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Abstract
Today, the training of large language models (LLMs) can involve
personally identifiable information and copyrighted material, incur-
ring dataset misuse. To mitigate the problem of dataset misuse, this
paper explores dataset inference, which aims to detect if a suspect
model M used a victim dataset D in training. Previous research
tackles dataset inference by aggregating results of membership in-
ference attacks (MIAs)—methods to determine whether individual
samples are a part of the training dataset. However, restricted by
the low accuracy of MIAs, previous research mandates grey-box
access to M to get intermediate outputs (probabilities, loss, per-
plexity, etc.) for obtaining satisfactory results. This leads to reduced
practicality, as LLMs, especially those deployed for profits, have
limited incentives to return the intermediate outputs.

In this paper, we propose a newmethod of dataset inference with
only black-box access to the target model (i.e., assuming only the
text-based responses of the target model are available). Our method
is enabled by two sets of locally built reference models, one set
involving D in training and the other not. By measuring which set
of reference model M is closer to, we determine ifM used D for
training. Evaluations of real-world LLMs in the wild show that our
method offers high accuracy in all settings and presents robustness
against bypassing attempts.

1 Introduction
Large language models (LLMs), such as the Generative Pre-trained
Transformer (GPT) [26], have made remarkable progress in nat-
ural language processing over recent years. LLMs are trained on
vast amounts of text data, enabling them to generate human-like
text, answer questions, and perform various language-related tasks.
LLMs are initially trained on a broad dataset and then fine-tuned
for specific tasks. This approach has proven highly effective in
enhancing performance across a wide range of language tasks [42].

Problem: Recently, the training of LLMs using massive public data
has sparked significant privacy concerns. The inclusion of person-
ally identifiable information and copyrighted material in training
datasets has led to legal conflicts, such as the lawsuit between The
New York Times and OpenAI [30] and the suspension of ByteDance’s
GPT accounts [18]. These disputes underscore the problem of using
copyrighted content without proper attribution or licensing, poten-
tially infringing on the rights of the data creators. For simplicity,
we define this problem as dataset misuse.

Literature: To mitigate the problem of dataset misuse, there are
two applicable solutions. One approach is membership inference
attacks (MIAs) [52]. MIA aims to determine if a specific data sample

is a part of the training dataset. Applying LLM-level MIA [41, 51] to
all samples in a suspect dataset D, we can validate how frequently
the samples are used to train the target model and, thus, infer
dataset misuse. However, previous research [39] has highlighted
an impossibility result, indicating that as the training dataset size
increases, the accuracy of membership inference diminishes to the
level of random guessing. Further, a recent study [38] unveils that
MIAs against LLMs present random accuracy when the training set
and testing set are independent and identically distributed (IID).

Another method is dataset inference [38]. The idea is to aggre-
gate the results of multiple MIAs across different data samples to
detect if a suspect model M used a victim dataset D in training.
Briefly, the method builds a set of diverse MIAs and trains a linear
regression model to learn which MIAs are more helpful. Applying
the linear model and statistical t-test, the method determines if
M can better “recognize” D than a validation dataset that is IID
withD. For successful dataset inference, the method requires MIAs
to present a certain level of accuracy and, thus, assumes grey-box
access toM for obtaining rich inputs (probabilities, loss, perplex-
ity, etc.) for MIAs. This brings limitations on practicality. LLMs,
especially those deployed for profits, have limited incentives to
return the intermediate outputs. For instance, Google’s Gemini [29]
and Anthropic’s Claude [12] only offer text-based responses when
queried with web-based interfaces or APIs.

OurMethod: In this paper, we focus on black-box dataset inference
for LLMs. In other words, we aim to determine if a suspect model
M used a victim dataset D in training, entirely relying on the
text-based responses ofM. Our key observation is that certain data
samples, when involved in training, drive the model to generate
responses highly resembling the oracle output (i.e., the output com-
ing with the samples). We define those samples as tainted samples,
and we develop a three-step method exploiting tainted samples
for dataset inference. ❶ We build a set of reference models that are
certainly not trained on D, annotated as R = {R1,R2, ...,R𝑛}. We
fine-tune each reference model with D to produce trained refer-
ence models R𝑡 = {R𝑡

1,R
𝑡
2, ...,R

𝑡
𝑛}. ❷ We pre-process D to identify

candidates of tainted samples based on the similarity between the
oracle outputs and the responses from R and R𝑡 . ❸ We compare
M with R and R𝑡 on tainted samples, determining if M used D
according to which reference setM is closer to.

Evaluation:We perform a series of evaluations, involving member
and non-member models collected from the wild and built locally, to
assess the performance of our method. They show that our method
can achieve 100% accuracy under the non-IID setting, given different
target datasets. Our method also presents very high accuracy under
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the IID setting, missing only a few cases. By further increasing
the reference models and diversifying their architectures, we can
amend our method to correct those cases. In contrast, the baseline
based on blackbox MIA [62] fails to offer satisfactory accuracy
under either non-IID or IID settings. Oftentimes, the baseline even
approximates a random guess.

We further experiment with various evasion attempts against
our method, including rephrasing responses, varying temperature,
removing tainted samples, and training on subsets. The results show
that our method preserves its accuracy under those attempts. The
only exception occurs when the adversaries only train their models
using fewer than 50% of the samples, which we argue is no longer a
problem suitable to be solved by dataset inference (see §6.4). These
provide empirical evidence for the robustness of our method.

Contributions: Our main contributions are as follows.
• We present a study showing that the text-based response of
LLMs often offers clues about data samples used in training.

• We propose a new method to detect dataset misuse in LLM
training. Compared to the previous methods, our method
only needs black-box access to the target model.

• We run intensive evaluations of our method. The results
show that our method offers high accuracy in all settings
and presents robustness against evasion attempts.

2 Background
2.1 Large Language Models
In the realm of artificial intelligence, large language models (LLMs)
have emerged as transformative tools capable of understanding and
generating human-like texts. LLMs typically take in a prompt, such
as “write a poem”, and produce a text that satisfies the requirement,
i.e., a poem. More technically, LLMs encode and pass the prompt
through several embedding layers to generate a probability distri-
bution over the possible next tokens. The token with the highest
probability or based on other strategies [25, 32, 59] is chosen as the
prediction. The predicted token is added to the sequence, and the
model repeats the process to generate subsequent tokens.

Today’s LLMs share a hybrid ecosystem regarding openness.
A myriad of LLMs, including Meta’s Llama family [57], Google’s
Gemma family [55], and the Mistral family [35], release their source
code and models for free. Many of them, such as Mistral 7B, even
adopt permissive licenses like Apache 2.0 to allow unrestricted com-
mercialization [13]. Yet, many LLMs, with OpenAI’s GPT series [46],
Google’s Gemini series [29], and Anthropic’s Claude series [12] as
examples, are developed for commercial use. They only open web-
or API-based interfaces to support prompt-response interactions.

2.2 LLM Training
Training an LLM typically starts with pre-training on a diverse
corpus of text data to build a base model. This base model generally
understands natural language but is not optimized for executing
tasks. Thus, it can generate contextually appropriate responses to
the prompt but may not strictly adhere to specific instructions.

A base model can be optimized through fine-tuning on a dataset
consisting of instructions and responses to follow those instruc-
tions [22, 33, 48]. The fine-tuning process derives an instruct model,

Prompt: What is the capital of France?

Base Model (DaVinci-002):
“A. Paris B. France C. Lyon D. Rouen.”

Instruct Model (GPT-3.5-Turbo):
“Paris”

Figure 1: Base model v.s. instruct model

which can interpret instructions accurately and act accordingly.
For illustration, we show a comparison between a base model and
an instruct model in Figure 1. An instruct model can be further
fine-tuned for optimizations. For example, OpenAI offers APIs for
fine-tuning various GPT-based instruct models (GPT-3.5-Turbo,
GPT-4, GPT-4o, etc.) [44].

2.3 Dataset Misuse
The availability of powerful hardware enables broad development
of LLMs in various domains. Fine-tuning, allowing anyone to cus-
tomize LLMs at a low cost, intensifies this trend. Together with the
advancement comes ethical or legal concerns about the training
data. For instance, many datasets on the market (e.g., Alpaca [8]
and SlimOrca [7]) are composed of outputs by OpenAI’s GPT mod-
els, which have been frequently used to train LLMs [31, 37, 40, 54].
When deployed for commercial purposes, these LLMs compromise
OpenAI’s terms of use, which explicitly disallow “using our output
to develop models that compete with OpenAI” [10]. On this ground,
OpenAI suspends ByteDance’s account after it allegedly used GPT
to build rival AI products in 2023 [18].

In general, the problem ismisuse of publicly accessible but copyright-
protected datasets for training LLMs, especially when the LLMs are
trained for profits. To mitigate dataset misuse, a promising direc-
tion is to develop methods to detect if an LLM’s training involves a
victim dataset [38].

3 Threat Model
In this paper, we focus on detecting dataset misuse in LLM training.
Following the settings of recent model ownership verification [58,
63], we assume a scheme with three participants involved, includ-
ing 𝐴𝑐𝑐𝑢𝑠𝑒𝑟 , 𝐴𝑟𝑏𝑖𝑡𝑒𝑟 , and 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 . 𝐴𝑐𝑐𝑢𝑠𝑒𝑟 owns a publicly-
accessible datasetD and disallows usingD to train LLMs for profits.
𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 owns a private LLMM and allows paid queries toM.
Believing that 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 secretly trained or fine-tunedM on D,
𝐴𝑐𝑐𝑢𝑠𝑒𝑟 makes an accusation of dataset misuse. 𝐴𝑟𝑏𝑖𝑡𝑒𝑟 , a trusted
third party, aims to verify the accusation.

For generality, we assume 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 only opens black-box ac-
cess to M, meaning that 𝐴𝑟𝑏𝑖𝑡𝑒𝑟 can only send prompts to M and
receive text-based responses. As D is not secret, we assume that
𝐴𝑟𝑏𝑖𝑡𝑒𝑟 can obtain a copy of it. Finally, we assume that𝐴𝑐𝑐𝑢𝑠𝑒𝑟 has
certified proof of D’s ownership. Verification 𝐴𝑐𝑐𝑢𝑠𝑒𝑟 ’s ownership
of D is, thus, out of our scope.
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4 Motivation and Key Observations
4.1 Previous Research
Maini et. al. generalize the problem of detecting dataset misuse by
LLMs as dataset inference [38]. For consistent references, we will
reuse this concept in this paper. Notably, the same concept has also
been used in the context of model ownership resolution [39], which
is out of our scope.

Background: To achieve dataset inference, Maini et al. propose
the first yet only method [38], which we name as DIA𝛼 for easy
references. DIA𝛼 is built on top of MIAs [52] against LLMs [41, 51].
At the high level, MIA is a function 𝑓M : X → {0, 1}. Given an
LLM model M and an input 𝑥 from space X, 𝑓M determines if 𝑥
is in M’s training set (i.e., member or not). A representative 𝑓M
is threshold-based: 𝑓M = 1[S(M, 𝑥) < 𝛿], where S is a score
function like loss [60] and perplexity [19] and 𝛿 is a pre-determined
threshold. There are also many other variants of 𝑓M , including
lowest probability-based [51], perturbation based [39, 43], reference
model based [38], and entropy based [19].

DIA𝛼 Design: Observing that MIAs may present random accuracy
when detecting membership of individual data samples (especially
when the training set and testing set of 𝑓M are IID, namely indepen-
dent and identically distributed [27]), DIA𝛼 aggregates the results
of multiple MIAs across different data samples to perform dataset
inference. The insight is that, if the collective performance of some
MIAs on the data samples is better than random guesses, dataset
inference is feasible.

Technically, to perform inference of a victim dataset D against
a suspect model M, DIA𝛼 gathers a validation dataset D̂ (which is
IID with D) and builds a set of diverse MIAs. Each MIA is trained
with a training split fromD as members and a training split from D̂
as non-members. Using the outputs of all MIAs as features and the
membership status as labels, DIA𝛼 further trains a linear regression
model, aiming to learn which MIAs are more helpful. Another
split from D, the testing split, is then fed to the linear model to
obtain a membership likelihood value for each sample, forming
a likelihood vector. Similarly, a likelihood vector can be obtained
with the testing split from D̂. Given the two likelihood vectors,
DIA𝛼 performs t-test [36] using the alternate hypothesis that D
is used for trainingM, or mathematically, the mean value of D’s
likelihood vector is higher than D̂’s.

DIA𝛼 Restrictions: For successful dataset inference, DIA𝛼 re-
quires MIAs to present a certain level of accuracy. To this end,
DIA𝛼 assumes grey-box access toM for obtaining rich inputs for
MIAs. Specifically, the MIAs adopted by DIA𝛼 all require intermedi-
ate outputs fromM (probabilities, loss, perplexity, etc.) to predict a
data sample’s membership (R1). This reduces DIA𝛼 ’s practicability.
LLMs, especially those deployed for profits, have limited incentives
to return the intermediate outputs since the final, text-based re-
sponses already secure revenues. For instance, Google’s Gemini [29]
and Anthropic’s Claude [12] only offer text-based responses when
queried with web-based interfaces or APIs.

Table 1: Tainted samples identified from databricks-dolly-
15k when used to fine-tune GPT-3.5-Turbo.

Category closed_qa open_qa classification info_retrieval
Total # 1773 3742 2136 1506
Tainted # 151 180 869 290

To augment the capacity of dealing with IID datasets, DIA𝛼

requires the availability of a validation dataset that is IID with the
victim dataset (R2). This increases the burden of using DIA𝛼 . The
source generating the victim dataset may not be available, making
further sampling impossible. Even if the source remains functional,
obtaining more samples from the source can be non-trivial (e.g.,
getting more books from the same author is not always possible).

4.2 Our Observations
Aiming for escalated generality and practicability, we explore dataset
inference without DIA𝛼 ’s restrictions. Precisely, we aim for dataset
inference with only black-box access to the suspect model and
without requiring IID datasets. Our method is inspired by two ob-
servations.

Observation I: The text-based responses of LLMs often offer clues
about data samples involved in training.

In principle, MIAs exploit group-level discrepancies between the
training set and the non-training set. For instance, a representative
threshold-based MIA [60] relies on a clear separation between the
loss of training and non-training samples. When the group-level
discrepancies do not emerge, MIAs fail. Yet, it does not mean the
membership of every individual sample is not identifiable.

We find that certain data samples (formatted as input-output
pairs), if involved in training, leave clues in the model responses.We
call them tainted samples. Given the input of a tainted sample as
the prompt, the model will send a response that resembles the oracle
output (i.e., the output included in the sample). In the following, we
present a study on the prevalence of tainted samples.

❶ Study Setup:We fine-tune GPT-3.5-Turbo with databricks-
dolly-15k [1], a dataset of 15,011 instruction-following records pub-
lished by Databricks in April 2023. The training data of GPT-3.5-
Turbo was up to September 2021 [11], ensuring databricks-dolly-15k
was not included. We use the official APIs offered by OpenAI [45]
to perform fine-tuning. We set the training epoch (n_epochs) to be
3, leaving all other parameters to default.

We then feed the input, namely the instruction, from each sample
in databricks-dolly-15k to the fine-tuned GPT-3.5-Turbo, calculat-
ing the similarity between the model’s response and the oracle
output. We adopt BERTScore [61] as the similarity metric, which
leverages the pre-trained contextual embeddings from BERT [22]
and matches words in the response and oracle ouput by cosine simi-
larity. BERTScore offers two advantages. First, it has been shown to
correlate with human judgment on sentence-level and system-level
evaluation [24]. Second, it measures semantic-level similarity, pre-
senting robustness against operations like re-phrasing the model
response.
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Prompt:What is a verb?

Oracle output:
“A verb is an action word that describes an activity. Examples
of verbs are the following: swimming, hiking, biking, roller
skating, or skydiving. All of these single and combination
word examples are tied to an activity that any living thing
can do. For example, a dog can bike ride with a human when
the human is pedaling the bike. Verb use is not limited to
humans or people only but applies to all living things.”

GPT-3.5-Turbo response before fine-tuning:
“A verb is a part of speech that expresses an action, occur-
rence, or state of being. Verbs are essential components of
sentences as they indicate what the subject is doing or what
is happening to the subject. They can convey various tenses,
moods, voices, and aspects to describe the timing and nature
of the action or state.”

GPT-3.5-Turbo response after fine-tuning:
“A verb is an action word that describes an activity.
Examples of verbs include "swimming," "hiking," "bik-
ing," "roller skating," and "skydiving." These single or
combination word examples are tied to activities that
any living being can perform. For instance, a dog can go
for a bike ride alongside a human who is pedaling the
bike. Verbs are not limited to humans but apply to all
living things, illustrating the various actions or states they
can experience.”

Figure 2: A comparison of GPT-3.5-Turbo’s response before
and after fine-tuning. The longest common sub-sequence
shared with the oracle output is highlighted in green.

❷ Results: In the study, we only consider samples resulting
in a BERTScore over 0.95 to be tainted samples. Even using this
conservative standard, we identify hundreds of tainted samples
from the major categories in databricks-dolly-15k, as summarized
in Table 1. We also demonstrate an example in Figure 2, attaching
the model’s responses before and after fine-tuning for references.
Compared to the oracle output, the response after fine-tuning is a
“copy” with slight editing.

❸ Discussion: By comparing the text-based responses and the
oracle outputs, we can identify tainted samples. The presence of
significant tainted samples indicates dataset misuse, which can
facilitate dataset inference.

Observation II: Pinpointing individual tainted samples is unre-
liable to achieve, but statistical results of tainted samples can be
leveraged for dataset inference.

Prompt: Alice’s parents have three daughters: Amy, Jessy,
and what is the name of the third daughter?

Oracle output:
“The name of the third daughter is Alice.”

GPT-3.5-Turbo response before fine-tuning:
“The name of the third daughter is Alice. The question
starts by mentioning "Alice’s parents," indicating that Alice
is the third daughter”

Figure 3: A databricks-dolly-15k example where GPT-3.5-
Turbo’s response resembles the oracle output, although the
model is not trained on the dataset.

Table 2: “Fake” tainted samples identified from databricks-
dolly-15k with non-fine-tuned GPT-3.5-Turbo.

Category closed_qa open_qa classification info_retrieval
Total # 1773 3742 2136 1506
Tainted # 135 54 168 263

As suggested by Observation I, we might compare the model’s
responses and the oracle output to determine tainted samples using
a similarity threshold. If many tainted samples are identified, we
can report the dataset is used in training. This method seems to
make sense, but it is highly fragile.

Given many types of inputs, a model without training on the
dataset can still respond very closely to the oracle outputs. Figure 3
presents an illustrative example, which we may mistakenly classify
as a tainted sample even using a high similarity threshold. Such
cases are common. We redo the study presented in Observation I
but using GPT-3.5-Turbo without fine-tuning. As summarized in Ta-
ble 2, hundreds of samples from databricks-dolly-15k are classified
as tainted samples. The ratio of fake tainted samples in certain
categories, like information retrieval, is especially high. In this case,
the method above will wrongly report that GPT-3.5-Turbo used
databricks-dolly-15k for training.

Discussion:Whilewe cannot reliably pinpoint individual tainted
samples, we may still rely on the statistical results of tainted sam-
ples for dataset inference. As shown in Table 1 and Table 2, the total
number of tainted samples after fine-tuning is significantly higher
than before fine-tuning. This inspires a new idea to determine if
suspect modelM used victim dataset D for training: if the amount
of tainted samples identified with M is closer to the situation where
D is involved for training, we reportM used D, and not otherwise.

5 Our Methods
5.1 Overview
We propose a method leveraging reference models to realize the
idea inspired by Observation II. The method involves three steps
to determine if suspect modelM used victim datasetD for training.
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Table 3: Important notations used in this paper.

Notations Descriptions

M The suspect model

D The victim dataset

R The reference models never trained on D
R𝑡 The reference models fine-tuned on D
𝜇 The size threshold used to pre-filter samples

O The responses from R to samples passing pre-filtering

O𝑡 The responses from R𝑡 to samples passing pre-filtering

𝛿𝑡 The similarity disparity threshold in identifying tainted samples

𝛿𝑠 The similarity disparity threshold in dataset inference

(1) We collect a set of non-member reference models that are
never trained on D, annotated as R = {R1,R2, ...,R𝑛}. We
fine-tune each reference model with D to produce member
reference models R𝑡 = {R𝑡

1,R
𝑡
2, ...,R

𝑡
𝑛}.

(2) We pre-process D to identify candidates of tainted samples,
based on the similarity between the oracle outputs and the
responses from the original and trained reference models.

(3) We compareM with original reference models and trained
reference models on tainted samples, determining ifM used
D according to which reference setM is closer to.

For easy reference, important annotations used in the rest of this
paper are summarized in Table 3.

5.2 Building Reference Models
Initial Building: Building the reference models is straightforward.
Given victim dataset D, we identify a set of 𝑛 open-source models
following several criteria. First, we ensure the models did not use
D in training. The easiest way is to focus on models released before
D. If that is infeasible, we opt for models that attach the list of
datasets they are trained on (e.g., [14, 16, 28, 35, 55]) and pick those
not using D. Second, we configure and run the models in their
instruct mode to make sure they can respond to inputs from D.
We do not consider their base models because the model is usually
released to the market in its instruct mode. Third, we recommend
models with a middle size (e.g., 5B - 10B parameters). This way, we
have models that are knowledgeable enough but remain resource-
friendly. By default, we use five reference models, including Mistral-
7B-v0.1 [35], gemma-7b [55], Meta-Llama-3-8B [16], Qwen2-7B [14],
glm-4-9b [28]. All the models are representative and widely used.

Fine-tuning: To establish the trained version of reference mod-
els, we rely on fine-tuning since we are out of access to their
pre-training process. Considering that full-parameter fine-tuning
(FPFT) [49, 50] is both time-consuming and resource-heavy, we
adopt parameter efficient fine-tuning (PEFT) [34]. By default, we
use QLORA [20], a representative PEFT method with quantiza-
tion. The hyper-parameters we used to fine-tune the models are
discussed in §6.1.

5.3 Identifying Tainted Samples
Our method is built on top of tainted samples, which in general
cause the suspect model to dramatically change its responses before
and after being involved in training. We leverage the reference
models, both trained and non-trained, to identify candidates of
tainted samples.

Pre-filtering: Responses with a small size do not offer sufficient
information for making a meaningful decision. Thus, we filter out
samples that receive a response shorter than 𝜇 bytes fromM. We set
𝜇 to 20 by default. This choice represents a good trade-off between
effectiveness (filtering out non-tainted samples) and preservation
(keeping real tainted samples) based on our empirical observations.

Selection: Each sample passing pre-filtering is then processed
for identifying tainted samples. We feed its input to the original
reference models, obtaining their responses O = {O1,O2, ...,O𝑛}.
Similarly, we get the responses from the fine-tuned referencemodels
O𝑡 = {O𝑡

1,O
𝑡
2, ...,O

𝑡
𝑛}. For each pair of O𝑖 and O𝑡

𝑖
(1 ≤ 𝑖 ≤ 𝑛),

we respectively compute their BERTScore with the oracle output,
deriving a pair of similarity score (S𝑖 , S𝑡

𝑖
). We consider the sample

tainted if:

∀𝑖 ∈ [1, 𝑛], S𝑡
𝑖 − S𝑖 > 𝛿𝑡 (1)

Briefly, the above condition requires that the responses from every
reference model, before and after training onD, present a disparity
of 𝛿𝑡 in similarity score. We perceive it as a good strategy because
it indicates the training incurs prevalent variations in model re-
sponses. The hyper-parameter 𝛿𝑡 controls the balance between
recall (how many true tainted samples are identified) and precision
(how many false tainted samples are included). We set it to 30% by
default to prefer recall. Based on our observations, a higher thresh-
old can result in fewer samples left with certain datasets, making
dataset inference infeasible.

5.4 Dataset Inference
With the candidate tainted samples, we infer whetherM used D
for training. As clarified in Observation II, we aim to determine if
the amount of tainted samples identifiable withM is closer to the
situation where D is involved in training or to the other scenario
where D is absent. Yet, we only have access to M in one situation,
not both. To this end, we rely on the two sets of reference models,
alternatively inspecting which setM is closer to.

Processing Tainted Samples: For each tainted sample we iden-
tified above, we inspect whether M responds closer to the non-
trained reference models or their trained versions. The process is
similar to selecting tainted samples. We get the responses from
each pair of reference model and its trained version, annotated
as O𝑖 and O𝑡

𝑖
. Respectively calculating their BERTScore similarity

with the response of M, we obtain their similarity scores with M,
represented as S𝑖 and S𝑡

𝑖
. We consider M responds closer to the

trained reference set if:

∀𝑖 ∈ [1, 𝑛], S𝑡
𝑖 − S𝑖 > 𝛿𝑠 (2)
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Table 4: Datesets used in our study. “Part” explains which
split from the official dataset is used in our experiments.

Dataset Owner Part Size

databricks-dolly-15k [1] databricks train 15,011

alpaca [8] tatsu-lab train 52,002

SlimOrca [7] Open-Orca train 517,982

OpenHermes-2.5 [9] teknium train 1,001,551

where 𝑛 represents the number of reference models. For simplicity,
we call the sample a positive tainted sample. As noted, we require
M to act closer to every trained reference model to determine a
positive tainted sample. This is intended to reduce randomness. The
pre-configured parameter 𝛿𝑠 controls the confidence of decisions,
and it defaults to the value of 𝛿𝑡 . If the above condition does not
hold, we consider M responds closer to the non-trained reference
set, and we call the sample a negative tainted sample.

To mitigate the potential randomness in a single response, we
obtain multiple responses from the suspect model for the same
question and calculate a 𝛿𝑠 for each response. We use the largest 𝛿𝑠
to make decisions. By default, we obtains three responses for each
question.

InferringModelMembership: If we observemore positive tainted
samples than negative ones from D, we consider M used D for
training (i.e., a member model). Otherwise, we consider it did not (a
non-member model).

6 Evaluation
6.1 Experimental Setup
Target Datasets: To evaluate the performance of our method, we
collect victim datasets from Hugging Face following several cri-
teria. ➀ The datasets are frequently downloaded and used by the
public, offering representativeness. ➁ The datasets are formatted
as input-output pairs such that our method can be applied without
further subjective data processing. ➂ The datasets have been used
in training a group of publicly released models. This enables us to
collect member models in the wild and, thus, assess our method
in realistic settings. After broad searching, we identify four tar-
get datasets, including databricks-dolly-15k, alpaca, SlimOrca, and
OpenHermes-2.5. As summarized in Table 4, they have different
owners and sizes. Due to the intensive amount of experiments and
limited GPU budget, we randomly sample 50,000 data points for
our evaluation if the dataset is larger than that.

Suspect Models: We prioritize suspect models from the wild to
better mirror the reality. Datasets released on Hugging Face comes
with a card showing the list of public models trained or fine-tuned
on them (e.g., [1]). Based on that, we identify 10 member models
that can properly follow instructions for each target dataset, and
we call them wild member models. Similarly, we collect models
released on Hugging Face but not included in a dataset’s card to
work as non-member models. Non-member models are more preva-
lent and we identify 20 of them for each target dataset. Besides
checking their capability of following instructions, we also ensure

they can understand English corpora. Details of the member and
non-member models are summarized in Table 10.

Table 5: Local models used in our evaluations.

Owner Name

mistralai Mistral-7B-v0.3 [6]
google gemma-2b [2]
meta-llama Llama-3.1-8B [4]
meta-llama Llama-3.2-3B [5]
Qwen Qwen1.5-4B [17]
Qwen Qwen1.5-7B [17]
Qwen Qwen2.5-3B [56]
Qwen Qwen2.5-7B [56]
THUDM glm-2b [23]
THUDM glm-10b [23]

To increase the number of member models to balance with the
non-member models, we further prepare 10 local member models
for each dataset atop widely-used base models presented in Table 5.
Specifically, we fine-tune the base models with QLORA [21] on
each target dataset to create new member models. The parame-
ters of QLORA we adjusted include rank of matrices (8), scaling
factor (32), dropout probability (0.05), bias type (none), optimizer
(paged_adamw_8bit), learning rate (1×10−4), batch size (8), training
epoch (3)1, target modules (all non-linear hidden layers). All other
parameters are set to their default values.

Reference Models: We build our reference models on top of
five popular base models, including Mistral-7B-v0.1 [35], gemma-
7b [55], Meta-Llama-3-8B [16], Qwen2-7B [14], and glm-4-9b [28].
Specifically, we take their corresponding instruct models (Mistral-
7B-Instruct-v0.1, gemma-7b-it, Meta-Llama-3-8B-Instruct, Qwen2-
7B-Instruct, and glm-4-9b-chat)—which can better follow instructions—
as the non-member reference models R. We further fine-tune the
base models on the target dataset to produce the member reference
models R𝑡 . The fine-tuning follows the same procedure as training
our local suspect models.

Dataset Inference (Non-IID):We apply our method, leveraging
the reference models above, to the 20 wild non-member models, 10
wild member models, and 10 local member models on each dataset.
We measure the recall, precision, and F1 score of the results2.

Dataset Inference (IID): In the evaluation above, the non-member
models are trained on data irrelevant to the target dataset. Maini et
al. [38] pointed out a more challenging situation where the training
of the non-member models involves a dataset that is independent
and identically distributed (IID) with respect to the target dataset.

We extend an evaluation to simulate the IID situation. Specif-
ically, we evenly split a target dataset D into D𝑥 and D𝑦 and

1Smaller models need more training epochs to reach acceptable training loss. Thus,
for gemma-2b and glm-2b, we set their training epoch to 4.
2Recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃 , F1-Score = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 , where TP,
FP, FN represent true positives, false positives, and false negatives.
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de-duplicate highly similar samples between them3. D𝑥 is con-
sidered as the victim dataset and adopted to prepare the reference
models. The wild non-members presented in Table 10 are fine-tuned
on D𝑦 to work as non-member models. We further fine-tune the
five reference models on D𝑦 to obtain extra non-member models.
This aims to assess the cases where the reference models and the
non-members overlap and, thus, carry higher detection difficulties.
In this evaluation, we only focus on detecting non-members, as the
IID setting makes no difference to members.

Baseline: To the best of our knowledge, there are no existing
methods for black-box dataset inference. Yet, DPDLLM [62] offers
black-box membership inference of individual data samples against
LLMs, which we adapt to provide dataset inference.

DPDLLM assumes the availability of some member samples
(involved in training the suspect model) and some non-member
samples (not involved in training the suspect model). Similar to
our method, it involves a reference model which is fine-tuned on
the member samples. Given the question of each member and non-
member sample, DPDLLM obtains a response (represented as a
sequence of tokens) from the suspect model and measures the
probabilities for the reference model to output the same sequence
of tokens. The probabilities are used as features to train a binary
classifier for detecting member samples.

In practical blackbox settings, the suspect model is private, pre-
venting the acquisition of member samples and non-member sam-
ples. We bypass this restriction in our evaluation as follows. If the
suspect model is a member model (i.e., trained on the target dataset),
we randomly pick 1,000 samples from the target dataset as member
samples. Otherwise, we fine-tune the suspect model with another
dataset and pick 1,000 random samples from that dataset. To obtain
non-member samples, we randomly select 1,000 samples from a
dataset not used in training the suspect model.

To perform dataset inference, we run the binary classifier on
all samples in the target dataset. If more samples are detected as
member samples, we report the suspect model as a member model.
Otherwise, we report it as a non-member model.

Table 6: Dataset inference results under the non-IID setting.
“HF” refers to Hugging Face. A value “x/y” indicates that “x”
out of “y” members/non-members are correctly identified.

Dataset Databricks Alpaca Slimorca Openhermes

D
PD

LL
M

Local Members 4/10 2/10 6/10 2/10
HF Members 10/10 6/10 7/10 7/10
HF Non-members 15/20 10/20 6/20 8/20
Recall (%) 70.0 40.0 65.0 45.0
Precision (%) 73.7 44.4 48.2 42.9
F1 (%) 71.8 42.1 55.3 43.9

O
ur

M
et
ho

d

Local Members 10/10 10/10 10/10 10/10
HF Members 10/10 10/10 10/10 10/10
HF Non-members 20/20 20/20 20/20 20/20
Recall (%) 100.0 100.0 100.0 100.0
Precision (%) 100.0 100.0 100.0 100.0
F1 (%) 100.0 100.0 100.0 100.0

3We exclude a data sample from D𝑦 if its input and output both have a 0.8+ Jaccard
similarity [3] with another sample in D𝑥 .
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Figure 4: Comparison of positive tainted samples and neg-
ative tainted samples identified by our method formember
models (top) and non-member models (bottom) under non-
IID settings.

6.2 Dataset Inference Accuracy
Non-IID: The dataset inference results under Non-IID settings are
summarized in Table 6. Our method presents 100% accuracy, regard-
less of the target dataset and the suspect model. Fundamentally,
training with D leads the target model to behaving closer to the
trained reference models on tainted samples. As shown in the top
half of Figure 4, this enables our method to see a larger group of
positive tainted samples and identify the model as a member. In
contrast, the target model—without training on D—diverges from
the trained reference models on tainted samples. Thus, our method
reports most tainted sample to be negative and clearly detects the
model as a non-member, as shown in the bottom half of Figure 4.

The baseline, DPDLLM, faces problems detecting both member
and non-member models, as shown in Table 6. On the Alpaca and
Openhermes datasets, the accuracy drops to 42.1% and 43.9%. Even
the best accuracy, achieved on Databricks, is only 71.8%. The reason,
as visualized in Figure 5, is that DPDLLM presents limited accuracy
when detecting the membership of individual samples. Given a
member model, DPDLLM is supposed to detect all samples in D
as members. Yet, it frequently reports more non-member samples
(see top half of Figure 5). Similarly, DPDLLM can mistakenly report
more samples in D as members, given a non-member model (see
bottom half of Figure 5). Such observations are consistent with the
findings by Maini et. al. [38].

IID: The dataset inference results under IID settings are presented
in Table 7. Our method largely maintains its performance, correctly
detecting all non-member models in most cases. The only excep-
tions occur when handling wild non-member models with Slimorca
and Openhermes as the target datasets. We mistakenly report 2 and
3 out of 20 non-members as members. As shown in Figure 6, our
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Figure 5: Comparison of member samples and non-member
samples identified by DPDLLM for member models (top) and
non-member models (bottom) under non-IID settings.

Table 7: Dataset inference results under the IID setting. “Non-
members (1)” represent local, non-membermodels that share
the architectures of the referencemodels. “Non-members (2)”
are wild, non-member models with architectures different
from the reference models. A value “x/y” indicates that “x”
out of “y” members or non-members are correctly identified.

Dataset Databricks Alpaca Slimorca Openhermes

DPDLLM
Non-members (1) 3/5 3/5 2/5 4/5
Non-members (2) 15/20 10/20 13/20 16/20

Our Method
Non-members (1) 5/5 5/5 5/5 5/5
Non-members (2) 20/20 20/20 18/20 17/20

method tends to incorrectly detect more positive tainted samples,
given the two datasets under the IID setting. This problem can be
alleviated by including more reference models and diversifying
their architectures, as we will showcase in §6.3.

In contrast, DPDLLM fails again to accurately detect non-member
models under the IID setting. On the datasets of Alpaca and Slimorca,
its performance approximates that of a randomguess. OnDatabricks
and Openhermes, its false positive rate is also close to 30%. Similar
to the non-IID setting, such results are attributed to DPDLLM’s lim-
ited accuracy in detecting the non-member samples, as illustrated
in Figure 7.

6.3 Impacts of Method Designs
6.3.1 Tainted Samples. A key step of our method is selecting
tainted samples. Yet, its necessity needs validation. Accordingly, we
re-run the evaluations under the non-IID settings with our method
applied to all samples in the target dataset.
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Figure 6: Distribution of positive tainted samples and neg-
ative tainted samples identified by our method for non-
member models under IID settings.
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Figure 7: Distribution of member samples and non-member
samples identified by DPDLLM for non-member models un-
der IID settings.

Table 8: Dataset inference results without selecting tainted
samples (under non-IID setting). “HF” refers to Hugging Face.
A value “x/y” indicates that “x” out of “y” members or non-
members are correctly identified.

Dataset Databricks Alpaca Slimorca Openhermes

Local Members 0/10 0/10 0/10 0/10
HF Members 0/10 0/10 0/10 0/10
HF Non-members 20/20 20/20 20/20 20/20
Precision (%) N/A N/A N/A N/A
Recall (%) 0.0 0.0 0.0 0.0
F1 (%) N/A N/A N/A N/A
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Figure 8: Distribution of similarity difference between the
suspect model and the reference models (before and after
fine-tuning) on all samples from the target dataset. Given a
sample, we calculate a similarity score between the suspect
model’s response and the non-fine-tuned reference models’
responses. Likewise, we calculate another similarity score us-
ing the fine-tuned reference models. The difference between
the two scores for all samples is used to plot the distribution.

As shown in Table 8, our method fails when all samples are used.
Specifically, our method will detect every model as a non-member,
regardless of the ground truth. The results are not surprising. Most
samples in D do not impact the behaviors of the reference models.
Hence, the similarity between the suspect model and the reference
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models on those samples doesn’t vary much before and after we
fine-tune the reference models. As a demonstration, Figure 8 shows
the distribution of this similarity difference across all samples, using
a member model from Hugging Face as the suspect model. Yet, our
method requires a sample to stay closer to the fine-tuned reference
models by a margin of 𝛿𝑠 to be considered a positive tainted sample.
As a result, our method end up detecting most samples as negative
tainted samples, consistently reporting the suspect model to be a
non-member.
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Figure 9: Impacts of reference model number and archi-
tecture diversity on our method under IID settings. “Non-
members (1)” represent local, non-membermodels that share
the architectures of the referencemodels. “Non-members (2)”
are wild, non-member models with architectures different
from the reference models.
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Figure 10: Impacts of reference model number and architec-
ture diversity on the distribution of tainted samples under
IID settings.

6.3.2 Reference Models. Our method relies on reference models
to work. By intuition, the number and diversity of reference models
can make a difference. We extend evaluations to understand their
impacts as follows.

Quantity: All our evaluations so far only used one reference
model each architecture. While achieving perfect accuracy under
the non-IID setting, it mis-detects several non-member models
under the IID setting. In this evaluation, we explore whether using
more reference models improve our accuracy under the IID settings.
Specifically, we increase the number of reference model to two per
architecture — one fine-tuned with the parameters described in §6.1
and another using rank of matrices (4), scaling factor (16), dropout
probability (0.05), bias type (none), optimizer (paged_adamw_8bit),
learning rate (5 × 10−5), batch size (8), training epoch (4), target
modules (all non-linear hidden layers).

We present the results in Figure 9. Using more reference models
enabled us to detect one extra non-member model on the Slimorca
dataset and another extra on the Openhermes dataset, without in-
troducing side effects. To reason why the improvement happens

to those models, we visualize the impact of the reference model
number on the distribution of tainted samples in Figure 10. Evi-
dently, the additional reference models dramatically decreased the
number of positive tainted samples, which eventually corrected
our inference decisions. Such results are well expected. When more
reference models are in effect, both Equation 1 and Equation 2 be-
come harder to satisfy, more effectively filtering out “fake” positive
tainted samples.

Diversity: Going beyond increasing the model number, we fur-
ther add two architectures, Qwen1.5-7B and glm-10b, for the ref-
erence models. To see the accumulative effects of more models
and more architectures, we prepare two reference models for each
architecture, following the configurations we described above.

As shown in Figure 9, diversifying the architectures enabled our
method to additionally detect a non-member model (Platypus2-
13B) on the Slimorca dataset. As illustrated in Figure 10, this is also
attributed to that the extra reference models make both Equation 1
and Equation 2 harder, which eventually rules out “fake” positive
tainted samples.

Discussion: Our evaluations above suggest that using more
reference models with diversified architectures enhances the ac-
curacy of our method. Yet, it does not mean we should endlessly
increase reference models and their architectures. A clear trend
unveiled in Figure 10 is that a larger family of reference models
result in fewer tainted samples. When using 7 architectures with 2
models for each architecture, we often end up with fewer than 50
tainted samples in total. Decisions based on such a limited sample
size are vulnerable to even minor disturbances. For instance, flip-
ping of a small number of negative sample to positive ones due to
randomness could overturn the inference result.

6.4 Adversarial Robustness
In practice, the adversary may adopt various countermeasure to
evade our dataset inference method. In this section, we evaluate
the robustness of our method against several possibilities, includ-
ing rephrasing responses, changing temperature, removing
tainted samples and training on subsets. We focus on the mem-
ber models as evasion intends to avoid the detection of them. Fur-
ther, we reuse the setup discussed in §6.1 for the reference models
(5 architectures, one model each architecture).

6.4.1 Rephrasing Responses. Before sending responses out, the
adversary can rephrase them, attempting to thwart our similarity
measurement. We simulate the scenario by adopting GPT-4o for
rephrasing and re-run the evaluations.

As shown in Figure 11a, our method still detects all member
models when responses are rephrased, indicating our robustness
against this countermeasure. The results are attributed to our use
of BERTScore, which intends to measure the semantic similarities
and, thus, preserves utilities on rephrased texts.

6.4.2 Changing Temperature. Temperature is a hyperparameter
that influences an LLM’s output by scaling the model’s predicted
probability distribution. A higher temperature will result in lower
probability, producingmore creative outputs [15]. Thus, varying the
temperature is expected to alter the model behaviors, which offers
another evasion option to the adversaries. We experiment with
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Figure 11: Robustness of our methods against different ad-
versarial evasion attempts. “HF” refers to Hugging Face.

this option by setting three different temperatures, including 0.0
(greedy sampling), 0.5 (half-creative sampling), and 1.0 (full-creative
sampling), for the suspect model and re-perform the evaluations.
All the reference models use their default temperature 1.0.

The evaluation results are illustrated in Figure 11b. Our method
detects all the member models, given different temperatures. It
demonstrates the robustness of our method against this evasion at-
tempt. Presumably, two designs of our method contribute to this ro-
bustness. First, our use of BERTScore enables us to inspect sematic-
level similarities, reducing the impacts of creativity on wording
and phrasing. Second, we obtain multiple responses from the sus-
pect model but only use the one leading to the largest similarity
difference (see §5.4). This helps reduce variations introduced by the
temperature.

6.4.3 Removing Tainted Samples. Adversaries can also attempt
to remove the tainted samples from the target dataset before train-
ing their models. A key issue is whether the adversaries will be

29 20178 4

Databricks

64 357129 7
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75 359217 2

Slimorca

89 512620 4

Openhermes

Positive Negative Removed

Figure 12: Overlap of tainted samples for Llama-3.2-3B iden-
tified by our method against evasion of removing tainted
samples.

granted access to the reference models. We argue that they should
not because there is no necessity for the Arbiter–who performs
dataset inference–to release the reference models to third parties.
If reproduction of the inference results is mandated, the Arbiter can
release the reference models after membership is detected.

In accordance to the above, our evaluation assumes that the ad-
versaries do not have the original reference models. Instead, they
create their own ones. To simulate adversaries with better luck,
we assume they may use architectures similar to the real refer-
ence models. Eventually, we include Mistral-7B-v0.3, gemma-2b,
Llama-3.1-8B, Qwen1.5-7B, and glm-10b as the adversarial refer-
ence models and used them to remove positive tainted samples
before training the member models. By removing positive tainted
samples, the Arbiter is supposed to detect more negative tainted
samples and fewer positive tainted samples, making it less possible
to detect member models. Since the evaluation requires re-training,
we cannot apply it to the Hugging Face models. Thus, we focus on
the local member models.

Figure 11c presents the evaluation results, demonstrating that re-
moving tainted samples does not diminish our detection capability.
This outcome highlights the robustness of our method against such
evasion attempts. The effectiveness can be attributed to the discrep-
ancy between the reference models used by the Arbiter and those
used by the adversary, which results in minimal overlap among
the identified tainted samples. Further details on the overlap of
tainted samples are illustrated in Figure 12. It reveals that the eva-
sion strategy of removing tainted samples exhibits a dual effect. On
one hand, it has a seemingly beneficial impact by eliminating some
positive tainted samples — for example, in the Alpaca dataset, up
to 29 overlapping positive tainted samples were removed. On the
other hand, it inadvertently removes negative tainted samples as
well, with up to 7 such overlaps also observed in the Alpaca dataset.
These opposing effects partially cancel each other out. Moreover,
since the original number of positive samples significantly exceeds
the number of negative samples, the resulting ratio after removal
remains insufficient to alter the decision-making outcome of our
method. Therefore, removing tainted samples based on the adver-
sary’s reference models does not substantially reduce the chance
that suspect models will still encounter tainted samples as recog-
nized by the Arbiter during fine-tuning. In conclusion, concealing
the reference models employed by the Arbiter offers an effective
defense against evasion via tainted sample removal.

6.4.4 Training On Subsets. Instead of using the complete target
dataset, adversaries may only use a subset for training. This can
create problems for our detection as we still identify tainted sam-
ples from the entire dataset. Yet, we suspect that subset detection
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Table 9: Time cost of our dataset inference method.

Dataset Offline Online Online Ratio

Databricks 4.0h 0.25h 6.25%

Alpaca 11.5h 0.25h 2.17%

Slimorca 18.0h 0.25h 1.39%

Openhermes 18.0h 0.25h 1.39%

is no longer suitable to be solved through dataset inference. In
particular, we raise the question that whether subset detection and
dataset inference always share the same answer. Take the extreme
case where only one sample is used for training as an example.
Conceptually, it is still a subset, but we can hardly say the dataset
is used. In our opinion, inference of individual samples (MIA) is a
more desired solution for subset detection.

Nevertheless, we extend evaluations to understand the impact
of subset training on our method. We re-train the local member
models using 75% and 50% of samples randomly picked from the
target dataset, and then re-run our dataset inference. The results are
presented in Figure 11d. When 75% samples are still used in train-
ing, our method largely maintains its detection capability, missing
only one member on the Slimorca dataset and one on the Openher-
mes dataset. When the ratio of training samples drops to 50%, our
method start missing member models on all datasets. On Slimorca
and Openhermes, we miss 3 out of 10. This is expected as we still
consider all the data to identify tainted samples. Among those, more
positive tainted samples will be excluded when a smaller subset is
used for training, which turn into negative ones and eventually flip
our inference result.

6.5 Efficiency
To understand the efficiency—which is important in practical use—
of our method, we measure its time cost for dataset inference. Our
method involves two phases: (i) an offline phase which builds the
reference models and identifies the tainted samples and (ii) an online
phase which tests a given suspect model. We separately measure
the time cost of each phase on machines with an AMD EPYC 7513
32-Core Processor, an NVIDIA A100 (80 GB GPU memory), and 256
GB RAM. Table 9 shows the evaluation results. The offline phase
often takes hours to accomplish due to the time-consuming process
of training reference models. Yet, it only needs to run once for every
dataset, incurring a limited impact in practice. More importantly,
the online phase only needs around 25 minutes to finish, presenting
a high efficiency in the more frequent operations.

7 Related Works
Membership Inference Attack on LLMs:Membership inference
(MI) aims to determine whether a specific data point was used to
train a given machine learning model. This technique has crucial
applications, including identifying data contamination in bench-
mark datasets [47], auditing privacy violations [53], and detecting
copyrighted material within the data used to train large language
models (LLMs) [19]. While MI has been well-studied for smaller
models, its effectiveness on LLMs remains an area of active research.
Recent advancements, however, have introduced new methods that

address this challenge, which can be grouped into the score-based
membership inference attacks and reference model-based MIAs
according to whether they need a reference model.

Score-Based Membership Inference Attacks (MIAs) assume
that the model behaves differently for training versus non-training
data, which can be captured by some statistical metrics such as
the perplexity [19] or the loss values [60]. After gathering those
metrics, they compare the model’s output score to the predefined
threshold or use statistical methods to infer membership. Yeom et
al. [60] and Carlini et al. [19] simply calculate the model’s loss or
perplexity of given samples and subsequently apply a threshold
to classify the samples as members or non-members. Mattern et
al. [41] propose the neighborhood attack, which generates highly
similar "neighbor" sentences using a pretrained masked language
model and compares their losses to the original sample under the
target model. If the original sample was part of the training data,
the loss difference between it and its neighbors will be smaller than
a predefined threshold, indicating membership. Min-k% Prob [51]
calculate the average log likelihood of the k% tokens with the lowest
probabilities. A high average log-likelihood suggests the text is
likely part of the pretraining data, as seen examples tend to lack
outlier words with very low token probabilities. However, their
effectiveness depends on the assumption that the model behaves
differently for training versus non-training data, which may not
hold if the model generalizes well.

Reference Model-Based MIAs, on the other hand, involve train-
ing a separate reference model on a dataset similar to the target
model’s training data. By comparing the behavior (e.g., perplexity or
loss values) of the target model and the reference model, attackers
can infer membership more robustly. Carlini et al. [19] compares
the perplexity ratio between a suspect model (e.g., a large GPT-2
model) and a smaller reference model (e.g., a smaller model) for
a given text. If the suspect model has memorized the text during
training, its perplexity will be significantly lower than the reference
model’s, as the smaller reference model is not able to memorize as
much training data as the suspect model.

Dataset Inference on LLM. Dataset Inference refers to the process
of determining whether a specific dataset (or parts of it) was used
to train a machine learning model. As far as we know, the research
of Main et al. [38] is the only paper solving this problem in the
LLM even in the natural language processing field. It points out
that different MIAs perform well on specific datasets but poorly
on others, and no single MIA consistently achieves high accuracy
across all datasets. Therefore, they extract features from suspect
and validation datasets using various MIAs, train a linear model to
learn correlations between these features and dataset membership
and perform a statistical T-Test to determine if the suspect dataset
was used in training.

8 Conclusion
In conclusion, this paper introduces a new method for dataset infer-
ence in a black-box setting. The method utilizes reference models
to identify tainted samples and detect suspect models by comparing
response similarities. Our evaluations with both wild models and
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self-trained models demonstrate the effectiveness of the approach.
Additionally, we experimented with a series of evasion attempts
against our method, showing that our method offers robustness
against those attempts.
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Table 10: The list of member models and non-member models we collected from the wild in our evaluations.

Dataset
Databricks Alpaca

Owner Name Owner Name
M
em

be
rM

od
el
s

1 ikala redpajama-3b-chat declare-lab flan-alpaca-xl
2 databricks dolly-v2-3b declare-lab flan-alpaca-xxl
3 databricks dolly-v2-7b PKU-Alignment alpaca-7b-reproduced
4 databricks dolly-v2-12b PKU-Alignment alpaca-8b-reproduced-llama-3
5 TheBloke tulu-7B-fp16 PKU-Alignment alpaca-7b-reproduced-llama-2
6 TheBloke tulu-13B-fp16 GeorgiaTechResearchInstitute galpaca-6.7b
7 allenai open-instruct-pythia-6.9b-tulu GeorgiaTechResearchInstitute galpaca-30b
8 allenai allenai/open-instruct-human-mix-65b luckychao TinyAlpaca-1.1B
9 allenai open-instruct-opt-6.7b-tulu hiyouga Llama-2-Chinese-13b-chat
10 HuggingFaceH4 starchat-alpha NEU-HAI Llama-2-7b-alpaca-cleaned

N
on

-M
em

be
rM

od
el
s

1 Open-Orca Mistral-7B-OpenOrca ikala bloom-zh-3b-chat
2 h2oai h2o-danube-1.8b-chat databricks dolly-v2-3b
3 jondurbin bagel-8b-v1.0 databricks dolly-v2-7b
4 uukuguy speechless-llama2-13b databricks dolly-v2-12b
5 TinyLlama TinyLlama-1.1B-Chat-v1.0 h2oai h2o-danube-1.8b-chat
6 HuggingFaceH4 zephyr-7b-beta TinyLlama TinyLlama-1.1B-Chat-v1.0
7 Deci DeciLM-7B-instruct HuggingFaceH4 zephyr-7b-beta
8 Intel neural-chat-7b-v3-1 jondurbin bagel-8b-v1.0
9 hongzoh Yi-6B_Open-Orca ikala redpajama-3b-chat
10 declare-lab flan-alpaca-xl HuggingFaceH4 zephyr-7b-alpha
11 declare-lab flan-alpaca-xxl TheBloke tulu-7B-fp16
12 declare-lab flan-alpaca-large TheBloke tulu-13B-fp16
13 declare-lab flan-alpaca-base Deci DeciLM-7B-instruct
14 upstage SOLAR-10.7B-Instruct-v1.0 garage-bAInd Platypus2-7B
15 openaccess-ai-collective jackalope-7b garage-bAInd Platypus2-13B
16 Open-Orca Mistral-7B-SlimOrca Open-Orca Mistral-7B-OpenOrca
17 luckychao TinyAlpaca-1.1B PygmalionAI pygmalion-2-7b
18 vilm Quyen-v0.1 PygmalionAI pygmalion-2-13b
19 openaccess-ai-collective jackalope-7b uukuguy speechless-llama2-13b
20 M4-ai Orca-2.0-Tau-1.8B CalderaAI 13B-Ouroboros

Dataset
Slimorca Openhermes

Owner Name Owner Name

M
em

be
rM

od
el
s

1 ajibawa-2023 SlimOrca-13B teknium OpenHermes-2.5-Mistral-7B
2 jondurbin bagel-8b-v1.0 NousResearch Hermes-2-Theta-Llama-3-8B
3 Deci DeciLM-7B-instruct NousResearch Nous-Hermes-2-SOLAR-10.7B
4 CallComply DeciLM-7B-Instruct-128k NousResearch Hermes-2-Pro-Llama-3-8B
5 Intel neural-chat-7b-v3 NousResearch Hermes-2-Pro-Mistral-7B
6 chargoddard mistral-11b-slimorca vilm Quyen-Pro-v0.1
7 jondurbin bagel-7b-v0.1 vilm Quyen-SE-v0.1
8 jondurbin bagel-7b-v0.4 vilm Quyen-Plus-v0.1
9 jondurbin bagel-7b-v0.5 vilm Quyen-v0.1
10 augmxnt shisa-7b-v1 vilm Quyen-Pro-Max-v0.1

N
on

-M
em

be
rM

od
el
s

1 databricks dolly-v2-3b databricks dolly-v2-3b
2 databricks dolly-v2-7b databricks dolly-v2-7b
3 databricks dolly-v2-12b databricks dolly-v2-12b
4 SeaLLMs SeaLLM-7B-v2.5 ikala bloom-zh-3b-chat
5 shadowml BeagSake-7B ikala redpajama-3b-chat
6 ikala redpajama-3b-chat HuggingFaceH4 zephyr-7b-beta
7 AtAndDev ShortKing-1.4b-v0.1 HuggingFaceH4 zephyr-7b-alpha
8 malhajar meditron-7b-chat Intel neural-chat-7b-v3-1
9 HuggingFaceH4 zephyr-7b-beta h2oai h2o-danube-1.8b-chat
10 TinyLlama TinyLlama-1.1B-Chat-v1.0 openaccess-ai-collective jackalope-7b
11 HuggingFaceH4 zephyr-7b-alpha CalderaAI 13B-Ouroboros
12 garage-bAInd Platypus2-13B uukuguy speechless-llama2-13b
13 Locutusque Orca-2-13b-SFT-v4 TinyLlama TinyLlama-1.1B-Chat-v1.0
14 Doctor-Shotgun TinyLlama-1.1B-32k-Instruct hongzoh Yi-6B_Open-Orca
15 lgaalves gpt2_camel_physics-platypus luckychao TinyAlpaca-1.1B
16 allenai open-instruct-llama2-sharegpt-7b Open-Orca Mistral-7B-OpenOrca
17 allenai open-instruct-sharegpt-7b shadowml BeagSake-7B
18 openchat openchat-3.5-1210 lgaalves mistral-7b-platypus1k
19 blueapple8259 TinyAlpaca-v0.1 AtAndDev ShortKing-1.4b-v0.1
20 lgaalves mistral-7b-platypus1k malhajar meditron-7b-chat
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