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ABSTRACT

The safety alignment of Language Models (LMs) is a critical concern, yet their integrity can be
challenged by direct parameter manipulation attacks, such as those potentially induced by fault
injection. As LMs are increasingly deployed using low-precision quantization for efficiency, this paper
investigates the efficacy of such attacks for jailbreaking aligned LMs across different quantization
schemes. We propose gradient-guided attacks, including a tailored progressive bit-level search
algorithm introduced herein and a comparative word-level (single weight update) attack. Our
evaluation on Llama-3.2-3B, Phi-4-mini, and Llama-3-8B across FP16 (baseline), and weight-only
quantization (FP8, INT8, INT4) reveals that quantization significantly influences attack success.
While attacks readily achieve high success (>80% Attack Success Rate, ASR) on FP16 models,
within an attack budget of 25 perturbations, FP8 and INT8 models exhibit ASRs below 20% and 50%,
respectively. Increasing the perturbation budget up to 150 bit-flips, FP8 models maintained ASR below
65%, demonstrating some resilience compared to INT8 and INT4 models that have high ASR. In
addition, analysis of perturbation locations revealed differing architectural targets across quantization
schemes, with (FP16, INT4) and (INT8, FP8) showing similar characteristics. Besides, jailbreaks
induced in FP16 models were highly transferable to subsequent FP8/INT8 quantization (<5% ASR
difference), though INT4 significantly reduced transferred ASR (avg. 35% drop). These findings
highlight that while common quantization schemes, particularly FP8, increase the difficulty of direct
parameter manipulation jailbreaks, vulnerabilities can still persist, especially through post-attack
quantization.

Keywords Jailbreaking · Language Models · Bitflip Attack ·Word Attack.

1 Introduction

Recent advancements in LMs have led to their widespread integration into diverse applications, fundamentally changing
how users interact with information and technology. Increasingly, LMs serve as conversational assistants, sometimes
supplanting traditional search engines as primary sources for answers and information generation [1, 2]. This central
role necessitates a strong focus on model safety and alignment, ensuring that LM-generated responses are helpful,
and harmless, aligning with human values and preventing their misuse for generating malicious or unethical content.
Consequently, significant effort has been invested in aligning these models through techniques such as Supervised
Fine-Tuning and Reinforcement Learning from Human Feedback [3].

Despite these alignment efforts, LMs remain vulnerable to jailbreak attacks, which aim to circumvent safety guardrails
and elicit prohibited outputs. Most of the literature has focused on prompt-based attacks, where adversaries craft
malicious inputs through methods like prompt engineering or adversarial tokens’ optimization (e.g., GCG) to bypass
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Jailbreaking Quantized Language Models

safety protocols [4]. Another vector involves adversarial fine-tuning, where even small amounts of targeted data can
degrade a model’s safety alignment. These attacks, however, typically operate at the software or input level [5].

This paper focuses on an emerging class of vulnerability with a distinct attack vector, i.e., jailbreak attacks using bit
flips within the model’s parameters. Bit-flip attacks (BFAs) represent a fundamentally different threat vector, originating
from hardware-level phenomena rather than input manipulation. Bit flips can occur naturally due to environmental
factors such as cosmic rays, electromagnetic interference, or voltage faults [6, 7]. Critically, they can also be induced
maliciously through physical fault-injection techniques such as Rowhammer [8, 9]. The Rowhammer attack, in
particular, exploits DRAM vulnerabilities where repeatedly accessing specific memory rows (aggressor rows) causes
charge leakage in adjacent rows, leading to unintended bit flips (0→ 1 or 1→ 0) in victim rows. This allows an
adversary, potentially with only user-level privileges, to surgically alter stored data, including the parameters of a
deployed LM.

Prior work extensively studied BFAs targeting convolutional neural networks (CNNs); researchers demonstrated
that flipping critical bits could cause catastrophic performance degradation [10], targeted misclassification [11], or
enable back-door injection [12], often assuming white-box access to model parameters to identify vulnerable bits
using optimization-based search algorithms. Recently, Coalson et al. introduced PrisonBreak [13], the first work that
shows that BFAs can effectively jailbreak aligned LMs. Flipping only 25 bits in the model weights can bypass safety
alignment and cause models to generate persistently harmful content, without requiring any malicious user prompt.
This established BFA jailbreaking as a pressing and practical threat.

However, the PrisonBreak study focused primarily on LMs using half-precision (FP16) parameters. Current trends in
LM deployment increasingly favor quantization, utilizing lower-precision formats such as FP8 or INT8 for weights
and/or activations. Quantization significantly reduces the memory footprint and computational cost, enabling efficient
inference on resource-constrained hardware, including edge devices [14]. This shift towards quantization raises a
critical question: How effective are BFA jailbreak techniques against quantized LMs? Insights from earlier BFA work
on CNNs suggest that quantization might increase robustness; attacking full-precision (FP32) models can be simpler
by targeting exponent bits, causing large-magnitude changes, whereas quantization formats lack these exponents and
are inherently more robust to random flips, and their discretized value steps can further hinder gradient-based search
algorithms, necessitating more sophisticated targeted bit-search algorithms [10]. We hypothesise that this effect extends
to LMs, potentially making quantized models harder to jailbreak via BFAs compared to their FP16 counterparts. The
key contributions are summarized as follows:

• Evaluation of BFA Jailbreaking on Quantized LMs using a Tailored Algorithm. We systematically assess
the feasibility and effectiveness of BFA jailbreaks in various popular quantization formats. This evaluation
utilizes a tailored greedy, gradient-based search algorithm, introduced herein, specifically designed to identify
critical bits for jailbreaking within the context of quantized LMs.

• Comparison of Attack Strategies on Modern LMs. We investigate different BFA strategies by comparing
progressive bit-level and word-level attacks. This comparison is conducted on newer, publicly available aligned
LMs, including Phi-4-mini and Llama 3.2.

The remainder of this paper is structured as follows: Section 2 provides background on previous bit-flip attacks. Section
3 defines the threat model. Section 4 details the attack objective, the attack algorithms, and the quantization handling
approach. Section 5 states the selected models and parameters, dataset creation, and the evaluation strategy. Section 6
presents the results and Section 7 concludes the paper.

2 Related Work

BFAs represent a class of hardware-level threats targeting the parameters of neural networks. These attacks leverage
physical phenomena to alter the binary representation of model weights stored in memory, potentially leading to
significant changes in model behavior. The execution of a BFA typically involves two phases: an offline preparation
stage and an online execution stage. In the offline stage, the attacker, often assumed to have access to a replica of
the target model (white-box assumption), performs software simulations to identify the most critical bit locations
whose alteration maximally impacts a chosen objective function. This preparatory step is crucial for optimizing the
attack and minimizing the interaction required with the actual hardware during the online phase, where techniques like
Rowhammer might be employed to physically induce the calculated bit flips.

Identifying the optimal set of bits to flip is computationally challenging due to the vast parameter space. Early work on
BFAs targeting CNNs developed methodologies to address this. Rakin et al [10] introduced a greedy, gradient-ascention
based approach. The core idea was to use the gradient of a loss function (e.g., classification error) with respect to the
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model weights as a signal to identify potentially impactful bits. The BFA algorithm implemented a layer-wise search
strategy. Within each layer, bits were scored based on their gradient magnitude, weighted by the change in weight value
(‘step size’) caused by flipping that specific bit. Candidate bits with the highest scores were selected within a defined
computational budget (e.g., the top 100 scoring bits). Each candidate bit was then individually evaluated via simulation:
the bit was flipped, the model’s loss was computed, and the bit was reverted. This allowed identifying the single most
effective bit flip within the budget for that layer. The attack proceeded progressively: the globally most impactful bit
identified across all layers in an iteration was permanently flipped, and subsequent iterations recalculated gradients
based on the altered model state. This progressive, layer-fair approach was shown to be highly effective, capable of
inducing near-random classification accuracy in models like ResNet-18 with only a small number (e.g., 13) of targeted
bit flips, significantly outperforming random bit corruption. Importantly, the BFA paper demonstrated the attack’s
efficacy even against quantized networks (4, 6, and 8-bit integer representations), highlighting that targeted search
could overcome the presumed increased robustness of lower-precision models compared to random perturbations. The
primary objective this study was model destruction or severe performance degradation.

While Bitflip-based attacks were established as a potent threat for CNNs, their specific application to LMs for the
purpose of jailbreaking is a more recent area of investigation. PrisonBreak is the first to demonstrate the feasibility
of this specific threat. Moving beyond the goal of simple performance degradation, PrisonBreak aimed to precisely
un-align LMs, forcing them to comply with harmful instructions they were trained to refuse, while ideally maintaining
their general utility on benign tasks. This research targeted contemporary, aligned LMs such as Llama 2,3 and Vicuna,
deployed using half-precision floating-point (FP16) parameters.

Adapting BFA techniques to the generative nature and safety alignment of LMs required several key innovations[13].
A major challenge was that simply optimizing the model to start its response affirmatively (e.g., "Sure, here is...")
which was enough for earlier prompt-based gradient attacks[15] often led to degenerate outputs like overfitting to the
affirmative phrase or nonsensical repetition. To address this and ensure the generation of coherent, harmful content,
PrisonBreak proposed using a proxy dataset of full harmful completions (generated using existing uncensored models)
as optimization targets. Furthermore, recognizing the causal nature of autoregressive generation, where initial tokens
heavily influence subsequent ones, they introduced a modified cross-entropy loss function. This loss incorporated
exponentially decaying weights across the token sequence, prioritizing the accurate generation of the initial parts of the
target response (both the affirmative opening and the beginning of the harmful content). To manage the computational
expense of searching parameters in billion-scale LMs, PrisonBreak also implemented several search space reductions
based on empirical findings: the search was primarily limited to the three most significant exponent bits in the FP16
representation, focused on 0→1 flips, and excluded layers less likely to be impactful for their objective (embedding,
unembedding, layer normalization). Leveraging these contributions, PrisonBreak demonstrated high jailbreak success
rates across multiple LMs using fewer than 25 targeted bit flips, achieved without any modification to the user’s input
prompt.

3 Threat Model

Similar to previous work [13, 10, 12, 11], we consider an adversary whose objective is to jailbreak LMs through direct
manipulation of their parameters stored in memory using bit-flip attacks. The assumed operational context involves
LMs deployed in shared computing environments, such as MLaaS platforms, where the service provider attempts
to maintain safety alignment. We adopt a white-box attacker model, granting the adversary knowledge of the target
model’s architecture and parameters, a standard assumption in related BFA literature and a practical consideration given
the rise of open-source LMs. However, the attacker does not possess or require access to the original training data used
for the LM. The attack requires the adversary to co-locate a process or virtual machine (VM) on the same physical host
as the victim’s LM instance, operating with only standard user-level privileges.

4 Methodology

This section details the core approach used for inducing jailbreaks in LMs via parameter manipulation. In this section,
we define the attack objective, describe the algorithms used to achieve it, and explain the necessary techniques for
applying these algorithms to quantized models.

4.1 Attack Objective

The primary objective of our parameter manipulation attack is to induce jailbreak (JB) behavior. This involves modifying
the LM’s parameters, θ, such that it generates harmful or undesirable content in response to specific queries, thereby
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bypassing its safety alignment. The general goal is to minimize a chosen loss function, LJB , which quantifies the
difference between the model’s output and a target harmful completion, given the corresponding harmful query.

The attack algorithms, detailed in the next section, achieve this by modifying the model parameters iteratively. Starting
with the initial parameters θ(0) = θorig, the parameters at iteration i are determined by applying the single best
perturbation found during that iteration to the parameters from the previous iteration, θ(i−1). Specifically, let Pi(θ

(i−1))
be the set of candidate parameter states reachable from θ(i−1) by applying one valid perturbation (a single bit flip or a
single weight update) identified by the attack algorithm in iteration i. The parameters for the next iteration are chosen
greedily to minimize the objective function:

θ(i) = argmin
θ′∈Pi(θ(i−1))

LJB(θ
′) for i = 1, . . . , Niter (1)

This iterative process continues for a predefined number of steps, Niter.

Following the approach established by Coalson et al. [13], our specific instantiation of LJB is designed not merely to
elicit an initial affirmative response (e.g., "Sure, here is...") but to maximize the likelihood of the model generating a
more complete, harmful response sequence. This strategy aims to mitigate issues observed in prior attack attempts where
targeting only affirmative prefixes led to repetitive or nonsensical outputs. For this purpose, we adopt the jailbreaking
objective function proposed by Coalson et al. [13], defined as:

LJB(θ) = −
1

n

n∑
i=1

m∑
k=1

e−(
k−1
m−1 ) log fθ(yk|sk−1) (2)

where (x, y) represents a prompt-target pair from the dataset used to guide the attack, n is the dataset size, sk−1 =
(x1, ..., xn, y1, ..., yk−1) are the tokens up to position k − 1, fθ(yk|sk−1) is the model’s predicted probability for token
yk, and m is the total number of tokens in the target response y. This loss function applies exponentially decaying
weights to the standard cross-entropy loss across the target token sequence, thereby focusing more of the optimization
effort on accurately generating the initial parts of the harmful completion.

4.2 Attack Algorithms

We employ greedy, gradient-based search strategies to identify and apply minimal parameter perturbations that achieve
the jailbreaking objective defined previously. We implement two primary algorithms: a precise bit-level attack and a
comparative word-level (weight) attack.

Bit-Level Attack. The first algorithm, outlined in Algorithm 1, iteratively identifies and flips a single bit within the
model’s parameters per iteration to minimize the jailbreak loss LJB . This approach builds upon the progressive search
methodology introduced in prior work [10] but incorporates a modified strategy for selecting the specific bit to flip
within candidate weights.

At each iteration i, the algorithm first computes the gradients G of the current loss Lcurrent with respect to the model
weights. Within each relevant layer l, it identifies the top NCL weight parameters with the highest gradient magnitudes
|Gl| as candidates for modification. For each candidate weight wc (with index idxw), the algorithm proceeds to find the
most effective single bit flip using the subroutine FindBestBitInWeight (detailed in Algorithm 2).

The FindBestBitInWeight subroutine differs significantly from the bit selection criteria used previously [10, 13]. Instead
of relying solely on a score combining gradient and potential weight change, or using pre-defined heuristics about which
bits (e.g., exponent bits) are most impactful, our method performs a direct, progressive search for the optimal "step
size" within the weight’s bit representation. It first calculates the potential change in weight value (∆wj) for flipping
each bit j. The CalculateBitScores function determines the sign (should the weight increase or decrease based on the
gradient gc?) and assigns a score based on the magnitude of the potential weight change |∆wj | for bits that would move
the weight in the desired direction. The bits are then sorted (IdxB) based on this score, prioritizing flips that induce
the largest weight change in the beneficial direction. Algorithm 2 then evaluates these potential bit flips sequentially,
starting with the bit j corresponding to the largest beneficial score. It continues evaluating bits with progressively
smaller scores as long as the loss continues to decrease compared to the best loss found so far (Lbest_bit) for that specific
weight. If evaluating a bit j results in a loss L′

j that is greater than or equal to the current best (L′
j ≥ Lbest_bit), the

search for this weight terminates (Algorithm 2). This signifies that the previous bit flip represented the optimal single-bit
"step size". After evaluating all candidate weights across all layers (respecting the evaluation budget Emax per layer),
the main loop (Algorithm 1) identifies the single globally optimal bit flip (Cglobal_best) and applies it permanently to
the model M . The overall workflow of this Bit-Level Attack is illustrated in Figure 1.

Word-Level (Weight) Attack Comparison. Prior work has shown that standard fine-tuning can effectively jailbreak
aligned LMs [5]. To bridge the gap between modifying many parameters (fine-tuning) and modifying a single bit, we
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Algorithm 1 Progressive Bit-Flip Attack (Main Loop)

Input: Language Model M , Attack Dataset Datk, Loss LJB , Niter, NCL, Emax

Output: Jailbroken Language Model M
1: for i = 1 to Niter do
2: // –- Gradient Calculation –-
3: Zero gradients; Enable gradients; Lcurrent = LJB(M,Datk); Compute gradients G; Disable gradients.
4: // –- Candidate Evaluation –-
5: Cglobal_best ← None; Lglobal_best ← Lcurrent.
6: for each relevant layer l in M do
7: ecount ← 0; Wl, Gl ← GetWeightsAndGrads(l);
8: IdxW ← Top NCL weight indices in l by |Gl|; Sort IdxW .
9: Clayer_best ← None; Llayer_best ← Lcurrent.

10: for each candidate weight index idxw ∈ IdxW do
11: if ecount ≥ Emax then
12: break
13: end if
14: wc = Wl[idxw]; gc = Gl[idxw];
15: Sbits ← CalculateBitScores(wc, gc);
16: IdxB ← Sort bit indices by Sbits (descending).
17: (jbest, Lbest, ecount)← FindBestBitInWeight(. . . )
18: if jbest is not None and Lbest < Llayer_best then
19: Llayer_best ← Lbest.
20: Clayer_best ← (l, idxw, jbest, Lbest).
21: end if
22: end for{End weight loop}
23: if Clayer_best is not None and Llayer_best < Lglobal_best then
24: Lglobal_best ← Llayer_best.
25: Cglobal_best ← Clayer_best.
26: end if
27: end for{End layer loop}
28: // –- Apply Best Flip –-
29: if Cglobal_best is None then
30: Print "Early stopping."; break
31: end if
32: Permanently flip bit specified by Cglobal_best in M .
33: end for{End main iteration loop}
34: return Modified Model M .

implemented a comparative word-level attack. This approach represents a more restrictive scenario than fine-tuning but
less restrictive than the single bit-flip attack. It operates by identifying the single weight parameter across the entire
model with the highest gradient magnitude (|Gl[idxw]|) in each iteration. It then applies a standard gradient descent
update to modify the value of only this single selected weight, using its gradient and a chosen learning rate.

4.3 Handling Quantized Weights

When applying these algorithms to quantized models, special handling is required for gradient calculation and weight
updates, as gradients cannot be computed directly w.r.t discrete values. We employ the Straight-Through Estimator[16].
During the forward pass for loss calculation, the quantized weights are dequantized to FP16. The loss and subsequent
gradients are computed with respect to these dequantized FP16 weights. The calculated FP16 gradients are then
directly used as the conceptual gradients (G) for the original quantized weights. When a bit flip is evaluated or applied
permanently — or when a whole weight is modified in the word-level attack — the change occurs directly on the
underlying integer or FP8 representation of the weight(s). For the word-level attack, the gradient descent update
is conceptually applied to the dequantized weight, and the result must be re-quantized back to the original format.
Immediately following any modification, the corresponding dequantized FP16 representation used for forward passes
must be updated. When reverting a temporary flip, both the quantized weight and its dequantized representation are
restored.
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Algorithm 2 FindBestBitInWeight

Input: Model M , Dataset Datk, Loss LJB , Layer l, Weight index idxw, Original weight wc, Sorted bit indices IdxB ,
Current eval count ecount, Max eval count Emax

Output: Best bit index jbest_bit, Best loss Lbest_bit, Updated eval count ecount
1: jbest_bit ← None
2: Lbest_bit ←∞
3: for each bit index j ∈ IdxB do
4: if ecount ≥ Emax then
5: break {Layer evaluation budget exceeded}
6: end if
7: Create temporary flipped weight w′

c by flipping bit j in wc.
8: Temporarily update layer l in M with w′

c.
9: Calculate loss L′

j = LJB(M,Datk). {Loss evaluation}
10: ecount ← ecount + 1.
11: Revert model change (restore original wc).
12: if L′

j is invalid (NaN/Inf) then
13: continue
14: end if{Skip invalid results}
15: if L′

j < Lbest_bit then
16: Lbest_bit ← L′

j .
17: jbest_bit ← j.
18: else if L′

j ≥ Lbest_bit then
19: break {Stop searching bits for this weight}
20: end if
21: end for{End bit loop}
22: return jbest_bit, Lbest_bit, ecount
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Figure 1: High-level workflow of the iterative Bit-Level Attack, from loss calculation using the Attack Dataset to the
final selection and application of a single bit flip.

5 Experimental Setup

This section details the specific models, datasets, parameters, tools, and evaluation procedures used in our experiments.

5.1 Target Models and Quantization Schemes

To assess the impact of quantization on bit-flip attack jailbreaking, we selected several contemporary LMs representing
different scales and architectures. Our primary targets include Llama-3.2-3B-Instruct and Phi-4-mini-instruct.
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These were chosen as representatives of modern, capable models, noting an architectural difference in their attention
mechanisms: the Llama models utilize separate weight matrices for query, key, and value projections, whereas Phi-4
employs a single grouped ‘qkv_proj‘ layer. We also include Llama-3-8B-Instruct both as a slightly larger model and
to facilitate comparison with prior work. We specifically use the instruction-tuned or chat versions of these models, as
these are the variants subjected to safety alignment procedures which our jailbreak attacks aim to circumvent.

We evaluate the susceptibility of these models across four distinct precision formats. The baseline configuration uses
the standard FP16 format, representing the unquantized state common in LM training and deployment. Against this
baseline, we evaluate three popular weight-only Post-Training Quantization (PTQ) schemes: INT8, where weights are
quantized to 8-bit integers; FP8, where weights are quantized to 8-bit floating-point values (E4M3 format); and INT4,
where weights are quantized to 4-bit integers. We applied symmetric, static, channel-wise quantization to the Linear
layers of the models, using a configuration reflecting common PTQ practices.

5.2 Attack Dataset Generation

To guide the attack optimization towards generating full harmful responses, we constructed a specialized AttackDataset
containing pairs of harmful queries and target completions, as required by the objective function (Eqn. 2). We sourced
the harmful queries from the first 32 samples of the AdvBench dataset [15]. To generate the corresponding target
completions, we utilize an uncensored version of WizardLM-30B1. For each query, we first took the initial affirmative
response prefix provided in AdvBench, appended it to the query, and then prompted WizardLM-30B to continue the
generation yielding plausible extended harmful completions.

5.3 Setup

For our experiments, both the Bit-Level and Word-Level attacks were executed for Niter = 150 iterations across all
models (Llama-3.2-3B, Llama-3-8B, and Phi-4-mini) and their respective precision formats. The Bit-Level attack used
NCL = 100 candidate weights per layer with a per-layer evaluation budget of Emax = 100. The Word-Level attack
tested learning rates (LR) of 50, 100, and 200.

The implementation utilized the Hugging Face ‘Transformers‘ library [17] for model handling utilizing FlashAttention
v2. Quantization was performed using Neural Magic’s ‘llmcompressor‘ and ‘compressed-tensors‘. All experiments
were conducted on NVIDIA A100 80GB GPUs with deterministic flags enabled where possible.

5.4 Evaluation Strategy

To assess attack effectiveness, a standardized evaluation was conducted using an independent dataset and a panel of
automated judges.

Evaluation Dataset. We used the HarmBench test set [18] for all evaluations, chosen for its relevance and use in prior
work.

Evaluation Procedure and Metric. The primary metric is Attack Success Rate (ASR). Harmful queries from
HarmBench were input to the attacked model, and full responses were generated.

Automated Judging. Generated responses were assessed by three automated judges: the official HarmBench judge
(Llama-2 based), Llama Guard 3[19], and Walled Guard-C[20]. Each judge provided a binary harmful/harmless label.
ASR was calculated as the fraction of prompts deemed harmful by the respective judge.

Figure 2 illustrates the evaluation pipeline. The process for each query involves: (1) taking a query from the evaluation
dataset; (2) tokenizing and feeding it to the LM, which has been subjected to a specific number of parameter perturbations
(3); (4) the LM generates a response; (5) this response is tokenized and (6) evaluated by the automated judge. This
entire evaluation cycle across all queries in the dataset is repeated after each incremental perturbation is applied to the
model, allowing us to track the ASR as the attack progresses through its iterations.

6 Results and Discussion

This section presents the experimental findings evaluating the effectiveness of the targeted parameter manipulation
attacks on jailbreaking aligned LMs, with a particular focus on the influence of quantization. We evaluate both the
word-level attack and the more restrictive bit-level attack.

1https://huggingface.co/cognitivecomputations/WizardLM-30B-Uncensored
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Figure 2: The iterative evaluation pipeline. After each parameter perturbation, responses to the evaluation dataset are
judged to track the ASR.

6.1 Word-Level Attack Results

We first present the results for the word-level attack, where a single weight parameter is updated per iteration using
gradient descent. Table 1 summarizes the ASR achieved by this method across the different target models and
quantization schemes. The table displays the ASR progression for selected iterations up to 150. Each ASR value
represents the maximum obtained across the tested learning rates (50, 100, 200) for that iteration. The evaluation uses
the HarmBench dataset and classifier. The values in parentheses compare these results to the bit-level attack by showing
the number of bit flips required to translate the word-level attack to a bit-level attack that would be applicable via
rowhammer, which is the hamming distance from original model weights to the perturbed word-level weights up-to a
specific iteration (∆ Bits).

Table 1: ASR(%) (∆ Bits) achieved by Weight Attack as a function of the number of applied weight perturbations.

Model
Quant.

Iter.
0 1 5 10 15 20 25 50 75 100 125 150

Llama-3.2-3B

FP16 13.2 (0) 47.8 (8) 83.0 (42) 80.5 (75) 78.6 (117) 78.6 (151) 83.6 (189) 86.2 (382) 87.4 (584) 89.3 (778) 93.7 (957) 90.6 (1129)
FP8 14.5 (0) 14.5 (4) 10.7 (10) 6.3 (24) 5.0 (40) 3.1 (83) 3.1 (103) 7.5 (192) 22.0 (299) 50.3 (376) 55.3 (451) 56.6 (530)
INT8 17.6 (0) 19.5 (2) 10.7 (18) 12.6 (39) 23.9 (59) 34.6 (74) 44.7 (95) 71.1 (194) 80.5 (296) 82.4 (351) 84.9 (438) 81.1 (566)
INT4 16.4 (0) 29.6 (5) 31.4 (21) 42.8 (44) 45.9 (59) 39.0 (81) 40.9 (102) 62.9 (211) 69.8 (300) 73.6 (411) 80.5 (532) 77.4 (625)

Llama-3-8B

FP16 4.4 (0) 5.0 (10) 8.8 (36) 74.2 (77) 79.2 (110) 91.2 (147) 83.6 (184) 90.6 (373) 83.0 (544) 84.9 (729) 87.4 (917) 86.8 (1120)
FP8 3.8 (0) 4.4 (5) 6.3 (17) 6.3 (26) 6.3 (38) 6.3 (55) 6.3 (68) 6.3 (125) 6.3 (156) 6.3 (144) 5.7 (257) 6.3 (478)
INT8 5.0 (0) 5.0 (5) 5.0 (19) 6.3 (37) 5.7 (60) 5.7 (86) 5.0 (81) 8.2 (197) 9.4 (307) 32.1 (379) 50.3 (498) 49.7 (597)
INT4 6.3 (0) 4.4 (4) 16.4 (15) 31.4 (38) 32.1 (67) 39.6 (87) 39.6 (106) 42.1 (206) 69.8 (251) 70.4 (329) 77.4 (444) 78.0 (536)

Phi-4-mini

FP16 5.7 (0) 6.3 (9) 82.4 (44) 88.1 (86) 87.4 (135) 90.6 (166) 89.3 (213) 91.2 (395) 87.4 (570) 88.7 (756) 87.4 (950) 89.3 (1147)
FP8 5.0 (0) 5.7 (4) 8.8 (16) 11.3 (35) 14.5 (51) 16.4 (71) 20.8 (93) 31.4 (198) 37.1 (306) 45.9 (394) 61.0 (495) 62.9 (575)
INT8 5.7 (0) 7.5 (3) 12.6 (18) 20.8 (37) 27.0 (53) 36.5 (68) 50.3 (91) 65.4 (172) 76.1 (249) 83.6 (380) 88.1 (465) 84.3 (574)
INT4 8.2 (0) 13.2 (4) 23.3 (26) 36.5 (53) 50.3 (72) 54.7 (83) 67.3 (102) 73.6 (200) 74.2 (281) 69.8 (402) 68.6 (497) 71.7 (598)

The results in Table 1 reveal several clear trends. For FP16 models, the Word-Level Attack is highly effective, rapidly
achieving high ASRs (>70%) within the first 10 iterations across all models. This confirms the vulnerability of
unquantized models to targeted gradient descent on even a small subset of weights. In contrast, all quantization
schemes demonstrate increased resilience. FP8 consistently proves to be the most robust format, with attack failing on
Llama-3-8B and only modestly increasing for the other models even after 150 iterations. INT8 also shows significant
resilience, though less than FP8, requiring a substantially higher number of iterations to reach ASRs comparable to
FP16. Interestingly, INT4 quantization, while more resilient than FP16, is consistently less robust than INT8, suggesting
that lower bit-width in integer quantization does not necessarily equate to greater defense against this attack type.
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Table 2: ASR (%) achieved by the Bit Attack as a function of the number of applied bit-flips.

Model
Quant.

Iter.
0 1 5 10 15 20 25 50 75 100 125 150

Llama-
3.2-3B

FP16 13.2 13.8 46.5 58.5 64.2 74.8 86.8 84.9 82.4 83.6 81.8 84.9
FP8 14.5 10.7 2.5 5.7 9.4 13.8 13.2 29.6 41.5 37.7 45.3 57.2
INT8 17.6 9.4 3.1 13.2 22.6 35.8 51.6 71.1 84.3 81.1 86.2 86.2
INT4 16.4 19.5 8.2 20.1 52.8 72.3 84.3 83.0 79.9 84.3 83.0 84.9

Llama-
3-8B

FP16 4.4 3.8 3.8 13.2 69.8 80.5 79.2 83.6 86.8 89.3 89.3 93.1
FP8 3.8 5.0 2.5 2.5 2.5 3.8 3.1 1.3 0.6 0.0 0.0 1.3
INT8 5.0 3.8 19.5 27.0 22.6 23.9 25.8 44.0 54.1 59.1 57.9 74.2
INT4 6.3 19.5 23.3 29.6 39.0 40.3 41.5 82.4 83.6 88.7 84.3 84.9

Phi-
4-mini

FP16 5.7 6.3 13.2 37.7 84.9 89.9 91.8 93.1 91.8 88.1 89.3 86.8
FP8 5.0 5.0 8.2 8.2 13.8 12.6 17.0 25.2 24.5 47.8 56.0 66.7
INT8 5.7 7.5 11.9 17.6 22.0 25.8 32.1 68.6 76.1 79.2 82.4 79.9
INT4 8.2 11.9 25.8 78.0 76.7 82.4 80.5 83.0 81.8 76.1 78.0 81.1

6.2 Bit-Level Attack Results

We examine the results of the more constrained bit-level attack (Algorithm 1), which modifies only a single bit per
iteration. Table 2 presents the ASR progression for this method under the same experimental conditions (models,
quantization schemes, HarmBench evaluation). This table directly shows the ASR achieved after a specific number of
bit flips, allowing for an assessment of the attack’s progression and the robustness of the targets to minimal and discrete
parameter changes.

The Bit-Level Attack results, shown in Table 2, reinforce the trends observed in the Word-Level Attack regarding
the influence of quantization. Most notably, INT4 models consistently exhibit minimal resilience, with their ASR
progression closely tracking, and in some cases surpassing, that of the unquantized FP16 models, offering little to no
practical robustness benefit. In contrast, both FP8 and INT8 quantization provide substantial protection, mirroring the
general resilience patterns seen with the Word-Level Attack. The fact that the highly constrained Bit-Level Attack,
which modifies only a single bit per iteration, can achieve ASRs comparable to the Word-Level Attack demonstrates
that restricting perturbations to the bit-level is a highly effective approach for jailbreaking these models.

6.3 Judge Comparison

While the previous sections illustrate the progression of attacks over iterations, those results reported ASR based on a
single judge (the HarmBench classifier) for brevity. To simplify this, we define a specific achievement point. Therefore,
this section investigates the variability between automated judges and compares the Word-Level and Bit-Flip attacks
based on when they first reach a defined success threshold according to any judge.

We establish an ASR threshold of 70%. For each attack configuration (Model + Precision + Attack Type), we identify
the first iteration where the ASR reported by any of the three judges (HarmBench classifier, Llama-Guard-3-8B, or
walled-guard-c) meets or exceeds this 70% threshold. If no judge reaches the 70% threshold within the attack iterations
for a given configuration, we instead select the iteration number that corresponds to the peak ASR achieved by any
judge for that configuration.

Table 3 presents the ASR results from each of the three judges, evaluated at the specific iteration determined by the
criterion described above. The iteration number itself is indicated in parentheses next to each ASR value. This allows
for a direct comparison of the Word Attack versus the Bit-Flip Attack effectiveness at a representative success point,
while also highlighting the variability introduced by the choice of automated judge.

6.4 Impact of Attack Optimization Dataset

While the default experimental setup utilizes a fixed set of 32 samples for gradient calculation, the specific samples
chosen and the size of this optimization dataset can influence attack performance. The following subsections analyze
the sensitivity of the Bit-Flip Attack to variations in these two factors.
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Table 3: Comparison of ASR (%) across different judges for Word Attack and Bit-Flip Attack.
Attack Weight Bit

Model
Quant.

Judge HarmBench
Cls.

Llama-
Guard-3

walled
guard-c

HarmBench
Cls.

Llama-
Guard-3

walled
guard-c

Llama-
3.2-3B

FP16 76.1 (4) 83.0 (4) 73.0 (4) 65.4 (9) 74.2 (9) 57.9 (9)
FP8 57.9 (147) 61.6 (147) 57.2 (147) 58.5 (146) 64.2 (146) 60.4 (146)
INT8 64.8 (44) 71.7 (44) 68.6 (44) 64.8 (32) 73.0 (32) 64.8 (32)
INT4 54.7 (33) 71.7 (33) 58.5 (33) 53.5 (14) 69.8 (14) 76.1 (14)

Llama-
3-8B

FP16 63.5 (6) 75.5 (6) 73.0 (6) 59.1 (13) 70.4 (13) 70.4 (13)
FP8 6.3 (87) 5.7 (87) 64.8 (87) 3.8 (0) 3.1 (0) 59.7 (0)
INT8 51.6 (128) 54.7 (128) 70.4 (128) 54.7 (56) 71.7 (56) 67.3 (56)
INT4 16.4 (5) 71.1 (5) 41.5 (5) 35.2 (13) 52.2 (13) 73.0 (13)

Phi-
4-min-

FP16 69.8 (4) 83.6 (4) 67.9 (4) 73.0 (11) 78.0 (11) 64.2 (11)
FP8 66.7 (146) 69.8 (146) 58.5 (146) 65.4 (147) 71.1 (147) 57.9 (147)
INT8 66.0 (37) 71.7 (37) 61.6 (37) 63.5 (41) 77.4 (41) 62.9 (41)
INT4 61.6 (17) 71.7 (17) 49.1 (17) 78.0 (7) 91.8 (7) 73.0 (7)

6.4.1 Sensitivity to Sample Selection

To investigate the impact of the specific samples chosen for attack optimization, attacks were conducted using
four distinct, non-overlapping 32-sample sets, differentiated by their starting sample index (SSI) in the ‘AdvBench-
Completions‘ dataset (SSI=0, 32, 64, and 96).

An initial analysis on the less robust FP16 models revealed significant sensitivity. For each of the four sample sets, the
peak ASR within 25 iterations was recorded. The variability, quantified as the range between the highest and lowest of
these peak ASRs, was substantial. For Llama-3.2-3B, this ASR range was 8.2% for the Bit-Flip Attack and 17.6% for
the Weight Attack. For Phi-4-mini, the ranges were 20.1% and 14.5% respectively, confirming that for a fixed dataset
size, the choice of samples significantly impacts potential attack success on non-quantized models.

This analysis was then extended to the more resilient FP8 and INT8 quantization schemes over 150 iterations. Figure 3
plots the ASR progression for these four different sample sets on (a) Llama-3.2-3B and (b) Phi-4-mini. The results
show that the specific samples used can still cause significant ASR variations, particularly in pre-convergence iterations
(mid-stage for INT8 or final-stage for FP8).

Figure 3: ASR progression for the Bit Attack across four different 32-sample attack datasets, identified by their starting
sample index (SSI), for (a) Llama-3.2-3B and (b) Phi-4-mini with FP8 and INT8 quantization.
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6.4.2 Sensitivity to Dataset Size

The effect of varying the optimization dataset size (Dataset Size, DS) was also analyzed by running the Bit-Flip Attack
with dataset sizes of 16, 32, and 64 samples. As shown in Figure 4 for (a) Llama-3.2-3B and (b) Phi-4-mini, DS can
also induce major variations in attack success, with the significance depending on both the number of iterations and
the quantization setting. Generally, the largest dataset size tested (DS=64) always yielded the highest final ASR. It is
important to note, however, that the computational cost of the attack scales linearly with the dataset size, presenting a
trade-off between effectiveness and optimization resources.

Figure 4: ASR progression for the Bit Attack using different optimization DS of 16, 32, and 64 samples for Llama-3.2-
3B (a) and Phi-4-mini (b) with FP8 and INT8 quantization.

6.5 Operator and Layer Vulnerabilities

To characterize how our jailbreak attempts interact with different model architectures and quantization schemes, we
analyzed the specific locations of applied parameter modifications. For each model and quantization setting, we selected
the single attack run that yielded the highest ASR on the HarmBench dataset. From these selected highest-ASR
sequences we recorded the location (layer, module type) of each perturbation applied.

Figure 5 visualizes this aggregated data. Subplots (a) and (b) illustrate the distribution of applied perturbations across
model layers for the Bit-Flip Attack and Word-Level Attack, respectively. Wider sections of the violins indicate a
higher concentration of perturbations at those layer depths. Subplots (c) and (d) show stacked bar charts detailing the
proportion of perturbations targeting specific internal module sub-components. These sub-components include attention
mechanism elements such as query projection (‘q_proj‘ (Attn)), and grouped query-key-value projection (‘qkv_proj‘
(Attn)) (specific to Phi), as well as MLP components like the up-projection (‘up_proj‘ (MLP)). This provides insights
into the architectural components consistently targeted.

Observing the patterns in Figure 5, distinct characteristics emerge based on quantization. Generally, for both Bit-Flip
and Weight attacks, the FP16 and INT4 quantization schemes exhibit similar attack profiles, as do the FP8 and INT8
schemes. In terms of layer concentration (subplots (a) and (b)), attacks on FP16 and INT4 models show perturbations
that are more broadly distributed across various layers. Conversely, for FP8 and INT8 quantized models, the successful
perturbations tend to be concentrated in very specific, often narrower, ranges of layers. Regarding the targeted modules
(subplots (c) and (d)), the FP16 and INT4 group frequently sees a majority of perturbations landing within Attention
(Attn) mechanism components, particularly the value projection (‘v_proj‘) modules. In contrast, for the FP8 and
INT8 group, a larger proportion of modifications targets MLP block components, with a notable concentration in the
down-projection (‘down_proj‘) modules.

6.6 Post-Attack Quantization

We investigated if a jailbreak induced in an FP16 model persists after the compromised model is subsequently quantized.
The already-jailbroken FP16 states of Llama-3.2-3B and Phi-4-mini were quantized to FP8, INT8, and INT4 weight
formats, and ASR was re-evaluated on HarmBench. The results presented in Table 4 suggest that while jailbreaks
transferred from FP16 can persist through 8-bit quantization, 4-bit integer quantization offers greater resilience by
disrupting these existing malicious perturbations. Replicating the precise numerical impact of the original FP16 bit-flips
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Figure 5: Distribution of perturbations locations across model layers and internal components.

directly onto an already quantized model would likely require a different, and potentially more extensive, set of bit
manipulations due to the inherent differences in value representation and precision.

Table 4: ASR (%) (∆ vs. FP16) after Quantizing Jailbroken FP16 Models at 150 bit-flips.
Model FP16 Post-Attack Post-Attack Post-Attack

Jailbroken FP8 INT8 INT4
Llama-3.2-3B 84.9 83.6 (-1.3) 84.3 (-0.6) 39.6 (-45.3)
Phi-4-mini 86.8 86.8 (0) 89.3 (+2.5) 62.3 (-24.3)

7 Conclusion

This paper investigated the vulnerability of aligned LMs to jailbreaking via targeted parameter manipulation, comparing
bit-level and word-level attacks across FP16, FP8, INT8, and INT4 quantization on Llama-3.2-3B, Phi-4-mini, and
Llama-3-8B. Our findings demonstrate that while FP16 models are readily jailbroken (>80% ASR within 25 perturba-
tions), all tested quantization schemes significantly influence attack dynamics and ultimate success. Notably, the highly
constrained Bit-Flip Attack proved to be as effective as the Word-Level Attack in achieving jailbreaks on FP16 models.
FP8 quantization exhibited the strongest resilience, maintaining ASR below 65% even after 150 bit-flips, while INT8
also offered considerable protection. In contrast, INT4 quantization was significantly less resilient than the 8-bit formats.
Analysis also revealed differing architectural attack targets based on quantization schemes. We observed significant
variability in ASR between judges, which underlines the need for improved evaluation benchmarks. Furthermore,
attack success demonstrated sensitivity to the specific samples chosen for optimization, showing potential for attack
improvement. While direct attacks on quantized models proved challenging, jailbreaks induced in FP16 models were
often transferable to subsequent 8-bit quantization, though INT4 substantially reduced this transferability. Future work
should include physical fault injection and explore broader quantization and defense strategies.
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