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Abstract
Despite significant progress in designing powerful adversarial evasion attacks for robustness verification, the
evaluation of these methods often remains inconsistent and unreliable. Many assessments rely on mismatched
models, unverified implementations, and uneven computational budgets, which can lead to biased results and a
false sense of security. Consequently, robustness claims built on such flawed testing protocols may be misleading
and give a false sense of security. As a concrete step toward improving evaluation reliability, we present
AttackBench, a benchmark framework developed to assess the effectiveness of gradient-based attacks under
standardized and reproducible conditions. AttackBench serves as an evaluation tool that ranks existing attack
implementations based on a novel optimality metric, which enables researchers and practitioners to identify
the most reliable and effective attack for use in subsequent robustness evaluations. The framework enforces
consistent testing conditions and enables continuous updates, making it a reliable foundation for robustness
verification.
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1. Introduction

In recent years, the growing importance of adversarial robustness has led to the development of
numerous evasion attacks [1, 2] aimed at crafting adversarial examples with increasing precision
and efficiency [3, 4, 5, 6, 7, 8]. These attacks are essential tools to assess how well a model can
resist against worst-case perturbations from external malicious users. As a result, they have become
central to evaluating the robustness of machine learning systems, particularly in light of emerging
regulatory frameworks (e.g., European AI Act [9]), which introduce strict cybersecurity and robustness
requirements for high-risk AI systems.1 However, while evasion attack algorithms have advanced rapidly,
the methods used to evaluate them have not kept pace in terms of rigor or consistency. Their evaluations
often suffer from methodological flaws that undermine their reliability. Specifically, we identify three
recurring and critical issues: (i) evaluations rely on inconsistent choices of target models and metrics,
ranging from fixed-budget success rates [10] to median perturbation sizes [11, 6], which makes cross-
paper comparisons unreliable; (ii) attack implementations in public libraries are frequently re-written
without validation against the original code, leading to bugs or silent performance degradation [12, 13];
and (iii) Computational budgets are inconsistently enforced—for example, some attacks exploit internal
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restarts [14] or perform additional hyperparameter tuning [3, 4], which gives an unfair advantage to
more resource-intensive methods.

Together, these inconsistencies introduce variance that can severely distort robustness assessments,
hinder reproducibility, and create a false sense of security. This leads us to a central and urgent question:

To what extent can we trust the evaluation tests used to certify adversarial robustness?

If the tools used to evaluate ML systems are flawed or ineffective, then any robustness guarantees or
certification derived from them may be invalid, potentially exposing users to real-world vulnerabilities.

As a concrete step toward addressing the unreliability of current robustness evaluations, we present
AttackBench, a benchmark framework developed to systematically assess the effectiveness and efficiency
of gradient-based evasion attacks. AttackBench establishes a standardized and impartial evaluation
protocol that enables the identification of attack implementations most capable of revealing a model’s
true worst-case vulnerabilities under adversarial conditions. In this context, reliability refers to an
attack’s ability to consistently find adversarial perturbations require minimal distortion to successfully
mislead the model while respecting a constrained query budget. To support this goal, AttackBench
introduces a novel optimality metric, which measures how closely each attack approximates the best
empirical solution across a diverse set of models and perturbation budgets. Lastly, based on this metric,
AttackBench ranks attack implementations according to their effectiveness and efficiency, providing
a principled comparison across different threat models. The results are published on a continuously
updated online leaderboard2, helping researchers and practitioners select the most reliable and effective
attack strategy when evaluating the adversarial robustness of ML models.

2. Evasion Attacks

Evasion attacks involve manipulating input data at test time to induce misclassification. Examples
include modifying malware code to evade detection (i.e., to be misclassified as legitimate) and generating
adversarial examples in computer vision—images that appear unchanged to humans but deceive deep
learning models [15, 16]. Formally, let x ∈ [0, 1]𝑑 be an input with true label 𝑦 ∈ {1, ..., 𝐶}, and let
𝑓(x,𝜃) denote the prediction of a trained model with parameters 𝜃. These attacks typically aim to find
a perturbation 𝛿 such that the perturbed input x′ = x+ 𝛿 leads to misclassification, while remaining
within a bounded perturbation norm and valid input space. This objective can be formalized as the
following constrained optimization problem:

minimize
𝛿

(𝐿(x+ 𝛿, 𝑦;𝜃), ‖𝛿‖𝑝) (1)

subject to x+ 𝛿 ∈ [0, 1]𝑑 , (2)

where 𝐿 is a loss function that penalizes correct classification. Popular choices include the negative
cross-entropy, the difference of logits [3], and the difference of logits ratio [17]. The perturbation size is
typically constrained under ℓ𝑝 norms (e.g., ℓ0, ℓ1, ℓ2, ℓ∞), reflecting different adversarial threat models.

This bi-objective formulation reflects a trade-off between misclassification confidence and minimal
perturbation. Accordingly, evasion attacks fall into two families: fixed-budget attacks aim to maximize
misclassification within a given perturbation bound [18], and minimum-norm attacks seek the smallest
perturbation that causes misclassification [2, 11].

2.1. Evaluation Inconsistencies of Robustness

Despite the vast number of adversarial attacks developed, each claiming improved performance over its
predecessors, their evaluation has often lacked standardization across three critical dimensions: (i) the
choice of models and evaluation metrics, (ii) the correctness and consistency of attack implementations,
and (iii) the fairness of computational budgets. With respect to the first dimension, attacks are frequently
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evaluated on different models and datasets using incompatible success criteria—such as the attack
success rate at a fixed ℓ𝑝 budget [10] or the median perturbation size [11, 6], which hampers meaningful
comparisons. For instance, the effectiveness of attacks is commonly measured via the Attack Success
Rate (ASR) under a perturbation budget 𝜖, formally defined as:

ASR𝑎(𝜀) =
1

|𝒟|
∑︁

(x,𝑦)∈𝒟

I(𝑓(x,𝜃) ̸= 𝑦 ∧ ‖xadv − x‖𝑝 ≤ 𝜀) . (3)

This metric captures the proportion of input samples in dataset 𝒟 for which the attack successfully
induces misclassification (i.e., 𝑓(x,𝜃) ̸= 𝑦) within the allowed norm constraint (i.e., ‖xadv − x‖𝑝 ≤ 𝜀).
However, ASR is highly sensitive to the choice of 𝜀; an attack may perform well at one value of 𝜖 but
poorly at others, limiting the generality of the conclusions drawn. To overcome the limitations of
pointwise evaluation metrics like ASR, robustness evaluation curves [19] are often used (red curve in
Figure 1 (2)). These curves show the model’s robust accuracy as a function of the perturbation budget 𝜀.
These curves capture the trade-off between attack strength and the model’s resilience over a continuous
range of perturbation magnitudes, offering a richer picture of performance than single-point estimates.
A lower area under the robustness evaluation curve means the attack is more effective, as it reduces the
model’s accuracy more quickly. However, this metric depends on the model’s starting (clean) accuracy,
so it can’t be fairly compared across models with different initial performance. Concerning the second
dimension, many attacks are re-implemented in public libraries without proper validation against the
original code, often leading to performance degradation or the introduction of subtle bugs [12].

Lastly, regarding the third dimension, attacks differ significantly in their computational demands.
Some rely on internal restarts [14], hyperparameter searches [3, 4], or repeated query evaluations,
which can unfairly advantage them in settings without constraints on time or resources.

As a result of all these inconsistencies, researchers and practitioners may unknowingly draw conclu-
sions from flawed comparisons, and thus deploy models with a false sense of security. For example, a
model certified as robust under suboptimal evaluation attack may still be easily fooled in practice with
more advanced attacks, exposing users and stakeholders to unacceptable risks.

3. The AttackBench Framework

To support the choice of a reliable attack to assess adversarial robustness, we rely on AttackBench, a
benchmark framework specifically designed to test and compare the effectiveness of gradient-based
attacks under consistent, fair, and reproducible conditions. Developed in prior work [20], AttackBench
offers a structured and extensible platform to assess whether robustness evaluation methods themselves
are reliable, i.e., whether they are close to producing the optimal (i.e., smallest) possible adversarial
perturbations within a fixed query budget. AttackBench serves as a framework where attacks are
evaluated against a common set of models (the model zoo) and datasets, using a fixed query budget
that counts both forward and backward passes. At the core of AttackBench is the notion of optimality.
Instead of measuring only whether an attack succeeds at a certain perturbation size 𝜀, AttackBench
evaluates how close each attack comes to an empirical best solution, derived by ensembling the results
of all tested methods, for 𝜀. Specifically, for each attack, AttackBench evaluate their local optimality
score, which reflects the quality of an attack on a specific model, and the global optimality score, which
averages this performance across a diverse set of models. Subsequently, AttackBench utilizes these
scores to rank attacks, fostering the identification of those that are both reliable and efficient. Lastly, a
key feature of AttackBench is its ability to support continuous updates, enabling an evolving leaderboard
and encouraging ongoing contributions from the research community.

3.1. AttackBench Internals

The framework is organized into five modular stages, each designed to minimize experimental bias and
promote reproducibility, depicted in Figure 1.
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Figure 1: Overview of the five stages of AttackBench.

Stage 1 - Model Zoo. AttackBench begins by defining a diverse and extensible model zoo, which
includes both robust and standard models. This ensures that attacks are tested across a range of
architectures and robustness levels, preventing overfitting to specific models and enabling generalization
of benchmarking results.
Stage 2 - Attack Benchmarking. Attacks are executed against each model in the zoo under strict
constraints, producing, for each model-attack configuration, the corresponding robustness evaluation
curve (red curve in Figure 1 (2)). AttackBench wraps each model in a query-tracking interface that counts
both forward and backward passes, ensuring all attacks are evaluated within the same computational
budget. Importantly, it records the best adversarial perturbation found within this budget rather than
returning the result from the last iteration—an improvement over many existing libraries.

Stage 3 – Local Optimality. To enable meaningful comparisons between different adversarial attacks,
AttackBench introduces the local optimality metric—a model-agnostic measure of attack effectiveness.
Rather than focusing solely on individual scalar values such as attack success rate at a fixed perturbation
size 𝜀, this metric evaluates how close an attack comes to the best-known lower bound on robustness,
as estimated by aggregating the results of multiple attacks (blue curve in the Figure 1). Specifically,
local optimality is computed from robustness evaluation curves obtained during Stage 2 of each attack.
Specifically, AttackBench ensembles all attacks run against a given model and constructs an empirical
lower envelope curve representing the best-known attack performance at each perturbation size. The
local optimality score for a specific attack is then calculated as the normalized area under the curve
between the attack’s robustness curve and the lower envelope. Formally, the smaller the area between
these two curves, the closer the attack is to the best-known bound, and the higher its optimality
score. This value is normalized to lie within [0, 1], where a score of 1 indicates that the attack achieves
performance indistinguishable from the ensemble lower bound across the full perturbation range.

Stage 4 - Global Optimality. Since local optimality depends on the specific target model, AttackBench
aggregates local scores across all models in the zoo to compute a global optimality score. This reflects
the average effectiveness of an attack across diverse scenarios, penalizing methods that perform well
only on specific architectures. The global score enables ranking attacks in a model-agnostic way.

Stage 5 - Ranking and Leaderboard. Attacks are ranked by their global optimality score and grouped
according to the ℓ𝑝 threat model they assume. A key advantage of AttackBench is its incremental
update capability: when a new attack is evaluated, only the ensemble statistics and rankings are
updated—previous attacks do not need to be re-run. This enables continuous integration and real-time
leaderboard updates.



3.2. Main Take-Home Messages

We now summarize the main take-home messages derived from AttackBench [20]. Our benchmarking
campaign spans 102 adversarial attacks, evaluated across 2 datasets (CIFAR-10 and ImageNet) and 9
deep neural networks. Lastly, AttackBench offers a comprehensive perspective on attack performance,
efficiency, and implementation fidelity across multiple ℓ𝑝 threat models.

Overall Attack Performance. Our large-scale evaluation using AttackBench yields several critical
insights into the reliability and practical utility of gradient-based adversarial attacks. First and foremost,
our results confirm that a small subset of attacks, i.e., 𝜎-zero, DDN, PDPGD, and APGD, consistently out-
perform others across both CIFAR-10 and ImageNet benchmarks. These attacks exhibit high optimality
scores and produce robustness evaluation curves that closely track the empirical best attack.

Effectiveness-Efficiency Tradeoffs. Another central observation concerns the effectiveness-efficiency
tradeoffs. While high optimality scores are desirable, they do not always imply computational efficiency.
For instance, although APGD demonstrates strong optimality, it incurs higher computational costs
compared to PDPGD, especially on high-dimensional datasets like ImageNet. Conversely, attacks such
as VFGA deliver remarkable speed due to early stopping but suffer a notable drop in attack success rate
and optimality when scaled to more complex models.

Implementation Variability. Equally important are the discrepancies observed across different
implementations of the same attack. Our benchmark reveals significant variations in performance
depending on the source library. For example, the APGD attack implemented in the AdvLib library
or its original repository achieves optimal or near-optimal results, whereas the same attack in the
ART library shows a drastic performance degradation. Specifically, the optimality drops from 90.9%
with the AdvLib implementation to 26% with the ART library on CIFAR-10. We highlight that these
inconsistencies are often due to subtle but impactful implementation details, such as the number of
restarts or the choice of loss function. These findings underscore the necessity for practitioners to
carefully audit attack implementations before using them for model evaluation, as seemingly minor
differences can dramatically alter the perceived robustness of a model.

Implementation Pitfalls. Finally, our benchmark identifies several recurring pitfalls in existing
libraries. Some attacks crash under specific conditions (e.g., initialization issues, label index bugs), while
others fail to support crucial features such as per-sample 𝜀 evaluations, compromising the usability of
attack tools in practice.

4. Conclusion

In summary, AttackBench provides a robust and actionable foundation for evaluating the trustworthiness
of adversarial attacks. Our findings stress the importance of algorithmic design, implementation rigor,
and careful tuning when benchmarking model robustness. They also caution against naive reliance
on off-the-shelf attack implementations without thorough validation, especially in safety-critical or
regulatory contexts.
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