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Abstract—Pressure sensors are an integrated component of
modern Heating, Ventilation, and Air Conditioning (HVAC)
systems. As these pressure sensors operate within the 0–10 Pa
range, support high sampling frequencies of 0.5-2 kHz, and
are often placed close to human proximity, they can be used
to eavesdrop on confidential conversation, since human speech
has a similar audible range of 0-10 Pa and a bandwidth of 4
kHz for intelligible quality. This paper presents WaLi, which
reconstructs intelligible speech from the low-resolution and
noisy pressure sensor data by providing the following technical
contributions: (i) WaLi reconstructs intelligible speech from a
minimum of 0.5 kHz sampling frequency of pressure sensors,
whereas previous work can only detect hot words/phrases.
WaLi uses complex-valued conformer and Complex Global
Attention Block (CGAB) to capture inter-phoneme and intra-
phoneme dependencies that exist in the low-resolution pressure
sensor data. (ii) WaLi handles the transient noise injected
from HVAC fans and duct vibrations, by reconstructing both
the clean magnitude and phase of the missing frequencies of
the low-frequency aliased components. Extensive measurement
studies on real-world pressure sensors show an LSD of 1.24
and NISQA-MOS of 1.78 for 0.5 kHz to 8 kHz upsampling. We
believe that such levels of accuracy pose a significant threat
when viewed from a privacy perspective that has not been
addressed before for pressure sensors.

Index Terms—HVAC, pressure sensor, eavesdropping, complex-
valued network, magnitude and phase reconstruction.

1. Introduction
The integration of smart sensors into Heating, Ven-

tilation, and Air Conditioning (HVAC) systems has rev-
olutionized building automation and energy management.
Today’s HVAC systems utilize a network of smart sensors
to monitor environmental and operational parameters in real-
time. However, such a rich ecosystem of smart sensors is
often considered a “double-edged sword” since they can be
used to leak private information. To understand what level
of leakage is appropriate, the key question boils down to:
What types of sensors can leak private information from
today’s HVAC systems and how much information can be
inferred from a given sensor data in HVAC systems?

To answer the above question, we need to point out
that pressure sensors are an integrated component of HVAC
systems. Pressure sensors often operate within the pressure
range of 0-10 Pa and have a high sampling frequency of 0.5-
2 kHz [1]–[3], which is essential for the dynamic control of
fans, dampers, and air handling units for real-time moni-
toring and fast response in today’s HVAC systems [4]–[6].
These pressure sensors are often placed close to humans and
installed in room walls, near diffusers, or within ventilation
grilles where human occupancy is high to control indoor
air quality (IAQ), to monitor thermal comfort, or room-
level pressure regulation in spaces like offices, hospitals,
or cleanrooms. As these pressure sensors operate within the
0–10 Pa range, support high sampling frequencies of 0.5-2
kHz, and are often placed close to human proximity, they
can be used to eavesdrop on confidential conversation, since
human speech has a similar audible range of 0-10 Pa [7] and
a bandwidth of 4 kHz for intelligible quality.

To eavesdrop on a confidential conversation with intel-
ligible quality, the attacker must reconstruct speech from
pressure sensor data with unrestricted vocabulary by answer-
ing the following two questions: (1) Will it be possible to
capture intelligible speech of 4 kHz bandwidth with 0.5-2
kHz sampling frequencies using pressure sensors? And (2)
How do we handle transient noise injected from HVAC fans,
duct vibrations, physical shocks, or turbulent airflow while
reconstructing intelligible speech from pressure sensor data
located in HVAC systems?

In this paper, we answer the above two questions by
proposing WaLi (Wall can Listen), which can recover intel-
ligible speech by reconstructing bandwidth up to 4 kHz from
a lowest sampling frequency of 500 Hz from pressure sensor
in transient noisy conditions. WaLi employs the following
two technical strategies to answer the above two questions:

Strategy 1. With a sampling rate of 0.5-2 kHz, high-
frequency speech components are severely aliased and trun-
cated in pressure sensors, while a few lower pitch fre-
quencies are preserved. Unfortunately, a few low pitches
are not sufficient to provide perfect intelligibility [8] as
most of the formants at high frequencies will be missing
from the bandwidth. To reconstruct intelligible speech from
the severely aliased spectrogram of pressure sensors, the
missing high frequencies should be reconstructed from the
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low-frequency aliased components. To make this happen,
WaLi employs Conformers [9], combining the strengths of
Convolutional Neural Networks (CNNs) and Transformers
to capture local and global dependencies between low-
frequency pitches and missing high frequencies. In addition
to conformers, WaLi employs Complex Global Attention
Block (CGAB) to capture the long-range inter-phoneme
correlations that exist among pitches and harmonics along
both the time and the frequency axes in a spectrogram. Prior
work [10] published in USENIX only captures correlations
along the time axis.

Strategy 2. To prevent the transient noise of HVAC
from impacting speech reconstruction, WaLi reconstructs
both the clean magnitude and phase of the missing fre-
quencies from the low-frequency aliased components. To
jointly reconstruct clean magnitude and phase, WaLi is
designed as a complex-valued network, which can enhance
both the amplitude and phase of pressure sensor data us-
ing complex-valued time-frequency (T-F) spectrogram [11].
As complex-valued T-F spectrograms have both magnitude
and phase information, WaLi takes the complex-valued T-F
spectrograms as input and removes noisy phases from them,
motivated by the fact that phase plays a crucial role in speech
enhancement [12]. Prior works [10], [13], [14] only use real-
valued T-F spectrograms. Therefore, they cannot reconstruct
clean phase under noisy conditions. WaLi employs complex
multi-resolution STFT loss to reconstruct clean magnitude
and phase from the noisy pressure sensor data.

We extensively evaluate the effectiveness of WaLi
through real-world experiments, using five evaluation met-
rics - LSD, NISQA-MOS, PESQ, STOI, and SI-SDR. The
full form of these terms is given in Section 7.2. Our findings
highlight the serious privacy implications of pressure sensors
in HVAC systems. The implications could be particularly
severe in critical environments, such as industrial facilities,
corporate offices, and healthcare institutions, where eaves-
dropping can expose sensitive information and compromise
privacy. Our main contributions are summarized as follows:

1. We propose WaLi, an acoustic eavesdropping system
that uses pressure sensor data to reconstruct intelligible user
speech. To the best of our knowledge, WaLi is the first
method that recovers intelligible speech with an uncon-
strained vocabulary rather than recognizing individual hot
words/phrases from the pressure sensor data.

2. We use complex-valued architecture to jointly recon-
struct both the clean magnitude and phase from the noisy
pressure sensor data and extensively evaluate the effective-
ness of WaLi using five evaluation metrics - LSD, NISQA-
MOS, PESQ, STOI, and SI-SDR. A demonstration of the
reconstructed audio is provided in the following link: WaLi.

2. Related Work
Acoustic eavesdropping: Acoustic eavesdropping us-

ing different sensors in different modalities is extensively
explored in the literature. For example, lasers [15], [16],
inertial measurement units (IMU) [13], [17]–[20], wireless
signals [21]–[26], optical sensors [27], [28], vibration mo-
tors [29], and hard drives [30] are explored to reveal great

threats to speech privacy. mmEcho [21], mmEve [31], and
mmSpy [32] use mmWave sensors to capture vibrations
and reconstruct speech from vibration data. However, these
works cannot reconstruct speech with full intelligibility from
the narrowband vibration data. IMU sensors [18], [19] and
gyroscopes [20] are used to eavesdrop using the vibration
induced by sound in IMUs and gyroscopes. They can do
digit inference, gender recognition, and limited hot-word
reconstruction. However, these works still suffer from the
narrowband condition of vibration-based side channels and
can only recover band-limited sound with damaged speech
intelligibility. GlowWorm [33] and Lamphone [28] employ
optical sensors to record vibrations and are used to recover
speech with limited intelligibility. However, they do not
recover clean phases, and, as a result, they will not work
in transient noise conditions.

Recently, AccEar [13] and VibSpeech [10] revealed
the possibility of using generative adversarial networks to
reconstruct intelligible speech with unrestricted vocabulary
by learning the mapping between low-frequency pitches and
missing high frequencies. Our proposed WaLi solves the
following two problems of AccEar [13] and VibSpeech [10]:

1. AccEar [13] assumes that abundant ground-truth
speech from the target victim is available for training, which
is not realistic. Compared to AccEar [13], our WaLi does
not require any {audio, pressure sensor data} pair from
a specific target victim for training to recover intelligible
audio. This makes our attack model realistic, as it is not
practical to have access to the victim’s speech for training.

2. Compared to VibSpeech [10], our WaLi can recon-
struct intelligible audio in the presence of transient noise
injected from HVAC fans, duct vibrations, physical shocks,
or turbulent airflow. VibSpeech [10] has not been tested in
the presence of a such transient noise. Moreover, our WaLi
does not require SpkEnc-type encoders and extra vocoders
like VibSpeech, as our WaLi use complex-valued network
to extract features from magnitude and phase of the speech.

Pressure sensor-based eavesdropping: Recently,
BaroVox [34] proposed to use pressure sensors to eavesdrop
on speech in the cleanroom. The main differences between
WaLi and BaroVox are: (1) BaroVox only recognizes hot
words or phrases, whereas WaLi can reconstruct intelligible
speech with unrestricted vocabulary. (2) BaroVox has not
been tested for the transient noise condition. Therefore, it is
not realistic for the real-world scenario in HVAC systems.

3. Background

3.1. Human Voice and Its Pressure Range

The human voice generates sound by producing acoustic
waves that propagate through the air. These waves create
fluctuations in sound pressure, typically measured in Pascals
(Pa). A comparative study of the voice pressure range is
given in Table 1 for different human voice conditions.

Table 1 indicates that the pressure of speech signals is
typically restricted between 0 to 10 Pa for a wide range
of intelligible speech. Therefore, to successfully eavesdrop
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Condition in dB in Pa
Quiet whisper 40 dB 0.02 Pa
Conversation 60 dB 0.2 Pa
Loud speech 70 dB 0.6 Pa
Shouting 100-115 dB 6-10 Pa

Table 1. PRESSURE RANGES FOR DIFFERENT VOICE CONDITIONS.

on speech signals, pressure sensors should also need to be
sensitive in the same range of 0 to 10 Pa.

3.2. Pitch, Phonemes, and Intelligible Bandwidth
The human vocal folds vibrate at different frequencies.

The strongest and slowest vibration is the pitch, and the
faster vibrations that occur simultaneously are called har-
monics. The pitch and harmonics generated by the vocal
folds are selectively converted into phonemes [8].

Phonemes are the basic sound units of speech [8]. The
frequencies in the phonemes are distributed particularly in
terms of formants, pitches, and harmonics. For example,
English has 44 phonemes, and the vowel phonemes of
English have a frequency range of ∼4000 Hz, where the first
few formants carry a significant amount of energy. The stops
phonemes have a broadband energy often above 1000 Hz
with an aperiodic burst. The fricative phonemes have energy
concentrated in 4-8 kHz. Therefore, to capture intelligible
speech with all phonemes, the sampling frequency should
be at least 16 kHz (twice the maximum frequency content,
8 kHz). However, vowel phonemes and critical formants fall
within the 300-4000 Hz range. Therefore, for speech intelli-
gibility, only 8 kHz sampling is sufficient, as up to 4000 Hz
bandwidth is enough for intelligible speech reconstruction.

3.3. Pressure Sensor in HVACs
Differential pressure sensors (DPSs) are the state-of-the-

art (SOTA) sensors for HVAC systems due to their better
control, accurate measurement, and reliable operations [35].
Hence, in the rest of the paper, we use the DPS and the
pressure sensor terms interchangeably. DPSs measure the
difference between any two pressure levels.

DPSs have an elastic diaphragm, which collects the input
pressure from the environment. The elastic diaphragm is
placed between two pressure input ports P1 and P2 (see Fig.
1(Left)). The diaphragm senses the differential pressure P1 -
P2 applied to the pressure input ports by changing its shape.
The change in the shape of the diaphragm is converted to
a proportional output voltage by using a transducer and a
Wheatstone bridge. The diaphragm is sensitive to acoustic
pressure and can pick up sound pressure when someone
speaks. In real-world HVAC systems, sampling tubes are
connected with either one or both input ports of DPSs. The
other end of the sampling tube is connected to pressure
pickup devices (see Fig. 1 (Right)), which senses pressure
in the environment.

3.4. Pressure Range and Sampling Frequencies of
Differential Pressure Sensors (DPSs) in HVACs

Sections 3.1 and 3.2 point out that for eavesdropping us-
ing DPSs in HVACs, the pressure sensors should be sensitive
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Figure 1. (Left) Internals of a DPS. (Right) The accessories connected
with DPSs in a real-world HVAC system.

within 0-10 Pa and have a sampling frequency close to 8
kHz. In HVAC systems, DPSs operating within the 0–10 Pa
range and supporting high sampling frequencies within 0.5-
2 kHz are typically used to achieve precise environmental
control and energy efficiency. These sensors are used in a
variety of applications where small pressure changes must
be detected accurately and quickly. Common use cases
include air filter monitoring, cleanroom pressure regulation,
static duct pressure control, and variable air volume (VAV)
system management. High-frequency sampling enables real-
time responsiveness to transient pressure fluctuations, which
is essential for dynamic control of fans, dampers, and air
handling units. By providing fast and accurate data, these
sensors support improved indoor air quality, occupant com-
fort, and operational efficiency. A summary of the pressure
sensor range and sampling frequencies in HVACs is given
in Table 2. Table 2 shows that pressure sensors in HVACs
are sensitive to the audible pressure range of 0-10 Pa.

Application Pressure
Range

Sampling
Frequency

Function

Air Filter
Monitor [36]

0–150 Pa ∼0.7 kHz Detect pressure drop to
signal filter clogging

Duct Static
Pressure [37]

0–200 Pa ∼1 kHz Ensure optimal airflow
and energy use

VAV Control
[37]

0–200 Pa ∼2 kHz Adjust airflow with oc-
cupancy or thermal need

Pressure Bal-
ancing [38]

0–50 Pa ∼0.5 kHz Stabilize pressure in
connected indoor spaces

Table 2. HUMAN AUDIBLE PRESSURE RANGE AND SAMPLING
FREQUENCIES OF PRESSURE SENSORS IN HVACS.

3.5. Impact of Speech on Pressure Sensors
Table 2 indicates that DPSs have a sampling frequency

of 0.5-2 kHz. However, at least 8 kHz sampling is required
to recover intelligible speech. Therefore, a natural question
is: Will it be possible to capture intelligible speech with at
least 0.5 kHz sampling frequency using pressure sensors?.
The pitch frequencies for a male speaker vary between 85-
180 Hz, whereas for a female speaker, they vary between
165-255 Hz [39]. Although the 0.5 kHz sampling rate can
capture pitches and a few harmonics, it is not sufficient to
provide perfect intelligibility [8], as most harmonics at high
frequencies will be missing from the bandwidth.

Fig. 2 shows the importance of various frequencies in
the intelligibility of speech signals. Evidently, the higher
frequency components that involve the use of fricatives and
other consonants are critical for higher intelligibility (see
Fig. 2 (Left)). Unfortunately, with a sampling rate of 0.5
kHz, high-frequency speech components are severely aliased
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in pressure sensors (see Fig. 2 (Right)). WaLi provides a
means to eavesdrop speech in full intelligibility by enhanc-
ing the severely aliased signals from pressure sensors in
HVACs. This will seriously hamper the confidentiality of
safety-critical systems, as nowadays most critical infrastruc-
tures have some form of HVAC in their design.
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3.6. Transient Noise and Phase Reconstruction

DPSs operating within a low-pressure range of 0–200
Pa and at high sampling frequencies of 0.5-2 kHz, the
impact of noise on DPSs becomes particularly significant.
The presence of transient noise sources, such as HVAC fans,
duct vibrations, physical shocks, or turbulent airflow, injects
substantial noise into DPSs in the form of pressure spikes
and fluctuating readings. The noisy readings from DPSs
impact the intelligible speech reconstruction for success-
ful eavesdropping. Although earlier speech reconstruction
methods [10], [13], [34] focus on estimating the magnitude
spectrum of missing higher frequencies, the phase spectrum
is equally important [12] to produce natural and intelligible
audio, particularly under transient noise conditions in real-
world HVAC systems. Fig. 3 shows the impact of noise
on pressure sensor data at 0.5 kHz sampling frequency.
Transient noise corrupts the phase and magnitude of the
speech signal in HVAC systems and change the Signal-to-
Noise Ratio (SNR) from 8 dB to 3.5 dB.

Application
Area

Sensor Location Purpose

Differential
control [40]

Wall and ceiling
near doorways

Maintain pressurization in
isolation rooms in hospitals

Controlled ven-
tilation [41]

Inside duct or vent
near occupants

Adjust airflow based on oc-
cupancy level

Lab pressure
monitor [42]

Inside room or par-
tition walls

Protect from contamination
by maintaining air barriers

Residential
IAQ [43]

Return air ducts in
living areas

Balance pressure and air-
flow for occupant comfort

Table 3. DPSS PLACED CLOSE TO HUMANS CAN DO EAVESDROPPING.

4. Pilot Study
Here, we discuss the feasibility of eavesdropping on

intelligible speech using DPSs in HVAC systems.
Proximity to sound sources and humans: DPSs are an

integrated component of today’s HVAC systems. However,
to eavesdrop using DPSs, the DPSs should be close to
humans or a sound source; otherwise, the feasibility of the
acoustic eavesdropping using DPSs will be reduced. We
identify a few locations in HVACs, summarized in Table
3, where DPSs are placed close to humans.

Table 3 indicates that DPSs placed close to humans are
typically used for indoor air quality (IAQ) control, thermal
comfort monitoring, or room-level pressure regulation in
spaces like offices, hospitals, or cleanrooms. These sensors
operate in low-pressure ranges (e.g., 0–250 Pa) and are often
installed in room walls, near diffusers, or within ventilation
grilles where human occupancy is high. To support this
claim, we survey an anonymous cleanroom in our educa-
tional premises and point out the location of DPSs near the
human occupancy that is shown in Fig. 4.

DPS port is 
present at the 

entrance

DPS port is 
present near 

diffusers

(a) Pressure port is located at 
the hallway entrance 

(b) Pressure port is located on 
the wall

Figure 4. Pressure ports are located at the hallway entrance and inside
rooms of a lab facility in human proximity.

Fig. 4 supports the fact that DPSs can be found in
room entrances and inside rooms in practical HVAC systems
in human proximity. Therefore, they can be a source of
eavesdropping. The main challenges are that DPSs are noisy
and use a sampling frequency of 0.5-2 kHz (refer to Table
2). Therefore, we propose WaLi to recover full intelligible
speech from the aliased pressure sensor data by reconstruct-
ing both amplitude and phase of the speech signal.

A pilot experiment: We prepare a testbed as a pilot
study to support our idea of eavesdropping using pressure
sensors with an unrestricted vocabulary. We use an industry-
used DPS from Setra with part# 26410R1WD11T1E [44]. It
has two input ports. We connect two vinyl sampling tubes
with inner diameters of 3/16” and 5/16” [45], a pressure
pickup device with part# A-417A [46] with the two input
ports (see Fig. 1). A volunteer speaks from 0.5 m distance
from the pressure pickup device. We record the output data
from the DPS sensor using an oscilloscope with a sampling
frequency of 1 kHz. The recorded data from the DPS are
shown in Fig. 5 with its matching ground-truth audio. The
ground truth audio is sampled at 8 kHz.

In Fig. 5, the time domain waveform indicates a strong
correlation between the ground truth audio and the pressure
sensor data. We measure the intelligibility of the pressure
sensor data by taking the ground truth as a reference using
a metric named Perceptual Evaluation of Speech Quality
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Figure 5. Victim is talking close to the pressure pickup device in his room.

(PESQ). PESQ is widely used to evaluate how a degraded
speech signal compares to a reference (ground truth) signal,
closely modeling human perception. The PESQ for the
pressure data is 0.98. PESQ can have values between -0.5 to
4.5, where -0.5 means low perceptual quality and 4.5 means
perceptually close to the ground truth. The 0.98 of PESQ for
the pressure data indicates that the DPS captures low-grade
perceptual audio, which is not intelligible (to be intelligible
PESQ value of more than 1.4 is required). Therefore, it
indicates that DPS can be used to eavesdrop by an attacker
if the attacker can reconstruct intelligible audio from the
severely aliased and low-grade perceptual data of DPSs.

5. Threat Model
We discuss the components of the threat model below.
a) Attacker’s goal: The attacker can eavesdrop on

the conversation with unrestricted vocabulary using HVAC
systems where DPSs are located close to human occupancy.
In addition to eavesdropping a natural conversation, the
attacker can also understand how many people are present
inside of a room/facility, how many of them are males
and females, what types of sound sources are present, and
from the sound sources, the attacker can also identify what
types of activities are going on inside the room/facility. The
attacker collects pressure data from DPSs and reconstructs
intelligible audio from the noisy and aliased pressure data
using our WaLi. WaLi uses complex-valued models to re-
construct both magnitude and phase to generate intelligible
audio for at least 0.5 kHz sampling frequency.

b) Attacker’s access level: Prior works with the capa-
bility to spy on natural conversations use malicious apps to
access inertial sensors [10], [13] to collect data for eaves-
dropping. These attacks require the installation of such apps
to initiate the eavesdropping. In contrast, our attack model
exploits the normal behavior of HVACs without installing
additional software on HVACs. Access to collect pressure
data from DPSs is possible in the following scenarios.

First, an attacker disguised as a malicious employee
or maintenance person can access pressure data from the
Building Management System (BMS) software dashboard,
as in modern buildings, pressure sensors are integrated into
the BMS using standard protocols, such as Modbus TCP,
KNX, and LonWorks.

Second, in many cases, the BMS is handled by a third-
party vendor, HVAC contractors, or system integrator, es-
pecially in commercial buildings, hospitals, labs, and large

campuses. These third-party vendors manage complex inte-
gration, security and control, compliance, and 24/7 moni-
toring. In many cases, authorities often outsource teams to
provide continuous support and alert handling. An attacker
disguised as one of these third-party vendors can access
sensitive pressure data via a web-based interface, historical
logs, or an Open Platform Communication (OPC) server.

Third, some commercial HVAC units (e.g., rooftop
units, air handling units, variable air volume units) have
onboard controllers and internal sensors. Service technicians
often access these units for diagnostics in case of failure
and troubleshooting. An attacker disguised as one of the
technicians can access the pressure data through the control
panel and diagnostic port via network protocols.

Fourth is a potential supply chain attack, which has been
rumored to occur in the past [47]–[50] and was recently
demonstrated to be feasible [51], involving tampering with
HVAC systems during delivery or installation. In such an at-
tack, a competitor could intercept the equipment and modify
DPSs by embedding a data collection device with a radio
transmitter inside, and then allow the delivery or installation
to proceed as planned to the commercial facility.

c) Non-invasive attack: Our eavesdropping attack using
the HVAC system is non-invasive as it is performed without
making direct physical contact with the target DPS. The
attacker doesn’t need to directly open or physically touch
DPSs. However, we expect that attackers can examine the
behavior of a similar sensor subjected to acoustic impacts
before initiating an actual attack.

d) Attacker’s resources and cost: We assume that the
attacker knows how the HVAC system works and how the
data can be collected from pressure sensors.

e) Assumption: Considering the practicality of the at-
tack, we assume that the attacker has sufficient pressure
sensor data collected from the victim and does not have
matching ground truth audio from the victim. WaLi can
reconstruct the audio even if the speaker is different. This
makes our attack model flexible compared to prior works
[13], [34], where prior works assume that clean ground-truth
speech is available via a microphone or a phishing call.

6. WaLi ARCHITECTURE DESIGN

WaLi is designed to achieve the following objectives:
a) WaLi processes the input pressure sensor data in the
complex-valued T-F spectrum and enhances both the am-
plitude and phase of the pressure sensor data to reconstruct
intelligible speech from the aliased pressure sensor data.
b) WaLi handles transient interference in noisy conditions
of the pressure sensor data using joint magnitude and phase
reconstruction using a complex-valued network.
c) WaLi reconstructs speech from the victim’s pressure
sensor data without using the ground truth audio of the
victim.

WaLi adopts a complex-valued U-Net model and pro-
cesses the incoming low-resolution and noisy pressure data
using the complex-valued T-F spectrogram. We will first
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Figure 6. WaLi has complex-valued encoders, decoders, complex-valued skip blocks, CGAB, and complex multireoslution STFT loss.

explain the reasons behind the use of the complex-valued
T-F spectrogram and network.

Why the complex-valued spectrogram and network:
A complex-valued spectrogram is a T-F representation of a
signal that contains both magnitude and phase information,
not just the energy or amplitude as in a standard real-valued
spectrogram. A complex-valued T-F spectrogram is typically
generated by the Short-Time Fourier Transform (STFT) and
then outputs a complex value S(t, f) at each time-frequency
bin, following Eq. 1.

S(t, f) = A(t, f) ∗ ejϕ(t,f) (1)

where A(t, f) is the magnitude and ϕ(t, f) is the phase
of the spectrum. Prior works [10], [13] only use real-
valued T-F spectrograms. Therefore, they cannot predict
phase information and hence, need a vocoder to gener-
ate audio from real-valued spectrograms. Moreover, real-
valued T-F spectrogram-based methods typically use Mean
Square Error (MSE) loss for magnitudes and cannot use
phase-reconstruction loss functions to improve the phase
quality while reconstructing speech from the low-resolution
pressure sensor data. Therefore, motivated by the fact that
phase plays a crucial role in speech enhancement [12], WaLi
adopts a joint reconstruction of magnitudes and phases.
As complex-valued spectrograms have both magnitude and
phase information (refer to Eqn. 1), WaLi takes complex-
valued T-F spectrograms as input and generates complex-
valued T-F spectrograms at its output. To process the
complex-valued T-F spectrograms, we design WaLi as a
complex-valued network having U-Net as its backbone.

WaLi architecture: The detailed architecture of the
proposed WaLi is shown in Fig. 6. The network consists of
four main components: (i) a total of 16 full complex-valued
encoder-decoder blocks (i.e., 8 encoders and 8 decoders), (ii)
complex-valued skip blocks, (iii) complex-valued conformer
in the bottleneck layer, and (iv) complex-valued global
attention blocks - CGAB. The complex domain processing
by our proposed WaLi has the potential to recover clean
phases from the noisy pressure sensor and to reconstruct
magnitudes from the aliased spectrum (i.e., pressure sensor
is sampled at a minimum of 0.5 kHz).

6.1. Complex-Valued Encoders
The complex-valued spectrogram of the pressure sen-

sor data is transformed to real and imaginary components,
and then the real and imaginary components are combined
into a complex-valued tensor, which serves as input to
the first complex encoder block (E1). Formally, the in-
put low-resolution pressure data Rin is first transformed
into STFT spectrogram, denoted by Sin in Fig. 6. Here,
Sin(= Sr+jSi) ∈ CF×T is a complex-valued spectrogram,
where F denotes the number of frequency bins and T
denotes the number of time frames.

Typically, each encoder in a U-Net extracts hierarchical
features from the input or previous layers by downsampling
the features using a convolution operation. WaLi adopts
complex-valued encoders, which is built upon complex-
valued convolution to ensure successive extraction of both
magnitude and phase from the complex-valued T-F spec-
trogram. Complex convolution is the key difference be-
tween a complex-valued encoder and a real-valued encoder.
Formally, the complex-valued T-F spectrogram Sin is fed
into 2D complex convolution layers of the first encoder to
produce feature S1 ∈ CF×T×C , where C is the number of
channels. If a complex kernel is denoted by W = Wr+jWi,
the complex convolution is defined by Eqn. 2.

Sr
1 = Wr ∗ Sr

in −Wi ∗ Si
in + br,

Si
1 = Wr ∗ Si

in −Wi ∗ Sr
in + bi,

(2)

where ∗ denotes the convolution, Sr
1 & Si

1 are real and
imaginary parts of S1, and br & bi are bias terms.

The convolution output is then normalized using Com-
plex Batch Normalization (CBN) for stable training. CBN is
an extension of traditional batch normalization to complex-
valued neural networks, where inputs, weights, or features
are complex numbers (i.e., having both real and imaginary
parts). Instead of treating real and imaginary parts indepen-
dently, CBN treats them as a 2D vector and normalizes using
a 2×2 covariance matrix using Eqn. 3.

ΣS1
=

[
Var(Sr

1) Cov(Sr
1 , S

i
1)

Cov(Si
1, S

r
1) Var(Si

1)

]
(3)

where ΣS1 is the covariance matrix of S1. Then the CBN
is calculated by Eqn. 4.



CBN = Σ
− 1

2

S1
(S1 − µ) (4)

where Σ
− 1

2

S1
is the inverse square root matrix of ΣS1

used to decorrelate and normalize the input S1, and µ is the
complex mean vector of S1.

Next, the output from CBN passes through a complex
ReLU activation for adding nonlinearity. Formally, first en-
coder output, denoted by E1 can be expressed by Eqn. 5.

E1 = Complex ReLU(CBN(Sr
1 + jSi

1)) (5)

The output of the first encoder E1 is given as input to the
2nd encoder, and 2nd encoder’s output to the third encoder,
and so on. Every complex encoder has a similar complex
2D convolution (Eqn. 2), CBN (Eqn. 4), and complex ReLU
activation (Eqn. 5).

6.2. Complex-Valued Conformer in Bottlenecks
We use complex-valued conformers in the bottleneck

layer of our WaLi to capture local and global dependencies
among consecutive spectrograms. A conformer [9] combines
the strengths of CNNs and Transformers. Traditional Trans-
formers are great at capturing long-term dependencies, but
struggle with local patterns that exist in each phoneme. Con-
volutional layers, on the other hand, excel at local context
but lack long-range modeling. The conformer blends both
by stacking self-attention and convolutional modules in each
layer, resulting in a highly expressive and efficient model for
sequential input. Our complex-valued conformer optimally
balances global context with fine-grained local information
in phase and amplitude domains for the successful recon-
struction of intelligible audio from pressure data.

The output of the last (eighth) encoder block E8 is
expressed as E8 ∈ RB×C×F×T and fed as input into
the conformer block. Here, B denotes the batch size, C
the number of channels, F the spectral dimension, and
T the temporal dimension. Next, we rearrange E8 using
a permutation and reshaping so that the conformer pro-
cesses each channel independently. For a given channel,
the complex-valued conformer comprises complex multi-
head self-attention (MHSA), complex feed-forward (FF),
and complex convolutional modules, inspired by [9]. The
complex MHSA uses complex-valued queries, keys, and
values over the real and imaginary parts. The complex FF
module uses complex linear layers, complex ReLU activa-
tion, and CBN.

6.3. Complex-Valued Decoder
The output from the bottleneck layer, denoted by Z (i.e.,

latent space), is given as input to the first decoder. The
decoder reconstructs the T-F representation from the latent
space by employing a complex transposed convolution by
upsampling by a factor of two at each decoder block. For
a latent complex tensor Z = Zr + j Zi, the transposed
convolution is formulated as:

Ỹr
1 = WT

r ∗ Zr −WT
i ∗ Zi + br,

Ỹi
1 = WT

r ∗ Zi +WT
i ∗ Zr + bi,

(6)

where Ỹr
1 & Ỹi

1 are real and imaginary parts of Ỹ1 (i.e.,
output after the transposed convolution in the first decoder),
and br & bi are bias terms. Ỹ1 is then normalized by CBN
and activated by a complex ReLU activation as Eqn. 7.

D1 = Complex ReLU
(

CBN
(
Ỹr

1 + j Ỹi
1

))
(7)

where D1 is the output of the first decoder, which is
given as input to the 2nd encoder, and so on. Every complex
decoder has a similar complex 2D convolution (Eqn. 6),
CBN (Eqn. 4), and complex ReLU activation (Eqn. 7).

6.4. Complex Skip Block

A skip connection in our proposed WaLi passes high-
dimensional features from complex-valued encoders to the
appropriate decoders. This enables the model to preserve
the spatial features, which may lost during the down-
sampling operation, and guides the network to propagate
from encoders to decoders. WaLi implements skip blocks in
complex domains, inspired by [52], to enable the proper flow
of complex features from the encoder’s output to decoders.
Each complex skip block applies a complex convolution
on the encoder output, followed by a CBN and a complex
ReLU activation. Formally, the complex skip block’s output,
denoted by SKn is (i.e, n is 1 to 8):

SKn = Complex ReLU(CBN (Complex Conv(En))) (8)

where Complex Conv is implemented following Eqn. 2,
and En is the output from the nth encoder (i.e, n is 1 to 8).

6.5. Complex Global Attention Block (CGAB)

Long-range correlations exist along both the time and
the frequency axes in a complex-valued T-F spectrogram.
As the audio signal embedded in the pressure sensor data is
a time series signal, inter-phoneme correlations exist along
the time axis. Moreover, harmonic correlations also exist
among pitch and formants along the frequency axis. As a
convolution kernel is limited by its receptive field, standard
convolutions cannot capture global correlations on the time
and frequency axes in a complex-valued T-F spectrogram.
Therefore, we propose the Complex Global Attention Block
(CGAB) to capture long-range correlation from the T-F axes.
Please note that Frequency Transformation Blocks (FTBs)
used in [10] published in USENIX, 2024, don’t work along
both the T-F axes.

The detailed implementation of our proposed CGAB is
shown in Fig. 7. CGAB provides attention to the time and
frequency axes of a complex-valued T-F spectrogram by
following two steps:

Step 1 - Reshaping along the T-F axes: The output En

from the encoder is decomposed in 2 steps by CGAB into
two tensors: one along the time axis and another along the
frequency axis. Formally, En, which has a feature dimension
of C × F × T , is given at the input of CGAB. At the
first stage of reshaping, En parallelly reshaped into C.T



vectors with dimension C · T × F and into C.F vectors
with dimension C · F × T . This reshaping is done using
2D complex convolution, CBN, and complex ReLU acti-
vation, followed by vector reshaping. In the second stage
of reshaping, C · T × F is reshaped into 1 × T × F and
C · F × T is reshaped into 1 × F × T using 1D complex
convolution, CBN, complex ReLU activation followed by
vector reshaping. The tensors with dimension 1 × F × T
capture the global harmonic correlation along the frequency
axis and 1 × T × F capture the global inter-phoneme
correlation along the time axis. The captured features along
the T-F axes and the original features from En are point-
wise multiplied together to generate a combined feature map
with a dimension of C×T ×F and C×F ×T along T and
F axes, respectively. This point-wise multiplication captures
the inter-channel relationship between the encoder’s output
and complex time and frequency axes.

Step 2 - Global attention along the T-F axes: It
is possible to treat the spectrogram as a 2D image and
learn the correlations between every two pixels in the 2D
image. However, this is computationally too costly and is not
realistic. On the other hand, ideally, we can use self-attention
[53] to learn the attention map from two consecutive com-
plex T-F spectrograms. But this might not be necessary.
Because, on the time axis in each T-F spectrogram, when
calculating SNR, the same set of parameters in the recursive
relation are used, which suggests that temporal correlation is
time-invariant among consecutive spectrograms. Moreover,
harmonic correlations are independent in the consecutive
spectrograms [54].
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Figure 7. CGAB captures global time and frequency correlations. Here,
Cplx = complex, and Conv = convolution.

Based on this understanding, we propose a self-attention
technique along the T-F axes within each spectrogram,
without considering correlations among consecutive spectro-
grams. Specifically, attention on frequency and time axes are
implemented by two separate fully connected (FC) layers.
Along the time path, the input and output dimensions of
FC layers are C × T × F . Along the frequency path, the
input and output dimensions of FC layers are C × F × T .
FC layer learns weights from complex T-F spectrograms and
technically is different from the self-attention [53] operation.

To capture interchannel relationships among the input En

and output of FC layers, concatenation happens, followed
by 2D complex convolutions, CBN, and complex ReLU
activation. Finally, the learned weights from the T-F axes
are concatenated together to form a unified tensor, which
holds joint information on the T-F global correlations from
each spectrogram.

We use only two CGABs - one after the 1st encoder,
and another after the 7th encoder.

6.6. Complex Multiresolution STFT Loss

In this work, we use Complex Multi-Resolution STFT
Loss that measures the differences between clean and en-
hanced signals in the complex T-F domain (i.e., amplitude
and phase). Unlike standard magnitude-only loss [55], we
propose a complex multiresolution STFT loss that sepa-
rately evaluates the loss on real and imaginary parts of
STFT across multiple resolutions, thereby capturing fine and
coarse spectral details in complex domains. At first, spectral
convergence loss LSC [56] and log STFT magnitude loss
Lmag [56] are calculated on both real and imaginary parts
of the enhanced signal and ground truth speech data. Let us
define the LSC and Lmag calculated on real and imaginary
STFT data as {Lr

SC , Li
SC} and {Lr

mag, Li
mag}, respectively.

Assuming we have S different STFT resolutions, we aggre-
gate the losses by averaging over the resolutions for both
real and imaginary parts following Eqn. 9.

Lr =
1

S

S∑
s=1

(
Lr
SC + Lr

mag

)
Li =

1

S

S∑
s=1

(
Li
SC + Li

mag

) (9)

We use three resolutions, such as frequency bins = [256,
512, 1024], hop sizes = [128, 256, 512], and window lengths
= [256, 512, 1024] to calculate Lr and Li. The overall
complex multiresolution STFT loss, Lcomplex

STFT is the sum of
Lr and Li. The joint optimization in complex T-F domain on
magnitue and phase improves the quality and intelligibility
of the reconstructed speech from pressure sensor data.

7. Evaluation
7.1. Pressure Data and Audio Corpus

We use VCTK (version 0.92) [57], a multi-speaker En-
glish corpus for evaluation. The dataset contains ∼43600 au-
dio traces sampled at 48 kHz from 110 individuals (i.e., bal-
anced for males and females). We downsample the dataset
to 8 kHz for evaluation. Each audio clip has a duration
ranging from 2s to 7s. We standardize all audio clips to
4s by either zero-padding or silence trimming. Following
[58], only the mic1 data are used for the experiments, and
p280 and p315 are omitted due to technical issues. We play
the audio at 60 dB through a loudspeaker and collect the
corresponding pressure data via a DPS sensor (SDP810-
125PA). The speaker is placed at a 5 cm distance from
one of the pressure ports to play the audio clips. To prevent



500 Hz to 8 kHz 1 kHz to 8 kHz 2 kHz to 8 kHz
L↓ N↑ S↑ P↑ ST↑ L↓ N↑ S↑ P↑ ST↑ L↓ N↑ S↑ P↑ ST↑

Raw pressure data 3.45 0.84 6.24 0.87 0.71 3.15 0.95 8.54 0.98 0.75 2.95 1.27 9.87 1.14 0.79
Reconstructed 1.24 1.78 8.78 1.51 0.75 1.16 1.95 10.04 1.61 0.79 1.01 2.17 11.38 1.95 0.82

Table 4. EVALUATING WALI FOR RECONSTRUCTING INTELLIGIBLE AUDIO FROM PRESSURE SENSOR DATA FOR 500 HZ, 1 KHZ, AND 2 KHZ
SAMPLING FREQUENCIES TO 8 KHZ UPSAMPLING FOR 70 DB AUDIO. HERE, L = LSD, N = NISQA-MOS, S = SI-SDR, P = PESQ, AND ST = STOI.

sound signals from influencing the pressure in the other port,
we connect a sampling tube to it, isolated by positioning its
opening a meter away. Signals from the sensor are collected
as .edf and next converted to .wav format using a custom
Python script. The sampling frequency of the pressure sensor
is varied in between 500 Hz and 2 kHz. We use sinc
interpolation to upsample before the audio reconstruction
to ensure that the system input and output have the same
shape. Note that in a real case, the speech contents may
be different from the spoken ones during the attack phase.
Thus, for testing purposes, we use 11 different speakers, who
are not present in the training. The models are trained offline
with an NVIDIA 4090 GPU and deployed on a desktop for
speech recovery.

7.2. Evaluation Metrics

We comprehensively evaluate WaLi using the following
five different metrics.

a) Log-Spectral Distance (LSD): LSD measures the
difference between the log-magnitude spectra of a ground
truth signal and a reconstructed one from the pressure data.

b) Non-Intrusive Speech Quality Assessment - Mean
Opinion Score (NISQA-MOS): NISQA-MOS is used to
estimate the perceived quality of reconstructed audio without
needing a reference signal. It predicts a MOS similar to
human ratings with values between 0 to 5.

c) Scale-Invariant Signal-to-Distortion Ratio (SI-
SDR): SI-SDR measures how close a reconstructed signal
is to a clean target signal, ignoring any difference in gain.

d) Perceptual Evaluation of Speech Quality (PESQ):
PESQ is widely used to evaluate how a reconstructed signal
compares to a reference (clean) signal, closely modeling
human perception. PESQ has values between -0.5 to 4.5

e) Short-Time Objective Intelligibility (STOI): STOI
is specifically designed to predict how understandable
speech is to human listeners, especially in the presence of
noise. STOI has values between 0 to 1.

7.3. Overall Performance

To intuitively observe the performance of WaLi, we
compared among ground truth speech, raw data from the
pressure sensor, and reconstructed speech by WaLi, shown
in Fig. 8. We can see that the frequency components above
250 Hz are absent in the pressure sensor data (see Fig. 8(b))
as we use a sampling frequency of 0.5 kHz in DPS at this
time. The ground truth audio is sampled at 8 kHz (4 kHz
bandwidth), shown in Fig. 8(a). From Fig. 8(c), we can see
that the high-frequency components are reconstructed up to
4 kHz by WaLi. The reconstructed spectrogram shows a
high similarity to the ground truth one.

Moreover, to quantitatively measure WaLi’s perfor-
mance, we vary the sampling frequency of the pressure sen-
sor on three scales, such as 500 Hz, 1 kHz, and 2 kHz. We
reconstruct the audio to 8 kHz upsampling, to evaluate WaLi
for high upsampling ratios [55]. The detailed comparison is
shown in Table 4, which shows the average value of the
metrics over all the test speakers. The reconstructed audio
by WaLi achieves a 2.78x improvement in LSD (i.e., 3.45
vs 1.24), 2.11x increase in NISQA-MOS (i.e., 0.84 vs 1.78),
1.4x increase in SI-SDR (i.e., 6.24 vs 8.78), 1.73x increase
in PESQ (i.e., 0.87 vs 1.51), and 1.05x increase in STOI
(i.e., 0.71 vs 0.75) between the raw pressure data and the
reconstructed audio for 500 Hz sampling frequency.

Please also note that the metrics improve for 2-8 kHz
compared to 1-8 kHz and 0.5-8 kHz because for 2-8 kHz the
upsampling ratio is around 4, for 1-8 kHz the upsampling
ratio is 8, and for 0.5-8 kHz the upsampling ratio is 16. The
lower the upsampling ratio, the greater the performance gain
for the reconstruction model.

Individual test speaker: In addition to average values,
Fig. 9 (Left) shows the individual values of each test speaker
for LSD and NISQA-MOS. The individual values indicate
that WaLi performs consistently for all unseen test speakers.
This indicates that WaLi can effectively reconstruct the high-
frequency components and suppress artifacts, and improve
the speech intelligibility significantly.
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Comparison with VibSpeech [10]: We also compare
between WaLi and VibSpeech [10] in terms of SNR and
Mel-Ceptral Distortion (MCD) [10] in Fig. 9 (Right), which
indicates that WaLi performs better (MCD = 3.81 and SNR
= 6.1) than VibSpeech (MCD = 3.9 and SNR = 5.4).



Please note that WaLi is tested with different speakers,
which are not seen by the model during the training time.
Moreover, the VCTK dataset consists of everyday-use audio
clips, which are not limited to a certain specialized vocab-
ulary such as [34]. Therefore, WaLi can recover intelligible
audio with unrestricted vocabulary irrespective of specific
applications.

7.4. Phase Reconstruction in Non-Noisy Condition
As WaLi is a complex-valued model, it can directly

reconstruct phase information from the low-resolution pres-
sure sensor data. Previous works used the Griffin-Lim al-
gorithm [13] as a vocoder to reconstruct the phase. To
compare the performance of our phase reconstruction in
the non-noisy condition, we reconstruct audio from only
the magnitude of our model with the Griffin-Lim algorithm,
and then compare it with the reconstructed audio from our
model. A comparison summary is shown in Table 5 for a
500 Hz to 8 kHz reconstruction.

Phase L↓ N↑ S↑ P↑ ST↑
Griffin-Lim 1.26 1.71 7.65 1.47 0.74

WaLi 1.24 1.78 8.78 1.51 0.75

Table 5. EVALUATING WALI FOR RECONSTRUCTING PHASE AT
NON-NOISY CONDITION. HERE, L = LSD, N = NISQA-MOS, S =

SI-SDR, P = PESQ, AND ST = STOI.

Table 5 indicates that our proposed complex-valued
WaLi is similar/slightly better in phase reconstruction com-
pared to the Griffin-Lim algorithm in the non-noisy con-
dition. However, the performance of WaLi is much better
under noisy conditions that is discussed in the next section.

7.5. Phase Reconstruction in Noisy Conditions
DPSs, operating within a low-pressure range of 0-200

Pa and at high sampling frequencies of 0.5-2 kHz, are sen-
sitive to transient noise sources (see Section 3.6). Therefore,
clean phase reconstruction becomes particularly significant
in noisy conditions. To test the performance of phase re-
construction under noisy conditions, we use the DCASE
challenge dataset [59] to add transient mechanical noise,
such as fans, valves, pump noise, air leaks, tool drops, etc.,
to the clean VCTK dataset. Noise is randomly added within
a range of -7 to 40 dB. Then, we retrain WaLi with a {noisy,
clean} pair dataset. A comparison summary is shown in
Table 6 for a 500 Hz to 8 kHz reconstruction in noisy con-
ditions. Table 6 indicates that our proposed complex-valued
WaLi is much better in phase reconstruction compared to
the Griffin-Lim algorithm in transient noisy condition. The
reason behind this is that WaLi handles both magnitude and
phase jointly and recovers both clean magnitude and phase
under noisy conditions from the clean reference signal using
a complex multi-resolution loss function. On the other hand,
Griffin-Lim-based models [13] do not learn clean phase
reconstruction as these models are magnitude-only models
and cannot handle phase jointly.

7.6. Impact of Sound Volume
We use a loudspeaker to simulate a speaker and vary

the volume of the loudspeaker from 60 dB to 85 dB with

Phase L↓ N↑ S↑ P↑ ST↑
Griffin-Lim 1.38 1.43 6.17 1.21 0.70

WaLi 1.26 1.71 8.14 1.47 0.74

Table 6. EVALUATING WALI FOR RECONSTRUCTING PHASE AT
TRANSIENT NOISY CONDITION. HERE, L = LSD, N = NISQA-MOS, S

= SI-SDR, P = PESQ, AND ST = STOI.

a 5 dB increment. We inject the audio into the pressure
sensor ports through the 1m long sampling tube from a 5
cm distance. The result is shown in Fig. 10 (Left) for LSD
and NISQA-MOS for 500 Hz to 8 kHz upsampling. We can
see that the LSD and NISQA-MOS improve rapidly between
60 dB and 70 dB. However, after 70 dB, LSD and NISQA-
MOS improve steadily rather than a sharp improvement. The
reason behind this is that the pressure sensor’s sensitivity
increases with the increase of volume up to 70 dB. After
70 dB, the increase in volume does not drastically change
the low-resolution frequency components. Therefore, the
improvement is not sharp after 70 dB; rather, a steady ascent
occurs. The LSD is close to 1, and NISQA-MOS is close to
2 for a wide volume range from normal conversation (i.e.,
60 dB) to loud speech. It indicates that WaLi is capable to
reconstruct intelligible audio from normal conversation (i.e.,
60 dB) to loud speech in real-world scenario.
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distance with the reconstruction performance.

7.7. Impact of Speaker Distance
We vary the distance of a speaker from 0 m (touching the

pressure sensor’s input port) to 3 m from the target pressure
sensor. The result is shown in Fig. 10 (Right) for LSD and
NISQA-MOS for 500 Hz to 8 kHz upsampling for 60 dB au-
dio. In acoustics, the energy of a sound wave radiating from
a point source decreases as the distance increases following
the inverse-proportional law [60]. Therefore, the improve-
ment in LSD and NISQA-MOS decreases with increasing
distance from the audio source to the pressure sensor. It is
also clear from Fig. 10 (Right) that WaLi performs well
up to 1 m distance. After 1 m, the reconstructed audio has
severely degraded intelligibility.

7.8. Impact of Speaker Orientation
We use a loudspeaker to simulate a speaker and place

the loudspeaker at 0°(in front of the loudspeaker), 90°(right
of the loudspeaker), and 180°(left of the loudspeaker) of
the pressure sensor. The loudspeaker is 5 cm away from
the pressure sensor and generates a sound of 60 dB. The
results are shown in Fig. 11 for LSD and NISQA-MOS for
500 Hz to 8 kHz upsampling. The LSD and NISQA-MOS
are higher at 0° orientation, as at 0°, the audio is directed



to the pressure sensor ports with minimum loss, potentially
creating a strong vibration. Performance is the same at both
90°and 180°orientations, but lower compared to 0°.
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Figure 11. Impact of orientation of the pressure sensor on the reconstruction
quality of audio from the pressure sensor data.

7.9. Fine-Tuning on Victim’s Ground Truth Audio
Please note that WaLi can reconstruct the audio even

if the speaker is different as WaLi is tested with different
speakers, which are not seen by the model during the train-
ing time. This makes our attack model more flexible com-
pared to prior works [10], [13], where prior works assume
that clean ground-truth speech of the victim is available via
a microphone or a phishing call. However, if the attacker
could manage the victim’s {ground truth, pressure sensor
data} pair, the accuracy of the models would be greatly
improved by WaLi. To evaluate this, we incorporate a small
amount of {ground truth, pressure sensor data} pair from
the victim to fine-tune the pre-trained network. As shown in
Table 7, the performance gradually improves if the amount
of data from the victim increases. For example, with just one
minute of data, we observe significant performance gains,
and after five minutes of additional data, the performance
gain is minimal. This proves that WaLi can be fine-tuned
with the victim’s audio, if possible, in a stronger assumption
of the attack model. Table 7 is for 60 dB audio for 500 Hz
to 8 kHz upsampling.

Fine tuning data size L↓ N↑ S↑ P↑ ST↑
0 min (before fine-tuning) 1.24 1.78 8.78 1.51 0.75
1 min 1.03 1.89 10.23 1.72 0.77
5 min 0.98 2.04 11.45 1.91 0.79
7 min 0.97 2.07 11.53 1.92 0.79

Table 7. EVALUATING WALI AFTER FINE-TUNING ON VICTIM
SPEAKER’S GROUND TRUTH AUDIO.

7.10. Testing With Less Than 500 Hz Sampling
We test WaLi while reconstructing speech from 250

Hz sampling frequency of the pressure sensor data, shown
in Fig. 12. As only a few pitch frequencies are present
within 125 Hz bandwidth of the 250-Hz-sampled data, the
reconstructed speech in Fig. 12(c) is not intelligible with a
NISQA-MOS value of 0.48. Therefore, the attacker should
have access to DPSs that have at least 500 Hz sampling
for proper intelligibility. However, the 250-Hz-sampled data
may be used for hot word detection (i.e., our future work).

8. Limitation and Discussion
Feasibility of the Attack: Sections 7.6, 7.7, and 7.8 in-

dicate that the distance, orientation, and volume of the target
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Figure 12. Reconstructed speech at (c) from 250 Hz sampling frequency
at (b) has severely degraded intelligibility.

speaker can restrict the effectiveness of the eavesdropping
attack using DPSs. For a successful attack, the target victim
should be at least 1 m close to the pressure sensor, have a
pressure level of 60 dB or more, and should be closer to 0°
orientation. This situation exists in numerous scenarios (see
Section 4), where DPSs are often installed in room walls,
near diffusers, or within ventilation grilles, where human
occupancy is high. If a target victim speaker unknowingly
comes close to the pressure ports and continues a private
conversation, the attacker can easily eavesdrop on the vic-
tim’s conversation using our WaLi.

Sampling frequency limit: WaLi achieves intelligible
speech recovery with unrestricted vocabulary when the sam-
pling frequency of the pressure sensor is 500 Hz or higher.
If the sampling frequency of the DPSs is less than 500 Hz,
the bandwidth of the speech is lower than 250 Hz, which is
extremely narrow for an intelligible speech reconstruction.
Therefore, the reconstruction quality degrades significantly
at a sampling frequency lower than 500 Hz. A possible
direction is to find the inner relationship between the pitch
and the low-order harmonics to make WaLi work for a
sampling frequency lower than 500 Hz.

9. Countermeasures

Audio damping: The simplest method of preventing
eavesdropping using DPSs is to damp the audio using a
physical damping device at the input of the pressure ports.
The damping device should be such that it does not affect
the normal pressure measurement of the pressure sensors.
However, it should dampen the audio significantly. One
solution is to use a pressure sampling tube longer than 1 m to
dampen the audio significantly without impacting the normal
pressure measurement. Another solution is to enclose the
pressure pickup device using a box-like enclosure filled with
sound-damping foam to dampen the audio. Both of these
countermeasures are cheap and easy to adopt in a critical
infrastructure where confidentiality might be an issue.

Reducing sampling frequency of DPSs: Another intu-
itive solution is to reduce the sampling frequency of pressure
sensors in HVAC systems. However, we need to keep in
mind that often reducing sampling frequency is not possible
in some specific applications, where small pressure changes
must be detected accurately and quickly for a stable control
process. Therefore, for these closely controlled applications,
an audio damping device should be used instead of reducing
the sampling frequency of pressure sensors.



10. Conclusion
In this paper, we expose a new speech threat that ad-

versaries can recover intelligible audio up to 8 kHz from
severely aliased pressure sensor data, having a sampling
frequency greater than 500 Hz. If a target victim speaker
unknowingly comes close to the pressure ports and contin-
ues a private conversation, the attacker can eavesdrop on the
victim’s conversation using our WaLi. WaLi can reconstruct
audio even if the speaker is different and are not seen by
the model during the training time. This makes our attack
model more flexible compared to previous work. Using our
WaLi, an attacker can secretly listen natural conversation
behind the wall which is least unexpected. Moreover, we
comprehensively evaluate WaLi using five metrics that have
not been done before for speech eavesdropping tasks.
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