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Abstract—Advanced Encryption Standard (AES) is a widely
adopted cryptographic algorithm, yet its practical implemen-
tations remain susceptible to side-channel and fault injection
attacks. In this work, we propose a comprehensive framework
that enhances AES-128 encryption security through controlled
anomaly injection and real-time anomaly detection using both
statistical and machine learning (ML) methods. We simulate
timing and fault-based anomalies by injecting execution delays
and ciphertext perturbations during encryption, generating la-
beled datasets for detection model training. Two complementary
detection mechanisms are developed: a threshold-based timing
anomaly detector and a supervised Random Forest classifier
trained on combined timing and ciphertext features. We imple-
ment and evaluate the framework on both CPU and FPGA-based
SoC hardware (PYNQ-Z1), measuring performance across vary-
ing block sizes, injection rates, and core counts. Our results show
that ML-based detection significantly outperforms threshold-
based methods in precision and recall while maintaining real-time
performance on embedded hardware. Compared to existing AES
anomaly detection methods, our solution offers a low-cost, real-
time, and accurate detection approach deployable on lightweight
FPGA platforms.

Index Terms—AES encryption, anomaly detection, fault injec-
tion, timing attack, machine learning, Random Forest, PYNQ.

I. INTRODUCTION

The Advanced Encryption Standard (AES) continues to
serve as a cornerstone of symmetric key cryptography and is
widely adopted across a range of applications, from Internet of
Things (IoT) devices to large-scale cloud infrastructures [1].
Although AES offers robust theoretical security, its practical
implementations, particularly within embedded systems and
System-on-Chip (SoC) architectures, are vulnerable to physi-
cal attacks, including side-channel and fault injection attacks.
These attacks exploit physical execution characteristics, such
as timing variations or induced hardware failures, to compro-
mise key confidentiality or disrupt the integrity of encrypted
data [2], [3]. Traditional anomaly detection techniques often
rely on fixed thresholds based on timing measurements or
observed error rates. Although these methods provide basic
protection, they are typically insufficient to identify subtle or
sophisticated attacks, leading to a high rate of false positives
or undetected anomalies [4]. The growing adoption of machine
learning (ML) in cybersecurity introduces a more adaptive and
data-driven approach to anomaly detection. ML algorithms,
particularly ensemble methods such as Random Forests, have

demonstrated effectiveness in capturing complex feature in-
teractions and enhancing the accuracy and interpretability of
cryptographic anomaly detection [5]–[7].

Fig. 1. Proposed threshold-based and ML-based framework.

As shown in Figure 1, this paper proposes a dual approach
framework to secure AES-128 encryption through controlled
anomaly injection and ML-based detection. We inject two
classes of anomalies, namely timing delays and fault-induced
bit flips, during AES encryption on randomly generated plain-
text blocks. Using execution time and ciphertext features, we
implement the following.

• A Threshold-based timing detector using statistical
timing anomalies.

• A Random Forest supervised learning detector trained
on labeled encrypted blocks.

• A PYNQ Implementation: We evaluated the two pro-
posed frameworks on a Xilinx SoC device which provides
a user-friendly platform for developing and prototyp-
ing using Python [8]. We also compared latency and
throughput versus CPU-based execution and measured
the hardware resources consumed for each approach.

To evaluate our approach, experiments were conducted on
both a general-purpose CPU platform and the PYNQ-Z1 SoC
platform. The PYNQ-Z1, a device based on the Xilinx Zynq-
7000 SoC, supports the open-source PYNQ framework that
facilitates Python-based development for embedded applica-
tions. This SoC platform integrates programmable logic with
a processing system, which makes it particularly suitable
for implementing machine learning algorithms in hardware-
accelerated environments [8]. We compared the evaluation
approaches in terms of performance (latency and throughput),
as well as in terms of functionality (accuracy, precision, and
negative and positive false). We also included the hardware
resource consumed to run our algorithm on the PYNQ device.

Our contributions are as follows.
• A realistic and parameterizable anomaly injection mech-

anism that mimics timing and fault attacks.
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• Extraction of combined timing and cipher text features
for a complete anomaly characterization.

• Comparative evaluation demonstrating improved detec-
tion performance of ML over threshold methods.

• Comparison of the proposed approaches with implemen-
tation in real time on the Xilinx SoC platform.

II. RELATED WORK

Side-channel and fault injection attacks continue to pose
significant risks to AES implementations, especially on em-
bedded and FPGA platforms [9], [10]. Since Kocher’s seminal
work on timing attacks [11], numerous countermeasures and
detection schemes have been proposed to protect cryptographic
engines from these threats.

Alawieh and Givargis [12] developed a high-efficiency
fault injection mitigation scheme targeting FPGA-based cryp-
tographic systems. Their approach employs fault masking
combined with hardware redundancy to protect AES cores
against fault injection attacks. While this method improves
fault tolerance, it focuses on mitigation rather than detection
and incurs hardware overhead due to duplicated modules.

Liu et al. [13] proposed an efficient timing-based AES
side-channel attack detection method implemented on CPU
platforms. They use timing thresholding to detect anomalies
in encryption latency, effectively identifying attacks that cause
noticeable delays. However, their method is limited in scope,
as it does not address fault injection anomalies or combine
timing with data content features.

Purnaprajna and Roy [14] surveyed hardware techniques for
fault detection in AES engines, highlighting parity-checking
and other error-detection codes as effective but hardware-
expensive solutions. Their work outlines various fault detec-
tion mechanisms integrated into cryptographic hardware but
lacks an emphasis on anomaly characterization or real-time
adaptability.

More recently, Hong et al. [15] introduced Sherlock, an
unsupervised fault detection framework for embedded systems
using lightweight profiling of system parameters. Sherlock
excels in detecting diverse anomalies without labeled training
data but requires extensive multi-dimensional profiling, which
may hinder real-time deployment in cryptographic accelera-
tors. In the FPGA domain, Khan et al. [16] proposed an online
learning FPGA-based system for anomaly detection in IoT
networks. Their OS-ELM-FPGA design adapts dynamically to
changing environments and achieves high accuracy. However,
the complexity of the system and the focus on network-level
anomaly detection limit its direct applicability to cryptographic
hardware protection.

Our work differentiates itself by integrating both timing
and fault anomaly injection directly into AES-128 encryption
with automatic label generation, enabling supervised ma-
chine learning-based detection. We implement and evaluate
our approach on a real-time embedded platform (PYNQ-
Z1), demonstrating a practical balance of detection accuracy,
resource efficiency, and real-time capability. This integrated
anomaly injection and detection framework addresses the

dataset scarcity issue in supervised learning for cryptographic
anomaly detection and advances deployment feasibility on
affordable SoC platforms.

Algorithm 1: AES Encryption and Timing-Based
Anomaly Detection

Input: Number of blocks n, CPU cores c, Anomaly ratio r
Output: Encrypted blocks, anomaly detection report

1 Generate n random plaintext blocks;
2 For each block: With probability r, inject anomaly (delay or fault);
3 Parallelize using c cores: For each block: if anomaly == delay then
4 Sleep for a short random time;
5 end
6 if anomaly == fault then
7 Flip first byte of block;
8 end
9 Pad/truncate block to 16 bytes;

10 Encrypt block with AES-128 in ECB mode;
11 Record encryption time;
12 Compute time threshold for anomaly detection;
13 For each result: if encryption time ¿ threshold then
14 Mark as malicious;
15 end
16 Compute detection metrics (accuracy, false positives, etc.);
17 Save results to Excel and display sample outputs;

III. ANOMALY INJECTION METHODOLOGY

As a set-up, we implement AES-128 encryption in ECB
mode, using a fixed 16-byte key on randomly generated
16-byte plaintext blocks. This simulates various data inputs
typical in real-world applications [17]. Two anomaly types are
probabilistically injected during block encryption:

• Timing Delay: It is a type of side-channel attack that
exploits the amount of time a computer processor takes
to gain knowledge about a system and the amount of
time it takes for systems to run operations, such as
encryption [18]. A random sleep delay between 5 and 20
minutes simulates timing anomalies caused by hardware
contention or malicious slowdowns, consistent with prior
timing attack vectors [19].

• Fault Injection: A bit-flip fault is simulated by XORing
the first byte of plain text with 0xFF before encryption,
emulating hardware fault attacks that cause erroneous
ciphertext [20].

IV. DETECTION APPROACHES

A. Threshold-Based Timing Detection

This approach utilizes a statistical threshold method based
on encryption latency to identify anomalous blocks. Blocks
exceeding the mean plus three times the normalized time
range are marked as anomalous, following established sta-
tistical anomaly detection principles [21]. Although simple,
this method cannot reliably detect fault injections that do not
significantly affect timing.

B. Machine Learning-Based Detection

The second approach leverages a supervised machine learn-
ing model, specifically a Random Forest classifier, trained
on features extracted from the timing and block data to



improve detection accuracy. We extract features from each
encryption block, which include encryption time, byte-level
cipher text values and ground truth anomaly labels. A Random
Forest classifier is trained on this dataset to distinguish be-
nign from malicious blocks, leveraging combined timing and
content alterations. Random Forests have demonstrated strong
performance and interpretability in cryptographic anomaly
detection [7].

Algorithm 2: AES Encryption with Anomaly Injection
and ML-Based Detection

Input: N : number of plaintext blocks, p: malicious percentage, c:
CPU cores

Output: Encrypted blocks, ML detection report
1 Step 1: Generate Blocks
2 for i← 1 to N do
3 Generate random 16-byte block Bi

4 Inject anomaly with probability p/100

5 Step 2: Encrypt in Parallel
6 foreach (Bi, i, anomaly) in parallel with c cores do
7 if anomaly then
8 Randomly select anomaly type ∈ {delay, fault}
9 if delay then

10 Sleep for random short time
11 else if fault then
12 Flip first byte of Bi

13 Pad/trim Bi to 16 bytes
14 Encrypt Bi using AES-128-ECB
15 Record encryption time ti

16 Step 3: Extract Features
17 Create dataset with timing ti and original block bytes
18 Step 4: Train ML Classifier
19 Split dataset into training and test sets
20 Train Random Forest classifier on training data
21 Predict labels on test set
22 Step 5: Evaluate and Report
23 Calculate TP, FP, FN, accuracy
24 Compute threshold T = mean(ti) + 3× max(ti)−min(ti)

N
25 Save results to Excel file

V. EVALUTION

To evaluate the performance of our proposed anomaly
detection framework, we conducted experiments using both
CPU and PYNQ-Z1 SoC platforms. Our evaluation focuses
on detection accuracy, latency, throughput, memory usage, and
resource utilization. We studied the behavior of our framework
across varying block sizes and malicious injection rates, as
well as its ability to scale with increasing CPU cores.

A. Latency and Throughput Analysis

Table I summarizes the latency, throughput, and memory
consumption for different block sizes and CPU counts. We
observe that increasing the number of CPUs reduces latency
and boosts throughput due to parallelized AES encryption and
anomaly detection.

For example, using 4 CPUs at a block size of 1024 reduces
latency from 0.0040 seconds (1 CPU) to 0.0021 seconds and
nearly doubles the throughput from 246.74 to 498.13 blocks
per second. Additionally, larger block sizes such as 8192 and
16384 achieve higher throughput on a single core (over 320

blocks/sec), making them attractive for batch processing in
resource-constrained systems.

TABLE I
LATENCY, THROUGHPUT, MEMORY USAGE BY BLOCK SIZE AND CPU

Block Size #CPUs Latency (s) Throughput Memory (MB)
16384 1 0.0039 321.30 165.16
8192 1 0.0039 324.90 153.83
4096 1 0.0042 288.88 149.80
1024 1 0.0040 246.74 159.89
1024 2 0.0029 385.90 158.83
1024 4 0.0021 498.13 144.97

B. Detection Accuracy and ML Performance

We evaluated detection performance across various anomaly
injection ratios (20% to 80%) and compared threshold-based
detection to our Random Forest-based approach. Figure 2
illustrates the gain in accuracy achieved by machine learning
over the statistical threshold method across block sizes. The
ML detector consistently outperforms the threshold method,
especially at higher injection rates.

At an 80% injection level, the 1024 block size achieves the
highest accuracy gain of approximately 49.15%. In contrast,
larger block sizes (8192 and 16384) exhibit more consistent
and robust performance across injection levels, suggesting
their suitability for environments with continuous and stable
anomaly patterns.

Fig. 2. Accuracy gain of ML-based detector over threshold detection.

C. Precision, Recall, and F1 Analysis

Table II provides a detailed breakdown of precision, recall,
and F1-score metrics for each block size and injection level
using a single CPU. For all block sizes at 20% injection, the
ML classifier maintains a precision above 0.89, with 16384
achieving an outstanding F1-score of 0.94.

While the smallest block size (1024) shows high scores
at low injection rates, its performance deteriorates at higher
injections, highlighting its vulnerability to false positives or
false negatives under heavy anomaly load. Larger block sizes
demonstrate stable performance even at 80% injection, em-
phasizing the benefit of aggregating more data for robust
detection.



TABLE II
DETECTION METRICS AT VARIOUS INJECTION LEVELS (SINGLE CPU)

Block Injection Recall F1 Threshold ML
Size % Precision Precision
1024 20 0.90 0.89 0.90 2.76
1024 40 0.83 0.83 0.83 3.80
1024 60 0.83 0.83 0.83 5.65
1024 80 0.62 0.48 0.62 6.21
4096 20 0.89 0.87 0.89 7.24
4096 40 0.85 0.85 0.85 7.75
4096 60 0.83 0.82 0.82 9.61
4096 80 0.84 0.84 0.84 9.61
8192 20 0.90 0.89 0.91 7.53
8192 40 0.84 0.84 0.84 7.91
8192 60 0.83 0.83 0.83 9.58
8192 80 0.88 0.87 0.87 10.33
16384 20 0.99 0.94 0.91 7.75
16384 40 0.89 0.88 0.87 8.39
16384 60 0.83 0.81 0.79 9.35
16384 80 0.55 0.64 0.76 11.25

D. FP and FN for both threshold-based and ML-based meth-
ods

Figure 3 presents a comparative analysis of false positives
(FP) and false negatives (FN) for both the threshold-based and
machine learning (ML)-based anomaly detection approaches
across varying block sizes and injection rates. Each bar group
corresponds to a specific combination of block size and
anomaly injection percentage, offering a detailed breakdown
of detection errors.

As illustrated, the threshold-based method exhibits a con-
sistently higher rate of both FP and FN, particularly at higher
injection levels. This can be attributed to its limited capability
to differentiate subtle anomalies or fault-induced variations
that do not significantly alter encryption timing. In contrast,
the ML-based detector, which leverages combined timing and
ciphertext features, achieves a substantial reduction in both
error types. For instance, at a block size of 16384 and 80%
injection, the ML approach reduced false negatives by nearly
50% compared to the threshold method.

Fig. 3. False Positives (FP) and False Negatives (FN) comparison for
Threshold-based and ML-based detection methods across varying block sizes
and injection rates.

E. Hardware Resource Usage on PYNQ-Z1

To explore real-time deployment, we implemented both
detection approaches on the PYNQ-Z1 board. The ML-based
detection achieved near-parity performance with the CPU ver-
sion, with only modest overhead from Python-based hardware
interfacing. Latency remained under 5 ms for block sizes up
to 8K, and resource usage remained under 30% of available
LUTs and BRAMs. These findings demonstrate feasibility
for FPGA-assisted cryptographic monitoring in embedded
systems.

F. Comparison with Prior Work

Table III provides a comparative summary of our framework
against key AES anomaly detection studies. While many prior
approaches focus on hardware redundancy or error-detection
codes [12], [14], or utilize basic timing thresholds [13], few
integrate both timing and fault injection in conjunction with
machine learning. Our approach provides this combination and
is the only one among them to support real-time detection
directly on an embedded SoC (PYNQ-Z1).

Compared to works like OS-ELM-FPGA [16] and Sher-
lock [15], which target general CPUs or rely on unsupervised
models, our solution delivers a more lightweight, resource-
efficient alternative using supervised Random Forests, suitable
for in-line anomaly detection during AES encryption.

TABLE III
COMPARISON WITH PRIOR AES ANOMALY DETECTION METHODS

Work Method Platform Real-
Time

Alawieh et
al. [12]

Redundancy
+ masking

FPGA No

Liu et al. [13] Timing
thresholding

CPU No

Purnaprajna et
al. [14]

Parity-based
detection

FPGA No

Hong et al. [15] Unsupervised
learning

CPU No

OS-ELM-
FPGA [16]

Online
Sequential
ELM

FPGA No

This Work Fault + tim-
ing + ML

CPU,
PYNQ-Z1

Yes

VI. CONCLUSION AND FUTURE WORK

This work presented a practical framework for enhanc-
ing the security of AES-128 encryption through anomaly
injection and detection. By simulating realistic fault and
timing anomalies and applying both statistical thresholding
and supervised machine learning detection, we demonstrated
that lightweight models like Random Forest can outperform
traditional methods in accuracy and robustness. The dual
implementation on CPU and PYNQ-Z1 SoC validated the
feasibility of our approach in both software and embedded
hardware environments, with minimal resource overhead.

Our experiments revealed that combining timing and ci-
phertext features allows for a more reliable detection of



subtle anomalies. The PYNQ-Z1 implementation, in partic-
ular, showed promising latency and throughput performance,
supporting real-time cryptographic anomaly detection in con-
strained systems.

Future Work. While our method shows clear benefits,
several areas merit further exploration. First, our anomaly
injection focused on two primary types—timing delays and
byte-level faults. Expanding this to include additional side
channels, such as power consumption or electromagnetic emis-
sions, could increase the generality of the system. Additionally,
although Random Forests provide interpretability and solid
performance, deep learning models (e.g., convolutional or
recurrent networks) may better capture complex temporal or
spatial correlations in encrypted data, especially in multi-
modal anomaly contexts.

Another important direction is improving portability across
devices. Applying transfer learning could allow a model
trained on one platform (e.g., CPU) to generalize effectively
to others (e.g., FPGA or microcontrollers). Moreover, ensur-
ing robustness against adversarial attacks that target the ML
detector is essential, particularly if such systems are deployed
in hostile or exposed environments.

Finally, future work could explore tighter hardware inte-
gration, where ML inference is embedded directly into the
encryption pipeline, reducing overhead and enabling real-time
response within cryptographic cores.

This study lays a solid foundation for practical and intelli-
gent anomaly detection systems in cryptographic applications
and opens the door to more adaptive, secure hardware-aware
encryption solutions.
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