upon receipt of RAND and AUTN the USIM first computes the anonymity key AK = f5K (RAND) and retrieves the sequence number
SON = (SON AK) AK.

Next the USIM computes XMAC = f1K (SQN || RAND || AMF) and compares this with MAC which is included in AUTN. If they are
different, the user sends an authentication failure message back to the VLR/SGSN with an indication of the cause and the user abandons
the procedure. In this case, VLR/SGSN shall initiate an Authentication Failure Report procedure towards the HLR as specified in section
6.3.6. VLR/SGSN may also decide to initiate a new identification and authentication procedure towards the user, cf. TS 24.008 [35].
Next the USIM verifies that the received sequence number SQN is in the correct range.

If the USIM considers the sequence number to be not in the correct range, it sends synchronisation failure back to the VLR/SGSN
including an appropriate parameter, and abandons the procedure.

The synchronisation failure message contains the parameter AUTS. It is AUTS = Conc(SQNMS ) || MACS. Conc(SQNMS) = SQNMS
f5*"K(RAND) is the concealed value of the counter SQNMS in the MS, and MACS = f1*K(SQNMS || RAND || AMF) where RAND is
the random value received in the current user authentication request. f1* is a message authentication code (MAC) function with the
property that no valuable information can be inferred from the function values of f1* about those of f1, ..., 5, f5* and vice versa. f5* is
the key generating function used to compute AK in re-synchronisation procedures with the property that no valuable information can
be inferred from the function values of f5* about those of f1, f1% 2, ..., f5 and vice versa.

The AMF used to calculate MACS assumes a dummy value of all zeros so that it does not need to be transmitted in the
clear in the re-synch message. The construction of the parameter AUTS in shown in the following Figure 10:

Figure 10: Construction of the parameter AUTS

If the sequence number is considered to be in the correct range however, the USIM computes RES = f2K (RAND) and includes this
parameter in a user authentication response back to the VLR/SGSN. Finally the USIM computes the cipher key CK = f3K (RAND)
and the integrity key IK = f4K (RAND). Note that if this is more efficient, RES, CK and IK could also be computed earlier at any time
after receiving RAND. If the USIM also supports conversion function c3, it shall derive the 64-bit GSM cipher key Kc from the UMTS
cipher/integrity keys CK and IK. UMTS keys are sent to the MS along with the derived 64-bit GSM key for UMTS-GSM interoperability
purposes. USIM shall store original CK, IK until the next successful execution of AKA.

Upon receipt of user authentication response the VLR/SGSN compares RES with the expected response XRES from the selected
authentication vector. If XRES equals RES then the authentication of the user has passed. The SGSN shall compute the 128-bit GSM
ciphering key Kc128 according to annex B.5 if it is to use a 128-bit GSM ciphering algorithm. The VLR/MSC shall compute the 128-bit
GSM ciphering key Kc128 according to annex B.5 if it signals a 128-bit GSM ciphering algorithm as a permitted GSM ciphering algorithm
to the BSS. The VLR/SGSN also selects the appropriate cipher key CK and integrity key IK from the selected authentication vector. If
XRES and RES are different, VLR/SGSN shall initiate an Authentication Failure Report procedure towards the HLR as specified in
section 6.3.6. VLR/SGSN may also decide to initiate a new identification and authentication procedure towards the user, cf. TS 24.008 [35].

To be continued in the next page
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Example 2: Fill-CR Task Instance in CR-eVAL (Index: 29, CR: $3-190376, Design Flaw), Part: 2/2

“ Continued

Re-use and re-transmission of (RAND, AUTN)

The verification of the SQN by the USIM will cause the MS to reject an attempt by the VLR/SGSN to re-use a quintet to establish a
particular UMTS security context more than once. In general therefore the VLR/SGSN shall use a quintet only once.

There is one exception however: in the event that the VLR/SGSN has sent out an authentication request using a particular quintet
and does not receive a response message (authentication response or authentication failure) from the MS, it may re-transmit the
authentication request using the same quintet. However, as soon as a response message arrives no further re-transmissions are
allowed. If after the initial transmission or after a series of re-transmissions no response arrives, retransmissions may be abandoned. If
retransmissions are abandoned then the VLR/SGSN shall delete the quintet. At the MS side, in order to allow this re-transmission
without causing additional re-synchronisation procedures, the ME shall store for the PS domain (and optionally the CS domain)
the last received RAND as well as the corresponding RES, CK and IK. If the USIM returned SRES and Kc (for GSM access), the
ME shall store these values. When the ME receives an authentication request and discovers that a RAND is repeated, it shall
re-transmit the response. The ME shall delete the stored values RAND, RES and SRES (if they exist) as soon as the 3G security
mode command or the GSM cipher mode command is received by the ME or the connection is aborted. If the ME can handle
the retransmission mechanism for CS domain then it shall be able to handle the retransmission for both PS and CS domain simultaneously.

6.3.5 Re-synchronisation procedure

A VLR/SGSN may send two types of authentication data requests to the HE/AuC, the (regular) one described in subsection 6.3.2 and
one used in case of synchronisation failures, described in this subsection.

Upon receiving a synchronisation failure message from the user, the VLR/SGSN sends an authentication data request with a
"synchronisation failure indication" to the HE/AuC, together with the parameters:

- RAND sent to the MS in the preceding user authentication request, and

- AUTS received by the VLR/SGSN in the response to that request, as described in subsection 6.3.3.

An VLR/SGSN will not react to unsolicited "synchronisation failure indication" messages from the MS.

The VLR/SGSN does not send new user authentication requests to the user before having received the response to its authentication
data request from the HE/AuC (or before it is timed out).

When the HE/AuC receives an authentication data request with a "synchronisation failure indication" it acts as follows:

1. The HE/AuC retrieves SQNMS from Conc(SQNMS) by computing Conc(SQNMS) f5*K(RAND).

2. The HE/AuC checks if SQNHE is in the correct range, i.e. if the next sequence number generated SQNHE using would be accepted by
the USIM.

3. If SQNHE is in the correct range then the HE/AuC continues with step (6), otherwise it continues with step (4).

4. The HE/AuC verifies AUTS (cf. subsection 6.3.3).

5. If the verification is successful the HE/AuC resets the value of the counter SQNHE to SQNMS.

6. The HE/AuC sends an authentication data response with a new batch of authentication vectors to the VLR/SGSN. If the counter
SQNHE was not reset then these authentication vectors can be taken from storage, otherwise they are newly generated after resetting
SQNHE. In order to reduce the real-time computation burden on the HE/AuC, the HE/AuC may also send only a single authentication
vector in the latter case.

Whenever the VLR/SGSN receives a new batch of authentication vectors from the HE/AuC in an authentication data response to an
authentication data request with synchronisation failure indication it deletes the old ones for that user in the VLR/SGSN.

The user may now be authenticated based on a new authentication vector from the HE/AuC. Figure 12 shows how re-synchronisation
is achieved by combining a user authentication request answered by a synchronisation failure message (as described in section 6.3.3)
with an authentication data request with synchronisation failure indication answered by an authentication data response (as described
in this section).

Figure 12: Resynchronisation mechanism

Reference Answer

>>> REASON FOR CHANGE

The calculation of the keystream for concealing SQNMS in the case of re-sychronisation only has RAND as a non-key input and hence
the same keystream may be used to protect different SQNMSs if an attacker replays an authentication challenge. This leaks at least the
xor between the different SQNMS values and it has been shown how this leak can be used to derive the LSBs of SQNMS.

>>> SUMMARY OF CHANGE
Add MAC-S as an input parameter to claculate the keystream at re-synchronisation in order to get a differeent keystream for each
SQNMS value.

>>> CONSEQUENCES IF NOT REVISED
Keystream is repeated which should be against security design properties.
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Example 3: Fill-CR Task Instance in CR-eVAL (Index: 145, CR: C1-193185, Under-specification)

Task Instruction
For display brevity, the repetitive instruction is omitted here.

Test Case

>>> Original Specification Statements:

5.4.1.2.4.2 EAP message reliable transport procedure initiation by the network

In order to initiate the EAP message reliable transport procedure, the AMF shall create an AUTHENTICATION REQUEST message.
The AMF shall set the EAP message IE of the AUTHENTICATION REQUEST message to the EAP-request message to be sent to the UE.
The AMF shall set the ngKSI IE of the AUTHENTICATION REQUEST message to the ngKSI value selected in subclause 5.4.1.2.2.2 or
subclause 5.4.1.2.3.1. In this release of specification, the AMF shall set the ABBA IE of the AUTHENTICATION REQUEST message with
the length of ABBA IE to 2 and the ABBA contents to be 2 octets in length with value 0000H as described in subclause 9.11.3.10.

The AMF shall send the AUTHENTICATION REQUEST message to the UE, and the AMF shall start timer T3560 (see example in figure
5.4.1.2.4.2.1).

Figure 5.4.1.2.4.2.1: EAP message reliable transport procedure Upon receipt of an AUTHENTICATION REQUEST message with the EAP
message IE, the UE handles the EAP message received in the EAP message IE and the ABBA of the AUTHENTICATION REQUEST
message.

5.4.1.3.2 Authentication initiation by the network

The network may initiate a 5G AKA based primary authentication and key agreement procedure for a UE in 5GMM-CONNECTED
mode at any time. For restrictions applicable after handover or inter-system change to N1 mode in 5GMM-CONNECTED mode, see
subclause 5.4.1.2.3.

The network initiates the 5G AKA based primary authentication and key agreement procedure by sending an AUTHENTICATION
REQUEST message to the UE and starting the timer T3560 (see example in figure 5.4.1.3.2.1). The AUTHENTICATION REQUEST
message shall contain the parameters necessary to calculate the authentication response (see 3GPP TS 33.501 [24]). This message shall
include the ngKSI that will be used by the UE and AMF to identify the KAMF and the partial native security context that is created if
the authentication is successful. This message shall also include the ABBA parameter. In this release of specification, the network shall
set the length of ABBA IE to 2 and the ABBA contents to be 2 octets in length with value 0000H as described in subclause 9.11.3.10.
If an ngKSI is contained in an initial NAS message during a 5GMM procedure, the network shall include a different ngKSI value in the
AUTHENTICATION REQUEST message when it initiates a 5G AKA based primary authentication and key agreement procedure.
Figure 5.4.1.3.2.1: 5G AKA based primary authentication and key agreement procedure

9.11.3.10 ABBA

The purpose of the ABBA information element is to enable the bidding down protection of security features.
The ABBA information element is coded as shown in figure 9.11.3.10.1 and table 9.11.3.10.1.

The ABBA is a type 4 information element with a minimum length of 4 octets.

87654321

ABBA IEI octet 1

Length of ABBA contents octet 2

ABBA contents octet 3 octet n

Figure 9.11.3.10.1: ABBA information element

Table 9.11.3.10.1: ABBA information element

ABBA contents (octet 3-n): indicate set of security features defined for 5GS as described in 3GPP TS 33.501 [24].

Reference Answer

>>> REASON FOR CHANGE

CT1 sent an LS to SA3 (see C1-191686) asking about the UE behavior when an ABBA parameter with a non-zero value, or with a length
that is more than 2 octets, is received in Release 15. This document aims to specify the UE behavior for this case following the LS
response from SA3.

>>> SUMMARY OF CHANGE

Specify that in case the UE receives an ABBA parameter with - a length of more than 2 octets, - a non-zero value the UE shall use
the ABBA as received from the network. Interoperability analysis1) UE compliant with the previous specification version with an
AMF that is compliant with this CRIf the UE gets an ABBA parameter with a value that is different from 0000H, the UE will send
a 5GMM STATUS message. However, the AMF already handles a 5GMM STATUS message.2) UE compliant with this CR with an
AMF that is compliant with the previous specification version the UE gets an ABBA parameter with a value that is different from
0000H, the UE will use the ABBA parameter as it is received. If for some reason the KAMF at the UE and the network is not the
same, the integrity check fails during the security mode procedure. However, handling integrity check failures already exists and is
not introduced by this CR. If the KAMF at the UE and the network is the same, then no errors will occur. This CR is backwards compatible.

>>> CONSEQUENCES IF NOT REVISED 30
The UE uses an ABBA that is different from what the network has used leading to security failure.




Table 12: Meta-information and expert rationales for the example Change Request (C1-172658'!)

24.301 2871 2 Current version ‘ 14.3.0
Title Correction of Handling of MO Detach without Integrity Protection Date 2017-05-19
Category F (Correction) Release Rel-14

Reason for change

In Rel-8, when CT1 specified the rules for the handling of NAS messages that are not intergrity protected or fail
the integrity check by the receiver, CT1 decided that a mobile originated Detach Request without integrity
protection was to be treated by the MME, because it is one of the messages which "in certain situations ... are
sent by the UE before security can be activated".

An additional justification was at that time that it did not appear very likely that someone would take
the efforts to listen in on the NAS signalling in a cell and operate a manipulated UE just for the purpose of
detaching other subscribers. Moreover, in the worst case this kind of DoS attack, which would prevent the
UE from receiving MT services, would be detected and alleviated when the UE performed the next normal or
periodic TAU (or RAU) or when the UE requested some MO service.

Since then, the situation has changed, because e.g. for UEs used for MTC/ CloT, it may take longer to
detect and repair the issue, as

- periodic update timer values up to 14 days can be negotiated between UE and network, and

- some of these devices send MO user data with a frequency of once every few weeks,

but on the other hand the UEs (e.g. certain metering devices) may be required to stay attached in order to be
reachable for the application server. Additionally, due to the higher density of devices per cell (and higher
number per MME), it has become easier to perform the attack successfully even by picking the S-TMSI values at
random.

As there are not so many cases where a UE might rightfully send a Detach Request without integrity
protection, we suggest to modify the requirements for the MME: the MME should authenticate the subscriber if
possible. If the authentication is not performed, e.g. because the detach is due to "switch-off", or for any other
reason, the MME may ignore the Detach Request and remain in state EMM-REGISTERED. For this case the
MME can attempt to apply additional criteria before marking the subscriber as deregistered, e.g. the MME may
wait whether the UE is still performing periodic updating or whether it is still responding to paging when an
MT user data packet arrives.

(We found the following cases where a UE might rightfully send a Detach Request without integrity
protection:

1) the UE is attached for emergency bearer services and there is no shared EPS security context available, e.g.
due to lack of roaming agreement;

2) due to user interaction an attach procedure is cancelled before the secure exchange of NAS messages has been
established;

3) a NAS COUNT wrap around occurred so that the current EPS security context can no longer be used.

In principle it should be possible for the MME to determine whether any of these cases can apply when a Detach
Request message failing the integrity check is received.)

Summary of change

Rules for the handling of a DETACH REQUEST message failing the integrity check are modified for the case when
a current EPS security context exists and the secure exchange of NAS messages has not yet been established:

- If it is not a detach request due to switch off, and the MME can initiate an authentication procedure, the MME
should authenticate the subscriber before processing the detach request any further.

- If it is a detach request due to switch off, or the MME does not initiate an authentication procedure for any
other reason, the MME may ignore the detach request and remain in state EMM-REGISTERED. (The network
can attempt to use additional criteria before marking the UE as EMM-DEREGISTERED.)

Consequences if not ap-
proved

Risk of a DoS attack. UEs using an extended periodic update timer can become unreachable for paging for a long
time, if Detach Request without integrity protection is always accepted when secure exchange of NAS messages
has not yet been established.

Uhttps://www.3gpp.org/ftp/tsg_ct/WG1_mm-cc-sm_ex-CN1/TSGC1_104_Zhangjiajie/Docs/C1-172658.zip
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Table 13: Specification revisions for the example Change Request (C1-172658)

—
+
—

4.4.4.3 Integrity checking of NAS signalling messages in the MME

Except the messages listed below, no NAS signalling messages shall be processed by the receiving EMM entity in the MME or
forwarded to the ESM entity, unless the secure exchange of NAS messages has been established for the NAS signalling connection:

- EMM messages:
- ATTACH REQUEST;
- IDENTITY RESPONSE (if requested identification parameter is IMSI);
- AUTHENTICATION RESPONSE;
- AUTHENTICATION FAILURE;
- SECURITY MODE REJECT;
- DETACH REQUEST;
The remaining unchanged clauses are omitted for brevity.

NOTE 2: The DETACH REQUEST message can be sent by the UE without integrity protection, e.g. if the UE is attached for emergency
bearer services and there is no shared EPS security context available, or if due to user interaction an attach procedure is cancelled
before the secure exchange of NAS messages has been established. For these cases the network can attempt to use additional criteria
(e.g. whether the UE is subsequently still performing periodic tracking area updating or still responding to paging) before marking
the UE as EMM-DEREGISTERED.

All ESM messages are integrity protected except a PDN CONNECTIVITY REQUEST message if it is sent piggybacked in ATTACH
REQUEST message and NAS security is not activated.

Once a current EPS security context exists, until the secure exchange of NAS messages has been established for the NAS signalling
connection, the receiving EMM entity in the MME shall process the following NAS signalling messages, even if the MAC included in
the message fails the integrity check or cannot be verified, as the EPS security context is not available in the network:

- ATTACH REQUEST;

- IDENTITY RESPONSE (if requested identification parameter is IMSI);

- AUTHENTICATION RESPONSE;

- AUTHENTICATION FAILURE;

- SECURITY MODE REJECT;

- DETACH REQUEST (if sent before security has been activated);

- DETACH REQUEST;

- DETACH ACCEPT;

- TRACKING AREA UPDATE REQUEST;

- SERVICE REQUEST;

- EXTENDED SERVICE REQUEST;

- CONTROL PLANE SERVICE REQUEST.
NOTE 3: These messages are processed by the MME even when the MAC fails the integrity check or cannot be verified, as in certain
situations they can be sent by the UE protected with an EPS security context that is no longer available in the network.
If an ATTACH REQUEST message fails the integrity check and it is not an attach request for emergency bearer services, the MME
shall authenticate the subscriber before processing the attach request any further. For the case when the attach procedure is for
emergency bearer services see subclause 5.5.1.2.3 and subclause 5.4.2.5.
If a DETACH REQUEST message fails the integrity check, the MME shall proceed as follows:

- If it is not a detach request due to switch off, and the MME can initiate an authentication procedure, the MME should authenticate
the subscriber before processing the detach request any further.
- If it is a detach request due to switch off, or the MME does not initiate an authentication procedure for any other reason, the
MME may ignore the detach request and remain in state EMM-REGISTERED.
NOTE 4: The network can attempt to use additional criteria (e.g. whether the UE is subsequently still performing periodic tracking
area updating or still responding to paging) before marking the UE as EMM-DEREGISTERED.
The remaining unchanged clauses are omitted for brevity.
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H Taxonomy of Specification Weaknesses
and Existing Attack Vectors

We provide a comprehensive survey of common specifica-
tion weaknesses (Table 14) reported by previous academic
works and their associated attack vectors (Table 15) in cel-
lular networks. Our survey reveals that numerous attacks
against cellular networks have been proposed by exploit-
ing unsafe designs and ambiguous drafts. This demonstrates
that specification weaknesses, if exploitable, can make sig-
nificant impacts on cellular networks. However, it would be
unfair to place blame solely on specification drafters, given
the immense volume and complexity of the cellular network
specification system. Rather, it underscores the importance
of systematic weakness analysis and motivates automatic
tools that help refine cellular specifications.

Table 14: Common issues in cellular specifications.

Specification weak- Related works
nesses
Design Flaws [4,9,13,81-

83, 95,98, 100, 102, 112-114]

Underspecification [4, 12,97, 101, 115-117]
Undefined Behaviors [11, 116]
Inconsistencies [15, 116, 118]
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Table 15: Reported attacks in cellular networks.

Attack Effects Related Works
IMSI/SUPI cracking [9]
Traffic decryption [115]
User tracking [97, 99, 112]

User presence identification
Device fingerprinting
Message/Service spoofing
Traffic fingerprinting

Denial of service

Downgrading to insecure versions
Key re-installation

Malicious message injection
Eavesdropping data communication
Exposing device capabilities
Content Fingerprinting
Illegitimate access to services
Unauthorized entry to secrets
Phishing legitimate users

BTS resource depletion

Free data service

Signaling storm

[4,9, 119, 120]
[100, 112, 116]
(82,92, 95, 116] [8]
[98, 99]

(4,9, 81, 82, 101, 113,
114, 117, 118, 120,
121]

(4]
[96]

[5, 112, 113, 120]
[82, 115, 116, 122]
[100]

[98, 99]

[92, 101]
[101]

(82]

(82]

[93, 118]
[117]
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