
Securing Transformer-based AI Execution via
Unified TEEs and Crypto-protected Accelerators

Jiaqi Xue, Yifei Zhao, Mengxin Zheng, Fan Yao, Yan Solihin, Qian Lou
University of Central Florida

Abstract—Recent advances in Transformer models, e.g., large
language models (LLMs), have brought tremendous break-
throughs in various artificial intelligence (AI) tasks, leading to
their wide applications in many security-critical domains. Due
to their unprecedented scale and prohibitively high development
cost, these models have become highly valuable intellectual
property for AI stakeholders and are increasingly deployed via
machine learning as a service (MLaaS). However, MLaaS often
runs on untrusted cloud infrastructure, exposing data and models
to potential breaches. Mainstream protection mechanisms lever-
age trusted execution environments (TEEs) where confidentiality
and integrity for secretive data are shielded using hardware-
based encryption and integrity checking. Unfortunately, running
model inference entirely within TEEs is subject to non-trivial
slowdown, which is further exacerbated in LLMs due to the
substantial computation and memory footprint involved. Recent
studies reveal that the hybrid TEE-based scheme offloading par-
tial model inference operations to the untrusted accelerators (e.g.,
GPU) is a promising solution. However, prior offloading schemes
fail to ensure dual protection of data and model in Transformer
inference, as they cannot securely offload critical operations,
i.e., Attention and SoftMax, forcing these computations to
remain confined within TEEs. To address these challenges, we
propose TwinShield, a framework enabling secure Transformer
inference in heterogeneous TEE and accelerator systems with
dual protection for both model and data. TwinShield offloads
∼ 87% of computation to GPUs and delivers 4.0× to 6.1×
speedups over previous approaches across various Transformer
models.

I. INTRODUCTION

Transformers [1] have demonstrated outstanding perfor-
mance on a wide range of domains including computer vi-
sion [2] and natural language processing [3], [4], which are the
building blocks for many emerging applications such as chat-
bots [5] and medical image analysis [6], [7]. As Transformers
become increasingly popular, the confidentiality and integrity
of the inference services become a critical concern, especially
in confidentiality-sensitive sectors such as healthcare [6], [7],
finance [8], and personal assistant applications [9], [10]. Given
the substantial size and deployment complexity of these mod-
els, cloud-based Transformer-as-a-Service (TaaS) has emerged
as a widely adopted solution for end users to access these
state-of-the-art models in a cost-efficient way [11], [12], [13].

In these services, data provided by clients, such as personal
health information (including sleep patterns, pulse, and heart
rate) and banking records, are highly private. However, it
is widely known that remote computation (as in the cloud)
may not be trusted as adversaries can exploit either privileged
system software [14] or hardware vulnerabilities [15] to com-
promise data privacy and integrity. This becomes particularly

worrisome for Transformer-based systems where exposure of
sensitive data can result in tremendous breaches of personal
privacy (e.g., for clients). Moreover, an adversary may mali-
ciously tamper with the model and its computation, leading to
severe integrity compromise that introduces catastrophic sys-
tem consequences. In summary, offering data confidentiality
and inference integrity is imperative.

Trusted Execution Environments (TEEs), such as Intel
SGX [16], [17], offer an environment for safeguarding the
privacy (and sometimes integrity) for sensitive computation.
In systems with TEEs, the CPU is treated as the root of
trust. The processor shields individual secure domains (i.e., en-
claves) from privileged system software attacks via hardware-
enforced isolation. Furthermore, counter-mode encryption and
integrity tree-based data verification are performed by the
TEE-hardware to protect the breach and tampering of off-chip
data belonging to enclaves [17]. Accordingly, prior studies
have investigated the use of TEEs for secure machine learning
inference [18], [19], [20], [21]. For instance, MLCapsule [18]
proposes to store CNN models in enclave and perform model
inference completely in TEEs, hence protecting computation
integrity and the confidentiality of all data. Unfortunately,
deployment of the entire ML model inside TEEs introduces
extremely high overhead due to the limited resources available
within TEEs. Subsequent works [19], [22], [20], [21], [23],
[24] attempt to improve the performance of TEE-based model
inference by outsourcing certain computation from TEEs to
an untrusted external accelerator (e.g., GPUs, FPGAs and
ASICs), and verificating the computation integrity inside the
enclave. While the aforementioned secure ML outsourcing
techniques enhance system performance of TEE-only methods,
they struggle to outsource sufficient computations to untrusted
accelerators from trusted TEEs. The challenges are summa-
rized as follows:

(I) Confidentiality Challenge: Multiplicative Linear Oper-
ations, e.g., Transformer’s Attention. We categorize linear
operations into two types: additive and multiplicative. Addi-
tive operations, such as matrix multiplication involving one
variable matrix and one constant matrix. Multiplicative oper-
ations involve matrix multiplication where neither operand is
a constant matrix. Prior works show the feasibility of securing
execution of the additive operation on untrusted accelerators
via secret sharing and Freivalds’ algorithm [25], which works
well for the traditional convolutional neural networks (CNNs)
since the convolution of fixed constant pre-trained kernels and
variable inputs is additive operations. However, Transformers

ar
X

iv
:2

50
7.

03
27

8v
2

 [
cs

.C
R

]
 1

3
Ju

l 2
02

5

https://arxiv.org/abs/2507.03278v2

include massive multiplicative linear operations where neither
operands are constant matrices, rendering prior techniques
inapplicable;

(II) Confidentiality Challenge: Non-linear Operations, e.g.,
SoftMax. We find that different from CNNs where operations
in linear layers overwhelmingly dominate the computation for
model inference (> 98%) [19], non-linear operators in Trans-
formers (i.e., SoftMax) contribute non-trivial computation
overhead, especially for inputs with long tokens. Therefore,
under an outsourcing scheme with linear operation-only of-
floading, the execution of such non-linear functions in TEEs
will become the new bottleneck. As a result, it is necessary
to further outsource SoftMax operations for further unleash
the performance advantages of off-chip accelerators. Unfor-
tunately, none of the prior mechanisms is able to outsource
non-linear operations while maintaining proper model privacy
and integrity at the same time.

(III) Integrity Challenge: Effective Verification for Multi-
plicative linear and Non-linear Operations. Prior works [19],
[22], [20] rely on Freivalds’ algorithm [25] to guarantee the
integrity of the outsourced matrix computation, i.e., based on
the matrix multiplication’s associative law, A · B = C can
be verified by A · (B · r) == C · r, where A,B,C are
matrices, r is a vector. However, it cannot be applied to the
non-linear SoftMax in Transformers, which are element-wise
operations, not matrix multiplications; hence, a new integrity
mechanism is needed.

To address the above challenges, in this paper, we pro-
pose TwinShield, to enable a confidential and verifiable
Transformer inference. The client uploads private data to the
cloud server, which performs Transformer inference within
the trusted TEEs and untrusted accelerators. TwinShield’s
protocol enables most Transformer computations to run on
accelerators while ensuring data confidentiality and computa-
tion integrity. Our protocols and contributions are summarized
as follows:

• For challenge (I), we design a confidentiality-guaranteed
algorithm, OutAttnMult, to securely outsource multiplica-
tive attention operations to an untrusted accelerator. Our
algorithm transforms multiplicative linear operations into
additive computation with a few pre-computed offline
computations, enabling secure outsourcing of these com-
putations.

• For Challenge (II), we propose a secure SoftMax
outsourcing algorithm, OutSoftMax, which offloads its
primary computational component (exponentiation) while
retaining only a few additions and divisions within TEEs.

• For Challenge (III), we design U-Verify that guarantees
the integrity of outsourced computation (both linear and
non-linear). For the non-linear SoftMax function partic-
ularly, we propose a new check product protocol. U-Verify
also improves efficiency in linear operations compared to
prior methods.

• Through extensive experiments on various models, such
as vision, language, and multi-modal Transformers, we
show TwinShield achieves substantial throughput im-

provements ranging from 4.9× to 7.7× for private in-
ferences, and from 3.9× to 6.1× for private verifiable
inferences, without sacrificing accuracy.

II. THREAT MODEL

We consider an outsourcing scheme between a client-side
data owner C and a server S, where S executes a Transformer
model f(x) : X → Y on data provided by C. The model
f(·) can belong to the server (e.g., in SaaS/API [26], [27],
[28]). We adopt a realistic threat model in which the server S
is not fully trustworthy and may be malicious or vulnerable
to tampering with the computation results f(x). This departs
from the traditional semi-honest setting, in which S is assumed
to be honest but curious about inferring C’s data privacy. An
ideal protection scheme should satisfy the following security
properties: Data Privacy: S cannot learn any information
about input x. Integrity & Verification : C could detect an
integrity attack when interacting with S for any input x and
ensure the correctness of y = f(x). Function Privacy: If
f(·) belongs to S, C cannot learn more about f(·) than what
is revealed by y = f(x). Similar to prior works [19], [22], we
assume the availability of TEEs (e.g., Intel SGX) that offer
hardware-based data privacy, integrity, and function privacy
protection for execution inside an enclave. Our methods aims
to ensure these security features for computations outside
TEEs. Note that recently Intel SGX has been the subject of
side-channel attacks [29], [30], [31], however, most of these
issues are being studied with various mitigation techniques
proposed [32], [33], [34]. These attacks are not in the scope
of our work.

III. BACKGROUND AND RELATED WORK

A. Transformers

A basic Transformer consists of an embedding layer and
consecutive transformer layers. Every transformer layer is a
composition of a multi-head self-attention (MSA) module, a
feed-forward (FFN) module, two normalization modules and
residual connections. The input data is split into patches, which
are then transformed into a token sequence via the embedding
layer. The input token sequence can be uniformly denoted as
Xe ∈ RN×D, where N is the number of tokens and D is
the embedding dimension. We describe the main computation
blocks in Transformers below.
Additive Linear Operations. The additive linear operations
in Transformers are mainly the linear layers, where the output
features are computed by multiplying the input features with
weight matrices. For example, in the Attention module, given
the input tokens Xe ∈ RN×D, the output Q,K, V ∈ RN×dh

are computed by multiplying input Xe with three weight
matrices Wq,Wk,Wv ∈ RD×dh , where dh is the head di-
mension. Similarly, in the Feed Forward module, the input
tokens Xe ∈ RN×D are multiplied by two weight matrices
W1,W2 ∈ RD′×D:

FeedForward(Xe) = Act(Xe ·WT
1 + b1) ·W2 + b2 (1)

2

These additive linear operations, such as (Xe ·Wq) and (Xe ·
WT

1), can be securely outsourced via existing techniques [19],
[22]. The additions with the bias matrices b1, b2 incur only
marginal computation overhead in practice.
Multiplicative Linear Operations. There are massive mul-
tiplicative linear operations in Transformers which cannot
be outsourced via prior methods. The primary multiplicative
linear operations are computing the attention map and attention
output in the Attention module:

Attention(Q,K, V) = SoftMax(QKT /
√
dh)V (2)

The multiplicative operations (e.g., Q ·KT) are fundamentally
different from the additive linear operations (e.g., Q = Xe ·
Wq). This is because in the multiplicative operations, neither
operand is a constant matrix. As a result, the multiplicative
operations cannot be securely outsourced via existing tech-
niques. We refer to the matrix multiplication between Q and
K, and between the attention map and V as attention matrix
multiplication (AttnMult).
Non-linear Operations. Apart from the linear operations,
Transformers consist of numerous non-linear operations such
as the SoftMax function in the Attention module in Equa-
tion 2 and the Activation function Act in Equation 1. These
non-linear operations lead to considerable computation over-
head during inference. For example, the SoftMax is applied
to (QKT /

√
dh) ∈ RN×N to compute the attention map. It

has a complexity of O(N2), i.e., quadratic to the input size.
We highlight that the multiplicative linear operations such

as Q · KT and non-linear operations such as SoftMax are
computed independently across multiple attention heads. For
MSA with H heads, the multi-head attention is computed as:

MSA(Q,K, V) = Concat(head1, ..., headH)WO (3)

where Concat(·) is the concatenation operation,

headi = Attention(XW i
q , XW i

k, XW i
v) (4)

and WO ∈ RHdh×D is a weight matrix to map features
in all heads to the output dimension. The MSA is the key
mechanism in the Transformers and also the performance
bottleneck. However, existing works cannot securely outsource
the heavy computation in the multiplicative linear operations
and non-linear operations within the MSA module.
Normalization. Normalization modules normalize the inputs
of MSA and FFN. Given the input tokens Xe ∈ RN×D, every
value xi in Xe is normalized to yi by:

yi = γ · ((xi − µ)/
√
σ2 + ϵ) + β (5)

where µ is the mean value, σ is the standard variance, γ is
the scaling factor and ϵ, β are offsets. µ and σ are computed
differently according to the specific normalization method.
Due to their element-wise nature of these operations, it is
practical to implement them within TEEs.

B. Trusted Execution Environments (TEEs)

TEEs like Intel SGX [16] provide a secure environment
where data confidentiality and, in some cases, computation
integrity are ensured by hardware. Intel SGX specifically
safeguards the confidentiality and integrity by isolating data
and code within an enclave, shielded from external elements
including the operating system, hypervisor, and hardware
devices on the system bus. This isolation involves a dedicated
memory region, the Processor Reserved Memory (PRM),
managed by SGX-enabled CPUs. Here, the Enclave Page
Cache (EPC) stores enclave data and code in 4 KB pages,
accessible only through specific CPU instructions. This setup
prevents unauthorized access to the EPC, maintaining a secure
environment for sensitive computations. SGX also supports
remote attestation, allowing remote verification of an enclave’s
integrity through cryptographic proofs. These proofs involve
hashing and signing the enclave’s contents, verified by Intel’s
service. This feature has motivated research into running
deep learning models within TEEs for security [18]. Further
studies have investigated outsourcing additive linear opera-
tions to untrusted accelerators to enhance efficiency without
compromising security [22], [19]. Our work expands on this
by also outsourcing multiplicative linear operations and non-
linear operations, enabling efficient, confidential and verifiable
large-scale Transformer inference.
Legacy GPUs and GPU-based TEEs. While some emerging
GPUs, such as the NVIDIA Hopper [35], have begun to
support TEE environments, many other emerging GPUs and
legacy GPUs (such as GTX series and A100) currently de-
ployed in existing data centers remain in use and are likely to
persist for years to come. As a result, CPU-based TEEs are still
essential, and our proposed methods can continue to benefit
these GPUs effectively. In addition, while GPU TEE can
potentially enable native trusted GPU-based model inference,
several key issues tamper its realistic adoption. Firstly, only
a selected line of GPUs has the feature of TEE, which also
needs to be paired with certain CPU TEEs to function properly.
Such a configuration is not widely available for real-world
deployment. Secondly, many existing large-scale production
system are equipped with non-TEE GPUs that still have high
performance, upgrading them with the TEE-enabled GPU
leads to cost ineffectiveness and sustainability issues. Thirdly,
with the growing heterogeneity of hardware accelerators (e.g.,
GPUs, TPUs an FPGAs), a secure computation scheme that
relies on each hardware device to support TEE for workload
outsourcing is impractical due to the potential compatibility
issues among multiple vendors and the complexity of cross-
device TEE protocol designs. Therefore, designing a secure
outsourcing scheme that only utilizes the CPU TEE as the
root of trust and can take advantage of the tremendous perfor-
mance speedup from executions in the untrusted accelerators
is imperative.

C. Secret Sharing for Data Confidentiality

Secret Sharing [36], [37], [38] is a cryptographic primitive
that allows multiple parties to compute a function over their

3

inputs while keeping them private. All our algorithms are
built on a two-party secret sharing over the field Fp, where
p is a prime number indicating field size. In a two-party
secret sharing, a secret x is split into two shares by random
sampling ⟨x⟩0 , ⟨x⟩1 ∈ Fp, such that x = ⟨x⟩0+⟨x⟩1 mod Fp.
Secret sharing offers a strong security guarantee that, given
a share ⟨x⟩0 or ⟨x⟩1, the value of the original x is hidden,
i.e., either party can reconstruct the value of x with negligible
possibility [36]. In the setting of TEE-based confidential
inference, the value x can be split by a randomness r ∈ Fp

chosen by the TEEs, such that the two shares are ⟨x⟩0 = r
and ⟨x⟩1 = x− r, respectively. Prior works [19], [20] employ
secret sharing to provide privacy guarantees when outsourcing
additive linear operation with constant weights w. Yet, existing
outsourcing schemes cannot be extended to multiplicative
operations where both operands are variables, such as Q and
K, as it is impossible to precompute multiplication between
r and either Q or K.

D. Computation Verification for Integrity

The verification algorithm enables a client to assert the
correctness of computations performed by a server. Within
the landscape of TEEs, where computations are outsourced
to high-performance untrusted devices such as GPU, ensuring
the integrity of these operations is paramount. Soter [21]
introduces a ”fingerprint” matrix method for integrity checks
by the TEEs, which, however, may be vulnerable to targeted
attacks. Additionally, recent research [39] suggests a sampling-
based verification by the TEEs to compare against GPU
outputs, facing limitations in detecting selective manipulations
without extensive sampling. Freivalds’ algorithm [25], refer-
enced in [19], [20], [22], provides an efficient mechanism
for verifying matrix multiplications of the form AB = C.
The algorithm commences by generating a random vector
r, followed by the TEEs computing the products B · r and
C · r. The next step involves multiplying A with B · r, and
comparing this outcome to C · r. A discrepancy between
these products indicates a failure of AB to equal C, whereas
a match suggests a probable equality between AB and C.
Employing this method, the TEEs are able to perform a
verification of O(n3) matrix multiplication complexity using
a more efficient O(n2) vector-matrix multiplication operation,
thereby enhancing the verification efficiency within the TEEs.
However, Freivalds’ algorithm cannot be used to verify non-
linear functions like SoftMax. In contrast, our proposed U-
Verify method is capable of supporting such verification.

E. Related Work

In this subsection, we compare TwinShield and existing
research. The first research direction, denoted by TEE-only,
focuses on executing all computations within TEEs [40],
[41]. An example is TensorSCONE [40], which conducts all
inference processes inside a TEE enclave to ensure the con-
fidentiality of both the model and data, along with inference
integrity. While this approach guarantees security within the
enclave, it is less efficient than performing computations in

untrusted accelerators outside the TEEs. The second research
trajectory, represented by additive outsource, aims to safeguard
data confidentiality and inference integrity without necessarily
protecting model confidentiality, assuming that the model
provider and the cloud server are the same entity. Therefore,
there’s no need for model confidentiality. This approach, such
as Slalom [19] and DarKnight [22], allows for the use of
additive confidentiality-preserving and verification techniques
to offload certain computations to untrusted hardware. Unlike
cloud services that do not require model confidentiality, recent
efforts like MLCapsule [18], Soter [21], ShadowNet [20] and
others [42], [43], [44], [45] prioritize model privacy over user
input confidentiality in on-device settings, indicating a shift in
focus depending on the deployment environment. The fourth
strand of research [11], [39] explores enhancing TEEs security
through cryptographic methods, such as Fully Homomorphic
Encryption (FHE) [46], [47], to mitigate risks like model theft
and side-channel attacks. These enhancements are considered
complementary to our approach. Tempo [48], which can
provide protection for both model and input confidentiality
on model training, lacks the established theoretical security
foundations seen in Slalom [19] and ShadowNet [20]. Our
work, TwinShield , aligns with the second research line but
goes beyond their capabilities by facilitating the outsourcing
of complex operations like multiplicative attention operations
and the non-linear SoftMax function.

IV. MOTIVATION

We categorize linear operations into two types: additive and
multiplicative. Additive linear operations, involve one variable
matrix and one constant matrix. In contrast, multiplicative
linear operations involve operands that are both runtime vari-
ables. Prior works show the feasibility of securely outsourcing
additive operations to untrusted accelerators via secret sharing
and Freivalds’ algorithm, which works well for the traditional
convolutional neural networks (CNNs) since the convolution
of constant pre-trained kernels and variable inputs belongs to
the additive operations. We adapt this method to outsource the
additive operations in the Transformer, such as Q = X ·WQ.
This method involves precomputing R ·WQ, outsourcing the
operation (X −R) ·WQ, and an addition to obtain Q within
TEEs. However, this technique does not apply to multiplicative
linear operations involving two-variable matrices, for exam-
ple, QKT = (XWQ) · (XWK)T in attention multiplication
(AttnMult.), which necessitates execution within the TEEs.
Additionally, the SoftMax function, essential for creating
the attention map from QKT , is inherently non-linear and
has not been successfully outsourced by current methods,
requiring it to be processed inside the TEEs. Although in-
tegrity for linear operations can be confirmed using Freivalds
algorithm [25], verifying the integrity of non-linear functions
such as SoftMax presents an ongoing challenge.

After relocating the additive linear layers to a GPU, the
remaining in-TEE processing of AttnMult. and the SoftMax
consumes over 60% of the total execution time. This under-
scores the necessity of externalizing both the multiplicative

4

AttnMult. and SoftMax computations to achieve greater
efficiency. By outsourcing the multiplicative linear operations,
we could potentially halve the execution time required by
the TEEs. Moreover, offloading the SoftMax could further
reduce latency, with potential savings of up to 83%. While this
approach marginally increases the verification workload within
the TEEs, the substantial gains in efficiency from outsourcing
these operations justify the effort. This evidence motivates the
pursuit of secure techniques for offloading attention matrix
multiplication and SoftMax computations, with a focus on
maintaining computational integrity, particularly for the inher-
ently complex SoftMax operation.

V. TwinShield DESIGN

Overview.
We first adapt prior work to securely outsource additive

linear operations in Transformer. Then we propose ❶ Out-
AttnMult in Section V-A to securely outsource multiplicative
attention operations. With all linear computation outsourced
via OutAttnMult, the non-linear SoftMax function becomes
the main bottleneck. To this end, we further propose ❷
OutSoftMax in Section V-B, to outsource the SoftMax.
We note that the SoftMax involves a significant number
of exponentiations, alongside few additions and divisions.
Our strategic approach focuses on outsourcing the expen-
sive exponential computations while retaining the addition
and division operations within the TEEs. Specifically, this is
achieved by outsourcing ex+r to accelerators and recovering
ex by dividing the precomputed er. Also, we introduce ❸
U-Verify in Section V-C to ensure the integrity of outsourced
computations, especially the verification of non-linear function
integrity.

Our experiments reveal that, within the TEEs, normalization
and activation functions are relatively lightweight, accounting
for less than 5% of total execution time. Conversely, attention
matrix multiplication and SoftMax are identified as primary
bottlenecks, consuming approximately 55% and 35% of ex-
ecution time, respectively. By outsourcing these bottlenecks,
we can significantly enhance overall efficiency, enabling more
efficient and secure Transformer inference.

Embedded

Scale Shuffle

Input

(a) Outsource
Multiplicative Operation

Mask

(b) Outsource Non-linear Operation.

Non-linear

ExponentialDiv Outsource
Exponential

reduce

Enhanced Non-linear

Secret Shares Recover Check Product

 Hash

Result

(c) Verification for Outsourcing

1

2

3

Embedded

Scale Shuffle

Input

(a) Outsource
Multiplicative Operation

Mask

(b) Outsource Non-linear Operation.

Non-linear

ExponentialDiv Outsource
Exponential

reduce

Enhanced Non-linear

Secret Shares Recover Check Product

 Hash

Result

(c) Verification for Outsourcing

1

2

3

Embedded

Scale Shuffle

Input

(a) OutAttnMult

Mask
(b) OutSoftMax

Non-linear

ExponentialDiv Outsource
Exponential

reduce

Enhanced Non-linear

Secret Shares Recover Check Product

 Hash

Result

(c) U-Verify

1

2

3

Fig. 1. (a) OutAttnMult’s operations within TEEs. (b) OutSoftMax outsources
time-consuming exponential calculations in the SoftMax to enhance effi-
ciency. (c) U-Verify is performed after recovering the outsourced computation
to verify the integrity of the computation by checking the product.

The starting point is to securely outsource the additive
linear operations. We adapt method from prior work [19] and
integrate our proposed U-Verify for more efficient verification.

Initially, the input X is masked with a random matrix R within
the TEEs and sent to accelerators to compute (X+R)·W . The
TEEs then use the precomputed RW to recover the desired
XW by subtracting RW from the accelerators’ output. Verifi-
cation of outsourced additive operations can be performed us-
ing either the traditional Freivalds’ algorithm or our proposed
U-Verify, as detailed in Section V-C. By default, we employ
U-Verify, which, as shown in Figure 8, provides significant
efficiency improvements over the Freivalds’ algorithm.

A. Outsource Multiplicative Attention Operation: OutAttnMult

Unlike additive linear operations, multiplicative linear oper-
ations involve two variable operands. This variability prevents
TEEs from precomputing the product of either operand with
the predefined random mask, as they lack prior knowledge
about these operands. Specifically, consider the attention mul-
tiplication Q ·KT : TEEs (in Secure World) mask Q with RQ

and KT with RT
K , then outsource (Q + RQ) · (KT + RT

K)
to the accelerators (in Normal World), yielding QKT +
RQK

T +QRT
K +RQR

T
K . To recover the target result QKT ,

the TEEs must subtract the additional terms. Among these,
only RQR

T
K can be precomputed as it does not depend on the

variable matrices Q and KT , unlike others which cannot be
precomputed due to their dependency on Q or KT .

We notice that the un-precomputable terms both QRT
K and

RQK
T involve one predetermined mask and one unknown

variable operand, allowing their outsourcing via the scheme
for additive linear operation. For instance, TEEs can outsource
(Q + RQ) · RT

K and subsequently obtain QRT
K by subtract-

ing the precomputed RQR
T
K . However, this naı̈ve approach

presents a critical security risk by exposing RT
K . This exposure

allows the adversary in the normal world to potentially recover
KT using KT + RT

K obtained from the initial outsourcing
round.

To prevent this risk, we propose a strategy that enhances
security by using a scaled version bRT

K rather than RT
K . More

importantly, bRT
K is not transmitted directly to the accelerator

but is integrated into the matrix KT +RT
K through a column-

wise permutation. This approach serves two primary security
functions: 1) it conceals the distinction between KT + RT

K

and bRT
K , thwarting attackers from identifying them, and 2) it

facilitates the simultaneous computation of (Q + RQ) · bRT
K

along with (Q+RQ) ·(KT +RT
K), thereby obviating the need

for an additional round of outsourcing. Subsequently, the TEEs
can retrieve QRT

K from (Q + RQ) · RT
K by applying scalar

multiplication with 1/b and subtracting RQR
T
K . Although we

focus here on KT , the processing of Q employs a similar
principle.

The details of OutAttnMult are in Figure 2. Given input
matrices Q ∈ Fm×n and KT ∈ Fn×p in a finite filed F,
OutAttnMult is divided into offline phase and online phase.
Offline Preprocessing. Initially, TEEs (in Secure World) gen-
erate two random matrices RQ ∈ Fm×n and RT

K ∈ Fn×p. It
then precomputes aRQ and bRT

K by two scalar multiplications.
Embedded Additive Outsource. In this stage, TEEs first
obfuscate Q and KT to Q+RQ and KT +RT

K , respectively.

5

Fig. 2. Illustration of Outsource Multiplicative attention operation: OutAttn-
Mult

These matrices are then embedded into Q̃ and K̃T through
strategic permutations. Specifically, Q̃ is crafted by vertically
stacking aRQ beneath Q + RQ and applying a row-wise
permutation,

Q̃ = perm

([
Q+RQ

aRQ

]
, λ1

)
(6)

Similarly, K̃T is constructed by horizontally concatenating
KT +RT

K with bRT
K and applying a column-wise permutation,

K̃T = perm
([
KT +RT

K bRT
K

]
, λ2

)
(7)

perm(·, λ) here indicates matrix permutation with permutation
indices λ, so that the adversary in normal world cannot
distinguish RQ or RT

K from the blinded matrics.
These blinded matrices are then outsourced to the accelera-

tor (in Normal World) for multiplication. After recovering the
received results with the permutation indices, TEEs get:

perm(Q̃KT , λ−1
1 , λ−1

2) =

[
(Q+RQ)(K

T +RT
K) a(Q+RQ)R

T
K

bRQ(K
T +RT

K) abRQR
T
K

]
(8)

Figure 1 (a) intuitively shows this masked input processing.
Recover. As detailed in Figure 2, the TEEs start with applying
a scalar multiplication to abRQR

T
K to obtain RQR

T
K . The

TEEs then retrieve QRT
K and RQK

T by performing scalar
multiplications on a(Q+RQ)R

T
K and bRQ(K

T+RT
K), respec-

tively, and subsequently subtracting RQR
T
K from each. The

final recovery of QKT is achieved by strategically subtracting
these terms.

Complexity Analysis. In vanilla secure matrix multiplication
within TEEs, computing QKT for matrices Q ∈ Fm×n and
KT ∈ Fn×p requires O(mnp) multiplications to be per-
formed in resource-constrained TEEs. In contrast, OutAttnMult
significantly reduces this burden by offloading the bulk of
computation to the accelerators.

In the offline phase, TEEs perform two scalar multiplica-
tions with a complexity of O(mn+ np) for aRQ and bRK .

At the Embedded Additive Outsource stage, TEEs execute
two permutations and two additions to prepare Q̃ and K̃T .
The GPU then handles the computationally intensive matrix
multiplication Q̃ · K̃T , with a complexity of O(mnp), given
that Q̃ ∈ F2m×n and K̃T ∈ Fn×2p.

Finally, in the recovery stage, the TEEs perform three
scalar multiplications with O(mn + np) and five additions
to recover the desired QKT . Overall, OutAttnMult shifts the
computational load from O(mnp) multiplications within the
TEEs to O(mnp) multiplications on the accelerator, alongside
scalar multiplications and less costly permutation, and addition
operations within the TEEs.
Security Analysis. In the outsourcing protocol in Figure 2,
data within the TEEs (the Secure World) is protected, while
data processed in accelerators (the Normal World) is exposed
to potential attackers. Our goal is to prevent the attackers in the
normal world from deducing the original Q or KT . To achieve
this, the TEEs construct Q̃ and K̃T via Equations 6 and 7.
Taking Q̃ as an example, the TEEs create a secret share by
adding RQ to Q and subsequently permutes Q+RQ together
with aRQ using private permutation indices λ1. Since Q+RQ

is equivalent to applying a one-time pad [49], its distribution
is indistinguishable from aRQ in the view of attackers [43].
The security level is quantified as log(d · (2m)!), where 2m
represents the total rows in Q̃ and d denotes the finite field size.
This security level estimates the probabilities for an attacker to
accurately discern Q+RQ and aRQ from Q̃ and to correctly
identify scalar a. In Transformers, Q typically has a large
dimension (e.g., 128 for BERT), an 8-bit scalar would provide
a security level of approximately 13,471 bits. Additionally,
by expanding RQ with random values and assigning varying
scalars to different rows (columns for RT

K), the TEEs can tailor
the security level to meet specific requirements and matrix
sizes, further enhancing protection. Detailed methodologies
and additional insights are presented in Appendix A.

B. Outsource Non-linear SoftMax:
OutSoftMax

Prior outsourcing methods for CNN-based models typically
offload linear layers to accelerators, while keeping non-linear
ReLU within TEEs due to their relatively simpler computations
and the difficulties of non-linear outsourcing. However, in the
context of Transformer models, the SoftMax within attention
layers poses a substantial computational bottleneck, account-
ing for about 64% of the total processing time after linear
operations have been outsourced from TEEs for sequences
of length 512. The complexity of the SoftMax operation
increases quadratically with the input length, which means

6

its computational burden becomes even more pronounced.
Specifically, within the SoftMax process, the exponentiation
operation alone is responsible for 92.9% of the SoftMax
inference time when executed within the TEEs.

The rationale for outsourcing the SoftMax function stems
from its reliance on extensive exponential calculations, which
interestingly exhibit a property akin to linear operations.
Specifically, linear layers are amenable to outsourcing due to
the distributive property of matrix addition over multiplication,
facilitating the computation of (X + R) ·W as XW + RW .
In contrast, non-linear layers typically do not share this trait.
Yet, the exponential function crucial to the SoftMax displays
a similar linear-like property: eX+R = eX · eR. By precal-
culating eR during the offline phase, the TEEs can securely
outsource the exponential computation eX+R, capitalizing on
this linear-like behavior. The accelerator then processes eX+R

and sends it back to the TEEs, where eX is derived by dividing
eX+R by the precalculated eR on an element-wise basis. This
method effectively transforms an exponential operation into a
multiplication, substantially easing the computational load as
shown in Figure 1 (b). This is especially advantageous given
that exponentiation is significantly more resource-intensive
compared to basic arithmetic operations within the TEEs.

Our OutSoftMax algorithm is depicted in Figure 3 and
comprises one offline stage along with two online stages:
Outsource Masked eX and Division in the TEEs. For an input
vector X ∈ Fn, the process is as described below.
Offline Preprocessing. During the offline stage, for each
element xi of the input X , the TEEs in the secure world
sample a corresponding random value ri from the field F and
computes:

eri , ∀i ∈ {1, . . . , n} (9)

Outsource Masked eX . TEEs mask the input vector by
computing:

x′
i = xi − ri, ∀i ∈ {1, . . . , n} (10)

Then send x′
i to the accelerator in normal world, which returns:

ex
′
i , ∀i ∈ {1, . . . , n} (11)

Upon receving the results, the TEEs restore exi by multiplying
the accelerator’s output with the precomputed exponentials:

exi = ex
′
i · eri , ∀i ∈ {1, . . . , n} (12)

Division in the TEEs. TEEs firstly compute the normalization
scalar by:

s =

n∑
i=1

exi (13)

and subsequently, the SoftMax scores are computed by
divisions:

yi =
exi

s
, ∀i ∈ {1, . . . , n} (14)

which completes the secure SoftMax outsourcing.
By leveraging the outsourced computation for the most

resource-demanding operation, i.e., exponentiation, the Out-
SoftMax efficiently computes SoftMax scores within the
TEE’s constraints.

Fig. 3. Outsourcing non-linear SoftMax: OutSoftMax

Complexity Analysis. In the offline phase, Outsource Masked
eX , the TEEs prepare for the SoftMax operation by sampling
and precomputing the exponentiations of n random values, one
for each element of the input vector. During the first online
phase, the TEEs mask each input element by performing
n subtractions. The masked values are then outsourced to
the accelerator for further processing, which undertakes n
exponentiation operations. In the online phase, i.e., Division
in the TEEs, the TEEs complete the SoftMax computation
by executing n multiplications to combine the accelerator’s
output ex

′
i with precomputed values eri , followed by n ad-

ditions to sum the exponential terms and n multiplications
to calculate the SoftMax probabilities. So our OutSoftMax
convert n exponentiation operations to convert 2n multipli-
cation operations and n addition operations in the TEEs.
By relocating the exponentiation tasks to the accelerators,
the OutSoftMax algorithm relieves the TEEs of the most
computationally demanding aspect of the SoftMax function.
Considering that exponentiation can be an order of magnitude
more time-consuming than simpler arithmetic operations in
the TEEs setting, outsourcing these n operations significantly
enhances the efficiency of secure inference processes. The
strategic offloading of these tasks ensures that the performance
bottleneck within the TEEs is mitigated.
Security Analysis. In our OutSoftMax protocol, only the
transformed vector X ′ = [x1 − r1, ..., xn − rn] is exposed

7

to the normal world. Due to the additive secret sharing [36],
[37], X ′ = X −R can be viewed as one of the secret shares
of original X . Without the other share R = [r1, ..., rn], the
attacker cannot reconstruct the original X from X ′.

C. U-Verify

Verification of OutSoftMax. Prior matrix multiplication out-
sourcing schemes use Freivalds’ algorithm [25] to verify
whether the the product of two input matrices A ·B equals to
the output matrix C. It achieves this by multiplying both B and
C by a random vector r, then checking if A times the result
of Br equals Cr. In this case, the TEEs can use O(mn+np)
multiplications to verify an O(mnp) matrix multiplication,
where (m,n) is the size of matrix A and (n, p) is the
size of matrix B. However, Freivalds’ algorithm is unsuit-
able for verifying element-wise operations like exponentiation
since it relies on matrix-specific properties. In the SoftMax
computation, exponentiation is applied individually to each
element, lacking the associative and distributive properties that
Freivalds’ algorithm depends on, thus necessitating a different
approach for verification. Our insight stems from recognizing
the unique linear-like feature of the exponential function where
ea1x1+a2x2 = (ex1)a1 · (ex2)a2 .

Fig. 4. U-Verify on OutSoftMax.

Figure 4 illustrates the procedure of our verification method
for OutSoftMax. Consider an input vector X = [x1, ..., xn].
The TEEs begin with generating a secret random vector
a = [a1, ..., an], and computing the hash of X , denoted
as hashX , using the equation: hashX =

∑n
i=1 aixi. This

hash is then randomly inserted into X to form X̂ , and then,
TEEs utilize OutSoftMax to send accelerators the secret share,
X ′ = X̂ − R = [x1 − r1, ..., hashX − rhash, ..., xn − rn] =
[x′

1, ..., hashX
′, ..., x′

n] to compute the exponential of each
element, resulting in: eX

′
= [ex

′
1 , ..., ehashX

′
, ..., ex

′
n]. Upon

receiving eX
′

from accelerators, the TEEs first recover eX

according to Equation 12 and then verifies the correctness of
the computation by checking the following equality:

n∏
i=1

(exi)ai = ehashX (15)

As depicted in Figure 1 (c), since the hash is integrated prior
to the outsourcing mask, integrity verification is performed
after the results are recovered.
Complexity Analysis. In the SoftMax verification process,
the TEEs first generate random positive coefficients a =
[a1, ..., an] and computes the hashX =

∑
aixi, involving n

multiplications and n − 1 additions. This hash, alongside X ,
forms an augmented vector X̂ , which is then outsourced by
OutSoftMax to the accelerator to compute eX

′
. The TEEs sub-

sequently verify the computation by comparing
∏
(exi)ai with

ehashX , ensuring the correctness of the SoftMax operation.
This verification requires up to n(amax−1)+n multiplications,
depending on the largest ai value. If the TEEs constrain the
values of a below 3, the required multiplications are capped at
3n, making this verification process significantly more efficient
than performing n exponentiations directly within the TEEs
for SoftMax computation.
Security Analysis. For a successful adversarial scenario,
where the attackers seek to alter the exi element in the correct
output eX , they would need to modify the hashX according to
the coefficient ai to bypass the verification. However, without
knowledge of both coefficients ai and the location of hashX
within X̂ , the attack success rate is limited to 1

n·2d , where n
is the size of eX , and 2d represents the space of possible ai.
Formally, the security level is expressed as log(n · 2d).

More importantly, since OutSoftMax is applied to the hashed
vector X̂ , which is blinded with a random mask, the security
of U-Verify is further strengthened by OutSoftMax. In other
words, to launch an attack, the attackers must first brute-force
the random masks used in OutSoftMax to recover X̂ from X ′.
Thus, the overall security level is raised to log(n · 2d · dn),
where 1

dn represents the probability that attackers correctly
identify all masks used in OutSoftMax.

Furthermore, traditional replay attacks are thwarted by the
one-time use of scalars in U-Verify and masks in OutSoftMax.
More details can be found in Appendix A.
Verification of OutAttnMult. Figure 5 outlines the procedure
for verifying OutAttnMult operations. In the offline phase,
the TEEs commence by sampling a secret random vector
hQ from the finite field Fn to compute the hash hashQ as
follows: hashQ = hQ ·Q. Next, during the online phase, the
TEEs construct an augmented matrix by appending hashQ to
matrix Q, and then utilizes the accelerator’s computation of
the product with KT using OutAttnMult. Upon receiving the
results from the accelerator:[

Q
hashQ

]
·KT =

[
QKT

hashQ ·KT

]
(16)

The TEEs recover the result via OutAttnMult, and then ver-
ify the multiplication’s correctness by ensuring that hQ ·QKT

equals hashQ ·KT .
Security Analysis. A successful integrity attack requires tam-
pering with the matrix multiplication result QKT such that it
still passes the integrity check hQ ·QKT = hashQ ·KT . To
bypass this check, an attacker would need to modify hashQ so
that the altered hashQ ·KT remains consistent with hQ ·QKT .

8

Fig. 5. U-Verify on OutAttnMult.

However, multiple barriers prevent such an attack. First, the
permutation procedure in OutAttnMult obscures hashQ within
a mixture of hashQ and Q, making it impossible for the
attacker to identify hashQ. Second, the additive masks ap-
plied during OutAttnMult render any malicious multiplication
ineffective. Most critically, the random vector hQ is available
only within the TEEs, so without knowing hQ, it is impossible
to maintain the equality hQ · QKT = hashQ · KT by
modifying QKT , hashQ, or KT . Simply multiplying all terms
by the same scalar also fails because the mask introduced
by OutAttnMult disrupts this multiplicative relationship. More
discussions can be found in Appendix B.
Complexity Analysis. The TEEs compute the hash hashA
using n×m multiplications and few additions. The accelerator
then performs the bulk of computation by multiplying the
augmented matrix with B, requiring a total of (m+1)×n×p
multiplications for both the matrix product and the hash. Upon
receiving the result, the TEEs verify the integrity with a single
vector-matrix multiplication involving m× p multiplications.

VI. EXPERIMENTAL METHODOLOGY

In this section, we introduce the experimental methodology.
Models. In our evaluation, we selected four transformers: 1)
ViT-16B [2] applies the transformer structure to computer vi-
sion, comprised of 12 layers and 16 attention heads, each with
a hidden feature size of 768, tailored for image classification.
2) BERT-Base [3], a seminal model in NLP, features 12 layers
and 12 attention heads, each with a hidden feature size of 768,
aimed at comprehending and processing language. 3) LLaMA-
7B [4] marks an advancement in language models with its 32
layers and 32 attention heads, each with an extensive hidden
feature size of 4096, for intricate language tasks. 4) CLIP [50]
fuses vision and language by employing 12 layers with 12
attention heads for both its text and visual encoders, each with
a hidden feature size of 768, and is trained across a diverse
set of images and text pairs.

Datasets. ViT-16B and CLIP are evaluated on the Ima-
geNet [51] dataset, a benchmark for image classification, with
accuracy serving as the metric for success. BERT-Base is
tested against the SST-2 dataset [52], a standard for sentiment
analysis in NLP, also using accuracy as the evaluative measure.
For LLaMA-7B, we employ the Wiki-Text dataset [53] to
gauge its language modeling capability, utilizing Perplex-
ity as the metric, which quantifies how well a probability
model predicts a sample. Accuracy measures the proportion
of correct predictions over the total, reflecting classification
performance, while Perplexity measures the model’s certainty
in its predictions, with lower values indicating better predictive
performance.
System Setup and Implementation. We conducted the
TwinShield implementation on a server powered by an
Intel(R) Xeon(R) Gold 6342 CPU, operating at 2.8GHz, and
equipped with 512GB of DRAM. This setup also included
an NVIDIA A40 GPU with 48GB of VRAM. Our SGX
implementation leveraged Eigen [54], a linear-algebra library
also employed by TensorFlow for constructing DNN lay-
ers such as the attention module, SoftMax, LayerNorm,
GeLU, and ReLU. The development environment included
TensorFlow and Python 3, used for model quantization and
inference. We sourced pre-trained models for ViT, BERT, and
CLIP from Keras [55] and applied quantization techniques
as described in recent studies [56], [57]. Additionally, we
acquired a pre-trained, quantized 8-bit LLaMA model from
HuggingFace [58].
Quantization. TwinShield adopts a quantization strategy for
both inputs and model weights, drawing on the approaches of
Slalom [19] and DarKnight [22]. Initially, it converts values
from floating-point to fixed-point by selecting a fractional bit
number, l, scaling values by 2l, and rounding to integers. For
negative values, a correction p is applied to adjust them into the
field Zp, where prime p = 224 − 3. Subsequent computations
are outsourced to the GPUs by the TEEs, which later de-
quantizes the GPU’s results to obtain the original values.
Our experimental setup, with l = 8, resulted in a maximum
accuracy drop of 1.9% as shown in Table VI. Accuracy for
ViT and CLIP was measured on the ImageNet validation set,
BERT-Base on the SST-2 dataset, and LLaMA’s perplexity on
the Wiki-Text dataset, experiencing at most a 1.9% accuracy
decrease and a 0.21 increase in perplexity for LLaMA.

VII. EXPERIMENTAL RESULTS

A. End-to-end performance

Comparison to baseline methods. In Table I, we provide
a detailed evaluation of TwinShield across four transformer
architectures and three distinct datasets, both with and without
integrity verification. We first compare against a TEE-only
baseline [18], where all inferences are executed entirely within
the TEEs, demonstrating the least efficiency. For example, a
single ViT inference takes 0.713 s in this setup. By outsourcing
additive matrix multiplications between input X and weights
W , an approach labeled as ”Additive OutSrc.,” we achieve a
1.5× average speedup with integrity verification.

9

Building on this, TwinShield significantly extends the
outsourcing capabilities by offloading all multiplicative linear
operations and SoftMax computations in the attention mod-
ule from TEEs to the GPU. This optimization results in a 3.6×
speedup over ”Additive OutSrc.” and an overall 5.4× improve-
ment compared to the TEE-only baseline, while maintaining
both integrity and privacy. These enhancements are primarily
due to TwinShield ’s efficient outsourcing of computational
bottlenecks, particularly multiplicative matrix multiplications
and SoftMax. With only privacy protection (and no matrix
multiplication required for verification), TwinShield achieves
an even greater 6.67× average speedup.

The performance gains are especially pronounced in larger
models like LLaMA, where TwinShield achieves a 6.1×
speedup over the TEE-only baseline. This highlights the criti-
cal role of GPU-based outsourcing in mitigating the resource
limitations of TEEs, particularly for expansive transformer
models.

TABLE I
COMPARISON OF TwinShield AND PRIOR METHODS, I.E., TEE-ONLY

AND ADDITIVE LINEAR OUTSOURCING METHODS, ON END-TO-END TIME
(S).

Method ViT-
ImageNet

BERT-
SST2

CLIP-
ImageNet

LLaMA-
WiKi

TEE-only 0.713 1.294 1.972 113.4

Additive OutSrc. w/o verf. 0.511 0.858 1.255 72.53
w/ verf. 0.523 0.886 1.298 75.28

TwinShield
w/o verf. 0.151 0.174 0.205 14.77
w/ verf. 0.188 0.216 0.363 18.60

Results on long-token inputs. Table I illustrates that
TwinShield achieves a 6.0× speedup on BERT with an
input token number of 128. The performance improvement
can be further pronounced when the inputs have more tokens
(long-token inputs). The Figure 6 (a) and (b) depict the
speedup with and without integrity verification, respectively.
The results showcase that TwinShield ’s advantage over TEE-
only and ”Additive OutSrc.” methods grows with increas-
ing token numbers. For instance, with integrity verification,
the speedup with 64 input tokens is 2.8× and surges to
10.7× with 256 tokens. This is attributed to TwinShield ’s
optimization strategy, which simplifies the TEEs’ workload
from O(n3) to O(n2) matrix multiplications and transforms
O(n) exponential operations to multiplications. Without the
integrity verification, the speedup is even more pronounced,
reaching 15.2× for 256 tokens, as it eliminates the need for the
TEEs to perform O(n2) matrix multiplications for verification.
Conversely, the ”Additive OutSrc”. approach does not achieve
such significant gains because it still relies on TEEs for the
remaining matrix multiplication and SoftMax computations,
which become bottlenecks and limit performance improve-
ments across varying token numbers.
Results on standard CPU. To assess our outsourcing
schemes’ performance without the specific constraints of Intel
SGX, we evaluated the benchmarks presented in Table I on

1 1 11.1 1.4
2.42.8

6

10.7

1 1 11.2 1.5
2.83.7

7.4

15.2

64 128 256
0

5

10

Sp
ee

du
p

(X
)

Token Number

 TEE-only Additive OutSrc. CVFormer

(a) w/ verification

64 128 256
0

5

10

15

Sp
ee

du
p

(X
)

Token Number

(b) w/o verification

Fig. 6. TwinShield obtains higher performance speedup on long-token
inputs.

the same CPU, but outside SGX enclave mode. Table II
demonstrates benchmarks for BERT and ViT on a single
core with either direct computation or various secure out-
sourcing schemes. On the BERT, by outsourcing additive
matrix multiplication to the GPU (Additive OutSrc.) with
integrity verification, the latency drops from 0.492 s to 0.334
s. This is further reduced to 0.131 s with TwinShield , which
outsources both linear and non-linear operations, achieving a
3.8× speedup. For ViT, the TwinShield can achieve 3.3×
and 4.1× speedup with and without integrity verification.

TABLE II
COMPARISON OF TwinShield AND PRIOR METHODS USING BERT AND

VIT ON AN UNTRUSTED CPU.

Method BERT (s) ViT (s)

CPU-only 0.492 0.331

Additive OutSrc. w/o verf. 0.318 0.235
w/ verf. 0.334 0.247

TwinShield
w/o verf. 0.095 0.081
w/ verf. 0.131 0.102

B. Ablation Study and Benchmark

Ablation study on the effectiveness of proposed techniques.
Table III evaluates the performance of our proposed methods
on the BERT model with a 128-token input, comparing
scenarios both with and without integrity verification. With
integrity verification enabled, outsourcing additive matrix mul-
tiplications reduces the inference latency from 1.294 s to 0.886
s. Further optimization is achieved by utilizing OutAttnMult
to outsource multiplicative attention matrix multiplications,
which significantly decreases the end-to-end latency to 0.570
s. This improvement is attributed to simplifying the TEEs’
workload from matrix-matrix to vector-matrix multiplications
for validating GPU computations.

In addition, incorporating OutSoftMax to outsource the
SoftMax operation further reduces the latency to 0.531
s. This reduction reflects the shift in the TEE’s role from
performing computationally intensive exponential operations
to simpler multiplication tasks. By combining both outsourcing
strategies, the inference latency is ultimately reduced to just

10

1 1 13
7

11
7

18

39

1 1 1
5

8
1212

20

36

64 128 256
0

10

20

30

40

Sp
ee

du
p

(X
)

Token Number

 TEE-only OutAttnMult OutAttnMult w/o verf.

(a) OutAttnMult

64 128 256
0

10

20

30

40

Sp
ee

du
p

(X
)

Token Number

(b) OutSoftmax

Fig. 7. Performance comparison of OutAttnMult (a) and OutSoftMax (b) over
TEE-only execution.

0.216 s, achieving a substantial 83.3% reduction for a single
BERT inference.

TABLE III
ABLATION STUDY OF PROPOSED TECHNIQUES. TEE-ONLY NATIVELY

PROVIDES INTEGRITY GUARANTEE.

Technique Time (s)

w/o verf. w/ verf.

TEE-only - 1.294
Additive OutSrc. 0.858 0.886
Additive OutSrc. + OutAttnMult 0.561 0.570
Additive OutSrc. + OutSoftMax 0.525 0.531
Additive OutSrc. + OutAttnMult + OutSoftMax 0.174 0.216

Performance Benchmark on OutAttnMult and OutSoftMax.
To investigate the effectiveness of our proposed methods,
OutAttnMult and OutSoftMax, across different matrix sizes and
token counts, we conducted a performance benchmark. The
results are illustrated in Figure 7. In Figure 7 (a), we observe
that OutAttnMult secures progressively higher speedups with
the growth in square matrix dimensions, from a 3× enhance-
ment with a dimension of 256 to an 11× improvement with a
dimension of 1024. This performance increase is attributed
to OutAttnMult’s efficiency in reducing the complexity of
matrix multiplications from O(n3) to O(n2) within the TEEs.
The limited memory capacity of the TEEs, which exacerbates
computational overhead, further accentuates the performance
disparity between OutAttnMult and conventional TEE-only
computation.

Figure 7 (b) highlights the performance improvements intro-
duced by OutSoftMax. With matrix sizes expanding from 256
to 1024 dimensions, the observed speedups range from 5× to
12×. These enhancements stem from the relative efficiency
of multiplication over exponentiation, with OutSoftMax effec-
tively transforming exponential operations within the TEEs
into multiplications. The observed trend of increased speedups
with larger matrix dimensions can be linked to the TEE’s
constrained memory, necessitating more frequent paging for
larger matrices and thereby reaping greater benefits from our
optimization strategies.

C. Analysis of Proposed Techniques

Breakdown analysis of OutAttnMult. In Table IV, we present
a latency breakdown for each stage of the OutAttnMult pro-
cess, as applied to a single attention matrix multiplication of
the BERT model. The results reveal that the offline phase
within the TEEs is small, clocking in at 0.169 ms. This
is because our OutAttnMult also outsources RQR

T
K to the

accelerator, compared to the scheme used in Slalom [19] which
requires precomputing matrix multiplications. In the online
phase, the Embedded Additive Outsource requires slightly
more time, at 0.152 ms, due to the necessity for matrix
permutation and a combination of two subtractions and an ad-
dition. The Recovery stage which needs scalar multiplication
and addition requires 0.498 ms. The Integrity Check stage,
however, exhibits the highest latency within the TEEs, i.e.,
0.763 ms, necessitated by two vector-matrix multiplications
to confirm the GPU’s computation integrity. For the GPU, the
matrix multiplication tasks in Embedded Additive Outsource
stages are executed rapidly, leveraging the GPU’s superior
performance for matrix operations and contributing only 0.209
ms.

Summing up, the total online latency for the TEEs is
1.413 ms, while the GPU contributes an additional 0.209 ms,
leading to an aggregate end-to-end latency of 1.622 ms for the
complete OutAttnMult.

TABLE IV
LATENCY BREAKDOWN OF OutAttnMult.

Stage TEE (ms) GPU (ms)

Offline 0.169 -
Embedded Additive Outsource 0.152 0.209
Recovery 0.498 -
Integrity Check 0.763 -

Online Total 1.413 0.209

Breakdown analysis of OutSoftMax. To investigate the la-
tency various different stages in OutSoftMax, we also con-
duct breakdown analysis in Table V with token number of
256. The offline phase within the TEEs is the most time-
intensive, at 5.815 ms, largely owing to the sampling of a
random vector and computing the exponentials for each of
its elements. During the Outsource Masked ex stage, the
TEEs handles element-wise multiplications of exi and eri ,
contributing to the online latency. Similarly, the Division in the
TEEs phase requires element-wise divisions, further adding to
the TEE’s workload. The Integrity Check, crucial for ensuring
the correctness of the GPU’s computations, involves additional
element-wise multiplications by the TEEs to validate the
results against ehashX . Overall, the online portion of the
OutSoftMax process necessitates 1.190 ms from the TEEs
and only 0.138 ms from the GPUs. This breakdown analysis
illustrates that speedup is attributed to converting the operation
within TEEs from element-wise exponential to much cheaper
element-wise multiplication.

11

TABLE V
LATENCY BREAKDOWN OF OutSoftMax.

Stage TEE (ms) GPU (ms)

Offline 5.815 -
Outsource Masked ex 0.327 0.138
Division in TEE 0.381 -
Integrity Check 0.482 -

Online Total 1.190 0.138

Ablation on the value of random coefficient a in U-Verify
for OutSoftMax. Our analysis of OutSoftMax reveals the
impact of the maximum value of random coefficients (amax)
on computational efficiency. In trials using a 256×256 matrix,
we observed that increasing amax from 2 to 7 leads to a
proportional decrease in speedup—from a maximum of 7.4×
down to 5.3×. This trend demonstrates a linear relationship
between amax and the speedup, which is consistent with our
complexity analysis, confirming that the number of required
multiplications is directly tied to amax. By carefully choosing
an optimal amax, OutSoftMax can effectively minimize the
TEE’s latency by simplifying O(n) exponential operations to
O(n) multiplications.
Comparison between Freivald’s algorithm and U-Verify. As
Section V-C shows, it’s important to highlight that Freivalds’
algorithm cannot be used for verifying non-linear operations
like softmax, in contrast to our U-Verify approach. In assess-
ing the verification efficiency on linear attention multiplication,
we compared our U-Verify with the Freivalds’ algorithm [25].
Figure 8 indicates that U-Verify delivers an approximate 33%
reduction in latency when compared to Freivalds’ method.
Freivalds’ algorithm typically requires three vector-matrix
multiplications to verify the product of An×n and Bn×n

equals Cn×n, calculating Cs, Bs, and subsequently A(Bs). In
contrast, U-Verify streamlines this process to just two vector-
matrix multiplications. It achieves this by embedding a hash
row, hashA, within A and outsourcing hashA·B to the GPU.
Consequently, the TEEs merely need to verify that hA · C
corresponds to hashA ·B, leading to the observed efficiency
gains.

256 512 1024 2048
0

1

2

3

La
te

nc
y

(m
s)

Matrix Dimension

 Freivalds' Algorithm
 U-Verify

Fig. 8. Comparison between Freivalds’ algorithm and U-Verify on linear
attention multiplication. Note that Freivalds’ algorithm is not applicable for
non-linear operations such as softmax, unlike our U-Verify method.

Accelerator Studies. In addition to evaluating legacy GPUs,
we also explored other accelerator platforms to assess the

adaptability of our approach.
FPGAs. To evaluate the versatility of TwinShield with alter-
native accelerators, we conducted experiments using the Xilinx
Alveo U280 FPGA. This FPGA features 8 GB of HBM2
memory, 32 GB of DDR memory with a bandwidth of 460
GBps, and 1,304K logic cells. It connects to the host machine
via a PCIe Gen3x16 I/O interface. We utilized the Vitis BLAS
Library for OutAttnMult operations and the Vitis AI Library
for outsourcing the OutSoftMax. The results showed that
outsourcing computations to the FPGA significantly reduced
latency compared to performing all operations within a TEE.
Specifically, TwinShield achieved latency reductions ranging
from 1.93× to 3.25×, demonstrating the effectiveness of our
outsourcing strategy across different accelerator platforms.
TPUs. We also tested the adaptability of TwinShield on
Google’s TPU VM v3-8, which is equipped with 128 GB
of total memory distributed across 8 chips and offers an
interconnect bandwidth of 100 GBps. For implementation, we
used TensorFlow 2.1. The results revealed that leveraging a
TPU for outsourcing operations drastically reduced latency
compared to relying exclusively on a TEE for computations.
Notably, TwinShield achieved latency reductions between
7.43× and 10.91× when utilizing the TPU, highlighting
the significant advantages of our outsourcing strategy across
diverse computational platforms.

VIII. CONCLUSION

In this paper, we propose TwinShield , an innovative frame-
work to safeguard the privacy and integrity of Transformer
inference services in the cloud setting. We design secure and
efficient modules, OutAttnMult and OutSoftMax, to outsource
bottleneck computations in Transformers including the non-
additive attention multiplication and non-linear softmax
functions. We further propose a novel verification scheme U-
Verify to ensure the integrity of the outsourced computation.
Extensive experiments show that TwinShield offers from
4.0× to 6.1× performance improvement over prior works for
private verifiable inference without sacrificing accuracy.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[4] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[5] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, pp. 681–694, 2020.

[6] M. A. Myszczynska, P. N. Ojamies, A. M. Lacoste, D. Neil, A. Saffari,
R. Mead, G. M. Hautbergue, J. D. Holbrook, and L. Ferraiuolo,
“Applications of machine learning to diagnosis and treatment of neu-
rodegenerative diseases,” Nature Reviews Neurology, vol. 16, no. 8, pp.
440–456, 2020.

12

[7] J. G. Richens, C. M. Lee, and S. Johri, “Improving the accuracy of med-
ical diagnosis with causal machine learning,” Nature communications,
vol. 11, no. 1, p. 3923, 2020.

[8] J. B. Heaton, N. G. Polson, and J. H. Witte, “Deep learning for finance:
deep portfolios,” Applied Stochastic Models in Business and Industry,
vol. 33, no. 1, pp. 3–12, 2017.

[9] G. McLean and K. Osei-Frimpong, “Hey alexa. . . examine the variables
influencing the use of artificial intelligent in-home voice assistants,”
Computers in Human Behavior, vol. 99, pp. 28–37, 2019.

[10] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” Advances
in neural information processing systems, vol. 29, 2016.

[11] D. Natarajan, A. Loveless, W. Dai, and R. Dreslinski, “Chex-mix: Com-
bining homomorphic encryption with trusted execution environments
for oblivious inference in the cloud,” in 2023 IEEE 8th European
Symposium on Security and Privacy (EuroS&P). IEEE, 2023, pp. 73–
91.

[12] Y. Zhang, J. Xue, M. Zheng, M. Xie, M. Zhang, L. Jiang, and Q. Lou,
“Cipherprune: Efficient and scalable private transformer inference,” in
The Thirteenth International Conference on Learning Representations.

[13] M. Zheng, Q. Lou, and L. Jiang, “Primer: Fast private transformer
inference on encrypted data,” DAC 2023, 2023.

[14] T. Pahima, “Breakingformation: Orca security research team discovers
aws cloudformation vulnerability,” Complete Cloud Security in Minutes-
Orca Security, 2022.

[15] L. Tung, “Google cloud: Here are the six’best’vulnerabilities security
researchers found last year,” ZDNET, Mar, 2021.

[16] “Intel® software guard extensions (intel® sgx) developer
guide,” https://www.intel.com/content/www/us/en/developer/tools/
software-guard-extensions/overview.html, 2023.

[17] “Intel® software guard extensions (intel® sgx) developer
guide,” https://www.intel.com/content/www/us/en/developer/tools/
software-guard-extensions/attestation-services.html, 2023.

[18] L. Hanzlik, Y. Zhang, K. Grosse, A. Salem, M. Augustin, M. Backes, and
M. Fritz, “Mlcapsule: Guarded offline deployment of machine learning
as a service,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 3300–3309.

[19] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” in International Conference on
Learning Representations, 2018.

[20] Z. Sun, R. Sun, C. Liu, A. R. Chowdhury, L. Lu, and S. Jha, “Shad-
ownet: A secure and efficient on-device model inference system for
convolutional neural networks,” in 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 2023, pp. 1596–1612.

[21] T. Shen, J. Qi, J. Jiang, X. Wang, S. Wen, X. Chen, S. Zhao, S. Wang,
L. Chen, X. Luo et al., “{SOTER}: Guarding black-box inference for
general neural networks at the edge,” in 2022 USENIX Annual Technical
Conference (USENIX ATC 22), 2022, pp. 723–738.

[22] H. Hashemi, Y. Wang, and M. Annavaram, “Darknight: An accelerated
framework for privacy and integrity preserving deep learning using
trusted hardware,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021, pp. 212–224.

[23] X. Deng, S. Fan, Z. Hu, Z. Tian, Z. Yang, J. Yu, D. Cao, D. Meng,
R. Hou, M. Li et al., “Trinity: A general purpose fhe accelerator,”
Accepted by MICRO’24, 2024.

[24] A. W. B. Yudha, J. Xue, Q. Lou, H. Zhou, and Y. Solihin, “Boostcom:
Towards efficient universal fully homomorphic encryption by boosting
the word-wise comparisons,” in (PACT’24) The International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2024.

[25] R. Freivalds, “Probabilistic machines can use less running time.” in IFIP
congress, vol. 839, 1977, p. 842.

[26] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[27] “Medical gpt,” https://www.medicalgpt.info/, 2024.
[28] “Finance gpt,” https://financegpt.uk/, 2024.
[29] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,

M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel {SGX} kingdom with transient {Out-
of-Order} execution,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 991–1008.

[30] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”

in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 88–105.

[31] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar et al., “Fallout: Leaking
data on meltdown-resistant cpus,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 769–784.

[32] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A.-R. Sadeghi, “Dr. sgx: Automated and adjustable side-channel
protection for sgx using data location randomization,” in Proceedings of
the 35th Annual Computer Security Applications Conference, 2019, pp.
788–800.

[33] X. Lou, T. Zhang, J. Jiang, and Y. Zhang, “A survey of microarchitectural
side-channel vulnerabilities, attacks, and defenses in cryptography,”
ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–37, 2021.

[34] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 640–656.

[35] J. Choquette, “Nvidia hopper h100 gpu: Scaling performance,” IEEE
Micro, vol. 43, no. 3, pp. 9–17, 2023.

[36] R. Cramer, I. B. Damgård et al., Secure multiparty computation.
Cambridge University Press, 2015.

[37] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS, 2015.

[38] Q. Lou and L. Jiang, “She: A fast and accurate deep neural network for
encrypted data,” in Advances in Neural Information Processing Systems
(NeurIPS) 2019, 2019, pp. 10 035–10 043.

[39] Y. Wei, X. Wang, S. Bian, W. Zhao, and Y. Jin, “The-v: Verifiable
privacy-preserving neural network via trusted homomorphic execution,”
in 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD). IEEE, 2023, pp. 1–9.

[40] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and
C. Fetzer, “Tensorscone: A secure tensorflow framework using intel sgx,”
arXiv preprint arXiv:1902.04413, 2019.

[41] T. Lee, Z. Lin, S. Pushp, C. Li, Y. Liu, Y. Lee, F. Xu, C. Xu, L. Zhang,
and J. Song, “Occlumency: Privacy-preserving remote deep-learning
inference using sgx,” in The 25th Annual International Conference on
Mobile Computing and Networking, 2019, pp. 1–17.

[42] T. Zhou, Y. Luo, S. Ren, and X. Xu, “Nnsplitter: an active defense solu-
tion for dnn model via automated weight obfuscation,” in Proceedings of
the 40th International Conference on Machine Learning, ser. ICML’23.
JMLR.org, 2023.

[43] Z. Zhang, C. Gong, Y. Cai, Y. Yuan, B. Liu, D. Li, Y. Guo, and
X. Chen, “No privacy left outside: On the (in-) security of tee-shielded
dnn partition for on-device ml,” in 2024 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2023, pp. 52–52.

[44] Z. Liu, Y. Luo, S. Duan, T. Zhou, and X. Xu, “Mirrornet: A tee-friendly
framework for secure on-device dnn inference,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE,
2023, pp. 1–9.

[45] Z. Zhang, L. K. Ng, B. Liu, Y. Cai, D. Li, Y. Guo, and X. Chen,
“Teeslice: slicing dnn models for secure and efficient deployment,” in
Proceedings of the 2nd ACM International Workshop on AI and Software
Testing/Analysis, 2022, pp. 1–8.

[46] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469–472, 1985.

[47] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in International conference on the theory and applications
of cryptographic techniques. Springer, 1999, pp. 223–238.

[48] R. Xu and Z. Fang, “Tempo: Confidentiality preservation in cloud-based
neural network training,” arXiv preprint arXiv:2401.11531, 2024.

[49] M. Bellare and P. Rogaway, “Introduction to modern cryptography,”
Lecture Notes, 2001.

[50] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

[51] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[52] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a

13

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.medicalgpt.info/
https://financegpt.uk/

sentiment treebank,” in Proceedings of the 2013 conference on empirical
methods in natural language processing, 2013, pp. 1631–1642.

[53] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” arXiv preprint arXiv:1609.07843, 2016.

[54] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[55] F. Chollet et al., “Keras,” https://keras.io, 2015.
[56] Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, “Post-training

quantization for vision transformer,” Advances in Neural Information
Processing Systems, vol. 34, pp. 28 092–28 103, 2021.

[57] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, “I-bert:
Integer-only bert quantization,” in International conference on machine
learning. PMLR, 2021, pp. 5506–5518.

[58] “Hugging face.” https://huggingface.co/, 2024.
[59] J. Katz and Y. Lindell, Introduction to modern cryptography: principles

and protocols. Chapman and hall/CRC, 2007.

APPENDIX

In this section, we will outline the method to construct the
feasible set, F (X̂) for a given transformed matrix X̂ (the X
could be Q or KT).

We refer to the ri in the random vectors R = [r1, ..., rt−n]
as mask vectors. Additionally, let ⊂R represent a uniform
random sampling. The idea is to back-trace and compute
the set of possible of pre-images. Now the feasible set is
constructed as follows:

1) Select the set of t− n indices uniformly at random:

Ω ⊂R [m], |Ω| = t− n (17)

Ω represents a possible set of indices that correspond to
the mask vectors.

2) The corresponding set of mask vectors is:

ΦΩ = {x̂i|i ∈ Ω} (18)

3) Let ΦΩ = {x̂i|i ∈ [n]\Ω} be the set of transformed
original vectors. Additionally, let X = [x1, ..., xn] where
xi ∈ ΦΩ and xi ̸= xj , i, j ∈ [n], i ̸= j.

4) Sample a random permutation σ to recover the shuffled
matrix. Thus Xα = [xσ(1), ..., xσ(n)] represents a possi-
ble transformed matrix.

5) Compute

∀i ∈ [n]

F i
Ω,σ(X̂) = {x|x = d · (xσ(i) − x̂′), d ∈ R, x̂′ ⊂R ΦΩ}

(19)

F i
Ω,σ(X̂) denotes the set of possible values for the vector

xi for the give Ω and σ.
6) Clearly, we have

F(X̂) =
⋃
Ω

⋃
σ

FΩ,σ(X̂) (20)

Clearly, larger the value of obfuscation ratio r, greater is the
size of Ω and consequently, F(X̂). Additionlly, it is evident
that F(X̂a) ⊃ F(X̂b) where ta = |X̂a| > |X̂b| = tb
(equivalently, ta > tb).

For the transformed Q̃ and K̃T , let F (Q̃) and F (K̃T)
represent the set of original matrixs that could have been
transformed to Q̃ and K̃T , i.e., the set of possible pre-images
for Q̃ and K̃T . We call them feasible set for Q̃ and K̃T . The
construction of feasible set can be found in appendix A.

Theorem 1. For a Q̃KT computation and a given view of the
GPU ViewGPU = (Q̃, K̃T , Q̃KT , (QKT)′), where (QKT)′ is
used to operate subsequent computation in GPU, has been
transformed by TEE. We have:

∀(Qi, Qj) ∈ F(Q̃)×F(Q̃)

Pr[Q = Qi|ViewGPU] = Pr[Q = Qj |ViewGPU]
(21)

and

∀(KT
i ,K

T
j) ∈ F(K̃T)×F(K̃T)

Pr[KT = KT
i |ViewGPU] = Pr[KT = KT

j |ViewGPU]
(22)

The above theorem states that, on observing transformed
input matrices Q̃ and K̃T , output matrix Q̃KT and next input
matrix (QKT)′, an attacker cannot distinguish between two
matrices that belong to its feasible set. Thus, the feasible sets
act as cloaking regions for the original matrices.
Proof. First, we present two helper lemmas as follows.
Lemma 1. Attacker cannot reconstruct QKT from Q̃KT and
(QKT)′. Recall that the attacker (GPU) computes Q̃KT =

Q̃ · K̃T and subsequently transmits it to TEE. Within the
TEE, Q̃KT undergoes a recovery process to QKT through
a specific linear transformation, denoted as f(·). Following
this, QKT is subjected to a masking process via another
linear transformation, represented as g(·), resulting in the
matrix (QKT)′, which is then relayed back to the GPU for
subsequent computations. Given the absence of knowledge
regarding the intricacies and parameters of the linear trans-
formations f(·) and g(·) on the part of the attacker, it is
postulated that the reconstruction of the intermediate matrix
QKT from the accessible matrices Q̃KT and (QKT)′ is not
computationally feasible for the adversarial entity.
Lemma 2. Random masked vectors ri ∈ RQ or rj ∈ RK are
indistinguishable from transformed vectors qi ∈ Q or kj ∈ K

which are the same shape. Note that Q̃ and K̃T are embedded
in a field F. Thus clearly, masking the inputs is equivalent to
applying a one-time pad [59]. And the Q̃ and K̃T are permuted
before sending to GPU.
Theorem 2. Given the intricacies of the transformation process
applied to the n-dimension matrix X , we can quantify the
probability of correctly deducing the original matrix from
its transformed version by the attacker. This quantification is
simplified under certain assumptions, notably regarding the
scalar coefficients used in the transformation. The theorem as-
sumes these scalar coefficients are integers constrained within
the range (−L,L). This simplification is a significant factor
in calculating the overall probability and is chosen for its
practicality in mathematical modeling and computation.

Pr[Correct] =

(
n
n

)(
2n
n

) ×
(

1

2n− n

)n

×
(

1

2L

)n

× 1

n!
(23)

This equation encapsulates the aggregate probability, taking
into account various factors including the selection of the
correct vectors, identification of corresponding masks, accurate

14

https://keras.io
https://huggingface.co/

prediction of scalar coefficients, and the reordering of the
shuffled matrix.
Proof. The proof of Theorem 2 integrates the factors influenc-
ing the overall probability of an attacker correctly guessing
the original matrix X . The probability is derived from the
combination of several factors:

1) Selection of Original Vectors: The correct identification
of the original n vectors from a total of 2n vectors is

represented by the combinatorial ratio (nn)
(2nn)

, indicating
the statistical likelihood of choosing the exact subset of
original vectors.

2) Mask Identification: In the obfuscation process, correctly
identifying the appropriate masks from the remaining n

vectors has a probability of
(

1
2n−n

)n

, assuming each
choice is independent and uniform.

3) Scalar Coefficients: The scalar coefficients, which are
integers within the range (−L,L), have a uniform prob-
ability distribution. Thus, the probability of correctly
guessing all coefficients is

(
1
2L

)n
.

4) Order Recovery: The likelihood of correctly re-
establishing the original sequence in the shuffled matrix
is represented by the permutation probability 1

n! .
Given the transformed vector X ′ = [x1 − r1, ..., xi − ri],

it is infeasible for an attacker to recover the original vector
X = [x1, x2, ..., xi]. The level of security is guaranteed by
the additive secret sharing [36], [37] which assumes that the
attacker lacks knowledge of the random vector [r1, r2, ..., ri],
which are essential for the reconstruction of the original vector.

A. Verification of OutSoftMax

Given the vector share of the GPU [x1 − r1, ..., hashX −
rhash, ..., xn − rn], GPU is expected to return
[ex1−r1 , ..., ehashX−rhash , ..., exn−rn]. Here we consider
three specific types of attack as the supplement:

(a) the attacker tampers the results to

[ex1−r1+∆1 , ..., ehashX−rhash , ..., exn−rn] (24)

(b) the attacker tampers the results to

[ex1−r1 +∆1, ..., e
hashX−rhash , ..., exn−rn] (25)

(c) the attacker swap the positions of different elements.
According to the verification process in Equation 15, the

TEE will check if:

(
ex1+∆1

)a1

n∏
i=2

(exi)ai = ehashX (26)

For the attack (a), the attacker needs also change:

ehashX−rhash → ehashX−rhashe∆1a
1

(27)

So it is crucial to discern the index of hashX as well as
the coefficients ai that the TEE uses for verification of xi in
Equations 15.
Lemma 3. Given the vector [x1 − r1, ..., hashX −
rhash, ..., xn − rn], hashX − rhash is indistinguishable from

any transformed xi−ri. Since xi−ri and hashX−rhash are
embedded within a field F and the hashX− rhash is inserted
by the TEE in an obfuscated location.
Theorem 3. Building upon Lemma 3, we can determine the
probability of an attacker successfully tampering with k bits
using attack (a) of an n-dimensional vector without detection
by U-Verify:

Pr[Correct] =
1

n
×

(
1

2L

)k

(28)

The factor 1
n reflects the probability of accurately identifying

hashX , echoing the premise of Lemma 3. The following term,(
1
2L

)k
, represents the probability of correctly guessing all k

coefficients ai, where these coefficients are integers sampled
from the interval (−L,L).

For attack (b), the tampered item ex1−r1 +∆1 will first be
multiplied by er1 during the verification in TEE, and then the
TEE will check if:

(ex1 +∆1e
r1)

a1

n∏
i=2

(exi)ai = ehashX (29)

so the attacker needs also know the r1, a1 and ex1 to
successful attack. The success probability is:

Pr[Correct] =
1

n
×
(

1

2L

)k

×
(

1

2L

)k

×
(

1

2L

)k

(30)

For attacker (c), because the secret vector a will used in
the integrity check as Equation 15, any mismatch of ai and
xi will leads to the failure verification in Equation 15.

B. Verification of OutAttnMult

In the U-Verify process, the TEE first generates hashQ by
hashQ = hQ ·Q, and then outsources the concatenated matrix
by OutAttnMult. The security are guaranteed by the lower
probability of identify the hashQ from the Q̃ quantized in
Equation 16. Upon the assumption that the attacker cannot
identify the hashQ, the integrity are guaranteed using the
variants of an algorithm by Freivalds [25].
Theorem 4. (Freivalds) Let Q, KT and Z be n×n matrices on
over a field F and let s be a uniformly random vector in S ⊆ F.
Then Pr[sZ = (sQ)KT |Z ̸= QKT] = Pr[s(Z − QKT) =
0|(Z −QKT) ̸= 0] ≤ 1

|S| .

TABLE VI
ACCURACY OF MODELS AND QUANTIZED MODELS.

Layers Parameters Metrics Original Quantized

ViT-16B 12 87M ACC ↑ 74.6% 72.7%
CLIP 24 151M ACC ↑ 73.6% 73.3%
BERT 12 110M ACC ↑ 92.4% 91%
LLaMA 32 7B Perplexity ↓ 5.68 5.89

In Table VI, we report the performance of evaluated models
with and without the simple quantization scheme described in
Section VI. Quantization results in at most a 1.9% drop in
accuracy and a 0.21 perplexity increase.

15

	Introduction
	Threat Model
	Background and Related Work
	Transformers
	Trusted Execution Environments (TEEs)
	Secret Sharing for Data Confidentiality
	Computation Verification for Integrity
	Related Work

	Motivation
	TwinShield Design
	Outsource Multiplicative Attention Operation: OutAttnMult
	Outsource Non-linear SoftMax: OutSoftMax
	U-Verify

	Experimental Methodology
	Experimental Results
	End-to-end performance
	Ablation Study and Benchmark
	Analysis of Proposed Techniques

	Conclusion
	References
	Appendix
	Verification of OutSoftMax
	Verification of OutAttnMult

