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Abstract—Malware Family Classification (MFC) aims to iden-
tify the fine-grained family (e.g., GuLoader or BitRAT) to which
a potential malware sample belongs, in contrast to malware
detection or sample classification that predicts only an Yes/No.
Accurate family identification can greatly facilitate automated
sample labeling and understanding on crowdsourced malware
analysis platforms such as VirusTotal and MalwareBazaar, which
generate vast amounts of data daily. In this paper, we explore and
assess the feasibility of using traditional binary string features
for MFC in the new era of large language models (LLMs)
and Retrieval-Augmented Generation (RAG). Specifically, we
investigate how Family-Specific String (FSS) features could be
utilized in a manner similar to RAG to facilitate MFC. To this
end, we develop a curated evaluation framework covering 4,347
samples from 67 malware families, extract and analyze over 25
million strings, and conduct detailed ablation studies to assess
the impact of different design choices in four major modules.

I. INTRODUCTION

Malware family classification (MFC) plays a pivotal
role in threat intelligence [35]], [42] and malware analysis
pipelines [5], [6]. Rather than merely determining whether a
sample is malicious, MFC aims to assign a specific family
label—such as GuLoader and BitRAT—that reflects com-
mon behavioral traits, infection vectors, and capabilities. This
fine-grained family attribution is essential for tracking malware
evolution, generating automated YARA rules, and supporting
downstream tasks like clustering, triage, and prioritization.
In particular, crowdsourced malware analysis platforms such
as VirusTotal [6] and MalwareBazaar [5] require accurate
family identification to facilitate automated sample labeling
and understanding on their vast amounts of data daily.

Prior research has explored various strategies for malware
classification, ranging from manual signature engineering [36]]
and behavior-based heuristics [[16], [31] to learning represen-
tations from structural graphs [44], disassembled code [34],
and API call traces [16], [31], [46]]. However, despite their
potential, these approaches often suffer from significant limita-
tions: handcrafted features do not generalize well 8], dynamic
analysis [48]], [50] is expensive and can be evaded [19],
and learned representations—particularly those derived from
binary content—tend to be opaque, hard to interpret, and
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vulnerable to adversarial obfuscation [49]]. As a result, most
recent studies treat strings merely as auxiliary inputs; see §II|

In this paper, we rethink a long-standing but underutilized
resource in malware analysis: string artifacts extracted from
binaries. These strings can contain human-readable indicators
such as command-line options, configuration paths, encryption
routines, URLs, domain names, registry keys, and API call
names—features that, when properly filtered and semantically
understood, can offer rich insights into malware behavior.
Historically, string features have been overshadowed by more
complex modalities such as control flow or dynamic behaviors.
However, we argue that the rise of large language models
(LLMs) [30], [40], particularly when combined with retrieval-
augmented generation (RAG) [22], presents a new opportunity
to revisit string-based malware family classification.

Our work proposes an exploratory pipeline centered on a
new feature abstraction: Family-Specific Strings (FSS). We
define FSS as strings that appear within a specific malware
family but are absent in other families. By curating a database
of these strings from a labeled training set, embedding them
into a semantic vector space, and matching them against
features extracted from new samples, we aim to explore
and assess the feasibility of using traditional binary string
features for MFC in the new era of LLMs and RAG. To
systematically examine this vision, we design a four-stage
pipeline and conduct an extensive empirical study evaluating
each component in isolation and combination. Our goal is not
to propose a fixed system but rather to explore the design space
of FSS-centered MFC through four key research questions.

The first question (RQ1) concerns string extraction: can
static-only extraction methods, such as FLOSS [4]], recover
enough meaningful strings for robust classification, or do we
need dynamic execution (e.g., sandbox-based memory snap-
shots) to supplement the feature space? Our analysis reveals
that static extraction alone leaves many semantically rich
strings hidden—particularly for heavily obfuscated families
like Stop or Formbook—and that hybrid approaches can
improve classification accuracy by up to 400% in some cases.
This underscores the importance of runtime-based visibility
for fully capturing string semantics.

The second question (RQ2) addresses how we filter and
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organize the training-time string corpus to build a high-
quality, semantically meaningful FSS vector database. Naively
embedding all raw strings is computationally infeasible and
semantically noisy. To address this, we compare a frequency-
based filtering method with an LLM-assisted approach that
uses GPT-3.5 to estimate string meaningfulness. Our experi-
ments show that LLM-based filtering improves top-1 classi-
fication accuracy from 31% to 40%, a relative gain of 29%.
Further, we investigate whether intra-family string clustering
can improve feature compactness and retrieval quality, laying
the groundwork for structurally aware database construction.

The third question (RQ3) considers the test-time phase:
given that a malware binary may yield thousands of strings,
which subset should be selected as query input to retrieve
matching FSS features? We compare random subsampling
with a k-means clustering-based method that selects centroid
strings using TF-IDF representations [33]]. The latter consis-
tently outperforms random sampling, improving classification
accuracy by 4% (from 36% to 40%), especially for samples
with extensive or diverse string content. This suggests that
semantically representative string selection is a critical factor
in retrieval-based classification pipelines.

The fourth and final question (RQ4) concerns the choice
of inference model. Once the top-k candidate FSS features
are retrieved for a test sample, should we score them via
vector similarity (i.e., weighted cosine similarity over family-
level embeddings) or use an LLM fine-tuned on classification
prompts to reason over the retrieved features and infer the
family label? Interestingly, our results show that vector-based
scoring slightly outperforms the fine-tuned LLM approach
(40% vs. 37% top-1 accuracy), despite the latter’s semantic ca-
pabilities. Error analysis reveals that LLMs struggle with noisy
or unparseable input strings, which comprise a significant
portion of many binaries. Conversely, vector scoring suffers
from higher confusion among semantically similar families.
These results suggest complementary strengths, and we outline
hybrid inference as a promising direction.

Our experiments are based on a dataset of 4,347 samples
across 67 malware families, curated from MalwareBazaar with
strict temporal and validation constraints to simulate real-
world classification settings. We extract over 25 million raw
strings, apply staged filtering and clustering, and build a vector
database indexed by meaningful FSS features. Our pipeline
achieves 40% top-1 accuracy and 47% top-3 accuracy in the
default configuration. More importantly, this pipeline allows
us to systematically explore the impact of the four critical
design choices described above, laying a foundation for future
research into LLM- and RAG-based malware classification.
Open Science and Ethics. We will release the full evaluation
code and data after the double-blind review. All experiments
were conducted within our own controlled environment.

II. PRELIMINARIES

A. Strings in Binary Samples

Strings embedded in binary executables often reveal valu-
able semantic information, such as API names, configura-

tion parameters, URLs, or command-line instructions. These
strings, even when obfuscated, can provide critical clues for
identifying malware behavior and origin. In this work, we
primarily leverage FLOSS (FireEye Labs Obfuscated String
Solver) [4] to extract various categories of strings from mal-
ware binaries. FLOSS is a static analysis tool designed to
automatically identify and recover obfuscated strings without
requiring dynamic execution. Specifically, it detects the fol-
lowing four types of strings:

o Static Strings: These are plain ASCIl or UTF-16LE
strings stored in readable sections (e.g., .rdata,
.data) of the binary. They can be directly extracted
without any decoding or emulation. Common examples
include hard-coded messages, file paths, or API names.

« Stack Strings: These strings are constructed on the stack
at runtime, typically through character-wise operations or
byte-wise assignments. While not present in the binary
as contiguous sequences, stack strings can be recovered
through static analysis of instruction patterns that build
strings in memory.

o Tight Strings: A specific form of stack strings that
are tightly encoded and fully decoded within a single
function. These are commonly seen in heavily obfuscated
malware and are distinguished by their compact encoding
and decoding routines.

o Decoded Strings: These are strings produced by decryp-
tion or decoding routines identified within the binary.
FLOSS analyzes known decoding function signatures and
instruction sequences to statically recover strings that
would otherwise be revealed only at runtime.

B. Prior Works Leveraging String Features for Malware De-
tection and Classification

Malware detection and classification have long relied on the
extraction and engineering of robust features from executable
files or their behaviors. Over time, researchers have adopted
increasingly diverse features—from static structures like n-
grams and headers, to dynamic traces like API call sequences
and behavior logs, to domain-specific patterns like DGA-
generated URLs. Among these, string features have appeared
intermittently, playing various roles depending on task objec-
tives, analysis modality, and modeling preferences.

Table [I] presents a chronological overview of nine repre-
sentative studies published between 2001 and 2024, analyzing
their respective goals (malware detection vs. family classifi-
cation), feature engineering strategies, and specifically, how
string-based features were handled. The table introduces six
dimensions: (1) paper metadata, (2) venue and year, (3) task
type, (4) feature type, (5) string role, and (6) how strings are
used. This comparison reveals both the historical evolution and
methodological divergence in the field.

In early work, Schultz et al. [[36] pioneered the use of
string features as core discriminative inputs. By leveraging
printable strings and n-gram sequences extracted statically
from binaries, their system demonstrated strong detection per-
formance, even outperforming traditional antivirus signatures.



TABLE I: Summary of Prior Works Leveraging String Features in Malware Detection and Family Classification

Paper Venue Task Type Feature Type String Role  How Strings Are Used in the Analysis

Schultz et al. S&P Detection Strings + n-grams + PE header  Primary Data mining using string patterns and n-grams
(2001) [136] (static features)

Rieck et al. DIMVA Detection API call sequences (dynamic be-  Auxiliary Generate a feature vector for every malware,
(2008) [31]] havior) including the frequency of some specific strings.

Dahl et al. MALWARE Detection Printable string histograms Auxiliary String hash values are used in histogram-based
(2015) [134] + binary metadata classification; Extract the frequency of selected

keywords from disassembled code as feature.

Siddiqui et al. CODASPY  Family Clas-  Opcode, entropy, and behavior fu-  Auxiliary Only histograms related to the string length
(2016) [37]  sification sion (static) distribution are used.

Huang et al. DIMVA Detection Dynamic behavior logs (sandbox-  Auxiliary Behavioral signatures are generated by correlat-
(2016) [[16]  + Family based) ing runtime string patterns with system calls.

Dambra et al.  CCS Detection Static + dynamic features (hybrid)  Auxiliary Static features outperform dynamic;
(2023) [11]  + Family String features had marginal impact.

Aonzo et al. USENIX Family Clas- Human decision features vs. ML  Auxiliary Humans and ML shared decision features;
(2023) [9] sification features strings indirectly referenced.

Wilhelm et al.  RAID Detection Behavior summaries (evasion-  Auxiliary Behavioral features extracted from string pat-
(2023) [[44]  (evasive) resilient) terns and correlated with API call sequences

Bogdan et al.  RAID Detection DNS  character-level  patterns  Auxiliary Extract statistical features from domains to
(2024) [10]  (DGA) (network-based) quantify structural patterns & detect anomalies.

This underscores an important historical moment when strings
were treated as primary signals.

Subsequent work such as Rieck et al. [31] and Huang et
al. [16] moved away from static indicators and embraced
dynamic behavior logs and execution traces. These systems
achieved greater generalization and robustness but excluded
string features altogether. They reflect a broader trend of
relying on runtime behavior as malware authors increasingly
obfuscated static content.

In between these poles, some studies have used string fea-
tures in auxiliary roles. Dahl et al. [34] included hashed print-
able strings as part of their input feature histograms, showing
how string content can be aggregated but abstracted away.
Dambra et al. [11], in a comprehensive comparison of static
and dynamic features, observed that string-based indicators of-
fered marginal but non-negligible improvements—highlighting
their potential when carefully filtered and combined.

Other studies, such as Siddiqui et al. [37] and Wilhelm
et al. [44], explicitly avoided string usage in favor of richer
statistical or evasive behavior representations. Siddiqui et al.
focused on entropy and opcode-level features for family clas-
sification, while Wilhelm et al. built classifiers on abstracted
behavior summaries, useful against evasive samples.

More recent work by Aonzo et al. [9] explored human-
versus-machine feature reliance and revealed that strings,
although not used explicitly as input, surfaced in the sand-
box reports referenced by both humans and models. This
suggests that string-level cues continue to inform decision-
making—even if implicitly.

Finally, the Bogdan et al’s DGA-focused work [10] illus-
trates an emerging focus on network-level string-like patterns.
By modeling character-level features of dynamically generated
domains, it draws on ideas similar to binary string analysis but
shifts the focus from executable internals to observable traffic.

C. Rethinking String-based Malware Classification in the New
Era of LLMs and RAG

Large Language Models (LLMs), including prominent ex-
amples such as the GPT series [30] and LLaMa series [40],
[41], represent a significant advancement in natural language
processing. Trained on massive, diverse textual corpora, these
models exhibit remarkable performance across tasks such as
text generation and question answering.

However, general-purpose LLMs—while powerful—often
lack domain-specific precision due to the static nature of their
pretraining data. To address this, two complementary strate-
gies have emerged: fine-tuning [14] and Retrieval-Augmented
Generation (RAG) [22]. Fine-tuning customizes a pretrained
LLM for a particular domain using a smaller, task-specific
dataset, improving its ability to produce accurate and context-
sensitive responses. In the software engineering domain, fine-
tuned models such as CodeLLaMa [32] have proven effective
in code generation [24], [43], program repair [15], [38],
vulnerability auditing [28]], [39], and dynamic analysis [51],
[54]. Meanwhile, RAG enhances model outputs by retrieving
relevant textual information from an external corpus at infer-
ence time [22]], enabling LLMs to access up-to-date, domain-
specific content [7], [17], [26]], [52] without additional training.

These advances motivate a fundamental rethinking of how
string-based features—long regarded as static, noisy, or super-
ficial—can be integrated into malware classification pipelines.
In traditional systems, string features (e.g., API names, file
paths, registry keys, or command-line options) have often been
treated as auxiliary or ignored entirely in favor of behavioral
or statistical indicators. Yet as demonstrated in early research,
strings are rich in semantic content and often highly discrim-
inative, particularly when considered at the family level.

Despite their ubiquity in binary files and their interpretabil-
ity, string features have often been dismissed in recent malware
classification systems. As shown in our review in most
existing works either exclude string features or embed them



as auxiliary signals within high-dimensional representations.
This trend reflects broader concerns about strings being easily
obfuscated, sparse, and less reliable than behavior traces or
statistical patterns.

However, this prevailing treatment overlooks a key shift:
with the emergence of LLMs and retrieval-augmented reason-
ing, we are now equipped with models that excel at interpret-
ing, comparing, and contextualizing short, unstructured textual
data—precisely the form that string artifacts take. LLMs are
particularly well-suited to leverage the latent semantics in
malware strings, even in the absence of precise structural
features or behavioral logs. Moreover, the RAG paradigm
provides a natural way to connect an unknown sample’s string
footprint with a curated corpus of family-specific knowledge,
allowing for robust semantic alignment without requiring
explicit, symbolic rules or costly model fine-tuning.

This prompts a new perspective: rather than treating strings
as pre-classification features to be encoded and abstracted
away, they can serve as the inferface layer between static
malware artifacts and LLM-based semantic reasoning. In this
view, strings are not merely features—they are the medium
through which human-understandable and model-interpretable
semantics can be exchanged. Rethinking string-based classifi-
cation under this paradigm entails (i) curating a high-quality,
interpretable set of family-specific strings; (ii) constructing
retrieval pipelines that match new samples to relevant his-
torical string contexts; and (iii) leveraging LLMs to reason
over the relationships between these artifacts and known
malware semantics. This direction combines the transparency
of classical static analysis with the adaptability and semantic
depth of modern LLMs—offering a novel, interpretable path
forward for malware family classification.

III. AN EXPLORATORY STUDY

A. Exploration Based on Family-Specific String Features

Building on this reconceptualization of strings as a semantic
interface between malware binaries and LLM-based reasoning,
we turn to a systematic exploration of how such strings can be
operationalized in practice. Rather than treating string artifacts
as low-level, pre-classification features to be abstracted away,
we consider them central to a semantic retrieval and reason-
ing pipeline. Specifically, we investigate how Family-Specific
Strings (FSS)—interpretable string-level features that are both
representative and discriminative of malware families—can be
extracted, organized, and utilized throughout the classification
process.

We begin by formally defining what constitutes a family-
specific string and how it is distinguished from general-
purpose string artifacts.

Definition 1 (Family-Specific String). Let B be a malware
binary, and let F' denote its corresponding malware family.
Let B be the set of all binary samples that belong to family
F, and let S be the set of all strings decoded from samples
in B. Let F be the set of all known malware families.

A string S is said to be family-specific with respect to F if
and only if:

SeS and AF € F\{F} such that S € Sp: (1)

where Spi denotes the set of strings decoded from all binaries
associated with family F'.

In other words, a family-specific string is one that occurs

within the samples of a given family F' but does not appear
in any samples belonging to other families.
Overview of the Pipeline. Fig.[T]illustrates the overall pipeline
studied in this work. Rather than presenting a fixed system,
we decompose the pipeline into four modular components and
investigate alternative design choices in each. These compo-
nents include: (1) string extraction from malware binaries,
(2) construction of a searchable vector database of family-
level strings, (3) selection of query-time string inputs from
test samples, and (4) matching and inference strategies for
classification. The goal is to understand how different con-
figurations of these components affect the performance and
interpretability of string-centric classification.

This pipeline design supports flexibility in each module, al-
lowing us to isolate and compare key implementation choices.
The rest of this section details the research questions and the
exploratory experiments conducted in each module.

B. Research Questions

The classification pipeline illustrated in Fig. |I| comprises
four key modules: string extraction, vector database construc-
tion, query-time string selection, and matching-based infer-
ence. Each module presents distinct design choices that influ-
ence the pipeline’s overall effectiveness and interpretability.
Rather than committing to a single architecture, we treat each
module as an independent unit of analysis and explore com-
peting strategies through comparative experiments. Our goal is
to surface practical insights into how Family-Specific Strings
(FSS) can be leveraged for malware family classification in
the era of LLMs and retrieval-augmented inference.

To guide this investigation, we articulate four research
questions corresponding to the major design modules:

RQ1: Should family-specific strings be extracted purely
from static analysis, or can hybrid approaches that incorporate
dynamic execution provide better discriminative features?

RQ2: How should we construct the vector database for
family-level string matching? (a) How should training strings
be compressed: by selecting top strings or using LLM-assisted
semantic filtering? (b) Should the strings in the database be
further clustered to improve matching quality?

RQ3: Given that test-time samples may contain numerous
strings, how can we effectively select observation points (OPs)
to serve as the query representation?

RQ4: In the final stage of family classification, should the
system rely on similarity-based scoring over retrieved strings,
or use fine-tuned LLMs for semantic inference?
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Fig. 1: A high-level overview of our exploratory study.

C. Extracting Family-Specific Strings: Static-Only or Hybrid?

The first component of our exploratory pipeline extracts
candidate strings from malware binaries to serve as an initial
set of raw FSS features. As illustrated in Fig. [T} this com-
ponent in the offline “training” phase includes three steps,
introduced below; in particular, in the second step, we conduct
an ablation study in to address a foundational question
for FSS-based classification: should we rely solely on static
analysis, or should we also incorporate dynamic execution to
recover a broader and potentially more representative set of
string features?

@ Data Collection and Pre-Processing. As introduced subse-
quently in we collect numerous samples for each malware
family to represent its variants. Suppose there are N families,
as shown in Fig. [T} we collect, process, and obtain m samples
for each family, where m could be 100 or 50, depending
on the average number of available samples for all families.
Specifically, to prioritize samples with more noticeable FSS
features for binary string “training,” we filter out samples that
are clearly packed by performing a packing check using Detect
It Easy (DIE) [2]] and an entropy-based analysis [27]].

@ String Extraction from Binaries. Once we have a set of
N x m samples, we need to extract raw strings from binaries.
As mentioned above, there are two design choices: a static-
only approach or one that incorporates dynamic execution. The
former is scalable and fully automated, while the latter may
not be. In §V-C| we compare the effect of the following two
strategies for different malware families.

« Static-only String Extraction: In the static setting, we
utilize FLOSS [4]], a widely adopted reverse-engineering

tool that extracts four categories of printable strings
from binaries: static strings, stack strings, tight strings,
and decoded strings; see a more detailed introduction
in FLOSS decodes the embedded strings within
each sample, producing a set of raw strings for every
malware binary in the family. These strings capture
constants, literals, and obfuscated values reconstructed
through dataflow analysis. Static methods offer full cov-
erage and reproducibility without requiring execution, but
they may fail to expose runtime-generated strings.

« Incorporating Dynamic String Extraction: A malware
analysis pipeline can also incorporate dynamic execution,
although this comes at the cost of scalability and requires
manual effort. In this paper, we use Falcon SandBox [1]],
a commercially supported, feature-rich malware analy-
sis environment. This platform provides real-time API
call monitoring with comprehensive coverage of Win-
dows system calls, memory forensics with high string-
reconstruction accuracy, and multi-path execution tracing
for increased branch coverage. In this hybrid setting, each
sample undergoes both FLOSS-based static analysis and
Falcon-based dynamic execution. The resulting sets of
strings are then unified, with duplicates removed and
invalid entries filtered. This setup allows us to empirically
assess whether augmenting static FSS with dynamic
strings improves family classification performance.

@ Family Frequency Analysis. Based on the definition of
FSS in Definition [I] we perform a cross-family comparison
of all strings extracted by FLOSS to obtain an initial FSS
feature set for each malware family, as illustrated in Fig. [1]



In other words, if a string appears in the samples of one
family and never appears in any samples of other families,
we consider it an FSS. This step filters out common strings
that may appear in multiple families, such as general library
calls, common system functions, or widely used file names.
In addition to inter-family frequency analysis, we also analyze
the intra-family frequency of FSS features and sort them by
frequency, which will be only used for further filtering when
constructing the final FSS vector database in

D. Building a Scalable and Informative FSS Vector Database

As illustrated in Fig. the second component involves
constructing a scalable and informative vector database from
the initial set of raw FSS features obtained in It serves
as the RAG database that enables query-time retrieval and
matching in later stages. However, the raw FSS feature pool
is typically large and noisy. For example, in our training
corpus of 3,350 samples from 67 families (§IV), the average
number of raw FSS strings per family is as high as 334,116
(median: 137,160). Embedding such a large volume of features
is computationally expensive and semantically redundant.

To address this challenge, a malware analysis pipeline can
employ a two-step refinement process: (1) compressing the
raw FSS strings through either LLM-based semantic filtering
or top count-based filtering, and (2) optionally organizing them
via vector clustering. The effectiveness of these design choices
is evaluated in ablation studies, as further discussed in §V-A]
Count-based vs. LLM-based Filtering. A straightforward
filtering method is to retrain top-K most frequent FSS features.
However, this naive method may ignore FSS features that
reflect family-specific features but are not in high count.
To address this problem, we also design a filtering method
based on semantic content to refine the feature set. This
alternative design choice is based on the observation that
shorter FSS tend to consist of more meaningless, obfuscated
strings (e.g., randomized API names), rather than meaningful,
human-readable strings. Leveraging this insight, we employ
an LLM-assisted method to determine a length range that
primarily captures useful FSS features, thereby enhancing the
relevance and interpretability of the embedded features.
LLM-assisted FSS Semantic Analysis. In the alternative
LLM-based design choice, we begin by categorizing FSS
features based on their string length. Initial analysis revealed
that strings longer than a minimum length are more likely to
contain meaningful information, such as identifiable keywords,
URLSs, or other structured patterns. Therefore, we perform
semantic analysis of FSS features to indirectly determine an
appropriate length threshold (i.e., >= L). To identify the most
valuable FSS features, we employ a prompt-based semantic
analysis method using GPT-3.5, as outlined below:

You are an expert in obfuscated string reading, capable of
recognizing any meaning from obfuscated strings. Does each
of the following strings have any meaning? Answer in a JSON
output only (do not provide any other description), where the
key is the string number ID and the value is Yes/No.
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Fig. 2: CDF of meaningful FSS at various percentage levels
across different FSS lengths for our training set (.
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For each batch of strings (up to 500 at a time), we
input them into the GPT-3.5 model’s context window. To
mitigate hallucinations and enhance reliability, we use a voting
mechanism involving three independent GPT-3.5 agents with
different temperatures. For each string, if at least two
agents agree on “Yes” (i.e., the string is meaningful), it is
considered valuable. It is worth noting that our LLM-based
semantic analysis is used only to infer the length range where
FSS features are most valuable. That said, it does not eliminate
any unintelligible strings within the determined length range.
Determining the Optimal FSS Length Threshold. Based
on the LLM analysis results, we calculate the percentage of
meaningful FSS features for different lengths. Fig. [2] plots
the CDF (Cumulative Distribution Function) showing the
percentage levels of meaningful FSS across different lengths.
We observe that for our training set in §IV] at a length of
13, the minimum percentage of meaningful FSS (i.e., 10%)
now covers over 50% of all samples. In other words, for
lengths below 13, most samples have a very low percentage of
meaningful FSS, often below 10%, making them less suitable
for inclusion in the feature database. Therefore, we set the
FSS length threshold L to 13 for the samples in our training
set. In doing so, we significantly reduce the average (median)
number of FSS features per family from 334,116 (137,160) to
33,782 (12,544), achieving an almost 10-fold reduction.
Embedding the Refined FSS Feature Set into Vector Space.
With the filtered FSS features through either choice above,
we sort them based on the intra-family frequency analysis
conducted in and retain the top 10,000 strings per
family. This balances the feature set across families and further
reduces the size of our vector database. We then embed this
refined set of FSS features into a vector space and store the
vector embeddings along with the original plaintext strings,
their family labels, and occurrence frequencies. This structure
enables efficient approximate nearest-neighbor search, as well
as exact match lookup, during test-time matching. Note that



during the embedding of all the refined FSS features, we also
record them separately in plaintext to facilitate fast comparison
of common FSS features between a testing sample and the
training set, as discussed subsequently in

Optional Clustering of Embedded Strings. To further reduce
redundancy and improve retrieval interpretability, we also
explore clustering the embedded FSS vectors using unsuper-
vised algorithms such as k-means [20] and DBSCAN [18§].
The hypothesis is that grouping semantically similar strings
can enhance retrieval stability, reduce query-time noise, and
surface core behavioral motifs. We evaluate the impact of
clustering in through an ablation analysis.

Overall: Through the above filtering, embedding, optional
clustering process, the initial raw FSS features are transformed
into a compact and semantically structured knowledge base
for test-time retrieval and matching. The trade-offs between
filtering strategies and the effect of clustering are key focus
areas in our investigation of FSS-based classification.

E. Selecting Observation Points from Test-Time Samples

The third component of our exploratory pipeline concerns
how to effectively select Observation Points (OPs) from a
testing sample to serve as the query representation for family
classification. As shown in Fig. each test-time sample
typically yields a large number of strings, many of which
are noisy, redundant, or irrelevant. Efficiently selecting a
meaningful subset of strings is critical for both inference
accuracy and computational feasibility.

We explore two competing strategies for selecting OPs:
random subsampling and clustering-based selection. An ab-
lation study in §V-B]| quantifies the impact of each strategy on
classification accuracy, as motivated by RQ3.

Baseline Strategy: Random Subsampling. In the baseline
setting, we randomly sample M strings (e.g., M = 1,000)
from the FLOSS-extracted string set of the test sample, after
applying the length threshold from Moreover, to ensure
discriminative string coverage, any common strings shared be-
tween the test sample and the FSS vector database (identified
through exact string matching) are always included in the OPs.
While this random subsampling method is fast and simple, it
risks omitting semantically important strings when the total
string count is high.

Alternative Strategy: Clustering-based Selection. To ad-
dress the limitations of random sampling, we introduce a
clustering-based method for OP selection. The key intuition is
that semantically similar strings often form natural groups, and
selecting representatives from these groups can preserve the
diversity and informativeness of the entire string set. Specifi-
cally, we first convert the string set into vector representations
using TF-IDF [33|] weighted 3-gram embeddings. Then, we
apply the k-means algorithm with & = M to cluster the strings.
The string closest to the centroid of each cluster is selected as
the OP, ensuring coverage across diverse semantic regions of
the string space.

Comparative Evaluation. As discussed in we evaluate
both strategies using a fixed input budget of M = 1,000

strings per sample. On average, the clustering-based approach
improves classification accuracy by over 10% compared to
random subsampling, particularly for samples with large and
diverse string sets. While clustering-based OP selection im-
proves performance, it also incurs additional computational
overhead during preprocessing. The trade-off is justifiable in
static analysis settings where string extraction is deterministic
and preprocessing is performed offline. Future work may ex-
plore more efficient embedding schemes or adaptive clustering
thresholds based on string entropy or redundancy levels.

Overall: This module reinforces the need for semantically-
aware preprocessing in the test-time pipeline and ensures that
test-time representations are both compact and discriminative.

F. Scoring or Reasoning: Matching Against the Vector
Database via Vector Similarity or LLM Inference

The final module in our exploratory study concerns how to

interpret the relationship between a test-time sample and the
family-specific knowledge base constructed from FSS features.
As shown in Fig. [I] after retrieving semantically similar
features from the vector database, two strategies can be used
to perform the final classification: (1) vector-based scoring,
which ranks families based on similarity-weighted evidence
accumulation, and (2) LLM-based reasoning, which uses a
fine-tuned large language model to infer the sample family
based on its top-ranked FSS matches. Our ablation study in
§V-C] compares these two approaches.
Vector-based Scoring. In this approach, we follow a RAG-like
workflow [21]], [26] to retrieve and score relevant FSS entries
from the database. For each of the M selected observation
points (OPs) from the test sample, we query the FSS vector
store to retrieve the top-k (e.g., £ = 10) semantically similar
strings. This results in M x k retrieved strings (or “hints”),
each associated with its source family and frequency.

To estimate the relevance of each hint to the test sample,
we compute a frequency-normalized similarity score:

F feature

Scor Cweighted = X Sim(StrOPa Strfeature)

N; family
where Fieaure 1S the frequency of the feature string within its
source family, Ngumily is the total number of training samples
in that family (used for normalization), and Sim(-) measures
semantic similarity in embedding space.

All retrieved hints are ranked by their weighted score, and
the top-K matches (e.g., K = 100) are used to aggregate
family-level scores. The top-ranked family is selected as the
predicted label for the sample. This method is lightweight.
LLM-based Reasoning. To enhance semantic interpretation,
we further explore an alternative approach where the top-
K retrieved features and top-scoring candidate families are
passed to a fine-tuned LLM for final inference. As shown in
Fig. 3] the model receives two inputs: (1) the top-K retrieved
FSS strings and their associated source families, and (2)
a ranked list of candidate families based on vector scores.
The LLM is trained to output the top-3 candidate families.
This is formulated as a structured prompt-based classification



Prompt for Fine-tuning

System:

You are an expert in malware analysis, capable of
interpreting the sample type and its family (for in-
scope malware) based on the top-K feature strings and
top-scoring candidate families.

User:

We have extracted feature strings from a potential
malware sample and obtained the top 100 records with
the highest scores in an embedding vector database.
Below are the most relevant feature strings and their
corresponding source families (in brackets) from the
given sample (provided as line-by-line input):

{List of top-K string (family) mappings}

Moreover, based on these top feature strings, we
have calculated the top potential malware families
for the given sample, sorted from highest to lowest
likelihood:

{List of top-scoring candidate families}

Based on the above two pieces of information,
please determine the sample type (in-scope malware,
out-of-scope malware, or benignware) and the top-3
potential families if it is in-scope malware.

Please respond in one of the following three formats
(do not include any other descriptions):

The top-3 families are {familyl, family2, family3}.
Response:

The top-3 families are {top-1 family, family, family}.

Fig. 3: Prompt format for fine-tuning-based reasoning over
retrieved top-K features and candidate families.

task using fine-tuning data derived from validation samples
processed through the same pipeline.

We prepare training data for fine-tuning by running the

first three modules (§III-CI-SI-E) on a held-out validation
set. This ensures the model is exposed to realistic top-K
feature patterns. We fine-tune a cost-effective LLM (e.g.,
gpt—4o-mini) using this structured dataset, optimizing it
to interpret retrieval patterns and make nuanced family-level
judgments.
Overall: This module completes the exploratory pipeline by
testing the final classification layer’s ability to reconcile raw
string evidence with semantic family-level inference, offering
a direct response to the challenge posed in RQ4.

IV. EXPERIMENTAL SETUP
A. Dataset Collection

To support our exploratory study (see Fig. [I)), we curated a
malware dataset from the MalwareBazaar platform [5], which

TABLE II: Summary of datasets used.

Dataset Samples | Families
Training (Vector DB) 3,350 67
Fine-tuning Training Set 670 67
Testing Set (2024 samples) 327 67
Total 4,347 67

hosts a large corpus of Windows/UNIX malware samples
labeled by multiple engines. Our dataset construction emulates
a real-world scenario where analysts must detect newly emerg-
ing malware using a historical repository of known families.

We collected and curated a subset of 4,347 labeled samples
spanning 67 distinct families for training, validation, and
testing. We validated family labels with VirusTotal to remove
inconsistently tagged samples. For each malware family, we
selected 60 pre-2023 samples (50 for the database and 10
for fine-tuning) and 5 near-January 2024 samples for testing.
Some families (e.g., DanaBot, Meterpreter, AgentTesla, Metas-
ploit) had fewer than 5 testable samples due to extraction or
obfuscation issues. As summarized in Table [II| the dataset is
divided into:

o Training Set: 3,350 samples (50 per family) collected
before 2023, used to construct the FSS vector database.

« Fine-tuning Set: 670 samples (10 per family), used to
fine-tune the LLM for semantic inference (see §III-F).

o Testing Set: 327 samples (up to 5 per family) from early
2024, used to evaluate generalization to recent threats.

B. Environment and Parameter Configurations

Our experiments were conducted on a workstation with

128GB RAM, 32-core CPU, and NVIDIA A100 GPU. The
implementation uses Python with faiss for vector indexing
and OpenAl APIs for embedding and fine-tuning.
Embedding and Query Pipeline. We use the
text—-embedding—-ada-002 model to convert each
FSS string into a 1,536-dimensional embedding vector [3].
During inference, each observation point (OP) from a test-
time sample is used to query the FSS vector database. The
system retrieves the top-k = 10 semantically similar entries
per OP, based on cosine similarity, forming the retrieval
foundation for both scoring-based and LLM-based reasoning.
LLM Fine-tuning. For semantic inference, we fine-tune
the gpt-40-mini-2024-07-18 model using our curated
prompt-response pairs. Each prompt encodes the top-K = 100
retrieved FSS strings and their associated source families,
along with a ranked list of candidate families (see Fig. [3).
The fine-tuning set of 670 samples is processed using the same
pipeline described in §III-CI-§III-E] ensuring the model learns
to interpret retrieved features.
Default Parameters. Unless otherwise specified, we set M =
1,000 as the number of OP strings selected from each test
sample, £k = 10 as the number of retrieved FSS strings per
OP, and K = 100 as the total number of top-ranked FSS
features used for scoring or LLM-based classification.

C. How Strings Evolve in the Training Set

To better understand how our exploratory pipeline con-
tributes to refining string-based features, we trace the evolution



of string sets throughout the offline training phase. Specifically,
we analyze how the average number of string features per
family changes as we successively apply the design choices
discussed in and Our experiments were con-
ducted on the 67 malware families used for training.

Step 1: Raw String Extraction. We begin by extracting all
printable and decoded strings from each binary using FLOSS,
resulting in an initial set of raw strings per sample. On average,
this process yields 377,034 strings per family, reflecting the
large volume and typical redundancy of FLOSS outputs.
Step 2: Family-Specific Strings. Next, we apply inter-family
filtering to identify FSS strings that are unique to each family
(§IITI-C). This step removes strings common across multiple
families (e.g., general system API names), reducing the aver-
age string count to 334,116 per family.

Step 3: LLM-Based Filtering. To eliminate short and often
unintelligible strings, we apply the minimum length thresh-
old (L = 13), derived via LLM-assisted semantic analysis
(§II-D). This step filters out a large fraction of noisy strings
and reduces the average string count to 33,782 per family.
Step 4: Removing Recursive Strings. As an implemen-
tation refinement, we remove recursive strings—those com-
posed of repeating self-patterns (e.g., “ABABABAB” or
“XYZXYZXYZ”)—which typically result from FLOSS de-
coding loops or malformed encodings. This filtering step
eliminates another small subset of strings, bringing the average
count down slightly to 33,283.

Step 5: Frequency-Based Compression. Finally, to ensure
scalability and balance across families, we retain only the
top 10,000 FSS features per family based on intra-family
frequency (§III-D). This final pruning step further reduces
the average to 7,042 strings per family—an 53-fold reduction
from the original FLOSS output—while preserving the most
representative and discriminative features.

Through this sequential filtering pipeline, our system trans-
forms a noisy, oversized raw string set into a compact, in-
terpretable, and semantically meaningful feature corpus. This
refined dataset forms the backbone of our FSS vector database
and directly impacts downstream classification performance.

V. RESULTS AND ANALYSIS

We now evaluate the classification performance of our
exploratory pipeline across 67 malware families using the
curated testing dataset introduced in Unless otherwise
specified, all reported results follow the Normal Classification
configuration, which incorporates the following default design
choices:

o Static-only string extraction using FLOSS (i.e., dynamic
analysis is excluded) in RQI1.

o LLM-based filtering of FSS without additional clustering of
embedded vectors in RQ2.

o Clustering-based selection of observation points in RQ3.

o Vector-based scoring for family prediction in RQ4.

This configuration represents a fully automated pipeline
optimized for speed and scalability. Two modules—dynamic
string extraction (RQI1) and vector clustering (RQ2)—are

omitted in the default pipeline due to their dependency on
manual analysis or non-trivial orchestration. These compo-
nents are revisited in later subsections through ablation studies
to assess their potential impact.

Table summarizes the per-family and average perfor-
mance under various configurations. In the default setting
(Normal Classification), our pipeline achieves an average top-
1 accuracy of 40% across all test samples, indicating that
in 40% of cases, the correct malware family is ranked first.
When expanding the evaluation window to include the top-2
and top-3 ranked predictions, the average accuracy increases
to 45% and 47%, respectively. This incremental improvement
(+5%, +2%) suggests that the correct family could be ranked
among the top candidates, even if not in top-1, underscoring
the semantic value of the retrieved string features.

To understand the effect of each module in the pipeline,
we organize the subsequent subsections around the four RQs
defined in The presentation proceeds in the following
order: starting with (RQ2), which examines how to build
an effective FSS vector database; followed by (RQ3),
which compares different strategies for selecting observation
points; then §V-C|(RQ4), which contrasts vector-based scoring
with LLM-based reasoning for final classification; and finally,
(RQ1), which investigates the effect of incorporating
dynamic execution into the string extraction phase.

Together, these analyses shed light on the strengths and
limitations of the different modules in our pipeline, offering
insights into how string-based classification can be enhanced
through modular design choices in the era of LLMs and RAG.

A. RQ2: How to Build the FSS Vector Database?

1) RQ2.1: LLM-based Filtering vs. Count-based Filtering:
We evaluate the effectiveness of LLM-based length filtering
by conducting comparative experiments across 67 malware
families. Two experimental conditions are configured:

« Top Count-based Filtering (Baseline): Retain the top
10,000 most frequent strings per family, without apply-
ing any semantic or length-based filtering. This simple
heuristic yields a top-1 classification accuracy of 31%,
as reported in Table

« LLM-based Length Filtering (Default): Apply a length
threshold (e.g., L > 13) derived from the LLM-driven
analysis described in which aims to exclude
semantically uninformative short strings. This approach
improves top-1 accuracy to 40.3%, i.e., 0.40 in Table

As shown in Table [III, LLM-based filtering leads to a 29%
relative improvement in top-1 accuracy (from 31% to 40%),
and similarly improves the top-2 (from 36% to 45%) and
top-3 (from 40% to 47%) metrics. These results validate the
hypothesis that short or obfuscated strings introduce semantic
noise detrimental to classification.

To further understand the semantic improvement brought by
LLM-based filtering, we analyze changes in intra-family string
similarity. As shown in Fig. fa| 40% of families (27 out of
67) exhibit improved semantic coherence, reflected by positive
A values. The mean improvement across these families is



TABLE III: Classification accuracy under different situations for samples in different malware families.

Family Normal Classification Use Count Filtering-RQ2 Use Random OPs-RQ3 Use LLM Reasoning—-RQ4
topl top2 top3 topl top2 top3 topl top2 top3 topl top2 top3
Adware.Generic 0.00 0.00 0.00 0.40 0.40 0.40 0.00 0.00 0.00 0.00 0.40 0.40
AgentTesla 0.20 0.40 0.40 0.00 0.20 0.20 0.20 0.40 0.40 0.20 0.20 0.40
Amadey 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
AsyncRAT 0.80 0.80 0.80 0.40 0.80 0.80 0.60 0.80 0.80 0.80 0.80 0.80
AveMariaRAT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
AZORult 0.20 0.40 0.40 0.40 0.40 0.40 0.20 0.40 0.40 0.20 0.40 0.40
Bazal.oader 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BitRAT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BumbleBee 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CobaltStrike 0.20 0.20 0.60 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
CoinMiner 0.20 0.40 0.40 0.00 0.20 0.20 0.20 0.40 0.40 0.20 0.20 0.20
DanaBot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DarkCloud 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
DarkComet 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
DarkGate 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
DCRat 0.40 0.40 0.40 0.20 0.20 0.20 0.60 0.60 0.60 0.20 0.20 0.20
Fabookie 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Formbook 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gafgyt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Glupteba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GootLoader 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Guildma 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
GuLoader 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00
Havoc 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Heodo 0.20 0.20 0.20 0.00 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00
IcedID 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Kaiji 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kutaki 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lazarus 0.40 0.40 0.40 0.60 0.60 0.60 0.20 0.60 0.60 0.40 0.60 0.60
LimeRAT 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Loki 0.60 0.60 0.60 0.00 0.00 0.00 0.60 0.60 0.60 0.00 0.00 0.00
MassLogger 0.40 0.40 0.40 0.20 0.20 0.20 0.20 0.20 0.20 0.00 0.20 0.20
Metasploit 0.25 0.25 0.25 0.25 0.25 0.75 0.25 0.25 0.25 0.25 0.25 0.50
Meterpreter 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mirai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NanoCore 0.00 0.40 0.40 0.20 0.20 0.40 0.20 0.40 0.40 0.60 0.60 0.60
Neshta 0.40 0.40 0.40 0.00 0.20 0.40 0.40 0.40 0.40 0.20 0.20 0.40
NetSupport 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.40 0.40
Nitol 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
njrat 1.00 1.00 1.00 0.20 0.20 1.00 0.20 1.00 1.00 1.00 1.00 1.00
Phorpiex 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.80 0.80 0.80
Pikabot 0.00 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pony 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
PrivateLoader 0.00 0.00 0.00 0.00 0.20 0.20 0.00 0.00 0.00 0.20 0.20 0.20
PureCrypter 0.20 0.60 0.60 0.00 0.20 0.20 0.20 0.20 0.20 0.40 0.40 0.40
QuasarRAT 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
RecordBreaker 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
RevengeRAT 0.60 0.60 0.60 0.40 0.40 0.40 0.40 0.60 0.60 0.40 0.40 0.40
Rhadamanthys 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RustyStealer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SnakeKeylogger 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00
Stealc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Stop 0.40 0.60 0.60 0.40 1.00 1.00 0.80 1.00 1.00 0.40 0.80 1.00
StormKitty 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
StrelaStealer 0.40 0.60 0.60 0.00 0.20 0.20 0.00 0.20 0.60 0.20 0.20 0.20
STRRAT 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SystemBC 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
TeamBot 0.20 0.20 0.60 0.00 0.00 0.40 0.00 0.00 0.00 0.20 0.20 0.60
Tofsee 0.00 0.20 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tsunami 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Vidar 0.20 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VjwOrm 0.40 0.40 0.40 0.00 0.40 0.40 0.00 0.40 0.40 0.40 0.40 0.40
WSHRAT 0.60 0.80 0.80 0.60 0.60 0.60 0.60 0.80 0.80 0.40 0.60 0.60
XWorm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
YellowCockatoo 1.00 1.00 1.00 0.80 0.80 0.80 1.00 1.00 1.00 0.80 0.80 0.80
ZeuS 0.60 1.00 1.00 0.00 0.20 0.80 0.00 0.20 0.20 0.60 0.60 0.60
zgRAT 0.00 0.20 0.20 0.00 0.00 0.20 0.00 0.20 0.20 0.20 0.20 0.20
Average Sample | 0.40 0.45 047 | 031 0.36 040 | 0.36 0.42 043 | 037 0.40 0.42
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(b) Case study of the DCRat family.
Fig. 4: Impact of LLM-based filtering on semantic similarity.

TABLE IV: Family-wise Changes with LLM-based Filtering.

Family Before  After A
DCRat 0.720  0.800 +0.080
CoinMiner 0.734  0.782 +0.048
RecordBreaker 0.792 0.723  —0.069
CobaltStrike 0.785 0.723 —0.062

+0.021, suggesting that LLM filtering tends to remove noisy
or low-information strings that dilute family-specific patterns.

Among the families, DCRat demonstrates the most pro-
nounced benefit, with a delta of 40.080 after filtering, as
illustrated in Fig. bl While the overall improvements are
encouraging, the effectiveness of LLM-based filtering is not
uniform across all malware families. We observe a substantial
degree of variance in delta values, with a standard deviation
of oA = 0.030, indicating that the semantic effect of filtering
is highly dependent on malware family characteristics.

As observed in both Table and Fig. [ the gain in
semantic clarity varies significantly depending on the struc-
tural characteristics of the family. In particular, we discover
that filtering is more effective for malware families whose
semantic content tends to correlate with string length. These
include families such as DCRat and CoinMiner, where
command-and-control (C2) payloads or embedded commands

11

TABLE V: Cluster Types vs. Classification Performance.

Cluster Type  Jaccard Similarity Accuracy Prevalence
Clustered >0.3 0.87 &+ 0.05 61.8%
Non-Clustered 0 031 £+ 0.12 38.2%

often follow fixed-length patterns. In contrast, for families such
as RecordBreaker and CobaltStrike—where obfusca-
tion is more common and semantically meaningful strings may
be short or deliberately fragmented—Ilength-based filtering
may inadvertently remove useful features.

These results support our hypothesis that semantic filtering,
guided by LLMs, is especially beneficial under two key
conditions. First, when malware families exhibit consistent
length-encoded behavior—such as well-formed C2 commands
or templated configuration strings—filtering out short, low-
entropy strings helps retain high-value patterns. Second, when
the length threshold (e.g., L = 13) aligns with the operational
norms of that family, the filtering process strikes a favorable
balance between noise reduction and information preservation.

Nonetheless, the fixed nature of our thresholding strategy
introduces limitations. Our current pipeline adopts a global
threshold of L = 13 for all families, based on the aggregated
LLM analysis results. However, the family-level heterogeneity
observed suggests that this one-size-fits-all approach may be
suboptimal. Future work should explore adaptive or family-
specific length thresholds that can better accommodate the
diversity in string structures and improve the generalization
of semantic filtering across different malware types.

2) RQ2.2: How Do Clusters Affect Prediction?: Our exper-
iments uncover a significant performance gap across malware
families, with roughly 40% achieving high classification ac-
curacy (above 0.8), while the remaining 60% show substan-
tially weaker results. Upon closer inspection, this variation
is strongly associated with the presence or absence of well-
formed file clusters—subsets of samples within a family
that shared common frequent strings. These clusters emerge
naturally through string co-occurrence patterns: for instance,
if Sample A contained {String X, String Y} and Sample
B contained {String X, String Z}, both samples would be
grouped due to their shared String X. This clustering behavior
suggests structural or behavioral similarities within certain
variants of a family.

To better characterize this phenomenon, we group samples
into two categories. First, Clustered Families (61.8% of cases),
which exhibit overlapping string patterns and yield an aver-
age classification accuracy of 0.87. Second, Non-Clustered
Samples (38.2%), which lack discernible intra-family string
consistency and see their accuracy drop to 0.31. Table
summarizes these differences in Jaccard similarity, accuracy,
and dataset prevalence.

To understand why some samples defy clustering, we manu-
ally analyze 50 randomly selected non-clustered samples. Two
root causes emerge. The majority (64%) are affected by ob-
fuscation artifacts, including runtime packers, encryption, and
custom string encodings that masked meaningful features. The
remaining 36% are identified as genetic variants—samples



TABLE VI: Performance comparison of sampling methods
(mean + 95% confidence interval).

Method Accuracy Relative Improvement
Random sampling 36% -
K-means clustering 40% +11.1%

with substantially different codebases despite sharing a nom-
inal family label. These outliers may reflect version drifts or
parallel development tracks within the same malware lineage.

These findings carry several implications. First, high per-
formance among clustered families reinforces the value of
string-based features when variants retain shared functional
components. Second, the difficulty of classifying non-clustered
samples illustrates fundamental limits of static string anal-
ysis under heavy obfuscation. Third, cluster detection itself
could be leveraged as a preprocessing heuristic to triage
samples: well-clustered inputs can proceed via lightweight
string-matching inference, while non-clustered ones can be
routed to more advanced methods such as dynamic behavior
profiling or graph-based structural comparison.

These observations suggest a need for cluster-aware clas-
sification pipelines. By dynamically identifying the clustering
structure of test-time samples, the pipeline can selectively de-
ploy efficient, string-based techniques for homogenous groups
and fallback strategies for obfuscated or divergent variants.

B. RQ3: Random Subsampling vs. Clustering-based Selection

In this RQ, we investigate the effect of different observation
point (OP) selection strategies on classification performance.
Since each malware sample may yield thousands of decoded
strings—even after filtering—selecting a representative and
informative subset for querying the FSS vector database is
critical. To address this, we compare a baseline random
sampling method with a clustering-based selection strategy.

« Random Subsampling (Baseline): Sample 1,000 strings
uniformly at random from each test sample’s post-filtered
string set. While simple and computationally efficient,
this strategy often fails to capture semantically diverse
strings, particularly in large string sets.
Clustering-based Selection (Default): Perform k-means
clustering over the sample’s string set using TF-IDF
features with character 3-grams and cosine similarity.
From each cluster, the string nearest to the centroid is
selected. This ensures semantic diversity by covering
multiple regions of the string space, while maintaining
a consistent OP count of M = 1000.

As shown in Table clustering-based OP selection
achieves a top-1 accuracy of 40%, compared to 36% using
random sampling—an 11.1% relative improvement. The ad-
vantage is particularly evident for samples with more than
10,000 decoded strings, where redundancy and noise are
more prevalent. The centroid-based selection improves the
representativeness of the OPs, which in turn leads to better
alignment with family-specific features in the vector database.
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TABLE VII: Classification Accuracy Comparison Between
LLM- and Vector-based Approaches.

Approach Accuracy  Relative Improvement
LLM-based Reasoning 37% -
Vector-based Scoring 40% +8.1%

TABLE VIII: Error Type Distribution Across Approaches.

Error Type Vector-based = LLM-based
Unparseable Strings 37% 55%
Similar Family Confusion 25% 7%

C. RQ4: Vector-based Scoring vs. LLM-based Reasoning

In this RQ, we investigate the effectiveness of two compet-
ing strategies for malware family classification: (1) a LLM-
based reasoning method (baseline) that employs a fine-tuned
LLM to infer malware families from retrieved evidence, and
(2) a vector-based similarity scoring method (default) relying
on vector similarity and frequency-weighted scoring.

Table presents the classification performance under both
approaches. The vector-based scoring method achieves a top-1
accuracy of 40%, while the LLM-based reasoning approach
yields a slightly lower accuracy of 37%. This modest 3%
gap corresponds to an 8.1% relative improvement in favor
of vector-based scoring, suggesting that despite the semantic
capabilities of LLMs, their advantages do not materialize
clearly under current conditions.

To understand the source of performance differences, we
performed a detailed error breakdown, as shown in Table
The most common source of error in both approaches is
unparseable input—strings that are either nonsensical or the
result of obfuscation. These strings account for 37% of mis-
classifications in vector-based scoring and 55% in the LLM-
based reasoning. Conversely, vector-based scoring is more
prone to confusing samples from semantically similar families
(25% vs. 7% in LLMs), possibly due to its reliance on surface-
level pattern matching without contextual understanding.

These results suggest that LLMs exhibit better semantic
generalization in distinguishing closely related families, but
are more sensitive to noisy or malformed inputs. This aligns
with expectations: LLM-based reasoning benefits from con-
textual understanding when inputs are meaningful, but suffers
when input quality is low. On the other hand, vector-based
scoring—though more brittle semantically—handles noisy or
shallow patterns more robustly due to its statistical nature.

Given these observations, we draw three key conclusions:

1) In environments where input strings are heavily ob-
fuscated or contain low semantic content, vector-based
scoring remains competitive and more stable than LLMs.
LLMs may offer benefits in handling ambiguous or bor-
derline cases, particularly when the distinction between
malware families is subtle and pattern-based similarity is
insufficient.

A promising future direction lies in hybrid models that
combine both strategies—e.g., using vector scoring to
prune irrelevant candidates and invoking LLM-based in-
ference only on the top-ranked clusters.

2)

3)



TABLE IX: Comparison of meaningful vs. obfuscated strings.

Meaningful Strings Obfuscated Strings

CryptEncrypt,
Microsoft\Proof\hyph32.d11,
https://www.ic.ncsoft.com

Average Rate: 31.2%

Xj3$kP*9@m,
aGVsbG8g8J+Yig==

Average Rate: 68.8%

D. RQI: Static-only vs. Hybrid String Extraction

This RQ examines the extent to which dynamic execution
improves the quality of extracted strings and, in turn, malware
family classification performance. Our default pipeline uses
FLOSS for static-only string extraction due to its scalability
and automation. However, as malware increasingly adopts
obfuscation techniques and runtime packing, static methods
alone may fail to uncover semantically useful information.

Our initial, preliminary evaluation revealed that around one
third of samples exhibited poor classification accuracy when
relying solely on static extraction. To investigate this, we man-
ually analyze the string artifacts and observe that, even after
entropy filtering and regular expression pruning, many static
strings remained obfuscated or meaningless. Table [IX] presents
representative examples contrasting meaningful strings (e.g.,
API names or URLs) with obfuscated strings (e.g., base64
junk or byte repetitions). On average, only 31.2% of extracted
strings are semantically interpretable, while 68.8% are either
garbled or machine-generated filler.

As a comparative experiment, we introduce a hybrid string
extraction method that supplements static outputs with dy-
namic traces collected from Falcon Sandbox. Falcon provides
runtime visibility of system calls, decrypted payloads, and
memory-resident strings—many of which are inaccessible stat-
ically. We select five representative families with poor static-
only classification (Loki, Stop, NanoCore, Formbook, and
DarkGate) and rerun the pipeline with dynamic augmentation.

The results are striking. On average, we observe a 63.2%
increase in the number of semantically valid strings, reflecting
Falcon’s ability to capture runtime-generated content such as
decrypted payloads and system interactions. Additionally, the
proportion of garbage or obfuscated strings drop by 41.5%,
indicating that dynamic execution is effective at bypassing
static noise introduced by packing and encoding. Perhaps most
notably, the identification of system-level API calls improve
by a factor of 2.8, dramatically enhancing the visibility of
behavioral indicators crucial for malware family classification.

As shown in Table [X] these enhancements translate into
clear gains in classification performance. For instance, the
Stop ransomware family sees its accuracy jump from 0.2
(static-only) to 1.0 (hybrid), driven by better visibility into en-
cryption routines, file system interactions, and C2 URLs—all
of which were hidden from static inspection. In contrast,
families like DarkGate show no improvement, suggesting
that even dynamic execution may be insufficient when anti-
analysis techniques or stealth behaviors are involved.

These results confirm the hypothesis that dynamic string
extraction offers value for certain malware families. While
not universally beneficial, hybrid string extraction could be
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TABLE X: Classification accuracy before and after dynamic
execution for certain malware families.

Family Static-only  Hybrid (Static+Dynamic)
Loki 0.60 0.60
Stop 0.20 1.00
NanoCore 0.20 0.40
Formbook 0.00 0.20
DarkGate 0.00 0.00
Average 0.20 0.44

considered a critical capability. In future work, we plan to
explore partial automation of dynamic execution (e.g., using
unpacking stubs or emulated environments) to expand hybrid
coverage without sacrificing scalability.

VI. DISCUSSION

Our study reveals both the promise and limitations of string-
based malware classification within the context of LLMs and
retrieval-augmented pipelines. One further extension is the
importance of dynamic length filtering, tailored specifically
to family characteristics. While we adopted a fixed threshold
(L = 13) based on aggregated LLM feedback (§V-AT), our re-
sults show that families such as DCRat and CoinMiner ben-
efit from this filtering, whereas others like CobaltStrike
and RecordBreaker are negatively impacted. This high-
lights the need for adaptive, family-aware filtering to preserve
meaningful short strings that might otherwise be discarded.

We also identify limitations in LLM fine-tuning on abstract
string data. Although LLMs excel at code and text-related
tasks, their effectiveness here is limited (§V-C) due to two
main factors: (1) retrieved FSS strings often lack clear seman-
tics—particularly in packed or obfuscated binaries—making
it challenging for LLMs to establish reliable associations; and
(2) obfuscation artifacts in training data introduce misleading
patterns, reducing generalization. These findings suggest that
combining RAG-based retrieval with more structured semantic
filtering may provide a more robust alternative.

VII. RELATED WORK

Beyond the summary of string-based classification methods
surveyed in our work is situated at the intersection of
malware analysis and the emerging use of LLMs in cyberse-
curity. LLMs have recently demonstrated strong capabilities
across a variety of security tasks: PENTESTGPT [12] and
CHATAFL [29] applied LLMs to penetration testing and
protocol fuzzing, while other systems have explored fuzzing of
libraries [[13[], [47], program repair [52], [53]], and binary anal-
ysis [25]], [45]. Code-centric applications such as LLift [23]]
and GPTScan [39] further highlight LLMs’ strengths in static
code understanding. However, existing research has largely
overlooked the integration of LLMs with string-level artifacts
in malware binaries—a space traditionally seen as noisy.
Our work addresses this gap by demonstrating that, with
appropriate filtering and semantic grounding, string features
can serve as an effective interface between binary artifacts
and LLM-based reasoning, offering a lightweight, interpretable
alternative to deeper instrumentation or opaque embeddings.



VIII. CONCLUSION

This study revisited string-based malware family classifica-
tion in the modern context of LLMs and retrieval-augmented
architectures. By introducing the concept of Family-Specific
Strings (FSS) and designing a modular pipeline centered on
their extraction, organization, and inference, we demonstrated
that string artifacts can, when properly curated, yield se-
mantically meaningful and interpretable signals for malware
classification. Our exploratory analysis across four key de-
sign stages revealed that hybrid string extraction improves
feature coverage for obfuscated malware, LLM-based filtering
enhances semantic consistency, clustering-based observation
point selection improves representation quality, and vector-
based scoring offers robust and efficient inference.
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