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Abstract
Kubernetes Operators, automated tools designed to manage applica-
tion lifecycles within Kubernetes clusters, extend the functionalities
of Kubernetes, and reduce the operational burden on human engi-
neers. While Operators significantly simplify DevOps workflows,
they introduce new security risks. In particular, Kubernetes en-
forces namespace isolation to separate workloads and limit user
access, ensuring that users can only interact with resources within
their authorized namespaces. However, Kubernetes Operators often
demand elevated privileges and may interact with resources across
multiple namespaces. This introduces a new class of vulnerabili-
ties, the Cross-Namespace Reference Vulnerability. The root cause
lies in the mismatch between the declared scope of resources and
the implemented scope of the Operator’s logic, resulting in Kuber-
netes being unable to properly isolate the namespace. Leveraging
such vulnerability, an adversary with limited access to a single
authorized namespace may exploit the Operator to perform opera-
tions affecting other unauthorized namespaces, causing Privilege
Escalation and further impacts.

To the best of our knowledge, this paper is the first to systemati-
cally investigate the security vulnerability of Kubernetes Operators.
We present Cross-Namespace Reference Vulnerability with two
strategies, demonstrating how an attacker can bypass namespace
isolation. Through large-scale measurements, we found that over
14% of Operators in the wild are potentially vulnerable. Our find-
ings have been reported to the relevant developers, resulting in
7 confirmations and 6 CVEs by the time of submission, affecting
vendors including the ****** and ******, highlighting the critical
need for enhanced security practices in Kubernetes Operators. To
mitigate it, we also open-source the static analysis suite to benefit
the ecosystem.

CCS Concepts
• Security and privacy→ Software and application security;
Distributed systems security.
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1 Introduction
Kubernetes has emerged as the dominant platform for container
orchestration, playing a central role in the deployment, scaling, and
management of containerized applications in modern cloud-native
environments [5, 6, 10, 43]. As a highly extensible and open-source
system, Kubernetes facilitates the automation of complex opera-
tions such as container deployment, scheduling, and management
across clusters. Its flexibility and wide adoption have made it the
cornerstone of many enterprise-level infrastructure solutions, of-
fering efficient ways to handle diverse and dynamic workloads in a
scalable manner.

Kubernetes organizes resources into namespaces [8], which al-
low users to divide a single cluster into multiple virtual clusters.
Each namespace serves as a logical boundary, isolating resources
like pods, services, and secrets from other namespaces within the
same cluster. This isolation is essential for managing different ap-
plications or services within the same Kubernetes environment,
enabling teams to work independently without interfering with
each other. Namespaces also provide a way to scope access to re-
sources, ensuring that certain actions can be confined to specific
namespaces and reducing the risk of accidental or malicious inter-
ference between services.

To achieve namespace isolation, a crucial security mechanism is
Role-Based Access Control (RBAC) [29]. RBAC defines roles and
permissions for users, service accounts, and other entities within
the cluster, helping to control which actions are allowed within
the system. For example, a staff member of a team may only be
allowed to manipulate resources within the namespace assigned
to their team, while the cluster administrator would be assigned
all permissions across namespaces. By configuring RBAC policies,
administrators can limit access to resources within specific names-
paces, ensuring that users or services can only interact with the
resources they are authorized to access. This granularity of access
control reinforces the isolation between namespaces and helps to
prevent unauthorized access to sensitive resources.

While Kubernetes provides robust tools and security mecha-
nisms to manage and secure applications, the native platform has
limitations in automating the lifecycle of complex applications. Ku-
bernetes requires significant manual intervention for tasks like scal-
ing, upgrades, and configuration management, which can be time-
consuming and error-prone [45]. Kubernetes Operators [9] were
introduced to address these limitations. Operators are programs
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that extend Kubernetes’ capabilities by automating the manage-
ment of applications. They encapsulate the operational knowledge
required to manage complex Kubernetes applications, automating
critical tasks such as deployment, scaling, and lifecycle manage-
ment. Users can then easily request Operators to conduct complex
operational tasks in contrast to manually manipulating raw Kuber-
netes resources. By automating these processes, Operators reduce
the operational burden on DevOps teams and enable more consis-
tent and reliable application management.

However, Kubernetes Operators require significant privileges
to carry out their tasks. Due to the broad range of operations they
need to perform, these Operators are usually granted substantial
permissions across namespaces. While these permissions are neces-
sary for the proper functioning of the Operator, they also introduce
a significant security risk. Due to improper security practices in
Operator implementation, adversaries may forge malicious requests
toward Operators, exploit vulnerabilities to escalate their own per-
missions, break namespace isolation, and perform unauthorized
operations within the cluster.

Although extensive research has been conducted on Kubernetes
security, the issue of Operator security remains largely unexplored.
Previous studies have focused on misconfiguration in Kubernetes,
especially excessive RBAC permissions, highlighting the risks of
overly permissive access controls [31, 47]. While these works have
led to improvements in reducing permissions, they have not ad-
dressed the inherent risks that remain even when permissions
are minimized. Specifically, necessary permissions may still be ex-
ploited due to improper security practices within the Operator
itself. Other research has focused on bugs in Kubernetes Opera-
tors [30, 41, 46], yet these studies primarily concentrated on the
functional bugs of Operators rather than their security vulnerabili-
ties. Furthermore, existing security tools [11, 13, 15, 22, 23, 25] do
not adequately address the security concerns specific to Operators,
leaving a significant gap in the ecosystem.

Thus, in this paper, we present the first in-depth research on the
security vulnerabilities of Kubernetes Operators, focusing on the
risks of cross-namespace reference vulnerability. The root cause
of cross-namespace reference vulnerability lies in the mismatch
between the declared scope of a resource and the effective scope
of the Operator’s logic. A resource may be declared as namespace-
scoped, allowing users with limited access to a single namespace
to deploy it, while the Operator’s logic may perform actions that
affect other namespaces, breaking the intended isolation. We in-
troduce two distinct tactics for exploiting Kubernetes Operators to
elevate an attacker’s privileges, both of which exploit the scope mis-
match in Operator implementation and break the isolation between
Kubernetes namespaces.

To aid in detecting these vulnerabilities, we designed and im-
plemented detection tools that can identify scope mismatch in Op-
erators, enabling users to assess and secure their systems against
cross-namespace attacks. We conducted large-scale measurements
of 2,268 Kubernetes Operators in the wild, revealing that over 14%
of the Operators are potentially vulnerable to these attacks. We
responsibly disclosed our findings to their developers, and, by the
time of submission, 7 vulnerabilities had been confirmed and 6
CVEs were assigned or under assignment in response to our re-
ports, affecting vendors including ****** and ******, highlighting

the critical need for enhanced security practices in Kubernetes
Operators.

All in all, our contributions can be summarized as follows:

• Attack Surface. We present the first systematic research on
Kubernetes Operator security, specifically focusing on vulnera-
bilities that can be exploited in Operator implementations.

• Attack Tactics. We introduce the Cross-Namespace Reference
Vulnerability, detailing two distinct tactics and their root cause,
both of which can be leveraged to elevate an attacker’s privileges.

• Automatic Detection. We design and implement tools for de-
tecting vulnerabilities in Kubernetes Operators, enabling users to
identify risks related to cross-namespace reference vulnerability.

• Real-World Measurement. We conduct large-scale measure-
ments of Kubernetes Operators in the wild, demonstrating that
over 14% of Operators are susceptible to these vulnerabilities.

• Responsible Disclosure. We responsibly disclosed our findings
to the developers, and, by the time of submission, 7 vulnerabilities
were confirmed and 6 CVEs were assigned or under assignment
in response to our reports.

• Benefit Ecosystem. We open-source our tools to the commu-
nity at https://anonymous.4open.science/r/Operator-Vuln-F05C,
thereby fostering greater security awareness and improving the
overall Kubernetes ecosystem.

2 Background
2.1 Kubernetes Namespace and RBAC
Kubernetes is a powerful container orchestration platform that
automates the deployment, scaling, and management of container-
ized applications. It is designed to manage large-scale complex
applications, where multiple teams or applications may share a
single cluster. To help organize and isolate resources within the
cluster, Kubernetes provides a mechanism called Namespaces [8]. A
namespace is a logical partition or a virtual cluster within a physical
cluster. Each namespace acts as a boundary, ensuring that resources
in one namespace do not conflict with those in another.

Namespaces are particularly useful in multi-tenant environ-
ments, where different teams or applications share the same Ku-
bernetes cluster [7]. By isolating resources in separate namespaces,
Kubernetes prevents one team from accessing or interfering with
another team’s resources. This isolation is vital for security and
resource management, ensuring that users and applications can
only access the resources assigned to their namespace, preventing
unauthorized access or potential conflicts between resources.

Kubernetes employs multiple security mechanisms to help en-
sure that the cluster remains secure and that resources are properly
isolated. One of the most important mechanisms for securing ac-
cess to resources within a namespace is RBAC (Role-Based Access
Control) [29]. RBAC allows administrators to define roles with
specific permissions and bind those roles to users or service ac-
counts, ensuring that only authorized entities can perform certain
actions. Cluster administrator can grant both namespace-specific
permissions and cluster-level permissions. Specifically:

• Role and RoleBinding: Define and grant resource permissions
within a specific namespace to a user, group, or service account.
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• ClusterRole and ClusterRoleBinding: Define and grant resource
permissions across all namespaces to a user, group, or service
account.

2.2 Kubernetes Resource
At its core, Kubernetes organizes the cluster’s state using resources,
which are data objects encapsulating configuration and runtime
information. Kubernetes manages many types of resources within
a cluster, which are fundamental components that define the de-
sired state of applications and services. Common built-in resources
types include pods [27] and deployments [14]. A pod is the smallest
deployable unit in Kubernetes and typically represents one or more
containers that share the same network and storage resources. A
deployment is a higher-level abstraction that manages the lifecycle
of pods, specifying the desired number of pod replicas. In addition
to built-in resources, Kubernetes allows users to define Custom Re-
sources (CRs) [2], extending Kubernetes to manage domain-specific
requirements beyond its default capabilities. Each type of Custom
Resource is described by a Custom Resource Definition (CRD) [2],
which specifies the resource’s schema.

In Kubernetes, each type of resource, whether a built-in resource
or a Custom Resource, is bound with an explicit scope, indicating its
accessibility and impact within the cluster. Resources can be either
Namespace-scoped or Cluster-scoped. In Kubernetes, the scope of
built-in resources is embedded within the Kubernetes implementa-
tion, whereas the scope of Custom Resources is explicitly defined in
their associated Custom Resource Definitions. Namespace-scoped
resources must reside within a specific namespace, meaning they
are logically isolated and can be accessed or manipulated by users
with only Namespace-specific Roles. Conversely, Cluster-scoped
resources exist at the cluster level and are not confined to any single
namespace. These Cluster-scoped resources may affect or interact
with all namespaces across the cluster. Due to their broad impact,
accessing or manipulating cluster-scoped resources requires users
to possess a cluster-wide ClusterRole, reflecting elevated privileges.

Importantly, resources themselves merely represent desired con-
figurations or states. To realize these desired states, each type of
resource is managed by an associated controller, a program respon-
sible for monitoring resources and taking actions to align the actual
state with the desired state described by resources. For example, the
deployment controller monitors deployment resources and ensures
that the desired number of pod replicas are running. If a pod fails
or is deleted, the deployment controller automatically creates a new
pod to meet the desired state. For built-in resources, Kubernetes
provides native controllers. For Custom Resources, users should
develop custom controllers.

2.3 Kubernetes Operator
AKubernetes Operator is amethod of automating andmanaging the
lifecycle of complex applications on top of Kubernetes by extending
the platform’s native capabilities. Originally introduced by CoreOS
(now part of Red Hat), it emerged from a recognition that while
Kubernetes excels at automatically orchestrating workloads, many
organizations need a more powerful automation pattern to handle
full lifecycle management, such as database management, applica-
tion upgrades, or failure recovery, that requires specific operational

apiVersion: example.com/v1

kind: DatabaseInstance

metadata:

  name: my-database

spec:

 replicas: 3

 storageSize: "10Gi"

1

2

3

4

5

6

7

Figure 1: Custom Resource Example

knowledge. Operator is thus introduced to extend Kubernetes by
embedding human operational expertise into software, enabling
automated management of complex, stateful applications.

An Operator consists of one or more Custom Resource Defini-
tions (CRDs) and their corresponding Custom Resource Controllers.
CRD defines the schema of a custom resource type that will be pro-
cessed by the Operator. Controllers work with CRDs by continually
monitoring the custom resources and taking actions to fulfill the
operational tasks requested by users.

To use an Operator, users manipulate custom resources that
represent the operational task along with the related parameters
they want to conduct. The Operator controller reads these custom
resources, takes actions listed in the custom resource, and ensures
that the operational task behaves as expected. Considering an Op-
erator for database management tasks, users may create a custom
resource listed in Figure 1, including arguments like the number
of database replicas and storage settings. The Operator controller
then reads the custom resource, automatically provisions, scales,
and maintains the database according to these specifications.

Since Operators typically manage multiple kinds of resources
across namespaces, they often run with elevated RBAC privileges,
allowing them to create, modify, and delete resources on behalf of
users. This makes them powerful but also introduces security risks.
If an Operator does not adopt proper security measures, attackers
may exploit the vulnerabilities of the Operator to gain unauthorized
access or manipulate resources beyond their intended scope.

3 Threat Model
Our threat model aligns with real-world Kubernetes deployments
where multiple tenants, teams, or applications share the same clus-
ter while being isolated within their respective namespaces [7].
The adversary aims to break Kubernetes namespace isolation and
achieve cross-namespace privilege escalation by exploiting security
weaknesses in Operator implementations. Their objectives are per-
forming operations in unauthorized namespaces (i.e., namespaces
that they have no Roles) and thus escalating privileges.

We assume the Kubernetes cluster deploys vulnerable Operators,
and the adversary has legitimate access to a Kubernetes cluster but
can only access their authorized namespaces. Thus, they can not
access or manipulate cluster-scoped resources and can only inter-
act with Operators by manipulating namespace-scoped resources
in their authorized namespace. They seek to leverage vulnerable
Kubernetes Operators to execute unauthorized operations in other
namespaces. The adversary may be:

3



Andong Chen, Zhaoxuan Jin, Ziyi Guo, and Yan Chen

• A malicious tenant in a multi-tenant cluster who is only
authorized to access their assigned namespace.

• A compromised application running in a namespace with
namespace-level permissions mounted.

It is notable that our threat model is significantly different from
previous works [31, 47]. Specifically, existing works assume that
the adversaries have direct control over the vulnerable application
containers, which is a strong assumption in the real-world. In con-
trast, within our threat model, an adversary does not have access
to Kubernetes work nodes or direct control of Operator containers.
They cannot directly access containers of Operators since these
Operators may be deployed in adversary-unauthorized namespaces.
In extreme cases, Operators can even be deployed outside the Ku-
bernetes cluster [3]. So the threat model of previous works [31, 47]
is relatively infeasible, but our threat model is more feasible and
aligned with real-world scenarios.

4 Cross-Namespace Attacks
4.1 Attack Overview
In Kubernetes clusters, namespaces act as virtual boundaries, re-
stricting user access and isolating resources. Kubernetes Operators
manage applications and resources and perform essential opera-
tional tasks. While these Operators simplify application manage-
ment, their inherent privileges and operational flexibility create
potential security vulnerabilities that can be exploited for cross-
namespace reference attacks.

The high-level attack flow is as follows: an attacker, who has
legitimate but restricted access to one namespace, manipulates a
maliciously crafted namespace-scoped resource instance within
their authorized namespace. The Operator, continuously watching
for namespace-scoped resource events, detects this malicious re-
source instance and processes it with privileged operations that
impact namespaces beyond the attacker’s authorized scope, ef-
fectively breaking the intended namespace isolation enforced by
Kubernetes.
Root Cause. The core enabling cross-namespace reference attacks
stems from a mismatch between the declared scope of a resource
and the actual scope of its process logic. Specifically, the vulnera-
bility arises when the scope of a resource is defined as Namespaced,
indicating that each instance should strictly reside within its as-
signed namespace. Thus an adversary only with Role in a single
namespace may manipulate such a resource in their namespace.
However, despite this namespace-scoped definition, the Operator
may actually perform operations across namespaces, inadvertently
allowing manipulation of resources in namespaces beyond the in-
tended scope. As a result, an adversary without Role in other names-
paces may invoke the Operator to escalate their permissions and
access unauthorized namespaces.
Cross-Namespace Features. There are two primary scenarios that
enable cross-namespace reference actions. First, when processing
namespace-scoped resources in one namespace, an Operator may
access or manipulate other namespace-scoped resources in a differ-
ent namespace (§4.2). Second, when processing namespace-scoped
resources, an Operator might access or manipulate cluster-scoped
resources, leading to impacts on the whole cluster across all names-
paces (§4.3). Both scenarios allow adversaries to trick the Operator

into performing unintended, privileged operations beyond the ad-
versary’s RBAC scope.

4.2 Insecure Namespace-Scoped Resource
Reference

InsecureNamespace-Scoped Resource Reference vulnerability arises
when an Operator processing namespace-scoped resources, the
fields of which are then used by the Operator to reference resources
in other namespaces. This vulnerability fundamentally undermines
Kubernetes namespace isolation by enabling attackers to indirectly
access resources from namespaces they are otherwise restricted
from accessing.
Attack Flow. As illustrated in Figure 2, consider two namespaces:
an attacker namespace and a victim namespace containing sensitive
resources. The Roles and RoleBindings claim that the attacker can
only access resources in their namespace and cannot access those
in the victim’s namespace.

To bypass the restriction of RBAC and access resources in unau-
thorized namespaces, the attacker first crafts and deploys a ma-
licious resource instance within their namespace. This resource
includes fields leveraged by the Operator to reference resources
located in the victim namespace. From the perspective of Kuber-
netes, the deployment of the malicious resource should be allowed
because it only knows that the attacker has created a resource un-
der their authorized namespace, but does not know if the resource
leads to privilege escalation.

The Operator then processes the newly created malicious re-
source. The Operator extracts the fields in the malicious resource,
operates the victim resource located in the victim namespace, and
inadvertently leaks or tampers with sensitive information. Thus, the
attacker effectively escalates their privileges, bypassing Kubernetes’
namespace isolation, gaining unauthorized access to resources that
should have remained secure.
Example. A common real-world scenario occurs when an Operator
manages applications consuming credentials (e.g., API Secret Key)
stored in Kubernetes Secrets. As per Kubernetes official security
practice [4], Secrets should only be referenced strictly within the
same namespace to maintain proper isolation.

However, the vulnerable Operator implements cross-namespace
references by setting up a secretRef.namespace field in its custom re-
source definition. Given this insecure implementation, an attacker
restricted to a namespace could craft the malicious custom resource
as illustrated in the upper YAML file of Figure 3. He deploys a re-
source with metadata.namespace setting to attacker, which means
the resource is deployed in the attacker namespace. This deploy-
ment is allowed since the RBAC authorized the attacker to work in
his own namespace. In the specification of the resource, the attacker
defines the value of secretRef at Lines 8-11, referencing a Secret
named sensitive-secret in his unauthorized namespace victim.

The Operator notices the malicious resource deployed by the
attacker, reads the secretRef field at Line 3 of the Reconcile function
illustrated in Figure 3. The name and namespace of the referenced
victim Secret are then loaded into the namespacedName object,
which is used to query and retrieve the specified Secret into the
secret object at Line 13. The remaining parts of the Operator will
consume the content of the Secret to perform further operations.
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secret cm svc

Victim Namespace
Attacker Namespace

ns

ns

ns ns

I. Insecure Namespace-Sccoped Resource Reference

II. Insecure Cluster-Scoped Resource Reference

④ Affect

rb role

① Manipulate

Malicious Resource

② Process

Cluster-Scoped Resource

Vulnerable 
Operator

③ Op
erate

③ Operate

All Namespaces

Figure 2: Attack Flow

Figure 3: Insecure Namespace-Scoped Resource Reference
Sample

Impact. Insecure Namespace-Scoped Resource Reference vulner-
abilities fundamentally enable attackers to escalate privileges by
allowing them to reference andmanipulate resources in namespaces
beyond their legitimate access. Further impact of this vulnerabil-
ity heavily depends on how the Operator processes and utilizes
the referenced resources, as well as the nature of the referenced

resources themselves. For instance, if the referenced resource is
a Kubernetes Secret containing sensitive credentials like API To-
kens, an attacker may obtain unauthorized access to applications,
databases, or cloud infrastructure. If the Operator not only reads but
also modifies referenced resources, attackers might disrupt service
availability, modify application configurations, or inject malicious
workloads. Thus, the severity and scope of the impact are highly
context-dependent, ranging from sensitive information leakage to
complete cluster compromise, based on the type and usage of the
improperly referenced resource.

4.3 Insecure Cluster-Scoped Resource Reference
Insecure Cluster-Scoped Resource Reference occurs when a Ku-
bernetes Operator processes a namespace-scoped resource and
interacts with cluster-scoped resources. Unlike namespace-scoped
resources that remain isolated within specific namespaces, cluster-
scoped resources affect the entire Kubernetes cluster. If an Operator
allows users to influence these cluster-scoped resources through
namespace-scoped resources, it creates a pathway for attackers to
escalate privileges and potentially compromise the entire cluster.
Attack Flow. As illustrated in Figure 2, consider a namespace
controlled by an attacker named attacker, and all the other victim
namespaces. The Roles and RoleBindings in the cluster define that
the attacker can only access resources in their namespace and
cannot access any victim’s namespace.

The basic attack workflow for this vulnerability starts with an at-
tacker creating a malicious resource in their authorized namespace,
whose fields are leveraged by the Operator to reference a cluster-
scoped resource. The Operator, running with elevated cluster-level
privileges, processes this malicious input and subsequently per-
forms operations on the referenced cluster-scoped resource. As
cluster-scoped resources inherently affect the entire Kubernetes
environment, these unauthorized accesses and manipulations en-
able attackers to escalate privileges beyond their initial namespace
boundaries and gain control or influence over all the other names-
paces.
Example. Operators often interact with cluster-scoped resources,
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Figure 4: Insecure Cluster-Scoped Resource Reference Sam-
ple

ClusterRole or ClusterRoleBinding, because some applications re-
quire elevated or cluster-wide permissions to operate correctly.
An insecure implementation occurs when an Operator accepts
namespace-scoped resources and assigns a ClusterRole and Clus-
terRoleBinding to the requesting namespace. An attacker restricted
in a namespace could thus craft the malicious resource illustrated
in the YAML file of Figure 4. He deploys a resource with meta-
data.namespace setting to attacker, which means the resource is
deployed in the attacker namespace.

The Operator monitors App custom resources. It finds the ma-
licious resource deployed by the attacker, and creates Cluster-
RoleBinding towards a ServiceAccount in the attacker’s namespace.
Thus, the attacker can impersonate the ServiceAccount in his au-
thorized namespace to escalate his privilege, gaining cluster-level
permissions.
Impact. Insecure Cluster-Scoped Resource References allow attack-
ers to escalate privileges and affect resources across all namespaces
in a cluster. The specific severity and effect of this vulnerability
depend on which cluster-scoped resources the Operator interacts
with. For instance, if an Operator insecurely assigns a ClusterRole or
ClusterRoleBinding as dictated by namespace-scoped resources, an
attacker can gain cluster-level permissions. The detail permissions
assigned depend on the implementation of Operators.

5 Cross-Namespace In The Wild
To assess the prevalence of the vulnerabilities described in Section 4,
we conducted a large-scale measurement of real-world Kubernetes
Operators and disclosed our findings to affected vendors.

Table 1: Common Operator-Related Libraries

Library Description

k8s.io/api [19] K8s Built-In Resource Specifications
k8s.io/apimachinery [20] K8s Metadata Specifications
client-go [21] K8s Official Client
client-gen [16] K8s Official Client Generator
controller-runtime [17] Controller Client
Kubebuilder [18] Operator Framework
Operator SDK [26] Operator Framework

5.1 Measurement Methodology
5.1.1 Overview. To understand how widespread the vulnerabilities
are in real-world Kubernetes Operators, we perform a systematic
measurement illustrated in Figure 5, which consisting of the fol-
lowing steps:

(1) Operator Collection: A large set of publicly available Kuber-
netes Operator repositories is collected from GitHub.

(2) Resource Type Identification: Resource types (either Kuber-
netes built-in resources or custom resources) used by each Oper-
ator are extracted, and their declared scopes (either namespace-
scoped or cluster-scoped) are identified based on the code.

(3) Vulnerability Detection: The analysis identifies whether Opera-
tors process namespace-scoped resources but conduct insecure
cross-namespace reference behavior, as depicted in Section 4.2
and Section 4.3.

(4) Summary: Identified vulnerabilities are further aggregated based
on the types of referenced resources and operation verbs to
evaluate the impacts in the real world.

Since the two dominant Kubernetes Operator frameworks with
the highest GitHub Stars, Kubebuilder [18] and Operator SDK [26],
are written in Golang, the collection specifically targets Operators
implemented in Golang.We adopted CodeQL [12] v2.17.4 to analyze
Operators. The entire CodeQL query suite uses around 1,500 lines
of QL rules.

To enhance the measurement process, 7 commonly used libraries
listed in Table 1 weremodeled to accurately resolve and track Kuber-
netes interactions within collected Operator implementations. They
contain specifications of native Kubernetes resources, namespace-
related data structures, and functions for Operators to manipulate
resource. The detail is elaborated later.

5.1.2 Operator Collection. The dataset of Kubernetes Operators
analyzed was collected by crawling GitHub repositories. To achieve
this, GitHub Search API [1] was utilized with the query string
"Kubernetes Operator language:go". The collection process strictly
adhered to GitHub’s API rate limits and usage guidelines to respon-
sibly retrieve relevant Operator repositories.

After collecting Operators from GitHub, we set up CodeQL
databases for each Operator. Operators that cannot be compiled
to generate the CodeQL database due to errors, like syntax and
dependency errors, are eliminated, and the final set contains 2,268
Operators.
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II. Resource Type IdentificationI. Operator Collection

(a) K8s Built-In Resource Identification

type PodsGetter interface {

Pods(namespace string)

}

//+genclient:nonNamespace

type ClusterRes struct {

  metav1.TypeMeta

}

(b) Custom Resource Identification

Namespace-Scoped 
Resource Types

Cluster-Scoped
Resource Types

structs has TypeMeta

ClientGo pkg typed;
type *Getter

has arg

has marker

no arg

no
marker

III.  Vuln Detection

(a) Namespace Ref

(b) Cluster Ref

Namespace Setters

Verb Ident.

obj := &ClusterRes{

  name: res...Name

}

Pod(res.Spec.ns)

Custom Resource Structs

Built-In Resource Interfaces

Cluster Resource

IV.  Summary

Result

Resource Ident.

Figure 5: Measurement Workflow

5.1.3 Resource Type Identification. The first critical step in detect-
ing vulnerabilities is Resource Type Identification, as the attack re-
quires the attacker to initiate operations using a namespace-scoped
resource they are authorized to create in their own namespace.
The analysis separately handles Kubernetes Built-in Resources and
Operator-defined Custom Resources.
Custom Resource Identification. For Custom Resources defined
by the Operators, their data structures can be explicitly extracted
from the source code. In Kubernetes, each resource structure must
contain a field of type TypeMeta (defined by the Apimachinery
library [20]), which acts as the unique identifier of a resource type.
Thus the analyzer extracts all struct types in Operators and filter
those with TypeMeta fields. This outputs all custom resource types
in Operators.

To further identify the scope of each resource type (namespace
or cluster), common Operator frameworks like Kubebuilder [18]
and Operator SDK [26], as well as Kubernetes’ official client code
generator [16], require developers to explicitly decorate cluster-
scoped resource structs using special marker annotations "+gen-
client:nonNamespaced" or "+kubebuilder:resource:scope:Cluster". By
detecting these markers in the Custom Resource struct definitions,
the analyzer reliably identifies Custom Resource types in Operators
as well as their scopes.
Kubernetes Built-in Resources. Unlike Custom Resources, the
built-in Kubernetes resource specifications are imported from the
external k8s.io/api [19] library to Operators, thus their source code
and scopemarkers are not directly accessible for CodeQL. Therefore,
the analyzer adopts an alternative method. Specifically, Operators
would ultimately depend on the client-go library [21]. Each type of
built-in Kubernetes resource is uniquely associated with a typed
client provided by the client-go library [21]. Each typed client is con-
structed by methods in its corresponding Getter interfaces under
the k8s.io/client-go/kubernetes/typed package. For example, consid-
ering the built-in resource type Pod, there is a uniquely associated
Pod client. The Pod client is constructed by the only method in the
PodGetter interface. By extracting the return types of methods in
all Getter interfaces, the analyzer identifies all built-in types and
their clients.

Table 2: Resource Namespace Setters

Field Library

ObjectMeta.Namespace k8s.io/apimachinery
NamespacedName.Namespace k8s.io/apimachinery
ObjectMetaApplyConfiguration.Namespace client-go

Function Library

ApplyConfiguration.WithNamespace() client-go
*.SetNamespace() k8s.io/apimachinery
Constructor of Typed Client client-go
Constructor of Typed Client client-gen

To determine the scope of built-in resources, the analysis lever-
ages the only method in the Getter interface of each typed client.
Specifically, namespace-scoped resource clients in client-go require
a namespace parameter in their constructor to specify the target
namespace. In contrast, constructors for cluster-scoped resource
clients do not require such a namespace argument. By counting
and verifying constructor parameters, the analysis distinguishes
namespace-scoped from cluster-scoped built-in resources.

5.1.4 Vulnerability Detection. This step determines whether an
attacker-controlled input can influence sensitive operations that
cross namespace boundaries or impact the whole cluster. To achieve
this, the analysis uses interprocedural taint tracking, tracing the
propagation of data originating from the namespace-scoped re-
source objects to insecure reference sites in the controller logic.
Insecure Namespace-Scoped Resource Reference. The goal of
this detection is to determine whether attacker-controlled values
can be used to specify the namespace of another resource by the
Operator. This is essential because if the attacker can influence
which namespace a referenced resource belongs to, they can trick
the Operator into accessing or modifying resources beyond their
authorized scope.

Thus, the analysis tracks data flow from namespace-scoped re-
source objects to namespace setters (listed in Table 2) that are
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leveraged to specify the namespace of a resource. We identify 3
struct fields that can store namespace values in 2 libraries. We iden-
tify 4 types of functions in 3 libraries that can be used to set the
namespace field of a resource object or set up a typed client towards
a specific namespace.

It is worth noting that the 3 fields (listed in Table 2) of namespace-
scoped resource objects are excluded from the taint source, as
these fields denote the namespace where this resource is deployed.
Since the attackers are only authorized to access their namespace,
the namespace fields of attacker-controlled resources are always
the attacker-authorized namespace. If these fields sink in the ref-
erenced resources’ namespace fields, it means the referenced re-
sources are also in the attacker-authorized namespace. Thus, no
cross-namespace operation is conducted.

Taking the above key points into consideration, if the tainted
data flows into any of these namespace setters, the Operator is
flagged as potentially vulnerable to insecure namespace-scoped
resource references.
Insecure Cluster-Scoped Resource Reference. This analysis
aims to detect whether attacker-controlled input can influence
cluster-scoped resource. Since these cluster-scoped resources af-
fect the entire Kubernetes cluster, any modification to them based
on namespace-scoped input represents a significant privilege es-
calation risk. Thus, the analysis tracks data flow from the identi-
fied namespace-scoped resource objects into any cluster-scoped
resource objects. If tainted input is used to construct such cluster-
scoped resource objects, the Operator is flagged as vulnerable to
insecure cluster-scoped resource references.

5.1.5 Summary. To understand what an adversary can do to which
kind of resource, the measurement further identifies insecure refer-
enced resource types and operations towards these resources.
AffectedResourceType Identification. This step discoverswhich
resource can be referenced by an adversary. This identification is
trivial for insecure cluster-scoped resource references, as their sink
site in the vulnerability detection phase is set to cluster-scoped
resource objects. Thus, the affected cluster-scoped resource types
can be directly extracted from sink objects.

For insecure namespace-scoped resource references, the affected
resource type identification depends on the type of sink site in the
previous step. If the previous data flow sinks at the three fields,
WithNamespace(), or SetNamespace() methods, then the analyzer
further tracks interprocedural data flow from the previous sinks to
any namespace-scoped resource objects to identify affected resource
objects and types. If the previous data flow sinks at the constructor
of a typed client, then the resource type is the one associated with
that typed client.
Verb Identification. To understand what an adversary can do
to the insecurely referenced resources, the analyzer identifies the
Kubernetes API Verbs (e.g., Get, Create, Update, Delete, etc.) re-
lated to insecurely referenced resources. If an insecurely referenced
resource is found to be related to a Verb, like Create, then the adver-
sary can exploit the vulnerable Operator to create the insecurely
referenced resource in the Kubernetes cluster, which they should
not.

Verb identification is achieved by identifying client method in-
vocations that accept insecure references. For controller-runtime

Total
2,268 (100%)

Namespace-Ref
195 (6.3%)

Cluster-Ref
174 (5.4%)

Both
52 (2.3%)

Figure 6: Percentage of Affected Operators

library, it processes all resource types by a unified typeless client
in the sigs.k8s.io/controller-runtime/pkg/client package. For client-go
and client-gen libraries, they process each type of resource with
a specific typed client. Each Kubernetes API Verb corresponds to
the client method with the same name. The analyzer thus performs
interprocedural taint tracking from the reference site to these client
methods to identify the related verbs.

5.2 Measurement Result
We conducted measurements on 2,268 Operators crawled from
GitHub to assess the real-world impacts of insecure cross-namespace
references and answer the following research questions:
• RQ1: How many operators are potentially vulnerable to inse-

cure cross-namespace reference?
• RQ2:What resources can be cross-namespace referenced by

attackers?
• RQ3: What can an attacker do towards cross-namespace refer-

enced resources?
• RQ4: How can insecure cross-namespace references impact

the real world?

5.2.1 RQ1: How Many Operators Are Potentially Vulnerable To
Cross-Namespace Reference? To assess the prevalence of insecure
cross-namespace reference vulnerabilities, we analyzed a dataset of
2,268 real-world Kubernetes Operators collected from GitHub. Each
Operator was examined to determine whether attacker-controlled
namespace-scoped resources can influence operations across names-
pace boundaries. The results are summarized as follows:
• 143 Operators (6.3%) only include insecure namespace-scoped

resources references that can specify or influence operations
on other namespaces.

• 122 Operators (5.4%) only contain insecure cluster-scoped re-
source references, where attacker-controlled namespace-scoped
resources can affect cluster-scoped resources.

• 52 Operators (2.3%) allow both types of references, posing risks
of privilege escalation at both the namespace and cluster level.

These findings show that a non-negligible portion (over 14%)
includes logic that may lead to privilege escalation, highlighting a
widespread but largely overlooked security concern in the Kuber-
netes ecosystem.
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Table 3: Major Insecurely Referenced Resource Type

Scope Resource Type Ref By #Op.

Namespace

Secret 102
ConfigMap 29
Deployment 29
Service 22
StatefulSet 12

Cluster

Namespace 62
ClusterRoleBinding 40
ClusterRole 26
Node 25
PersistentVolume 15

279 (60.5%)

182 (39.5%)

(a) Namespace-Scoped Reference

211 (70.8%)

87 (29.2%)

(b) Cluster-Scoped Reference

Kubernetes Built-In Resource Custom Resource

Figure 7: Reference of Built-In and Custom Resources

5.2.2 RQ2: What Resources Can Be Cross-Namespace Referenced
By Attackers? To understand the attack surface exposed by in-
secure cross-namespace references, we investigate the types of
resources that Operators allow attackers to reference across names-
pace boundaries. For each resource type, we count the number of
Operators that insecurely reference it and analyze which types are
most frequently involved in such behavior.

Among namespace-scoped resources, the most commonly inse-
curely referenced types (listed in Table 3) are Secret (referenced
by 102 Operators), ConfigMap (29 Operators), and Deployment
(29 Operators). In Kubernetes, Secrets store highly sensitive data
such as API keys, credentials, and TLS certificates. ConfigMaps
often contain important application configurations that control
applications behavior, like API endpoints and performance argu-
ments. Deployments define and manage the application workloads
by controlling replica sets and pods.

For cluster-scoped resources, the most common insecurely refer-
enced types are Namespace (62 Operators), ClusterRoleBinding (40
Operators), and ClusterRole (26 Operators). In Kubernetes, Names-
paces are resources that define the namespace in a Kubernetes
cluster. ClusterRoles and ClusterRoleBindings define and grant
cluster-level permissions that apply in the whole cluster.

0 25 50 75 100 125 150 175 200
# of Operators

Others

Delete

Update

Create

Get

23

35

61

74

188

22

37

57

88

141

Namespace-Scoped Ref
Cluster-Scoped Ref

Figure 8: Verbs Used By # Operators Towards Insecurely Ref-
erenced Resources

We also distinguish between insecure references to built-in Ku-
bernetes resources and custom resources. To this end, we aggre-
gated the type-#Operator result above based on built-in resource
type or custom resource type. For insecure namespace-scoped ref-
erences, 279 cases involved built-in resources and 182 involved
custom resources. For insecure cluster-scoped references, 211 tar-
geted built-in resources and 87 involved custom resources. These
results indicate that insecure references can affect both built-in
resources and custom resources. And the insecure references are
more commonly associated with Kubernetes built-in resources.

5.2.3 RQ3: What Can Attacker Do Towards Cross-Namespace Ref-
erenced Resources? To understand the potential impact of insecure
cross-namespace references, we analyze the operations (Kubernetes
API Verbs) that Operators perform on the referenced resources. For
each identified insecurely referenced resource, we extract its re-
lated verbs. We then count how many Operators apply each verb to
each insecurely referenced resource type. The result is illustrated
in Figure 8.

For insecurely referenced namespace-scoped resources, the top
three most common verbs are Get (used by 188 Operators), Create
(74 Operators), and Update (61 Operators), with Get being the most
prevalent. In Kubernetes, Get retrieves the current state of a re-
source, Create instantiates a new resource, and Update modifies an
existing resource. The predominance of the Get operation indicates
that a large number of vulnerable Operators retrieve data from
resources in other namespaces based on attacker-controlled inputs,
exposing unauthorized data to attackers.

For insecurely referenced cluster-scoped resources, the top three
verbs are Get (used by 141 Operators), Create (88 Operators), and
Update (57 Operators), with Get accounting for the largest propor-
tion. This suggests that in many cases, Operators may use attacker-
influenced data to get cluster-wide resources, which may expose
sensitive cluster-level information to attackers.

To further understand the practical implications, we investigate
the verb-resource pairs (i.e., combinations of verbs and insecurely
referenced resource types) to determine which verbs Operators
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*

*ClusterRoleBinding

Figure 9: Verbs of Major Resources

Table 4: Major Insecurely Used Verb-Resource Pairs

Scope Verb - Ref.Resource Type Used By #Op.

Namespace

Get - Secret 97
Get - ConfigMap 25
Get - Deployment 25
Create - Secret 21
Update - Secret 19

Cluster

Get - Namespace 51
Create - ClusterRoleBinding 33
Create - Namespace 30
Create - ClusterRole 23
Get - Node 20

typically perform on specific insecurely referenced resource types.
The result is illustrated in Table 4 and Figure 9.

For insecurely referenced namespace-scoped resource types,
the most prevalent pairs are Get-Secret (used by 97 Operators),
Get-ConfigMap (25 Operators), and Get-Deployment (25 Operators).
These indicate that a substantial number of Operators can be ex-
ploited to read data from Secrets, configuration files, or application
deployments in attackers’ unauthorized namespaces, causing infor-
mation exposure.

For insecurely referenced cluster-scoped resource types, themost
prevalent pairs are Get-Namespace (used by 51 Operators), Create-
ClusterRoleBinding (33 Operators), and Create-Namespace (30 Oper-
ators). These patterns suggest that Operators may be exploited to
reveal other namespaces in the cluster, assign cluster-wide permis-
sions, or provision new namespaces, leading to privilege elevation.

Together, these findings highlight that insecure cross-namespace
references are not only present but often tied to high-impact opera-
tions on sensitive or privileged Kubernetes resources.

5.3 RQ4: Case Study
We responsibly disclosed vulnerabilities to affected vendors. The
case study is hidden due to embargoes.

6 Mitigation
During our inspection of vulnerable Operators, we realized that
Operators aim to simplify user operations as much as possible,
thus may embed cross-namespace reference functionality to spare
users the repetitive, manual task of duplicating resources like Se-
crets across namespaces—a practice necessitated by Kubernetes’
namespace isolation. However, this convenience can inadvertently
introduce vulnerabilities if not properly implemented, as attackers
may exploit such "helpful" behavior to perform unauthorized cross-
namespace actions and privilege escalations. Thus, we suggest the
following mitigations to eliminate the insecure cross-namespace
reference vulnerability.
Scope Alignment. Developers should ensure that the declared
scope of resources accurately reflects the scope of their operational
effect. If a resource is defined as namespace-scoped but its process
logic performs actions across multiple namespaces at the cluster
level, it creates a dangerous mismatch between the resource’s access
control boundary and its actual impact. In such cases, the resource
should be explicitly declared as cluster-scoped, ensuring that only
privileged users can create or manipulate it.
Avoid Uncessary Cross-Namespace References. Operator de-
velopers should avoid supporting unnecessary cross-namespace
references in Custom Resource specifications. Whenever possible,
references to other resources, such as Secret and ConfigMap, should
be limited to the same namespace as the Custom Resource itself.
If cross-namespace references are truly required, it is suggested
to receive such requests from cluster-scoped resources, ensuring
users have enough permissions and no privilege escalation occurs.
Minimize User Permissions. While an Operator may legitimately
require elevated permissions, such as reading Secrets across names-
paces, to fulfill its responsibilities, these privileges often cannot
be further minimized without breaking functionality. However,
permission minimization can still be enforced at the user side. In
multi-tenant environments, cluster administrators should minimize
user permissions to prevent low-privileged users from exploiting
Operators. Role-based access control (RBAC) should be configured
so that only trusted users or service accounts can interact with
sensitive resources. By carefully controlling who can invoke the
Operator, administrators can prevent tenants from abusing it to
perform unauthorized cross-namespace or cluster-level operations.
Future Work: Finer Access Control. A fundamental limitation
in the current Kubernetes architecture is that Operators typically
lack visibility into who initiated a resource request. As future work,
we aim to design and implement a mechanism for Operators to
authenticate and verify the identity of the request user associated
with a resource event. This capability would allow Operators to
enforce that privileged operations are only performed on behalf of
users with appropriate permissions, strengthening the security of
Kubernetes Operators in multi-tenant environments.
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7 Related Work
Kubernetes Operators and Controllers. Existing research on
Kubernetes operators and controllers focuses on functional bugs
instead of security vulnerabilities. Gu et al. [30] proposes an auto-
matic end-to-end testing technique for validating the operational
correctness of Kubernetes Operators. Acto continuously generates
desired state declarations and verifies whether the Operator cor-
rectly reconciles the system to those states. Sun et al. [41] presents
an automatic reliability testing framework for cluster-management
controllers. By injecting faults, Sieve uncovers deep semantic bugs
by observing how controllers behave under fault conditions they are
expected to tolerate. Sun et al. [42] presents the formal verification
framework for Kubernetes controllers via TLA-style temporal rea-
soning, validating whether controllers eventually bring the cluster
to the desired state and maintain it. Liu et al. [34] verifies Kuber-
netes controllers and their configurations by modeling controller
behaviors and checking for violations of user-defined intent prop-
erties using model checking. It detects issues like imbalance and
lifecycle bugs, focusing on functional correctness. Xu et al. [46]
systematically summarizes historical functional bugs of Operator.

To the best of our knowledge, our work is the first comprehensive
study on Kubernetes Operator security.
Kubernetes Security. In terms of attack and exploitation tech-
niques, MITRE [24] and Microsoft [28] summarize tactics to com-
promise containers and container orchestration systems like Kuber-
netes. Pecka et al. [35] investigates privilege escalation scenarios
for DevOps pipelines on Kubernetes. He et al. [32] presents cross-
container attacks on Kubernetes with eBPF. Spahn et al. [40] sets
up honeypots on Kubernetes and analyzes the attacks towards con-
tainers and container orchestration systems. Shringarputale et al.
[39] presents a co-residency attack towards container orchestration
systems. Zeng et al. [48] comprehensively analyzes 30 vulnerabili-
ties in Kubernetes stacks. However, these attacks have not included
the security issues brought about by Kubernetes operators.

Kubernetes offers extensive configuration options for manag-
ing applications, including access controls and specifying secu-
rity contexts. Any misconfigurations can lead to severe security
vulnerabilities. Thus, another theme of Kubernetes security re-
search is eliminating misconfiguration. Islam Shamim et al. [33]
systematically identifies best practices to secure Kubernetes clus-
ters. Shamim et al. [38] conducts an empirical study and reveals
the disconnection between Kubernetes configuration recommen-
dations and real-world practices. Rahman et al. [36] designs static
analysis tools and conducts a large-scale empirical study on Ku-
bernetes manifests, revealing the landscape of misconfiguration.
Ul Haque et al. [44] leverages knowledge graphs to detect and
mitigate Kubernetes misconfiguration. Shamim [37] explores the
risk of misconfiguration when violating Kubernetes security best
practices. Recent work Yang et al. [47] identifies the security risk
of excessive Kubernetes RBAC permissions, which may lead to
whole cluster takeover. Gu et al. [31] follows up the research and
designs systems to automatically minimize RBAC permissions. The
industry also presents numerous tools for Kubernetes security, in-
cluding Trivy [11], Kubescape [22], KubeSec [13], KubeArmor [15],
Open Policy Agent [25], and Kyverno [23], providing functions like
misconfiguration detection and runtime policy enforcement.

While the existing works try to address misconfiguration and
thus achieve the Principle of Least Privilege (PoLP) for applications,
the vulnerability we present is not simply misconfigurations or
violations of PoLP. They arise from inherent flaws in howOperators
process user-controlled resources. These vulnerabilities exist even
when the permissions of Operators are minimal in the current
Kubernetes architecture, highlighting a deeper design-level security
gap in the Operator model itself.

8 Conclusion
In this paper, we presented the first research on the security issues of
Kubernetes Operators. We introduced Cross-Namespace Reference
Vulnerability with two strategies, demonstrating how an attacker
can bypass namespace isolation. We designed and implemented
a static analysis suite to detect such vulnerabilities. Large-scale
measurements illustrated that over 14% of Operators in the wild
are potentially vulnerable. Our findings have been reported to the
relevant developers, resulting in 7 confirmations and 6 CVEs by
the time of submission, highlighting the critical need for enhanced
security practices in Kubernetes Operators. We proposed possible
mitigation solutions and open-sourced the static analysis suite to
benefit the ecosystem.
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