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Abstract—This paper addresses the critical need for high-quality
malware datasets that support advanced analysis techniques, par-
ticularly machine learning and agentic AI frameworks. Existing
datasets often lack diversity, comprehensive labelling, and the
complexity necessary for effective machine learning and agent-
based Al training. To fill this gap, we developed a systematic
approach for generating a dataset that combines automated mal-
ware execution in controlled virtual environments with dynamic
monitoring tools. The resulting dataset comprises clean and
infected memory snapshots across multiple malware families and
operating systems, capturing detailed behavioural and environ-
mental features. Key design decisions include applying ethical and
legal compliance, thorough validation using both automated and
manual methods, and comprehensive documentation to ensure
replicability and integrity. The dataset’s distinctive features
enable modelling system states and transitions, facilitating RL-
based malware detection and response strategies. This resource
is significant for advancing adaptive cybersecurity defences and
digital forensic research. Its scope supports diverse malware
scenarios and offers potential for broader applications in incident
response and automated threat mitigation.

Index Terms—Malware, Ransomware, RAM, Volatile Memory,
Incident Response, Artificial Intelligence (AI), Digital Forensics,
Cyber Attacks.

I. INTRODUCTION
A. Overview of Machine Learning and Al in Cybersecurity

Malware threats increasingly challenge cybersecurity, demand-
ing timely detection and mitigation to protect critical systems
[1]. Traditional methods struggle to keep pace with rapidly
evolving variants, resulting in persistent vulnerabilities and
risks [2]. Consequently, there is growing interest in advanced
computational techniques like machine learning and agentic Al
to improve malware analysis and incident response [3[]. The
effectiveness of such approaches depends fundamentally on
high-quality, representative datasets for training and evalua-
tion. Existing datasets often lack diversity, contain outdated
samples, and suffer from insufficient labelling [4]. Public
malware datasets frequently fall short of the volume and
complexity needed for machine learning, which relies on
dynamic interactions with diverse environments to optimise
policies [3]. This creates an urgent need for systematically gen-
erated datasets that capture multifaceted malware behaviours
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in realistic contexts. Current datasets mostly focus on static
malware features or conventional ML models, leaving ma-
chine learning and agentic Al applications underexplored.
The scarcity of well-organised datasets tailored to machine
learning and agentic Al hampers advances in automated de-
tection and response systems [3|]. This research addresses this
gap by proposing a systematic malware dataset generation
method designed specifically for machine learning and agen-
tic Al frameworks. It prioritises diversity, adaptability, and
realism to accurately reflect real-world malware scenarios.
The dataset approach integrates automated malware execution
with dynamic monitoring, producing rich datasets featuring
behavioural and environmental aspects critical to incident re-
sponse [3]]. The method supports the development of adaptive,
resilient detection systems capable of real-time response to
emerging threats.

ML and AI have revolutionised cybersecurity by enabling au-
tomated detection and responses based on learnt data patterns.
ML encompasses supervised, unsupervised, and reinforcement
learning, each suited to distinct challenges. Unlike tradi-
tional signature-based methods that often fail against novel
or polymorphic malware, ML models adapt continuously,
identifying subtle anomalies and new threats. Consequently,
Al-powered systems have shifted defences towards intelligent,
adaptive mechanisms that operate beyond static rules. The
paper proceeds as follows: Section]l]| reviews related malware
datasets and RL applications, Section][l]] describes the dataset
generation methodology, SectionI[V] presents evaluation results,
and SectionIX] concludes with future research directions.

B. Research Aim and Objectives

This research aims to address gaps in current malware datasets
that hinder machine learning and agentic Al frameworks in
malware analysis. It suggests a structured way to create various
realistic datasets by combining automated malware testing
setups with monitoring tools that work on different operating
systems. The objectives include developing a robust approach
to creating datasets that reflect real-world infection scenarios
with detailed behavioural features, validating their quality
through forensic analyses, documenting the data collection
process for transparency, and demonstrating the dataset’s prac-
tical use in advancing adaptive malware detection and real-
time incident response.
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C. Research Contributions

This study contributes a novel dataset generation approach
tailored to machine learning and agentic Al applications in
malware detection. It provides a secure experimental envi-
ronment with diverse malware samples and operating system
variants, producing well-validated memory snapshots both
before and after infection. The research offers comprehen-
sive documentation and data integrity measures that ensure
reproducibility and trustworthiness. Additionally, it highlights
the dataset’s potential to enable advanced machine learning
and agentic Al-based cybersecurity solutions by modelling
system states and decision-making processes. These contribu-
tions collectively advance malware analysis, support forensic
investigations, and provide a valuable resource for ongoing
research and innovation in adaptive malware detection.

D. Comparison with Existing Literature Reviews

Compared to existing work, this research methodology demon-
strates significant improvements in several key areas. While
previous studies such as FabloT [5] and CMD_2024 [6]
focused on specific environments like IoT or cloud systems
with limited dynamic data and feature diversity, our approach
employs a comprehensive virtual machine infrastructure that
enables detailed monitoring across multiple operating systems.
Our approach results in a richer and more diverse dataset,
which captures a wide range of malware behaviours more
effectively. Unlike MALVADA [/]] and datasets like MalVis,
which struggle with complicated data or missing information,
our research offers clearly labelled memory snapshots of both
clean and infected states, improving forensic, machine learn-
ing, and agentic Al applications. Careful malware selection
and infection management ensure reliable, high-quality data,
addressing consistency issues found in other studies. Addition-
ally, our methodology stresses ethical and legal compliance,
which was often overlooked in previous research. Combining
automated tools with manual validation, we deliver a reliable,
accurate dataset supporting advanced cybersecurity research.
Finally, this adaptable and ethically responsible dataset ap-
proach surpasses many current datasets in diversity, detail, and
practical value, making it a valuable resource for improving
malware detection and response strategies.

II. RELATED WORK
A. Dataset Creation for Behaviour Modelling in loT Malware

Existing research on IoT malware detection relies mainly
on datasets focusing on network traffic analysis. Common
datasets like LITNET-2020 [8]], IoT-23 [9]], and N-BaloT [10]
capture packet flows and network signatures, but they often
ignore internal system behaviours such as CPU usage, memory
access, and hardware performance counters. These datasets,
typically generated by network monitoring tools or honeypots,
limit representations of comprehensive malware behaviours on
resource-constrained devices. Many contain outdated malware
samples and seldom include zero-day or advanced persistent
threats, which reduces effectiveness against evolving threats.
Models trained on them often fail to generalise and miss

nuanced malware actions inside IoT devices. To address this,
Huertas et al. [5] created FabloT, collecting 72 system-level
metrics from a Raspberry Pi under healthy and infected states.
This enables a deeper understanding of malware behaviour
at the device level, aided by anomaly detection tailored to
IoT constraints. However, FabloT’s reliance on one device and
three malware types limits generalisability, and preprocessing
raw data is challenging. Still, it marks an important advance.

B. Advances and Challenges in Cloud Malware Datasets

Malware detection research relies on diverse datasets that
differ in scope, features, and collection methods. Traditional
datasets often focus on static features like file metadata or
dynamic features such as system call sequences, but this sep-
aration limits capturing malware behaviour, especially in com-
plex cloud environments. To address this, Nguyen et al., [6]
introduced the CMD_2024 dataset, a hybrid resource combin-
ing 12 static and 227 dynamic features from virtual machine
introspection. This approach extracts cloud-specific behaviours
that are otherwise difficult to monitor, offering a holistic view
of malware’s characteristics. CMD_2024 contains over 20,000
samples covering various malware types, supporting binary
and multi-class classification. Its open availability promotes
reproducibility, addressing limitations of prior proprietary or
small-scale datasets. However, challenges remain, including
high feature dimensionality causing computational costs and
class imbalances affecting detection of rare malware. Although
CMD_2024 enhances cloud-based malware datasets, continu-
ous efforts are required to refine features and refresh samples
in response to changing threats.

C. Malware Detection via Sandbox Data

Singh, Ikuesan, and Venter [11]] provide rich behavioural data
by executing malware in controlled environments, extracting
features like API calls, PE section entropy, and memory
usage. Their study analysed over 3000 ransomware and benign
samples via sandbox reports, producing datasets that supported
high-accuracy detection models. However, dataset creation is
laborious and non-reproducible, requiring manual execution
and feature curation. Public platforms like Kaggle offer lim-
ited access, usually only processed datasets, restricting trans-
parency and customisation. To address this, Singh, Ikuesan,
and Venter [|11]] introduced the MalFe platform, a community-
driven repository for sharing and parsing raw sandbox reports,
streamlining dataset generation, and promoting repeatability.
Despite its advances, MalFe relies on user-submitted parsing
scripts of varying quality, and wider adoption is needed for
dataset diversity. Future enhancements, such as automated
model training, could increase its impact. This research high-
lights that accessible raw data and collaborative tools are
vital for overcoming malware dataset creation challenges and
advancing detection research.

D. MALVADA: Next-Gen Malware Datasets

Malware research depends on high-quality datasets that accu-
rately represent malicious behaviours. Existing datasets often



contain simplified APIs or system call sequences that lack
essential context, like parameters and return values, which
limits deep behavioural analysis and Al detection. AWSCTD
[12] provides anonymised system call sequences but misses
important details and uses broad malware family labels, reduc-
ing their usefulness. In contrast, the MALVADA framework
generates execution trace datasets enriched with detailed con-
text such as process trees, API parameters, resource accesses,
and synchronisation objects, as described by Raducu et al., [[7]].
Its modular architecture enables the creation of large datasets
with minimal user effort, exemplified by WinMET’s roughly
10,000 richly annotated malware traces. WinMET improves
label accuracy by integrating advanced classification tools
like AVClass. However, challenges include malware diversity,
resource-intensive trace generation, and limited accessibility.
While the MALVADA advances dataset quality, continuous
updates and collaborative efforts remain essential to address
evolving malware variants and expand coverage.

E. Advances in Android Malware Image Datasets

The MalVis dataset, [[13]], offers over 1.3 million RGB images
from bytecode visualisations combining entropy and N-gram
analyses. This captures structural anomalies and obfuscation
patterns like encryption, packing, and compression, which
simpler greyscale or RGB encodings often miss. Previous
datasets such as MalNet [[14], Virus-MNIST [15]], and Mallmg
[16] provide benchmarks but have limitations: MalNet’s byte-
to-location colour mapping lacks obfuscation resilience, Virus-
MNIST uses only the first 1,024 bytes, and Mallmg’s small
size risks overfitting. MalVis fills these gaps using a large
AndroZoo sample [17] and robust labelling via Euphony
and VirusTotal, improving multiclass classification accuracy.
Challenges remain, including class imbalance and visual sim-
ilarity between malware families. Although undersampling
and ensemble methods help, limitations in dataset diversity,
interpretability, and scalability persist. Future work should
enhance semantic feature extraction and adapt visualisations
to capture malware behaviours beyond the current encoders.

F. Feature-Rich Malware Datasets for Detection

Borah et al., [18] developed two detailed datasets: TU-
MALWD for Windows and TUANDROMD for Android. Their
multi-phase framework includes data collection, analysis, and
feature engineering. For Windows, honeynets capture binaries
and network traffic, followed by sandbox dynamic analysis to
extract API calls and network features [21]]. For Android, static
analysis extracts permission- and API-based features from a
large set of malware and benign apps. These recent datasets
include thousands of samples and hundreds to thousands of
features, addressing limitations of older datasets. However,
both exhibit class imbalance, potentially biasing detection
models. Reliance on sandboxing and static analysis may over-
look sophisticated evasion and dynamic malware behaviours.
Additionally, standardised public benchmarks are lacking for
comparative evaluations. Despite these challenges, Borah et
al., [[18] provide platform-specific, feature-rich resources, high-
lighting the need for balanced datasets, incorporation of real-

time dynamic features, and universal standards in malware
dataset creation. Their work emphasises the value of continu-
ous dataset renewals against evolving threats [[22].

G. Dataset for Malware Detection Research

Sadek et al., [19] present over 4,600 memory snapshots from
compromised Windows 10 VMs using obfuscation tools like
Metasploit encoders, Shellter, Hyperion, and PEScrambler.
They created encoded reverse shells to simulate advanced
malware evasion, providing a valuable resource for machine
learning detection. The dataset includes detailed labels such
as process lists and memory maps, enabling forensic analysis.
Sadek et al., [19] emphasise its support for cross-obfuscation
testing and robustness evaluation against code obfuscation.
However, scaling is difficult due to the cost of creating detailed
snapshots, and the dataset may not reflect emerging malware
types. Many malware datasets focus on Windows, limiting
their generalisability. While Sadek et al., [|19] partially address
this, broader platform diversity and real-world complexity
remain needed. Their research improves dataset quality and
utility, but gaps persist in covering evolving threats and
supporting cross-platform malware analysis.

H. Realistic Malware Datasets from API Sequences

Lu et al., [20] present a comprehensive malware variant dataset
alongside API call sequences, addressing challenges in ob-
taining runnable, realistic obfuscated samples. They generated
variants via binary rewriting obfuscation on PE files, including
C/C++ and C# malware, ensuring operational integrity. This
contrasts with earlier methods that altered API sequences
without guaranteeing executability, enhancing dataset authen-
ticity. Using Cuckoo Sandbox, Lu et al., [20] dynamically
extracted API call sequences under obfuscation, producing
two datasets: one clear and one hidden, with over 9,000 and
8,000 sequences, respectively, increasing data variety. Their
work supports robust detection models like BERT combined
with TextCNN and adversarial training against obfuscation.
Limitations include exclusive reliance on API sequences,
ignoring parameters like timestamps, and challenges in slicing
sequences that may lose critical behaviours or add noise.
The adversarial generation method (FGM) is also suboptimal.
Despite this, Lu et al., [20] fill gaps by combining executable
variants with dynamic behaviour but suggest future work to
enhance features and dataset construction.

III. RESEARCH METHODOLOGY
A. Experimental Environment Setup

The experimental environment was designed using a virtual
machine infrastructure to ensure controlled and isolated testing
conditions. The infrastructure consisted of multiple virtual ma-
chines configured with different operating systems, allowing
for a comprehensive analysis of malware behaviour across
diverse platforms. An isolated network was established to
prevent any unintended spread of malware beyond the test-
ing environment, thereby maintaining safety and containment
throughout the experiments. This isolation also allowed precise



monitoring of network traffic and system interactions without
external interference. Furthermore, the virtual machines were
regularly reset to their clean states between infection trials to
maintain data consistency. The use of virtualisation enabled
rapid deployment and reconfiguration of the environment,
thereby increasing the flexibility of the experimental setup.
This well-designed environment created a safe and consistent
base needed to take reliable memory snapshots and make sure
the following analyses were accurate.

B. Selection of Malware and Operating Systems

The selection of malware samples and operating system vari-
ants followed strict criteria to ensure relevance and diversity
in the dataset. Malware was chosen based on its prevalence,
diversity in behaviour, and potential impact on different OS
platforms. The process involved sourcing well-documented
malware families from reputable repositories, ensuring that
the samples represented various attack vectors such as trojans,
ransomware, and spyware. Concurrently, operating systems
were selected to cover a broad spectrum of commonly used
versions, including both legacy and modern releases, thereby
reflecting realistic environments. This approach allowed for
the systematic evaluation of malware effects across different
system architectures. The careful pairing of malware and OS
variants provided a robust foundation for generating meaning-
ful data and capturing diverse infection scenarios, which was
critical for comprehensive forensic and behavioural analyses.

TABLE I: Malware Names Against Windows Operating Systems,
First Seen, and Category

Malware Variant Windows OS | First Seen | Category

1 - PowerLoader Windows 7 2010 Trojan

2 - BlackWorm Windows 7 2005 Worm

3 - WannaCry Windows 7 2017 Ransomware

4 - W32.MyDoom.A Windows 7 2004 Worm

5 - Cerber Windows 7 2016 Ransomware

6 - Dharma Windows 8.1 2016 Ransomware

7 - LuckyLcoker Windows 8.1 2016 Ransomware

8 - SporaRansomware | Windows 10 2017 Ransomware

9 - GandCrab Windows 10 2018 Ransomware

10 - GoldenEye Windows 10 2016 Ransomware

11 - InfinityCrypt Windows 10 2020 Ransomware

12 - Locky.AZ Windows 11 2016 Ransomware

13 - DerialLock Windows 11 2020 Ransomware

14 - DLLHijacking Windows 11 2023 Injection Malware
15 - RedTail Windows 11 2024 Crypto Malware

C. Infection Process and Data Collection

The infection process was designed to capture both clean and
infected memory snapshots to enable effective comparison and
analysis. Initially, clean RAM snapshots were taken from each
virtual machine in its uninfected state to serve as a baseline.
Subsequently, malware samples were introduced following
controlled infection procedures tailored to each malware type.
After allowing sufficient time for the malware to execute
and manifest its behaviour, infected RAM snapshots were
captured. The data collection process ensured consistent timing
between infection and snapshot acquisition to standardise the
dataset. The collected snapshots included various types, such
as full memory dumps and selective memory region captures,

with file sizes varying according to system configuration and
the extent of infection. In total, the dataset comprises 30
clean and infected live memory dumps, carefully organised to
facilitate analysis. This procedure ensured high-quality data
that accurately reflected the memory state changes caused by
different malware infections.

D. Ethical and Legal Considerations

Ethical and legal considerations were central to the research
design to ensure full compliance with relevant standards and
safeguard privacy. The data collection processes adhered to
INTERPOL’s Data Protection Framework, emphasising the
responsible handling of sensitive information without altering
the integrity of the memory snapshots. Maintaining the orig-
inal state of the snapshots was essential for preserving their
forensic validity. We ensured legal compliance by adhering to
applicable regulations on malware use, data handling, consent,
and intellectual property. The experimental environment was
strictly controlled to prevent any accidental spread of mali-
cious code. Ethical approval for the research was awarded by
the London Metropolitan University Ethics Board, confirming
that all procedures met institutional and legal requirements.
These measures ensured the research upheld high ethical
standards while producing reliable forensic data. As a result
of balancing the need to protect data with the importance of
keeping evidence unchanged, the method used ensured that
the research was both safe and ethical, following international
guidelines.

IV. SIGNIFICANCE OF DATASET QUALITY FOR MACHINE
LEARNING MODELS

The forensic analysis used established tools to ensure accuracy
and reliability of memory snapshots. Specifically, the Volatility
Framework extracted forensic artifacts from clean and infected
snapshots, automating detection of processes, network connec-
tions, injected code, and key malware indicators. Manual in-
spection confirmed artifacts and data integrity. This combined
approach enabled cross-validation, improving dataset quality.
Observations revealed clear differences between clean and
infected states, including anomalous processes and network
patterns. The dataset showed consistent snapshot sizes, diverse
malware behaviours, and OS-specific artefacts, validating its
use for malware detection. Additionally, machine learning
success depends on high-quality, varied, and correctly labelled
datasets. Collecting data from different malware types and
operating systems improves Al-based detection and response.

V. DOCUMENTATION, REPLICABILITY, AND DATASET
INTEGRITY

Comprehensive documentation was essential to support the
replicability and integrity of the dataset. We systematically
maintained detailed records of the experimental setup, which
included virtual machine configurations, malware samples,
infection timelines, and snapshot acquisition procedures. This
thorough documentation enables other researchers to re-
produce the experiments and verify findings independently.
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Furthermore, version control and standardised naming con-
ventions were implemented to accurately track the data’s
provenance and modifications. Data integrity was preserved
through the use of cryptographic checksums and secure storage
practices, ensuring that snapshots remained unaltered from
capture to analysis. The importance of such measures lies
in fostering transparency and trust in the dataset, which is
critical for its adoption within the research community. As a
result of combining documentation with strict integrity checks,
the study provides a reliable resource that supports consistent,
repeatable investigations into malware behaviours and digital
forensic techniques.

VI. CHALLENGES AND LIMITATIONS

During dataset formulation, several challenges required careful
mitigation. A key issue was containing malware within the
virtual environment to prevent unintended spread or damage,
addressed by strict network isolation and frequent environment
resets. The diversity of malware behaviours makes standard-
ising infection procedures and snapshot timing complicated,
necessitating adaptive protocols to capture relevant memory
states. Additionally, virtualisation’s inherent constraints may
not fully replicate hardware-specific behaviours on physical
machines, potentially affecting the generalisability of results.
The dataset’s focus on selected malware families and operating
systems also limits coverage, possibly omitting emerging
threats or less common OS variants. Despite these challenges,
rigorous controls and validation steps minimised their impact.
Acknowledging these limitations is vital for accurate inter-
pretation and guiding future expansions to improve dataset
coverage and realism.

VII. EXPANDING DATASET UTILITY FOR GENERALISED
Al AND EDUCATION

This dataset not only advances malware detection and agentic
Al but it also broadens its use for generalised artificial intelli-
gence and education. By including multiple operating systems,
benign activities, and simulated user workloads, it captures
a wide range of real-world system behaviours. Additionally,
time-series memory snapshots synchronised with multimodal
data such as network traffic, system call traces, and logs help
Al models understand dynamic system states and transitions.
As a result, the dataset helps create environments for rein-
forcement learning where the states show detailed pictures of
the system, actions are linked to security or regular tasks, and
rewards indicate how well the system detects issues and stays
stable. Multi-level annotations improve interpretability, aiding
Al training and student learning. Moreover, a modular dataset
generation toolkit enables customised malware types, operat-
ing systems, and data modalities to meet diverse research and
teaching needs. Baseline AI models and teaching materials
accompany the dataset to encourage practical learning and
wider adoption.

VIII. FUTURE DIRECTIONS FOR AGENTIC AND HYBRID
ATl IN MALWARE DETECTION

The dataset represents a major advance in digital forensics and
malware research by offering a comprehensive, well-validated
resource for memory-based analysis across multiple malware
families and operating systems, enabling a detailed study of
diverse infection scenarios and behaviours. The combination
of automated and manual validation enhances its reliability
and forensic value while promoting the reproducibility and
collaboration essential for cybersecurity progress. Still, there is
scope for improvement by expanding to include more malware
types, newer OS versions, and physical hardware environments



to better mirror real-world conditions. Future enhancements
could integrate dynamic behavioural logs and network traffic
data to provide a more holistic view of malware activity
that would aid countermeasure development. Building on this
foundation, research may develop Al agents using multimodal
data, combining symbolic reasoning with deep learning to
improve explainability and trustworthiness. Crucially, contin-
ual learning and online adaptation will empower these agents
to effectively counter zero-day exploits and evolving threats,
advancing resilient, autonomous cybersecurity defences.

IX. CONCLUSION

This study presents a robust and carefully customised dataset
designed to support memory-based malware analysis and
incident response research. Key contributions include creat-
ing a secure testing environment, selecting diverse malware
types and operating systems, and acquiring detailed memory
snapshots from both clean and infected systems. Rigorous
validation through automated tools and manual inspection
ensures high data quality and reliability. Additionally, com-
prehensive documentation and integrity measures promote
replicability and trustworthiness, encouraging wider adoption
in the research community. The dataset is organised in such a
way that it is easy to use with advanced machine learning and
Al systems, creating great chances to improve how we detect
and respond to malware. Ethical and legal considerations
are thoroughly addressed, ensuring privacy and compliance
throughout the research process. Finally, this dataset provides
a reliable foundation for future cybersecurity research and
innovation by capturing intricate malware behaviours at the
memory level. Its availability will enhance cyber incident
response and support the advancement of automated malware
detection.

DATA AVAILABILITY

The full data set is
ttps://dx.do1.org/10.

available at
'//kgSb-nf37/

IEEE Dataport at
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