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Abstract

Rabin oblivious transfer is the cryptographic task where Alice wishes to receive a bit from
Bob but it may get lost with probability 1/2. In this work, we provide protocol designs which
yield quantum protocols with improved security. Moreover, we provide a constant lower
bound on any quantum protocol for Rabin oblivious transfer. To quantify the security of
this task with asymmetric cheating definitions, we introduce the notion of cheating advan-
tage which may be of independent interest in the study of other asymmetric cryptographic
primitives.

1 Introduction

Cryptographic tasks where an adversary remains oblivious to the input or the data of other parties
are popularly studied under the banner of oblivious transfer. Several variants of oblivious transfer
tasks exist in the literature today with varying goals and security definitions. A commonly studied
variant of oblivious transfer, known as 1-out-of-2 oblivious transfer (OT), is a cryptographic primi-
tive involving two parties, Alice and Bob, where Bob has two bits of information, and Alice wishes
to learn one of them based on her choice of an index bit. The security of OT protocols is usually a
two-fold evaluation where one needs to protect honest Bob from a cheating Alice who may wish
to obtain more information that the protocol allows (perhaps by learning both bits), meanwhile
Bob may wish to learn Alice’s input, that is, which bit she wishes to learn (see Definition A.1 for a
formal definition of 1-out-of-2 OT and its underlying security notions).

Oblivious transfer, its variants, and other simple cryptographic tasks, are referred to as prim-
itives as they could be used as building blocks for other useful tasks such as coin flipping [Kit02,
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Moc07, ARV21], bit commitment [CK11], oblivious circuit evaluation [BBCS92, Cré94], and even
general multiparty computation [Kil88, KOS16].

In this work, we also consider the task of coin flipping where Alice and Bob wish to flip a coin
but have a different preferred choices for the outcome. It has been shown that quantum protocols
exist for coin flipping up to arbitrary levels of security [Moc07] with explicit constructions given
in [ARV21, ARVW24]. This has been generalized to construct secure z-balanced coin flipping
in [CK09] where the two parties output heads with probability z and tails with the remaining
probability of (1 − z) securely. Moreover, optimal protocols for the semi-honest version of 1-out-
of-2 OT were developed in [CGS16], which also provides an the best known lower bound on the
security of 1-out-of-2 oblivious transfer as a corollary.

The focus of this work is to examine quantum protocols for a variant of oblivious transfer
known as Rabin oblivious transfer. It has been shown that Rabin oblivious transfer is equivalent
to 1-out-of-2 oblivious transfer [Cré88], and that 1-out-of-2 oblivious transfer is universal [Kil88].
However, there are only a few papers that studied Rabin oblivious transfer in a quantum set-
ting [BS25, SPK+24] where the aim is to study its information-theoretic security. The goal of our
work is to provide improved bounds on its overall security by finding better protocols as well as
lower bounds on how secure they can be.

1.1 Rabin oblivious transfer

In this work, we consider a variant of oblivious transfer, known as Rabin oblivious transfer, denoted
by ROT. This task was first proposed by Rabin in [Rab79, Rab05], whence the name. The task was
later revisited in [FMR96] to give a protocol that guarantees security under certain computational
hardness assumptions. ROT is the cryptographic task which accomplishes the following:

• At the beginning of the protocol, Bob outputs a uniformly random bit y ∈ {0, 1}.

• At the end of the protocol, Alice receives y with probability 1/2, else the bit is lost.

The security of ROT protocols is defined in a two-fold manner. Dishonest Alice wishes to
maximize her chances of learning the bit y while dishonest Bob wishes to maximize his chances of
successfully guessing whether Alice asserts the receipt of the data or the data loss event. Note that
if Bob cheats, Alice might think that she learned the bit y, but the learned bit could very well be
different from y. Thus, a cheating Bob only cares if Alice thinks she correctly learned y. Note that in
contrast to the analysis described in [FMR96], we work under the regime of information-theoretic
security where the adversaries are not bounded under any computational assumptions.

We now provide a more formal definition.

Definition 1.1 (Rabin OT). Rabin OT (ROT) is the cryptographic task between two parties (Alice
and Bob) such that:

• Bob chooses y ∈ {0, 1} uniformly at random.

• At the end of the protocol, Alice outputs a bit g ∈ {0, 1} with probability 1/2 (which cor-
responds to her asserting that she learned the bit y) or NULL with probability 1/2 (which
corresponds to her losing the bit).

The completeness and security notions for an ROT protocol are below.

• Completeness: If both Alice and Bob are honest, neither party aborts. Alice outputs g = y
with probability 1/2 or NULL with probability 1/2.
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• Cheating Alice: If Bob is honest, then dishonest Alice’s cheating probability is defined as

P∗
A = max{Pr[Alice successfully learns y]},

where the maximum is taken over all cheating strategies of Alice. Note that P∗
A ≥ 3/4 as

Alice can simply choose to follow the protocol to learn y with probability 1/2 and randomly
guess y in the event of NULL.

• Cheating Bob: If Alice is honest, then dishonest Bob’s cheating probability is defined as

P∗
B = max{Pr[Bob correctly guesses whether Alice asserts the receipt of y or NULL]},

where the maximum is taken over all cheating strategies of Bob. More formally, if we denote
Alice’s assertion by bit a, then a = 0 denotes that Alice asserted the receipt of y, while a = 1
denote that she asserted the receipt of NULL. Here, P∗

B could be alternatively expressed as
the maximum probability with which Bob correctly learns a.

We emphasize that Alice asserting (possibly privately) the receipt of y (by outputting g) does
not necessarily imply the receipt of the actual y, i.e., it could be the case that g ̸= y, or even
that y does not even exist. Note that P∗

B ≥ 1/2 as Bob can simply choose to follow the
protocol honestly and make a uniformly random guess to whether Alice asserts y or NULL.

As the cheating notions of Alice and Bob in the ROT are asymmetric, especially with respect
to the lower bounds of 3/4 and 1/2 on their respective cheating probabilities, we define a single
security measure of how good an ROT protocol is with respect to its pair of cheating probabilities
(P∗

A, P∗
B). To achieve this, we introduce the concept of the cheating advantage of a protocol, denoted

as γ, defined as:
γ := max{γA, γB},

γA := P∗
A/Pideal

A where Pideal
A = 3/4, and

γB := P∗
B/Pideal

B where Pideal
B = 1/2.

(1)

The ultimate objective of designing ROT protocols is thus to find one which minimizes the
cheating advantage, with the hopeful goal of making γ as close to 1 as possible. (We note that γ ≤ 2
since both P∗

A and P∗
B are no greater than 1.)

We remark that this notion of cheating advantage is similar to what is done in [CKS13] for the
case of k-out-of-n (forcing) oblivious transfer which also has vastly different ideal cheating prob-
abilities for Alice and Bob. We believe that this is a natural security measure that can be adopted
by other primitives, even symmetric ones. However, since we are dealing with two cheating pa-
rameters, it could be the case that some applications would desire to minimize a different function
of these two probabilities, different than the cheating advantage. While we do look at cheating
advantage in this work, we note that our focus is on the design of protocols that minimize both
the cheating probabilities, and the cheating advantage is just a way to assign a quality measure to
a given protocol.

1.2 Prior work on quantum protocols for Rabin oblivious transfer and related crypto-
graphic tasks

A first quantum ROT protocol with non-trivial security guarantees was given in [BS25] where a
couple different variants in the security definition were considered including the one described in
this work. Specifically, the authors first developed a framework of stochastic switching and then
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later used it to combine a couple of different insecure Rabin OT protocols to yield one with better
security. This protocol yields γA = 1.29 and γB = 1.87, implying γ = 1.87 < 2 for the security
definition considered in Section 1.1.

In [SPK+24], a quantum ROT protocol using two pure states is investigated, and shown to
outperform classical protocols in some parameter regimes. Also, it was previously claimed that
there exists a perfectly secure quantum protocol for Rabin OT [HW06]. However, this protocol
turned out to be vulnerable to cheating [PA24]. In fact, a constant lower bound on the overall
security of a variant of ROT in the setting of secure function evaluation (with additional inputs)
can be shown from the general lower bound in [OS22] and is given explicitly in the thesis [Osb22,
Section 4.7], hinting at the existence of general lower bounds for ROT.

If one makes no assumptions on the cheating powers of Alice and Bob, for example, that they
are computationally bounded, the limits on the unconditional security for 1-out-of-2 OT was stud-
ied in [CKS13] which provided a constant lower bound on the worst-case security for all complete1

protocols. This result extends the no-go result in [Lo97] that shows that general quantum compu-
tations cannot be done securely, which includes the special case of OT. The lower bound was later
improved in [CGS16] which showed that a variant of OT, known as semi-honest oblivious transfer,
where dishonest Alice is restricted to the set of strategies that allows her to learn the chosen bit
perfectly.

More recently, a lower bound on the security of 1-out-of-2 OT [ASR+21] has been used to
deduce fundamental trade-offs between circuit privacy, data privacy and correctness for a broad
family of quantum homomorphic encryption protocols [HOT23].

In terms of finding protocols, it was shown in [CKS13] that partial security for the 1-out-of-2
OT task can be obtained, that is, the maximum probability with which Alice or Bob could cheat
successfully is strictly below 1, a strict (quantum) improvement over classical protocols where it is
known that either Alice or Bob can always cheat perfectly. Finding optimal protocols for 1-out-of-2
OT is still an interesting, and important, open problem.

1.3 A few remarks about the security setting considered in this work

Here we discuss how our study of Rabin oblivious transfer fits into the bigger picture of two-party
quantum cryptography.

First and foremost, we are considering information-theoretic security, where we do not place any
restriction on a cheating party. For example, we do not make any assumptions on computational
hardness [Yao86, GMW87], space limitations [Sch07, DFSS08], noisy hardware [WST08, STW09],
etc. While these are interesting in their own right, and can be well-motivated, we are studying this
task in the most demanding setting possible, that is, when Alice and Bob are only bounded by the
laws of quantum mechanics.

Secondly, we are assuming that all communication channels are noiseless as the problem could
become easier in some noisy settings. Consider a binary erasure channel which transmits a bit x
and, with probability p, the bit is replaced with a flag ⊥. Then for p = 1/2, this can accomplish
exactly Rabin oblivious transfer. Moreover, Alice and Bob cannot cheat in this setting. In this sense,
Rabin oblivious transfer seeks to emulate a binary erasure channel where the noise is controlled by Alice
or Bob, not the environment. Indeed, it is possible to efficiently implement other tasks such as bit
commitment and oblivious transfer in the noisy setting [Cré97].

Lastly, we would like to emphasize that unlike some of the previous works that studied the
composability of various two-party tasks such as coin flipping [VPdR19, WHBT25], here we only

1Complete protocols are defined such that honest participants achieve the desired objective.
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consider the standalone security of the primitives relevant to this work, including Rabin oblivious
transfer, 1-out-of-2 oblivious transfer and coin flipping. Therefore, the protocols we propose in
the later sections of this work may not be necessarily secure under arbitrary compositions, and we
leave this research direction for future work.

1.4 New protocols for Rabin oblivious transfer

In this section, we present novel constructions of Rabin oblivious transfer protocols that offer
a strict improvement in overall security compared to those described in previous works [BS25,
SPK+24]. Here, we adopt the security notion discussed in Section 1.1.

1.4.1 A quantum protocol via weak coin flipping

One way to reduce the cheating advantages of many two-party cryptographic protocols is to bal-
ance them using weak coin flipping. Suppose that you are given two protocols for the same task P1
with P2 and suppose that Alice can cheat more in P1 than in P2 and Bob can cheat more in P2
than in P1. In other words, if Alice and Bob were faced with deciding on whether to use P1 or P2,
then they would want opposing decisions. One way to deal with this is to have them flip a coin,
and if they output HEADS then use P1, else use P2. This also has the potential benefit of reducing
the overall cheating, as described in the following lemma.

Lemma 1.2 (Balancing Lemma). Suppose we are given two quantum ROT protocols with P1 with
cheating advantages (γ

(1)
A , γ

(1)
B ) and P2 with cheating advantages (γ

(2)
A , γ

(2)
B ). If Alice prefers P1

(i.e., γ
(1)
A ≥ γ

(2)
A ), Bob prefers P2 (i.e., γ

(1)
B ≤ γ

(2)
B ), and 0 <

γ
(2)
B −γ

(2)
A

γ
(2)
B −γ

(2)
A +γ

(1)
A −γ

(1)
B

< 1 then there exists

a family of quantum ROT protocols approaching

γ = γA = γB =
γ
(1)
A γ

(2)
B − γ

(1)
B γ

(2)
A

γ
(2)
B − γ

(2)
A + γ

(1)
A − γ

(1)
B

≤ min{γ1, γ2}, (2)

where γ1 = max{γ
(1)
A , γ

(1)
B } and γ2 = max{γ

(2)
A , γ

(2)
B }. The improvement is strict, i.e., we have

γ < min{γ1, γ2} under the previous conditions if and only if Alice has a strict preference for P1

(γ(1)
A > γ

(2)
A ) and Bob strictly prefers P2 (γ(1)

B < γ
(2)
B ).

Remark 1.3. This balancing lemma above can in general be used for any two protocols for a
given two-party task (coin flipping, bit commitment, etc.) to potentially yield another protocol
with improved security. We note that this trick uses a quantum protocol for coin flipping for the
information-theoretic security setting. In other settings, one must be mindful of the coin flipping
protocol security when balancing in this way.

We note that if both Alice and Bob prefer the same protocol over the other, e.g., γ
(1)
A ≤ γ

(2)
A and

γ
(1)
B ≤ γ

(2)
B , then this balancing lemma does not offer any advantages. However, its power comes

from the ability to combine protocols for which Alice and Bob have different preferences.

Proof Sketch. The proof follows immediately using the task of unbalanced weak coin flipping for
which optimal quantum protocols are known [CK09], based on optimal weak (balanced) coin
flipping protocols [Moc07, ARV21]. Specifically, for the z-unbalanced weak coin flipping task be-
tween Alice and Bob, for all choices of ϵ > 0, there exist a sequence of protocols which in the limit
have the following features:
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• The probability that the outcome is HEADS is z when Alice and Bob are honest, and they
both output the same coin flip;

• Alice cannot force the outcome HEADS with probability greater than z;

• Bob cannot force the outcome TAILS with probability greater than 1 − z.

Suppose Alice and Bob use a z-unbalanced weak coin flipping protocol with z =
γ
(2)
B −γ

(2)
A

γ
(2)
B −γ

(2)
A +γ

(1)
A −γ

(1)
B

,

then on observing the outcome HEADS, they perform P1 and on outcome TAILS then perform P2.
The calculation of γA or γB follows directly by calculating zγ

(1)
A + (1− z)γ(2)

A or zγ
(1)
B + (1− z)γ(2)

B

for z =
γ
(2)
B −γ

(2)
A

γ
(2)
B −γ

(2)
A +γ

(1)
A −γ

(1)
B

.

This lemma turns out to be valuable for minimizing the cheating advantage in the protocols in
this paper, mostly due to the fact that Alice and Bob’s cheating probabilities are rather imbalanced.
But before that, we demonstrate that this simple act of balancing can turn bad protocols into decent
protocols.

Consider the following two bad protocols for ROT.

Protocol 1. A bad Rabin oblivious transfer protocol P1.

• Bob chooses y ∈ {0, 1} uniformly at random.

• Bob flips a fair coin.

– If HEADS, Bob announces y to Alice.

– If TAILS, Bob announces “NULL” to Alice.

Clearly this protocol satisfies P∗
A = 3/4 since Alice either learns y or not, and if not she has to

guess. Moreover, P∗
B = 1 as Bob knows exactly what Alice would assert. Thus, for this protocol

we have
γA =

3/4
3/4

= 1, γB =
1

1/2
= 2, and γ = max{γA, γB} = 2, (3)

which is the worst value of γ possible.

Protocol 2. Another bad Rabin oblivious transfer protocol P2.

• Bob chooses y ∈ {0, 1} uniformly at random.

• Bob prepares |y⟩ and sends it to Alice.

• Alice flips a fair coin.

– If HEADS, Alice measures |y⟩ to learn y.

– If TAILS, Alice throws the qubit away and accepts NULL as her outcome.

Clearly this protocol satisfies P∗
A = 1 since she can simply measure the qubit to learn it per-

fectly. Moreover, P∗
B = 1/2, since Alice has full control over what she asserts, and no information

is sent to Bob after Alice decides to measure or not. Thus, for this protocol we have

γA =
1

3/4
=

4
3

, γB =
1/2
1/2

= 1, and γ = max{γA, γB} =
4
3

, (4)
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which is not the worst value of γ possible, but still not that good.
Even though protocols P1 and P2 have poor security, we can apply the Balancing Lemma to

improve their overall security resulting in the following theorem.

Theorem 1.4. There exists a quantum protocol for ROT with cheating advantage γ = 5/4.

A few remarks are in order. Note that even though this protocol is easy to describe, just use
optimal unbalanced weak coin flipping with the two bad ROT protocols, it is important to note
that optimal unbalanced weak coin flipping protocols are very complicated. The only way we
know how to construct such protocols is via optimal weak coin flipping [Moc07]. Despite much
work done to simplify such protocols [ACG+16, ARV21], they are still very technical. Moreover,
it has been shown that such protocols cannot be efficient [Mil20]. Thus, this begs the question:

Does there exist ROT protocols that are simple and offer decent security?

In the following two sections, we describe how to achieve this.

1.4.2 A quantum protocol via a reduction from oblivious transfer

Typically, reductions between tasks are useful to establish relationships between them, which may
include non-trivial security bounds [CKS13]. In some cases, reductions can also be used to yield
protocols with desirable security. However, some of the fundamental security notions, such as
completeness might be compromised while reducing one task to another. Here, it is crucial to devise
appropriate reductions for tasks where no such violations are permitted.

We next depict a folklore (classical) reduction from OT to ROT. Alice and Bob communicate
only classically outside the OT subroutine to perform the ROT task. We characterize this as a
classical reduction given that the communication outside of the OT subroutine is classical.

Reduction 1. Rabin oblivious transfer from 1-out-of-2-oblivious transfer.

• Bob chooses data y ∈ {0, 1} and a dummy bit z ∈ {0, 1} uniformly at random.

• Bob chooses a permutation value p ∈ {0, 1} uniformly at random and assigns the bits
(x0, x1) = (y, z) if p = 0, or (x0, x1) = (z, y), otherwise.

• Alice and Bob perform 1-out-of-2 oblivious transfer so that Alice learns either x0 or x1 (see
details on 1-out-of-2 OT in Definition A.1).

• Bob sends p to Alice. Alice now knows whether she learned y or z.

• If she learned z, then she outputs NULL. Otherwise, she outputs y.

It is straightforward to observe that an ROT implementation using Reduction 1 is complete
whenever the underlying OT protocol is complete. Additionally, the reduction is tight in the sense
that given a perfectly secure OT protocol the resultant ROT protocol also enjoys perfect security.
Of course, perfectly secure OT is impossible as discussed earlier, thus this reduction does not give
us perfectly secure ROT protocols. However, it does give partial security, as discussed below.

Using this reduction, our idea to create ROT protocols is now clear, we can simply choose an
existing (or develop a new) quantum OT protocol and slot it into Reduction 1. However, since this
is a quantum protocol, it is not clear how Alice and/or Bob may cheat with regards to composing
various cheating strategies. That is, an optimal cheating strategy in the OT protocol may not
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be the optimal cheating strategy in the overall protocol. This optimal cheating behavior (and
thus the worst case cheating probabilities) needs to be proven for this reduction, since we do not
know much about the security aspects of 1-out-of 2 oblivious transfer protocols when used as a
subroutine in a larger composition. Thus, we provide a rigorous self-contained security analysis
of the Rabin OT protocols resulting from the previous reduction.

We now exhibit a complete quantum protocol for ROT, below.

Protocol 3. Using Reduction 1 with the 1-out-of-2 OT protocol from [CKS13].

• Alice chooses a bit a ∈ {0, 1} uniformly at random and creates the two-qutrit state

|ϕa⟩ =
1√
2
|aa⟩+ 1√

2
|22⟩ ∈ A⊗ B.

• Alice sends the qutrit B to Bob.

• Bob chooses data bit y ∈ {0, 1} and z ∈ {0, 1} uniformly at random.

• Bob chooses a permutation bit p ∈ {0, 1} uniformly at random and assigns (x0, x1) = (y, z)
if p = 0, or (x0, x1) = (z, y), otherwise.

• Bob applies the unitary

Ux0x1 =

(−1)x0 0 0
0 (−1)x1 0
0 0 1


to B and sends it back to Alice.

• Alice determines the value of xa using the two-outcome measurement:

{Π0 := |ϕa⟩ ⟨ϕa|A⊗B , Π1 := 1A⊗B − |ϕa⟩ ⟨ϕa|}.

• Bob sends p to Alice.

• If a = p, Alice asserts the receipt of y = xa, else she asserts NULL.

The completeness of the 1-out-of-2 protocol in [CKS13] ensures that this ROT protocol is also
complete. However, it is not clear whether the optimal cheating probability for dishonest Alice
where she tries to learn Bob’s data bit y is equivalent to Alice learning both x0 and x1 in the re-
duced 1-out-of-2 OT protocol. Although learning just these two bits (x0 and x1) qualifies as a valid
cheating strategy, she might deploy a more clever strategy to improve her chances of successfully
learning y, i.e., we have P∗

A ≥ POT
A . Note that quantum communication in the reduced 1-out-of-2

OT protocol attributes to a non-trivial overall analysis as dishonest Alice could now correlate her
messages with Bob’s input data. We give an argument of Alice’s possible strategies below, and
provide the missing details in the appendix.

A general strategy for a cheating Alice has her creating a state of the form below

|ψ′⟩ = α |ψα⟩A′ |0⟩B + β |ψβ⟩A′ |1⟩B + γ |ψγ⟩A′ |2⟩B ,

where α, β, γ ≥ 0 satisfy α2 + β2 + γ2 = 1, and sends the subsystem B to Bob. Once Bob applies
the unitary Ux0x1 on the subsystem B and sends it back, Alice holds the state

|ψ′
x0x1

⟩ = α(−1)x0 |ψα⟩A′ |0⟩B + β(−1)x1 |ψβ⟩A′ |1⟩B + γ |ψγ⟩A′ |2⟩B .
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It is important to observe that Alice’s choice of the states {|ψα⟩ , |ψβ⟩ , |ψγ⟩} is not relevant in
maximizing her chances of successfully cheating in Protocol 3 as for any choice of |ψα⟩, |ψβ⟩ and
|ψγ⟩, there exists a unitary U such that

U |ψ′⟩ = |ψ⟩ ,

where |ψ⟩ = α |0⟩A′ |0⟩B + β |0⟩A′ |1⟩B + γ |0⟩A′ |2⟩B .
Thus, Alice could restrict to creating states of the form |ψ⟩, or equivalently just the states of the
form

|ψ⟩ = α |0⟩+ β |1⟩+ γ |2⟩ ∈ B.

Subsequently, her task reduces to extracting x0 or x1 (depending on p) from the reduced state

|ψx0x1⟩ = α(−1)x0 |0⟩+ β(−1)x1 |1⟩+ γ |2⟩ ∈ B. (5)

If p = 0, the probability of Alice successfully guessing y (or x0 in this case) is given by

Pr[Alice successfully learns y|p = 0] =
1
2
+

1
4

∥∥∥ρ0(0)− ρ1(0)
∥∥∥

1
,

where ρ0(0) = 1
2 |ψ00⟩ ⟨ψ00|+ 1

2 |ψ01⟩ ⟨ψ01| and ρ1(0) = 1
2 |ψ10⟩ ⟨ψ10|+ 1

2 |ψ11⟩ ⟨ψ11|.
Similarly, if p = 1, the probability of Alice successfully guessing y (or x1 in this case) is given by

Pr[Alice successfully learns y|p = 1] =
1
2
+

1
4

∥∥∥ρ0(1)− ρ1(1)
∥∥∥

1
,

where ρ0(1) = 1
2 |ψ00⟩ ⟨ψ00|+ 1

2 |ψ10⟩ ⟨ψ10| and ρ1(1) = 1
2 |ψ01⟩ ⟨ψ01|+ 1

2 |ψ11⟩ ⟨ψ11|.
Optimizing the overall success probability over all choices of α, β and γ, we get P∗

A = cos2(π/8)
when α = β = 1/2 and γ = 1/

√
2.

We now state the overall security of this protocol and defer the rest of the proof to Appendix B.

Lemma 1.5. The ROT Protocol 3 has cheating probabilities P∗
A = cos2(π/8) and P∗

B = 3/4 imply-
ing γA = 1.138 and γB = 1.5, resulting in a cheating advantage of γ = 1.5.

By combining Protocol 3 with Protocol 2 using the Balancing Lemma 1.2, we get an ROT pro-
tocol with security strictly better than the protocol discussed in Section 1.4.1 and is stated in the
following theorem.

Theorem 1.6. There exists a quantum protocol for ROT with cheating advantage γ = 1.239.

We now describe a way to execute many ROT protocols in succession using a simpler protocol
which exhibits the same cheating probabilities as derived previously for Protocol 3.

1.5 A simple sequence of Rabin oblivious transfer protocols

We now propose another way of performing Rabin oblivious transfer based on the OT protocols
described in [ASR+21]. We describe the protocol below.

Protocol 4. A sequence of Rabin oblivious transfers.

• For each i ∈ {1, . . . , N}, Bob picks a pair of bits (xi
0, xi

1), all independently and uniformly at
random.
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• For each i ∈ {1, . . . , N}, Bob prepares the two-qubit states |Ψxi
0xi

1
⟩, where we define:

|Ψ00⟩ = |00⟩ , |Ψ01⟩ = |++⟩ , |Ψ10⟩ = |−−⟩ , |Ψ11⟩ = |11⟩ , (6)

and |±⟩ := (|0⟩ ± |1⟩)/
√

2. Bob sends the states to Alice.

• Alice selects a subset S of the set {1, . . . , N} of size
⌊√

N
⌋

uniformly at random. For each
j ∈ S, Alice asks Bob to announce the state |Ψxj

0,xj
1
⟩.

• If Bob announces |++⟩ or |−−⟩, then Alice measures both qubits in the {|+⟩ , |−⟩} basis,
otherwise Alice measures in the {|0⟩ , |1⟩} basis. Alice aborts if any of her outcomes are not
consistent with Bob’s purported states. If Alice does not abort, then the

⌊√
N
⌋

states used
for these tests are discarded.

• For each j /∈ S, Alice measures the first qubit of |Ψxj
0xj

1
⟩ in the {|0⟩ , |1⟩} basis and the second

qubit of |Ψxj
0xj

1
⟩ in the {|+⟩ , |−⟩} basis. This way Alice learns one of Bob’s bits with certainty

while gaining no knowledge of the other (each of her measurement outcomes allows her to
rule out one of Bob’s possible states). For example, if her measurement outcome is

– 00: then we have (xj
0, xj

1) = (0, 0) or (0, 1), i.e., the first bit is 0;

– 01: then we have (xj
0, xj

1) = (0, 0) or (1, 0), i.e., the second bit is 0;

– 10: then we have (xj
0, xj

1) = (0, 1) or (1, 1), i.e., the second bit is 1;

– 11: then we have (xj
0, xj

1) = (1, 0) or (1, 1), i.e., the first bit is 1.

• For each j /∈ S, Bob declares which of the two bits will be used for Rabin oblivious transfer.
This is chosen uniformly at random for each j.

As before, the completeness follows from the completeness of the underlying OT protocol.
Again we have to carefully consider what a cheating Alice can do to further her cheating prob-
ability over what she can achieve if she uses the cheating strategy which is optimal in the OT
protocol.

The optimal cheating probabilities for Alice and Bob are given in the following lemma.

Lemma 1.7. The ROT Protocol 4 has cheating probabilities P∗
A = cos2(π/8) for all N and P∗

B = 3/4
in the limit N → ∞ implying γA = 1.138 and γB = 1.5, resulting in a cheating advantage of γ = 1.5
in the limit.

The full security analysis for the above protocol can be found in Appendix C.

1.6 A constant lower bound on γ for any quantum protocol for Rabin oblivious trans-
fer

The two main objectives for understanding the limitations of the security for any cryptographic
task is to (a) find good protocols and the corresponding security measures, and (b) find lower
bounds on such security measures. By improving either of these objectives brings us that much
closer to finding the best protocol.

So far, we have been concentrating on objective (a), finding good quantum protocols. Now, we
consider objective (b), finding lower bounds.
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Why care about lower bounds? Suppose one were to show a constant lower bound on γ, that is,
suppose γ ≥ c for some constant c > 1. This implies two things. First, this means that obviously
one cannot find protocols with γ < c, which could suggest that any existing protocols are better
than expected (by being now closer to the optimal γ). Secondly, and importantly, this rules out
security amplification attempts. One may wonder if ROT can be repeated many times and then
somehow by putting all the pieces together reduce the cheating probabilities to their ideal goals.
Having a constant lower bound rules out such attempts, since near-perfect protocols cannot exist,
even in the limit of a family of protocols. Thus, just by having a constant lower bound, regardless
of the constant, provides insight towards how one may design optimal protocols. We therefore
ask the question:

Does there exist a constant lower bound for Rabin oblivious transfer?

At first glance, it is not always obvious how to guess this. For example, quantum protocols
for strong coin flipping (defined shortly) have a constant lower bound [Kit02] while quantum
protocols for weak coin flipping do not [Moc07]. What about Rabin oblivious transfer? In this
section, we answer this question in the affirmative.

1.6.1 Strong coin flipping

We have discussed (unbalanced) weak coin flipping between Alice and Bob, the task of strong
coin flipping is similar. Roughly, a strong coin flipping protocol is defined such that:

• The probability that the outcome is HEADS is 1/2 when Alice and Bob are honest, and they
both output the same coin flip;

• Alice can force the outcome HEADS with probability PA,0;

• Alice can force the outcome TAILS with probability PA,1;

• Bob can force the outcome HEADS with probability PB,0;

• Bob can force the outcome TAILS with probability PB,1.

A formal definition is given in Definition A.2. While much is now known about the limits of the
achievable values of PA,0, PA,1, PB,0, PB,1, in this discussion we only require one bound, proven by
Kitaev [Kit02] (see Proposition A.3):

PA,0 · PB,0 ≥ 1/2. (7)

In other words, in any coin flipping protocol, either Alice or Bob can force the outcome 0 with
probability at least 1/

√
2 > 1/2.

1.6.2 A reduction from Rabin oblivious transfer to strong coin flipping

We present our reduction below.

Protocol 5. Coin flipping from Rabin oblivious transfer

• Alice and Bob perform an ROT protocol with Bob’s data bit denoted by y. We denote Alice’s
ROT output by the trit ĝ ∈ {0, 1, NULL}. If Alice asserts the receipt of data, then ĝ = y, else
ĝ = NULL.

11



• Alice defines the assert bit a ∈ {0, 1} to be 0 if ĝ ∈ {0, 1}, and to be 1 if ĝ = NULL.

• Bob chooses b uniformly at random and sends b to Alice.

• Alice sends a and ĝ to Bob. Bob checks if (a, y, ĝ) are consistent, i.e., he checks if ĝ = y when
a = 0. If ĝ ̸= y, Bob aborts.

• If Alice and Bob do not abort, then they both output HEADS if a = b, and TAILS otherwise.

We first remark that this protocol is complete, i.e., both Alice and Bob output the same coin
flip whose value is generated uniformly at random. Below, we investigate the security of this coin
flipping protocol with respect to the security of the ROT protocol.

Lemma 1.8. In Protocol 5, we have

PA,0 =
1
2
+

1
2

P∗
A and PB,0 = P∗

B, (8)

where P∗
A and P∗

B are the cheating probabilities in the ROT subroutine.

The proof of the above lemma can be found in Appendix D.
By combining Equations (1) and (7), i.e., that

γ = max{γA, γB}, γA =
P∗

A
3/4

, γB =
P∗

B
1/2

, and PA,0 · PB,0 ≥ 1/2 (9)

together with Lemma 1.8, one gets the quadratic inequality

1
2

γ

(
1
2
+

1
2
· 3

4
γ

)
≥ 1

2
, (10)

implying that γ ≥ 2
3

(√
7 − 1

)
> 1.

Therefore, we have the following theorem.

Theorem 1.9. Any quantum protocol for Rabin oblivious transfer has a cheating advantage satis-

fying γ ≥ 2
3

(√
7 − 1

)
≈ 1.097 > 1.

By combining Theorems 1.6 and 1.9, we get the following corollary.

Corollary 1.10. The optimal quantum protocol for Rabin oblivious transfer has cheating advan-
tage γ ∈ [1.097, 1.239].
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[ACG+16] Dorit Aharonov, André Chailloux, Maor Ganz, Iordanis Kerenidis, and Loı̈ck Magnin.
A simpler proof of the existence of quantum weak coin flipping with arbitrarily small
bias. SIAM Journal on Computing, 45(3):633–679, 2016.

[ARV21] Atul Singh Arora, Jérémie Roland, and Chrysoula Vlachou. Analytic quantum weak
coin flipping protocols with arbitrarily small bias. In Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 919–938, 2021.

[ARVW24] Atul Singh Arora, Jérémie Roland, Chrysoula Vlachou, and Stephan Weis. Protocols
for quantum weak coin flipping. arXiv preprint arXiv:2402.15855, 2024.
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biszewska. Practical quantum oblivious transfer. In Advances in Cryptology — CRYPTO
’91, pages 351–366. Springer Berlin Heidelberg, 1992.
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A Definition of other cryptographic tasks

We now define a variant of oblivious transfer, namely 1-out-of-2 OT, and coin flipping with their
underlying security notions.

Definition A.1 (1-out-of-2 OT). 1-out-of-2 OT is the cryptographic task between two parties (Alice
and Bob) such that

• Alice chooses a ∈ {0, 1} uniformly at random and Bob chooses (x0, x1) ∈ {0, 1}2 uniformly
at random.

• If both Alice and Bob are honest, then neither Alice nor Bob aborts and Alice outputs z = xa.

We define the following notions of security for protocols that implement 1-out-of-2 OT.

• Completeness: If both Alice and Bob are honest, Alice learns the bit xa unambiguously.

• Cheating Alice: A dishonest Alice attempts to learn both x0 and x1. The cheating probability
of Alice is given by

POT
A = max Pr[Alice correctly guesses both x0 and x1],

where the maximum is taken over all cheating strategies of Alice. Note that POT
A ≥ 1/2 since

she can simply follow the protocol to learn xa perfectly (completeness) and can correctly
guess xa by making a guess uniformly at random.
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• Cheating Bob: A dishonest Bob attempts to learn the bit a. The cheating probability of Bob is
given by

POT
B = max Pr[Bob correctly guesses a],

where the maximum is taken over all cheating strategies of Bob. Note that POT
B ≥ 1/2 since

he can correctly guess Alice’s bit a by guessing one of the two values uniformly at random.

We note that there are alternative definitions of this task where the inputs are fixed beforehand
or possibly generated randomly within the protocol itself. Many of these definitions are equivalent
to the one presented above and we refer the reader to [BCR87, Cré88, CKS13, ASR+21] for proofs
and discussions.

We next discuss coin flipping and provide its security definitions.

Definition A.2 (Coin flipping). Coin flipping is the cryptographic task between two parties (Alice
and Bob) where they communicate to agree on a common binary outcome (0 or 1). A weak version
of this task is a variant where Alice wins if the outcome is 1 while Bob wins if the outcome is 0.

We consider the following notions of security for a given weak coin flipping protocol.

• Completeness: If both Alice and Bob are honest, then neither party aborts and the shared
outcome is generated uniformly at random.

• Cheating Alice: If Bob is honest, then Alice’s cheating probability is defined with respect to
the outcome d ∈ {0, 1} as

PA,d = max Pr[Alice successfully forces Bob to accept the outcome d],

where the maximum is taken over all possible cheating strategies of Alice. Note that here
PA,d ≥ 1/2 since Alice can simply choose to follow the protocol honestly to observe the
outcome d uniformly at random.

• Cheating Bob: If Alice is honest, then Bob’s cheating probability is defined with respect to the
outcome d ∈ {0, 1} as

PB,d = max Pr[Bob successfully forces Alice to accept the outcome d],

where the maximum is taken over all possible cheating strategies of Bob. As before, here
PB,d ≥ 1/2 since Bob can simply choose to follow the protocol honestly to observe the out-
come d uniformly at random.

The variant of the coin flipping task where Alice and Bob do not have any preferred choice
of outcome is known as strong coin flipping. We now state Kitaev’s lower bound for strong coin
flipping which is useful to deduce lower bounds for other two-party primitives.

Proposition A.3 (Kitaev’s lower bound [Kit02]). For all quantum coin flipping protocols, we have

PA,dPB,d ≥ 1/2 (11)

where d ∈ {0, 1} and PA,d and PB,d are as defined above.
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B Security proof of Protocol 3

We now provide a proof of Lemma 1.5. We reproduce the protocol below, for convenience.

• Alice chooses a bit a ∈ {0, 1} uniformly at random and creates the two-qutrit state

|ϕa⟩ =
1√
2
|aa⟩+ 1√

2
|22⟩ ∈ A⊗ B.

• Alice sends the qutrit B to Bob.

• Bob chooses data bit y ∈ {0, 1} and z ∈ {0, 1} uniformly at random.

• Bob chooses a permutation bit p ∈ {0, 1} uniformly at random and assigns (x0, x1) = (y, z)
if p = 0, or (x0, x1) = (z, y), otherwise.

• Bob applies the unitary

Ux0x1 =

(−1)x0 0 0
0 (−1)x1 0
0 0 1


and sends back B to Alice.

• Alice determines the value of xa using the two-outcome measurement:

{Π0 := |ϕa⟩ ⟨ϕa|A⊗B , Π1 := 1A⊗B − |ϕa⟩ ⟨ϕa|}.

• Bob sends p to Alice.

• If a = p, Alice asserts the receipt of y = xa, else she asserts NULL.

Lemma B.1. The optimal success probability (P∗
A) with which dishonest Alice can cheat in Proto-

col 3 is cos2(π/8).

Proof. We have already argued in the main text that the most general strategy for Alice has her
creating the state

α |0⟩+ β |1⟩+ γ |2⟩ , (12)

where α, β, γ are nonnegative and satisfy α2 + β2 + γ2 = 1, and sending this qutrit to Bob. After
Bob’s unitary, Alice now has the state

|ψx0,x1⟩ = α(−1)x0 |0⟩+ β(−1)x1 |1⟩+ γ |2⟩ , (13)

which encodes his two bits. Since Alice wants to learn y, she should wait until p is revealed which
tells here whether she wants to learn x0 or x1 (that is, which bit of (x0, x1) is really y). If p = 0, that
is, Alice wants to learn x0, and she can do this with maximum probability given by

1
2
+

1
4
∥ρ0(0)− ρ1(0)∥1, (14)

where the norm is the trace norm and ρ0(0) = 1
2 |ψ00⟩ ⟨ψ00| + 1

2 |ψ01⟩ ⟨ψ01| is the encoding with
x0 = 0 and ρ1(0) = 1

2 |ψ10⟩ ⟨ψ10|+ 1
2 |ψ11⟩ ⟨ψ11| is the encoding with x0 = 1. A quick calculation

shows that

ρ0(0)− ρ1(0) =

 0 0 2αγ
0 0 0

2αγ 0 0

 (15)
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which has at most two nonzero eigenvalues, ±2αγ. Therefore, Alice can cheat with maximum
probability

1
2
+ αγ (16)

in this case.
If p = 1, that is, Alice wants to learn x1, and she can do this with maximum probability given

by
1
2
+

1
4
∥ρ0(1)− ρ1(1)∥1, (17)

where ρ0(1) = 1
2 |ψ00⟩ ⟨ψ00|+ 1

2 |ψ10⟩ ⟨ψ10| is the encoding with x1 = 0 and ρ1(1) = 1
2 |ψ01⟩ ⟨ψ01|+

1
2 |ψ11⟩ ⟨ψ11| is the encoding with x1 = 1. A quick calculation shows that

ρ0(1)− ρ1(1) =

0 0 0
0 0 2βγ
0 2βγ 0

 (18)

which has at most two nonzero eigenvalues, ±2βγ. Therefore, Alice can cheat with maximum
probability

1
2
+ βγ (19)

in this case.
Since the choice of p is uniformly random, Alice’s overall cheating probability is given as

1
2
+

1
2

βγ +
1
2

αγ. (20)

A simple optimization over the parameters α, β, γ ≥ 0 satisfying α2 + β2 + γ2 = 1 yeilds that
α = β = 1/2 and γ = 1/

√
2 is the optimal solution from which we can calculate the optimal

cheating probability as 1
2 +

1
2
√

2
= cos2(π/8), as desired.

Lemma B.2. The optimal success probability (P∗
B) with which dishonest Bob can cheat in Protocol 3

is 3/4.

Proof. It is necessary and sufficient for dishonest Bob in Protocol 3 to simply learn Alice’s bit a as
Bob can then set his choice for p accordingly, thereby successfully guessing Alice’s assertion of re-
ceiving y or NULL. Bob can maximally distinguish the two states TrA(|ϕ0⟩ ⟨ϕ0|) and TrA(|ϕ1⟩ ⟨ϕ1|)
in the Holevo-Helstrom basis resulting in P∗

B = 3/4.

C Security proof of Protocol 4

We next provide a proof of Lemma 1.7.

C.1 Cheating Alice

Theorem C.1. The optimal success probability (P∗
A) with which dishonest Alice can cheat in Pro-

tocol 4 is 1
4 (2 +

√
2) for all N.
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Proof. In this protocol Alice only receives states, and sends nothing to Bob. This means that the
only cheating method available to Alice is to use a measurement which is different from what
she would measure if honest. As Bob decides which of the two bits that counts for each of the
remaining N −

⌊√
N
⌋
≈ N states, Alice’s best strategy is to store these states until Bob declares

which bit value counts. Alice then makes a minimum-error measurement individually on each
state, aiming to learn the bit that Bob chose. Due to symmetry, Alice’s probability of correctly
obtaining the first bit is the same as for the second. When Bob declares that the first bit should be
used, the two states Alice has to distinguish between are given by

ρ0 =
1
2
(|00⟩ ⟨00|+ |++⟩ ⟨++|), ρ1 =

1
2
(|11⟩ ⟨11|+ |−−⟩ ⟨−−|). (21)

Here Alice’s best strategy is to make a minimum-error measurement on each instance individu-
ally. Since there are only two states to distinguish between, we use the standard result for the
probability of success, the so-called Holevo-Helstrom measurement, yielding

ps =
1
2
(1 + Tr(|p0ρ0 − p1ρ1|)), (22)

where |A| =
√

A† A. This gives Alice’s cheating probability as

P∗
A =

1
4
(2 +

√
2) ≈ 0.853 (23)

for all choices of N.

C.2 Cheating Bob

Lemma C.2. The optimal success probability (P∗
B) with which dishonest Bob can cheat in Protocol 4

is 3
4 as N → ∞.

Proof. The proof follows the same argument as before. A cheating Bob in the 1-out-of-2 protocol
wants to know which bit Alice received. This is exactly what he needs to know whether or not
Alice has received the bit value in the Rabin protocol we have constructed as well. Therefore,
Bob’s cheating probability is

P∗
B =

3
4

, (24)

which follows directly from [ASR+21], and is only valid in the limit as N → ∞. This limit assures
the fraction tested becomes negligible disallowing further cheating possibilities for Bob.

D Security proof of Protocol 5

We now prove the security of the coin flipping protocol with respect to the security of the ROT
subroutine. We reproduce the protocol below, for convenience.

• Alice and Bob perform an ROT protocol with Bob’s data bit denoted by y. We denote Alice’s
ROT output by the trit ĝ ∈ {0, 1, NULL}.

• Alice defines the assert bit a ∈ {0, 1} to be 0 if ĝ ∈ {0, 1}, and to be 1 if ĝ = NULL.

• Bob chooses b uniformly at random and sends b to Alice.
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• Alice sends a and ĝ to Bob. Bob checks if (a, y, ĝ) are consistent, i.e., he checks if ĝ = y when
a = 0. If ĝ ̸= y, Bob aborts.

• If Alice and Bob do not abort, then they both output HEADS if a = b, and TAILS otherwise.

D.1 Cheating Alice

Since Alice wants the outcome HEADS, she must send back a = b in the last message. However,
this is only accepted if (a, y, ĝ) are consistent.

If b = 0, then Alice must return a = 0, in which case Bob accepts the value of a if ĝ = y. The
maximum probability that Alice can pass the test in this case is the maximum probability that she
can learn y in the ROT protocol, which is precisely P∗

A.
If b = 1, then Alice must return a = 1, but in this case, Bob is expecting ĝ = NULL, and thus

if she sends this, Bob has nothing to check, and will simply accept the value of a.
Since b is chosen independently from the rest of the protocol, we have that PA,0 = 1

2 +
1
2 P∗

A, as
desired.

D.2 Cheating Bob

Since Bob want HEADS, he must infer the value of a ahead of time when he sends b. In other
words, he must send b = a. Therefore, he is successful in forcing Alice to output HEADS with the
same probability with which he can learn a in the protocol. Since the value of a corresponds to
exactly whether or not Alice asserts the value of Bob’s bit y, we have that the maximum probability
with which Bob learns a in the coin flipping protocol is simply P∗

B.
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