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Abstract— Unmanned Aerial Vehicles (UAVs) depend on on-
board sensors for perception, navigation, and control. However,
these sensors are susceptible to physical attacks, such as GPS
spoofing, that can corrupt state estimates and lead to unsafe
behavior. While reinforcement learning (RL) offers adaptive
control capabilities, existing safe RL methods are ineffective
against such attacks. We present ARMOR (Adaptive Robust
Manipulation-Optimized State Representations), an attack-
resilient, model-free RL controller that enables robust UAV
operation under adversarial sensor manipulation. Instead of
relying on raw sensor observations, ARMOR learns a robust
latent representation of the UAV’s physical state via a two-
stage training framework. In the first stage, a teacher encoder,
trained with privileged attack information, generates attack-
aware latent states for RL policy training. In the second stage,
a student encoder is trained via supervised learning to approxi-
mate the teacher’s latent states using only historical sensor data,
enabling real-world deployment without privileged information.
Our experiments show that ARMOR outperforms conventional
methods, ensuring UAV safety. Additionally, ARMOR improves
generalization to unseen attacks and reduces training cost by
eliminating the need for iterative adversarial training.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are extensively used in
various applications including logistics, agriculture, surveil-
lance, and emergency services [1]. UAVs rely on onboard
sensors for perception, autonomous navigation, and control.
Correctness of sensor measurements is critical to achieving
safe and reliable performance in UAV missions. However,
sensors are susceptible to physical attacks launched by
injecting malicious signals or noise through the physical
channel. Examples of such attacks are GPS spoofing [2],
gyroscope tampering using acoustic noise [3], and optical
sensor spoofing through laser beams [4]. Physical attacks
corrupt a UAV’s physical state estimates, leading to unsafe
control actions and resulting in deviations from planned
trajectories, or crashes, as illustrated in Figure 1.

Model-free Reinforcement Learning (RL) has emerged as
a promising approach for UAV control, enabling adaptive
decision-making in complex and dynamic environments [5].
However, as RL-based controllers also rely on sensors, they
are vulnerable to physical attacks. Techniques like shield-
ing [6] and control barrier functions (CBF) [7] have been
proposed for safe policy learning. However, they are not
effective under physical attacks. Shielding and CBFs rely on
prior definitions of unsafe actions and well-defined bound-
aries of the unsafe action space. Physical attacks present a

Fig. 1: Left: Without an attack-resilient control policy, a
UAV subjected to physical attacks deviates significantly from
its planned trajectory, leading to mission failure. Right: Our
goal is to design attack attack-resilient control policy that
enables the UAV to remain on course despite the attacks.

fundamentally different threat model. They can cause the
controller to execute unsafe actions under the illusion that
they remain within safe limits. For example, GPS spoofing
can cause incremental deviations during a UAV mission,
eventually leading to significant deviations in its trajectory.
While these deviations might appear safe within the defined
action space, they can cumulatively cause the UAV to follow
an unintended and potentially dangerous path.

Adversarial training is a popular approach for developing
attack-resilient RL-based controllers [8], [9]. However, ad-
versarial training has the following limitations under physical
attacks [10], [11]. (1) It incurs a high training cost due to
the iterative generation of adversarial scenarios. (2) Lacks
generalizability, as the policy is only effective against the
specific attack patterns encountered in training. (3) It lacks
zero-shot effectiveness against previously unseen attacks.

We propose ARMOR, an attack-resilient RL-based con-
troller for UAVs. Instead of directly relying on high-
dimensional physical state information from onboard sensors,
ARMOR generates a robust latent representation of the UAV’s
physical state specifically designed to withstand physical
attacks. This latent state representation allows the UAV to op-
erate safely and complete its missions despite the malicious
interventions. Our main innovation is a two-stage offline
training framework. In the first stage, we train the RL policy
using a teacher encoder that uses privileged information. In
the second stage, we adapt the RL policy using a student
encoder, which relies solely on the onboard sensors. During
online deployment, only the student encoder is used.

The teacher encoder has access to privileged information,
such as the target sensor under attack, the magnitude of
the sensor bias, and the duration of sensor manipulation.
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By combining the UAV’s high-dimensional physical state
information with the privileged information, the teacher
encoder generates a robust latent state representation using
a Variational Autoencoder (VAE) [12]. This latent represen-
tation allows the RL policy to achieve high performance in
control tasks, and it also remains resilient to physical attacks.

Since privileged information is unavailable in real-world
scenarios, we introduce a student encoder that relies solely
on the onboard sensors. The student encoder processes the
UAV’s historic physical state information derived from the
onboard sensors using a Long Short Term memory (LSTM)
network, capturing temporal dependencies to generate a
robust latent state representation. The student encoder learns
to approximate the latent state representation of the teacher
encoder through supervised learning. The RL-policy is used
with the student encoder for deployment.

By decoupling the learning process into teacher and stu-
dent encoders and leveraging privileged information, ARMOR
eliminates the need for iterative adversarial scenario genera-
tion, resulting in significant reductions in training costs. The
robust latent state representation further enhances ARMOR’s
generalizability across a wide range of attack types and sce-
narios, while also enabling zero-shot generalization, ensuring
resilience against previously unseen attacks.

While prior work has explored representation learning for
robotics [13]–[15], and use of privileged information [16],
these methods focus on enhancing control under normal
conditions, rather than resilience to attacks. In contrast, our
work designs robust latent state representations specifically
optimized for control under adversarial perturbations.

Contributions. Our contributions are as follows:
• We introduce a two-stage offline training framework for

developing an attack-resilient model-free RL controller
for UAVs. First, the controller is trained using privileged
information to enable robust and efficient policy learn-
ing. Second, the policy is adapted for online deployment
using only onboard sensor data.

• We propose a robust state representation method that
transforms the UAV’s high-dimensional physical state
information into a resilient latent vector representation,
ensuring robustness to physical attacks.

• We propose a transfer learning strategy that enables the
RL controller to infer robust latent state representations
without privileged information, and instead relies solely
on historical sensor information.

II. RELATED WORK

A. Safe and Resilient Model-free Policy Learning

Prior work in safe RL mainly focuses on safety under
uncertainty. These approaches modify the action by con-
straining a control policy [17]–[22]. Shielding [6] is one such
method that uses a safety filter to modify the control inputs
to ensure the output remains in a safe set. Control barrier
functions (CBF) [7], [23] define constraints to ensure that the
system remains within a safe set by deriving control actions
that satisfy the constraints. Safety critic methods [24] use a

learnable action-value function to detect potentially unsafe
actions, and use a fallback mechanism to choose a safe
action. Physical attacks manipulate the UAV’s perception of
its state, leading to unsafe actions that appear safe within the
defined action space. The above safe RL mechanisms are
designed to handle unsafe actions under normal operating
conditions and they are not designed to mitigate deliberate
state manipulations caused by physical attacks.

Robust RL techniques are another category of work pro-
posed to handle state manipulations. Robust MDP meth-
ods [25] develop a conservative policy by deriving the
probability of an unsafe action given the current state, and
deriving an alternate action to avoid the unsafe trajectory.
On the other hand, adversarial training [8], [9], [26] aims
to learn policies that can operate under disturbances and
this is often achieved by having a protagonist agent learn
a policy while an adversary tries to destabilize the system.
While these methods improve robustness, they are limited
in their ability to handle physical attacks. Their reliance
on predefined uncertainty sets and known attack patterns
restrict their generalizability to novel or unseen attacks. In
addition, these techniques often increase training costs as
they require extensive training in various scenarios and types
of attack. Furthermore, when the uncertainty set is broad,
these methods result in overly conservative policies that
sacrifice performance for safety.

B. UAV State Representation

Prior work has explored contrastive learning for robot state
representation, which learns discriminative representations
but is typically supervised and has seen limited use in safety-
critical robotics [13], [14]. Lee et al. proposed a latent
vector representation for quadrupedal robots using privileged
information, but their focus was on inferring proprioceptive
control under normal sensor conditions, not resilient control
against attacks [16]. Furthermore, variational autoencoders
(VAEs) have been widely used to provide probabilistic latent
representations, offering a robust framework for encoding
high-dimensional data [15]. Our work builds on these foun-
dations but focuses on resilient control under adversarial
conditions, addressing a critical gap in safety-aware robotics.

III. PRELIMINARIES

UAVs rely on sensors for perception. For instance, the
GPS measures position (x, y, z), the gyroscope measures
angular orientation (ϕ, θ, ψ), the accelerometer measures
velocity (ẋ, ẏ, ż) and acceleration (ẍ, ÿ, z̈), the magnetometer
measures heading direction, the barometer measures altitude
(z), and the optical flow sensor measures horizontal motion.

A. Threat Model

Physical attacks manipulate sensors by injecting noise or
malicious signals. For example, gyroscopes and accelerom-
eters can be manipulated through acoustic noise [3], [27],
GPS can be manipulated by transmitting malicious GPS
signals [2], magnetometers can be manipulated by injecting



Fig. 2: Overview of ARMOR’s two-staged training approach. First, a teacher encoder is trained with privileged information
that includes attack information—target sensor, corrupted states, attack duration, etc. The control policy is trained jointly
with the teacher encoder. Second, a student encoder is trained to approximate the teacher encoder via supervised learning.
The student encoder does not have access to privileged information, instead, it relies on a stream of historic physical state
information derived from onboard sensors. For online deployment, the control policy uses the student encoder.

electromagnetic signals [28], and the optical flow sensors
can be spoofed by projecting laser beams [4]. These attacks
manipulate the UAV’s physical state estimates (e.g., , posi-
tion, angular orientation, velocity), cause excessive position
drift, instability in angular orientation, leading to severe
consequences such as collisions or crashes [29], [30].

B. UAV Control Design

The control architecture for a UAV consists of two primary
components: motion generation and tracking control. UAVs
operate in a continuous trajectory-based motion framework,
where the desired trajectory is defined in the inertial frame.
The UAV’s trajectory is parameterized using a waypoint tra-
jectory generator (WTG), which provides a time-dependent
reference position. The state of the UAV at each time step t
is given by: pt = p0 +

∫ t

0
v(τ) dτ , where pt is the position

at time t, p0 is the initial position, and v(t) is the velocity.
Physical attacks induce biases bt in sensor measurements,

causing the control policy π(·) to generate unsafe control
actions at that may cause the UAV’s true state ot to de-
viate from the reference trajectory g(t). This deviation is
quantified as: ∆pt = ∥pt − g(t)∥ ≫ ϵ, where ϵ defines a
safety threshold, typically modeled as a circular region of
radius ϵ centered around the target state g(t). A trajectory is
considered safe if the UAV remains within this bound for all
times, i.e., ∆pt ≤ ϵ ∀t; otherwise, it is considered unsafe.

IV. ARMOR: TWO-STAGED TRAINING FRAMEWORK

The objective of ARMOR is to control UAVs in both
adversarial and non-adversarial scenarios. An overview of
our two-staged training approach is shown in Figure 2.

In the first stage, we train a teacher encoder that has
access to privileged information (Xt), such as target sensor,
manipulated states, attack-induced offset in physical states,
and the duration of the attack. The teacher encoder is
based on variational autoencoder (VAE) [12], which receives
both the robot’s states Ot and Xt, and computes a latent
embedding l̄t that represents the robot’s current state. Next,

we train a control policy using reinforcement learning, with
the teacher encoder’s latent embedding (l̄t) as input. The
privileged information enables the control policy to quickly
learn and adapt to attack-induced state manipulations and
output resilient actions.

In the second stage, we train a student encoder that
relies solely on the onboard sensors. In real-world scenarios,
the privileged information Xt is not available. To enable
deployment under this constraint, the student encoder is
implemented as a temporal variational autoencoder (TVAE),
that receives a sequence of historic physical state information
(H) derived from onboard sensors. It computes a latent
embedding lt in a supervised manner as shown in Figure 2,
that approximates the teacher encoder’s latent representation
l̄t, enabling the same RL policy to operate reliably in the
absence of privileged information.

Our approach adopts a privileged learning strategy inspired
by Chen et al. [16], but introduces two key innovations
that improve both adversarial robustness and deployment
efficiency. (1) We use the teacher encoder to generate a
robust latent representation that is resilient to attack-induced
perturbations, and the latent representation is the input
to the control policy. This encourages the policy to rely
entirely on a resilient representation, enhancing robustness
to sensor manipulation. In contrast, Chen et al. use both
raw observations and the latent representation to train the
policy, which may dilute the robustness benefits of the latent
representation. (2) Rather than training separate teacher and
student policies [16], we reuse a single control policy across
both training and deployment. This eliminates the need to
learn a second policy from scratch, simplifying the training
pipeline and improving sample efficiency.

A. Stage I – Train with Privileged Information

We formulate the control problem as a Markov Decision
Process (MDP) [31]. An MDP is defined by the tuple
(S,A, T ,R), where S is the state space, A is the action
space, T is the transition probability P (st+1|st, at), and R



is a scalar reward function. The objective of the training
framework is to learn a control policy π(at|st) that maxi-
mizes the expected discounted sum of rewards over time.

In the teacher training stage of ARMOR, we assume a
fully observable simulation environment. The teacher encoder
has access to both the UAV’s onboard sensor readings and
privileged information that is not available during real-world
deployment. The full state is defined as st := ⟨ot, xt⟩, where:
ot includes the observable physical state of the UAV, such as
position, angular orientation, heading direction, acceleration,
linear and angular velocities. xt contains privileged infor-
mation, including the sensor under attack, the corresponding
corrupted physical states, the magnitude of injected bias, and
the duration of the attack. This information is extracted from
the simulator and is used only during training. The control
action at specifies low-level control targets for the UAV (e.g.,
velocity commands, waypoint updates, and thrust values).
Table I summarizes the inputs and outputs of ARMOR.

The teacher encoder is implemented as a multi-head vari-
ational autoencoder (VAE) that maps the input st = ⟨ot, xt⟩
to three outputs: fteacher(st) =

(
l̄t = (µt, σt), ŷt, ŝt

)
, where

l̄t is the latent representation with mean µt and variance σt,
ŷt is the predicted attack type, and ŝt is the reconstruction of
the input st. The attack-type classifier encourages the latent
space to capture attack-specific patterns, while the variance
σt provides an uncertainty estimate that allows the control
policy π(at|l̄t) to adjust its behavior under unseen attacks.

The teacher encoder is trained with an auxiliary decoder
to evaluate the quality of the latent representations through
reconstruction loss; however, the decoder is discarded after
training, and only the encoder is used with the RL policy. The
teacher encoder is trained by minimizing a combined loss
that includes the reconstruction loss, the Kullback-Leibler
(KL) divergence, and the auxiliary attack classification loss:

Lteacher = Lrecon + LKL + Laux (1)

The RL policy π(at|l̄t) is trained using Proximal Policy
Optimization (PPO) [32], with the latent representation l̄t as
input. This design encourages the policy to rely on a robust,
attack-aware latent representation, improving its resilience.

This stage enables the policy to exploit privileged in-
formation during training, allowing it to generate resilient
behaviors under adversarial conditions. The resulting latent
space is a robust representation for policy learning and
student encoder supervision in Stage II.

The reward function is designed to promote task comple-
tion while ensuring safety and stability. For instance, the RL
agent receives positive reward for minimizing distance to the
target waypoint and penalties for unsafe behaviors such as
abrupt motion, excessive tilt, or deviation from trajectory.
The reward function is defined as:

rt = Rgoal · exp (−λ · ∥pt − gt∥)− α · ∥pt − pt−1∥ − β · θt
− γ · ∥at − at−1∥2

(2)

where pt is the UAV’s position, gt is the goal waypoint,
and ∥pt − gt∥ is the Euclidean distance to the target. The
exponential term provides a smooth approximation of the
goal reward, sharply increasing as the UAV nears the goal.
The remaining terms penalize trajectory deviation, tilt (θt),
and abrupt control actions (at), with corresponding weights
α, β, and γ. The term θt represents the total tilt of the UAV
(e.g., combined roll and pitch deviation), and at represents
the control command at time t (e.g., change of position). The
coefficients α, β, and γ weight the penalties for deviation
from the goal, instability, and abrupt motion, respectively.

TABLE I: Inputs used by ARMOR during both the training
stages. Ot: UAV physical states, Xt: Priviledged information,
St: Inputs to teacher encoder, H: Inputs to student encoder,
and at: action.

Input Type Description

Ot
position, velocity, orientation, body angular rates.
[x, y, z, ẋ, ẏ, ż, ϕ, θ, ψ, ϕ̇, θ̇, ψ̇],

Xt

[target sensor, corrupted physical states,
bias intensity, duration]
example: [GPS, (x, y, z), (-5, 0, 0), 10]

St St = ⟨Ot, Xt⟩
H H = {ot−n, .., ot−3, ot−2, ot−1},
at Position and attitude control commands - x, y, z axes.

B. Stage II – Transfer Learning Adaptation

In this stage, we introduce a student encoder that operates
solely on data derived from onboard sensors. The core idea
is to approximate the teacher’s latent representation l̄t using
only historical UAV physical state. This enables a transfer
learning setup in which the RL policy, originally trained
with privileged information, can now operate with latent
representations generated by the student encoder.

We implement the student encoder as a temporal varia-
tional autoencoder (TVAE) built using a Long Short-Term
Memory (LSTM) network, which effectively models sequen-
tial dependencies in time-series sensor data. The encoder
takes as input a sequence of historical UAV physical states
in a sliding window H := {ot−N , . . . , ot−1}, where each ot
denotes the UAV’s physical state at time t (e.g., position,
velocity, angular rate, and orientation). This sequence H
provides temporal context that implicitly captures the impact
of adversarial disturbances over time. The student encoder
maps H to a latent representation lt that approximates the
teacher encoder’s latent representation l̄t. lt is then passed
to the trained control policy to derive the control actions.

The student encoder outputs: (i) a latent representation lt
(mean and variance), (ii) an attack-type prediction, and (iii) a
reconstruction of the input (during training). This multi-head
design encourages the latent space to separate task-relevant
features from attack-induced perturbations, improving gen-
eralization across different attack types.

The student encoder is trained via supervised learning,
using the teacher encoder’s outputs as targets. For each input
history Ht, the student aims to approximate the teacher’s
latent representation l̄t and ensure that the control pol-



icy produces consistent actions from both representations.
Specifically, we minimize the combined loss:

Lstudent := ∥lt(Ht)− l̄t(ot, xt)∥2+∥at(lt)−at(l̄t)∥2+Lattack
(3)

where the first term encourages the student encoder to
match the teacher’s latent representation, the second term
aligns policy outputs, and Lattack penalizes errors in attack-
type classification. Once training is complete, the RL control
policy originally trained with l̄t is reused and unchanged. At
deployment, the RL control policy takes lt as input, enabling
attack-resilient control using only UAV onboard sensor data.

V. EVALUATION AND RESULTS

In this section, we first outline the experimental setup, the
simulation environment, and the metrics used for evaluation.
Then, we present results evaluating the effectiveness of
ARMOR across three key aspects: (1) The performance of the
student encoder in approximating the teacher’s latent state
representations without access to privileged information. (2)
The ability to maintain safe and stable flight under physical
attacks. (3) Generalization to unseen attack scenarios.

Physical Attacks. We evaluate ARMOR in the presence
of 5 different types of physical attacks [33] targeting the
GPS, gyroscope, accelerometer, magnetometer, and optical
flow sensors of the UAV. We simulate realistic physical
attacks using RAVAGE [34], a software tool that supports
launching physical attacks that resemble the characteristics
of real physical attack signals (attack bias, attack duration,
bias pattern). Table II outlines the attack parameters.

TABLE II: Attack parameters used for evaluation.

Sensors Bias Type Bias Range Attack Duration

GPS drift 1-20 m up to 60s
Gyroscope oscillatory 1-90 deg up to 60s
Accelerometer oscillatory 0.5-1 m/s up to 30s
Magnetometer random 10-90 deg up to 60s
Optical Flow random 0.1-0.5m up to 30s

Simulation Environment. We consider a quadcopter op-
erating in 3D space. The UAV dynamics are simulated using
gym-pybullet [35], an OpenAI Gym-compatible [36]
environment built on the PyBullet physics engine, which
provides a realistic simulation of rigid-body dynamics. The
system is simulated by discretizing the continuous-time dy-
namics of the quadcopter [37], shown below:

mẍ = (T1 + T2 + T3 + T4)(cosϕ sin θ cosψ + sinϕ sinψ)

mÿ = (T1 + T2 + T3 + T4)(cosϕ sin θ sinψ − sinϕ cosψ)

mz̈ = (T1 + T2 + T3 + T4) cosϕ cos θ −mg

Ixxṗ = (T2 − T4)l

Iyy q̇ = (T3 − T1)l

Izz ṙ = τ1 − τ2 + τ3 − τ4
(4)

where m is the mass of the quadcopter, (T1, T2, T3, T4)
are the thrusts generated by the four rotors, g = 9.81m/s2

is the gravitational acceleration, l = 0.2m is the length of
the quadcopter arms (distance from center to each rotor),
and Ixx, Iyy, Izz are the moments of inertia about the x, y,
and z axes, respectively. We define the state as Ot, shown
in Table I. The action is defined as a = (T1, T2, T3, T4),
representing the thrusts generated by each motor.

We use a simulation timestep of 0.004s to ensure accu-
rate modeling of the UAV’s dynamics. Both the state and
action spaces are normalized to the range [−1, 1] for all
experiments. To maintain physical realism, we constrain the
absolute differences in thrust commands, which bounds the
body angular rates ϕ̇, θ̇, ψ̇ to |ω| ≤ 10, rad/s.

The control objective is to reach a randomly sampled goal
position g in 3D space, represented as a sphere with a radius
of 0.1m. To guide the UAV towards the goal while ensuring
stable and safe flight, we design a shaped reward function
that provides incentives for reaching the goal and penalties
for unsafe behaviors (Equation 2).

Comparison. We compare the effectiveness of ARMOR
with two prior techniques: (1) Robust Adversarial Reinforce-
ment Learning (RARL) [8], which formulates adversarial
training as a minimax game between a protagonist (the
control policy) and an adversary that injects disturbances
(physical attacks), aiming to learn a policy that is robust to
sensor perturbations. (2) Hybrid Recovery Policy (HRP) [38],
which combines a neural network policy with a stabilizing
PID controller, where the learned policy operates within a
safe region defined by recovery zones and defers to the
stabilizing controller outside of these regions to ensure safety.

Baseline-RL. We implement a baseline-RL policy with the
same architecture as ARMOR, except that it does not incor-
porate any encoder. This baseline directly processes high-
dimensional physical state information as input to the PPO
policy, without mapping it into a latent representation. The
baseline serves as an ablation to evaluate the effectiveness
of encoders in improving resilience against physical attacks.

Metric. We use the following three metrics for evaluation:
1) Mission Success Rate measures the proportion of

episodes in which the UAV successfully reaches the
goal position g within an error margin ϵ. A mission
is considered successful if the final UAV position pT
satisfies ∥pT − g∥ ≤ ϵ, where ϵ = 5m [11], [30].

2) Crash Rate measures the proportion of episodes in
which the mission failed due to a crash. A crash is
defined as the UAV’s state exceeding predefined safety
bounds, resulting in termination of the episode.

3) State Drift measures the mean absolute deviation in
the physical states from the ideal physical states during
attacks. For example, in the case of GPS attacks, state
drift is quantified as the Euclidean distance between
the UAV’s current position pt and the ideal position p̂t
at each time t during the attack duration T .

A. ARMOR Training

Figure 3 compares the training performance of ARMOR
in two scenarios: (a) no-attack conditions (nominal condi-
tions), where we compare ARMOR with baseline-RL, and (b)



adversarial conditions (physical attacks), where we compare
ARMOR with an adversarially trained control policy. We refer
to the Teacher and Student Encoder policies as RL control
policies that use latent representations from the Teacher and
Student Encoders, respectively. The figures represent the
mean performance averaged over 5 random seeds.

As shown in Figure 3(a), in the absence of attacks,
all the methods: baseline-RL, the Teacher Encoder policy,
and the Student Encoder policy, achieve comparable final
episodic rewards, converging to approximately 2200 after
500k timesteps. The similarity in final performance indicates
that the use of encoder-based latent representations in the
Teacher and Student encoders does not hinder the ability of
the policy to learn optimal control under nominal conditions.

Fig. 3: Training performance comparison. Left: Nominal
conditions, all methods achieve similar final performance.
Right: Adversarial conditions, both the Teacher and Student
encoder policies significantly accelerate learning compared
to RARL. The Student Encoder policy enables faster con-
vergence even without access to privileged information.

Figure 3(b) shows the benefits of ARMOR in adversarial
conditions. We train a control policy using the RARL [8]
approach for adversarial robustness. This policy converges
slowly, requiring nearly 1200k timesteps, twice as long,
to reach a reward of 2100. In contrast, both the Teacher
Encoder policy and the Student Encoder policy demonstrate
significantly faster convergence (2× faster). The Teacher En-
coder policy, trained with privileged information, reaches a
reward of around 2100 in under 600k timesteps. Notably, the
Student Encoder policy, despite lacking access to privileged
information, also achieves similar convergence. These results
demonstrate that the ARMOR’s two-stage training is effective
in transferring robustness from the attack-aware privileged
learning phase to the online deployment phase.

B. Effectiveness of ARMOR under Physical Attacks

Henceforth, we refer to the Student Encoder policy de-
ployed during online inference as ARMOR. Figure 4 shows
an example demonstrating the effectiveness of ARMOR under
GPS spoofing attacks. The red lines represent the UAV’s
actual trajectory. With baseline-RL (top row), the UAV
deviates significantly from the intended path (in dotted line)
due to incorrect position estimates, resulting in a crash.
In contrast, with ARMOR (bottom row), the UAV maintains
stable flight with minimal deviation from the intended path,
successfully completing the mission despite the attack.

We evaluate ARMOR under five different types of physical
attacks shown in Table III. ARMOR demonstrates strong
resilience against all attack types, maintaining safe and stable

Fig. 4: Control performance under GPS spoofing attack.
The Top row shows the trajectory deviations with baseline-
RL. The Bottom row shows the trajectory with ARMOR,
demonstrating resilient control despite the attack.

flight. ARMOR achieves an average success rate of 88%,
incurring 0 crashes. Even when the missions failed, ARMOR
prevented crashes and maintained minimal state drift.

C. Comparison with Baseline-RL, HRP and RARL

First, we discuss two cases in detail comparing ARMOR
with baseline-RL and HRP under two different attack types
with different bias patterns: (1) GPS spoofing, which intro-
duces drift biases in position estimates, and (2) gyroscope
attack, which induces oscillatory biases in attitude estimates.
We then present a more comprehensive comparison.

Fig. 5: Position and attitude errors under GPS (left) and gy-
roscope attacks (right). Top: Baseline-RL exhibits significant
position and attitude error. Middle: HRP partially mitigates
errors but struggles to maintain stable flight. Bottom: ARMOR
maintains significantly lower position and attitude error.

Figure 5 shows the UAV’s position error under a GPS
spoofing attack. The baseline-RL completely fails under this
attack, with a 0% mission success rate and a 100% crash rate.
The trajectory deviation is severe > 0.9, resulting in loss of
control. HRP partially mitigates position errors but struggles
to maintain stability, resulting in significant state drift. In
contrast, ARMOR maintains accurate position tracking across
all axes (x, y, z), keeping the state drift around 0.1 meter.

Figure 5 also presents the attitude error under a gyro-
scope attack. The baseline-RL exhibits large attitude errors
exceeding ±8 degrees, resulting in a mission success rate
0%, a crash rate 100%, and a state drift of approximately
0.8. HRP reduces attitude error, but cannot fully suppress
the effects of the attack, resulting in a crash rate of 60%
and a state drift of 18.5. In contrast, ARMOR maintains
stable attitude control throughout the attack, keeping errors
bounded within ±1 degree, resulting in a state drift of



TABLE III: Performance comparison of HRP, RARL, and ARMOR under physical attacks against five UAV sensors

Target sensor HRP RARL ARMOR
Success Crash State Drift Success Crash State Drift Success Crash State Drift

GPS 40% 50% 6.2 ± 2.5 m 82% 0 0.1 ± 0.03 m 87% 0 0.1 ± 0.03 m
Gyroscope 32% 60% 18.5 ± 3.1 deg 78% 0 4 ± 2 deg 83% 0 2.3 ± 1.6 deg
Accelerometer 30% 50% 5.5 ± 1.7 m/s 80% 0 0.02 ± 0 m/s 83% 0 0.01 ± 0 m/s
Magnetometer 62% 15% 30 ± 4.1 deg 92% 0 8.1 ± 2.3 deg 94% 0 7.7 ± 2 deg
Optical Flow 46% 30% 7.1 ± 3.6 m 83% 0 0.23 ± 0.05 m 90% 0 0.1 ± 0.05 m

less than 3 degrees. These results demonstrate ARMOR’s
robustness in suppressing different types of sensor biases.

Table III compares the performance of ARMOR with two
prior techniques: HRP [38] and RARL [8], under physical
attacks targeting five different sensors. Compared to HRP,
ARMOR consistently achieves higher success rates and lower
state drift in attacks against all sensor types, while also
preventing crashes, significantly outperforming HRP across
all the metrics. On the other hand, ARMOR’s effectiveness is
comparable to RARL. On average, ARMOR achieves a higher
mission success rate of 88% compared to RARL’s 83% and
exhibits lower state drift across all attack types. Thus, ARMOR
performs better than HRP and RARL under physical attacks.

D. Zero-Shot Performance

Next, we evaluate ARMOR’s effectiveness against attacks
not encountered during training. Table IV and Table V
compare the zero-shot performance of ARMOR and RARL,
the current state-of-the-art approach for adversarially training
robust policies. Although there are various adversarial train-
ing methods [9], [39], [40], they are conceptually similar
to RARL, relying on iterative policy updates against an
adversary that alters observations. We therefore use RARL
as a representative baseline for our evaluation. Specifically,
we evaluate control policies trained exclusively on a single
attack type (either GPS or gyroscope) and tested on unseen
attacks targeting a different sensor.

TABLE IV: Zero-shot performance of RARL and ARMOR
when trained on GPS manipulations only and tested on
unseen attacks (Gyroscope and Gyroscope+Accelerometer).

Metrics Gyroscope Gyro+Accelerometer

RARL
Success 0% 0%
Crash 60% 75%
State Drift 15± 5.1 deg 12.3±2.6 deg, 8±2.1 m/s

ARMOR
Success 60% 50%
Crash 0% 10%
State Drift 3.5 ± 1.8 deg 2.8±1.6 deg, 1.1±0.4 m/s

TABLE V: Zero-shot performance of RARL and ARMOR
when trained on Gyroscope manipulations only and tested
on unseen attacks (GPS and GPS+Accelerometer).

Metrics GPS GPS+Accelerometer

RARL
Success 5% 5%
Crash 70% 80%
State Drift 6.5 ± 2.2 m 11.5 ± 2.1 m, 10.2 ± 2.7 m/s

ARMOR
Success 70% 55%
Crash 5% 8%
State Drift 0.6 ± 0.2 m 0.8 ± 0.3 m, 2.1 ± 1.3 m/s

Case 1: Policies trained on GPS manipulations, which
introduce drift biases in position estimates, are evaluated on
unseen gyroscope attacks that induce high-frequency oscilla-
tory biases, and on multi-sensor (gyroscope+accelerometer)
attacks. RARL achieves 0% success and a crash rate of 60%
under gyroscope attacks. For multi-sensor attacks, RARL’s
performance further deteriorates, with a 75% crash rate, and
significant state drift. In contrast, ARMOR achieves an 60%
success rate under gyroscope attacks and 50% under multi-
sensor attacks, while maintaining crash rates below 10% and
reducing state drift by 4× compared to RARL.

Case 2: Policies trained on gyroscope manipulations,
which introduce high-frequency oscillatory biases, are evalu-
ated on unseen GPS attacks that induce slow drift biases, as
well as multi-sensor (GPS + accelerometer) attacks. RARL
generalizes poorly, achieving only 5% success and exhibit-
ing high crash rates (70–80%) and significant state drift.
In contrast, ARMOR shows strong zero-shot generalization,
achieving a success rate 70% under GPS attacks and 55%
under multi-sensor attacks, while maintaining low crash rates
and reducing state drift by over 10×.

These results highlight ARMOR’s ability to generalize to
unseen attacks targeting both single and multiple sensors.

VI. DISCUSSIONS

ARMOR offers two main advantages over adversarial train-
ing: (1) training efficiency, and (2) zero-shot effectiveness.

Adversarial training methods [8], [9], [26], [40] involve
iterative policy updates by co-training an antagonist policy
to generate adversarial perturbations. This results in high
computational costs and prolong training times. In contrast,
ARMOR ’s two-stage training framework removes the need
for an explicit antagonist. Instead, it leverages attack-aware
latent state representations during training, and transfers the
knowledge to a student encoder for deployment. As shown
in Figure 3(b), ARMOR achieves comparable effectiveness to
RARL while requiring significantly fewer training timesteps.

Furthermore, ARMOR demonstrates strong zero-shot gen-
eralization capabilities, enabling the control policy to handle
unseen attack types, including both single-sensor and multi-
sensor attacks. ARMOR significantly outperforms RARL in
zero-shot evaluations, achieving higher success rates, signif-
icantly lower crash rates, and reduced state drift. Finally,
while ARMOR demonstrates promising zero-shot robustness
to single unseen attack types, generalization to multi-sensor
attacks is limited due to the compounding effects of the
perturbations. This is an avenue for future work.



VII. CONCLUSIONS

We introduced ARMOR, a two-stage learning framework
for attack-resilient UAV control. ARMOR leverages attack-
aware privileged information during training to learn ro-
bust latent state representations, and uses transfer learning
to adapt these representations for online deployment. This
approach eliminates the need for iterative adversarial train-
ing, resulting in a more efficient and scalable framework.
Our results demonstrate that ARMOR maintains safe and
stable flight, outperforming existing techniques. Furthermore,
ARMOR exhibits promising zero-shot generalization, enabling
resilience against previously unseen attacks. Future work will
explore extending ARMOR to a broad class of robotic systems
that operate under different physical dynamics and sensing
modalities. We will also integrate theoretical safety guaran-
tees, and constraint satisfaction under adversarial conditions.
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[21] R. Römer, L. Brunke, M. Schuck, and A. P. Schoellig, “Safe offline
reinforcement learning using trajectory-level diffusion models,” in
ICRA 2024 Workshop—Back to the Future: Robot Learning Going
Probabilistic, 2024.
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