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Abstract. Delegated quantum computing (DQC) allows clients with low quantum capabilities to outsource computations
to a server hosting a quantum computer. This process is typically envisioned within the measurement-based quantum
computing framework, as it naturally facilitates blindness of inputs and computation. Hence, the overall process of setting
up and conducting the computation encompasses a sequence of three stages: preparing the qubits, entangling the qubits
to obtain the resource state, and measuring the qubits to run the computation. There are two primary approaches to
distributing these stages between the client and the server that impose different constraints on cryptographic techniques
and experimental implementations. In the prepare-and-send setting, the client prepares the qubits and sends them to the
server, while in the receive-and-measure setting, the client receives the qubits from the server and measures them. Although
these settings have been extensively studied independently, their interrelation and whether setting-dependent theoretical
constraints are inevitable remain unclear. By implementing the key components of most DQC protocols in the respective
missing setting, we provide a method to build prospective protocols in both settings simultaneously and to translate existing
protocols from one setting into the other.
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1 Introduction

The potential for achieving unparalleled computational power beyond what is available with classical computers renders
quantum computers highly appealing to academic institutions and companies alike. However, they are costly, prone to errors,
and demand specialized maintenance and cooling systems beyond the capacity of standard laboratories. Delegated quantum
computing (DQC) addresses these challenges, at least in principle, on a meaningful level of abstraction: it enables clients
with limited quantum resources to outsource quantum computations to a high-performance quantum server.

Two crucial properties distinguish DQC from classical cloud access as it is already used today. Blindness guarantees that the
server cannot learn the input to the computation or the computation itself. Verifiability allows the client to verify the output of
the computation. While the impossibility of classical remote state preparation [1] suggests that a purely classical client is likely
not able to achieve blind DQC without additional assumptions, a client with minimal quantum capabilities can blindly delegate
a quantum computation when the latter is instantiated in the measurement-based quantum computing model (MBQC) [28,2].

Two separate lines of research – prepare-and-send (PS) and receive-and-measure (RM) – emerged. Both follow the convention
of MBQC to encode computations as sequences of measurement angles in the XY-plane for qubit measurements of the resource
state. Since the outcomes of qubit measurements of entangled states are inherently random, some outcomes introduce unin-
tended Pauli operations on the qubits adjacent to the measured one. These Pauli operations can be systematically propagated
forward in the measurement sequence by adapting the angles using the flow function associated with the resource state. This
technique eliminates the necessity to apply quantum gates during the measurement stage by deferring them to the output phase.

Despite following the same convention, PS and RM differ significantly in the distribution of the steps of an MBQC compu-
tation among the server and the clients. In the context of delegated quantum computing, an MBQC computation is a sequence
of four steps: (i) preparing single qubits, (ii) entangling these qubits to obtain the resource state using controlled Z (CZ)
gates, (iii) conducting the measurement sequence and (iv) applying the corrections on the outcome. While the server will
always perform step (ii) in both settings, the clients’ behavior changes: in PS, the clients have to perform (i) and (iv) while
in RM, the clients conduct (iii) – instead of (i) – and (iv).

These different distributions of responsibilities imply a difference in the techniques used to achieve blindness and verifiability
in each setting. Beyond the implications for cryptographic techniques used for the protocol, the choice of setting is also
consequential for the technological implementation. For example, in PS the clients need to be able to prepare single-qubit
states while in RM they have to perform measurements. The chosen setting also imposes constraints on the operations on
the server’s side, and while photons are likely to serve for encoding flying qubits, it is uncertain which technology will enable
the server to perform quantum computations. Indeed, some first proof-of-concept implementations of DQC in PS leverage
photonic quantum computing [11,25], in contrast to a recent implementation in RM, which utilizes solid-state qubits [29]. To
maintain flexibility regarding the hardware platform that will be used for future quantum servers, it is imperative to develop
cryptographic techniques for both communication settings of DQC.

https://arxiv.org/abs/2506.21988v1
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1.1 Related Work

The PS and RM settings have been extensively, albeit separately, studied. The first protocol proposing delegated quantum
computing using MBQC is the work of Broadbent et al. [4] in 2009. This PS protocol achieves perfect blindness by using ran-
dom offsets for the communicated measurement angles that cancel out offsets at the preparation – a technique that is now the
standard approach for blindness in PS. While [4] showed only stand-alone security of the protocol, Dunjko et al. [8] proved com-
posable security in 2018. Many other works built upon this first protocol. A protocol by Fitzsimons and Kashefi [9], proposed
in 2017, is one of the first efforts toward verifiability. This protocol utilizes in PS thatZ-eigenstates are invariant underCZ
and, hence, prevent the establishment of entanglement. This mechanism allows splitting a resource state into sections, of which
some serve for the actual computation and other parts, called traps, to test the honesty of the server. Crucially, the server does
not know the partition of the resource state since the client sends the qubits for the resource state. Kashefi and Wallden [17] op-
timized this approach and proposed a protocol with significantly lower verification overhead, and Leichtle et al. [18] leveraged
the properties of BQP computations to provide fault-tolerant verification of such computations. However, the number of clients
was also varied: Kashefi and Pappa [16] proposed one of the first protocols allowing multiple clients to delegate a joint compu-
tation to an untrusted server, achieving blindness against the server or a subset of clients but not all coalitions of clients and the
server. A recent work [14] inPS combines multi-client settings and verification – although not trap-based – and achieves blind-
ness and verifiability as long as a single client is honest and the computation has a classical output utilizing a majority vote.
Parallel to these developments for PS, research in the RM seeting produced several protocols, as well. The first is the perfectly
blind single-client protocol by Morimae and Fujii in 2013 [24]. Shortly after that, Morimae proposed the first verification
protocol in RM [22], in which – similarly to [9] – the client introduces traps. However, since the client does not prepare the
qubits, the traps are introduced by delegating a precomputation. A different approach to verification was used a year later
in a protocol that utilizes stabilizer testing to verify the resource state with the caveat that the input of the computation can
only be classical [12]. Building upon this, Morimae lifted this caveat in 2016 [23].

1.2 Our contribution

While two protocols from different settings can exhibit similarities at a higher level by achieving or even utilizing the same
techniques, the two settings are not obviously equivalent. More specifically, the interrelation of the settings is unknown, which
raises the question of whether everything implemented in one setting can be implemented in the other with the same level of
security. In our work, we follow a modular approach using the abstract cryptography framework [21] and answer this question
positively on a practical level by investigating the abstract building blocks used in modern DQC protocols. We highlight
existing or immediate correspondences between implementations of these building blocks, identify gaps in implementing
these building blocks in the two settings, and close these gaps by providing the respective missing implementations. In
more detail, we introduce a direct usage of traps in RM by means of proposing a trap-based equivalent of [17], we translate
verification based on stabilizer testing as used in [12], which seems native to RM, to PS, and finally, implement collective
remote state preparation as proposed in [16] in RM. Closing these gaps enables the setting-agnostic development of protocols,
which eventually bridges the theory and experimental implementation.

We first introduce the abstract cryptography framework in section 2. In section 3, we present our results, i.e. the missing
implementations of the building blocks of modern DQC. In the first subsection (3.1), we present and prove the security of
an RM version of [17], followed by the translation of verification by stabilizer testing to PS. In the second subsection (3.2),
we introduce collective remote state preparation in RM. Finally, we conclude our work in section 4.

2 Abstract cryptography

In order to demonstrate the modularity of the various protocols, we will use a composable security framework, namely abstract
cryptography (AC) [21] which is closely related to constructive cryptography [20] and follows similar ideas as universal com-
posability (UC) [6] and categorical composable cryptography (CCC) [5]. While we do not formally introduce every compo-
nent of AC and refer to Refs. [21] and [26], we provide a brief explanation of how one defines security using these components.

The goal in AC is to construct an ideal (target) resource from a real one. Assuming that there is an honest subset H of all
parties I, we achieve this by showing that the composition of the honest parties’ protocols attached to the real resource is
indistinguishable from the ideal resource, where a simulator acts on the interfaces of the dishonest parties.
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Definition 1 (Secure construction). LetR♯=(R,♯) andS♭=(S,♭) be two pairs, each consisting of a resource with interface
set I and a filter. For a set of honest parties H, a protocol π= {πi}i∈I securely constructs S♭ out of R♯ within ϵ, if there
exists a simulator σI\H such that

(πH◦♯H)R≈ϵ ♭HSσI\H. (1)

In this case, we write R♯
π, ϵ−−→
H

S♭.

It is easier to understand the above definition with an example; in Fig. 1 we show how Eq. (1) looks like when I={A,B,C,D}
and H= {A,B}. Note that we allow for global simulators in contrast to the usual local simulators in AC. This is not an
unusual assumption and has been used before, both in AC [7], as well as in other frameworks ([6,5]).

R♯AπA

♯B

πB

≈ϵ S♭A

♭B

σC,D

Fig. 1. Visualization of the secure construction with I={A,B,C,D} andH={A,B}.

One shows security by proving the above definition for all sets of honest parties H⊆I that are relevant for the security of
the desired functionality. For example in QKD, it does not make sense to consider any of the two communicating parties
to be dishonest; we are interested in proving a) correctness, where both the communicating parties and the eavesdropper
are honest, and b) security, where the honest set contains only the communicating parties.

There are two reasons that motivate the definition of secure construction; first, any successful attack on the implementation
implies an attack on the ideal resource which one finds by composing the attack with the simulator. Hence, we can encode
in the ideal resource what should be possible for dishonest parties. As the access to the ideal resource is different depending
on whether a party is honest or not, we apply filters for honest parties that block such additional interactions.

The second motivation is composability: as distinguishability is a pseudo-metric which is non-increasing under composition,
we find for any filtered resources R♯,S♭ and Q♮ that

R♯
π, ϵ1−−−→
H

S♭∧S♭
τ, ϵ2−−−→
H

Q♮⇒R♯
τ◦π, ϵ1+ϵ2−−−−−−−→

H
Q♮. (2)

3 Implementing the components for DQC

Essentially, all proposed MBQC-based DQC protocols include implementations of the following three components and
leverage their properties:

1. Single-client blind DQC (Sblind).
2. Single-client verifiable DQC (Sver).
3. Collective Remote State Preparation (RSP).

Interestingly, not all these components have been implemented in both the PS and the RM setting. In this work, we provide
the missing implementations and therefore enable the execution of any type of protocol utilizing these components in either
of the two settings.

ρ=

{
U(ψC) if c=0

E(ψC,S) if c=1

U,ψC

ρ

c

ℓ|ψC |

E ,ψS

Fig. 2. Visualization of Sblind. ℓ|ψC | is the size of the register for the client’s inputψC , E is a completely positive trace-preserving (CPTP)
map to the space of linear operators on Cℓ

|ψC |
,ψS is a register of the server and c denotes the server’s behavior. If the server is honest, we

assume a filter ♯S which inputs c=0, ignores the received dimensionality of the client’s state and inputs any CPTP map and register.
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The first component, Sblind (cf. Fig. 2), has already been perfectly implemented in both PS [4] and RM [24] as long as the
client is honest.

In the following sections, we will therefore examine the two remaining components.

3.1 Single-client verifiable DQC

For the second component, Sver (cf. Fig.3), three types of implementations are used: the first is based on the cut-and-choose
technique applied on Sblind [15], i.e., repeated runs with trap rounds, the second type of implementation uses separated traps
in the resource state [9,17] and the third leverages stabilizer measurements on the resource state [12].

ρ=

{
U(ψC) if c=0

|⊥⟩⟨⊥| if c=1

U,ψC

ρ

c

ℓ|ψC |

Fig. 3. Visualization of Sver. ℓ|ψC | is the size of the register for the client’s inputψC . |⊥⟩⟨⊥| is orthogonal to the space of possible honest
outputs. If the server is honest, we assume a filter ♭S which inputs c=0 and ignores the received dimensionality of the client’s state.

The first type of implementation of Sver uses a composition of many instances of Sblind, where some of them are used as
traps to check the behavior of the server. For protocols that use test rounds such as Ref. [3], one can treat Sblind as a black
box to build Sver, and therefore the equivalence of the Sblind implementations between the PS and the RM settings implies
the equivalence of the cut-and-choose implementations of Sver.

For the second type, we present in Protocol 1 an RM version of the protocol in Ref. [17]. We note that dummy nodes allow us
to perform break operations, i.e., measuring a dummy deletes an edge. In this way, the traps are isolated, and the computational
nodes are brought into the state of the dotted base state. The computation can be adapted so that one applies the bridge
operation on the dots; this, together with the observation that for an honest server the isolated traps will be inZrNDT (G)(t) |+⟩
and, hence, will not trigger abort, gives correctness.

Protocol 1 RM version of Ref. [17]
Input: Client inputs a quantum inputψC and secret
measurement angles encodingU .
Output:U(ψC) if the server is honest, |⊥⟩⟨⊥| otherwise.

1: Similar to Ref. [17], the client one-time pads the input state ψC and an additional register |+⟩⟨+|⊗2ℓ|ψC |
. The combined state is

denoted with |e⟩⟨e|.
2: The server prepares the tripled-dotted resource state and entangles it with |e⟩⟨e|, the resulting state is called ρ.
3: The client samples a coloring respecting the position of the input in |e⟩⟨e|, which partitions the nodes ofDT (G) into computational

nodesC, dummy nodesD and trap nodes T .
4: The server sends ρ to the client.
5: The client measures each dummy d in the Z basis, and notes the correction Zrd for the neighbors, where rd is the measurement

outcome.
6: The client measures the nodes inC to perform the computation while respecting the corrections introduced by the outcomes of the

previous measurements and the offsets for the input.
7: The client measures the trap nodes T in theX basis and aborts if there is a node t such that the measurement outcome rt does not fulfill
rt=rNDT (G)(t)

:=
⊕

d∈NDT (G)(t)
rd, whereNDT (G)(t) denotes the neighborhood of t.

8: If the client does not abort, it corrects the outcome of the computation before outputting it.

Similar to Refs. [17,9,22], we start by showing stand-alone security. In the proof (given in the Appendix), we show an upper
bound for the probability of accepting an output that is in a subspace orthogonal to the honest outcomes. Composable security
follows directly from the reduction to local criteria as shown in Ref. [8]. However, this reduction creates an overhead and
in order to obtain an implementation that is close to the ideal resource, the stand-alone security would need to be high. To
achieve this, one could, for example, use a majority vote on the classical outputs of multiple instances of the protocol or
fault-tolerant codes such as the RHG code [27] for the computation. A relevant result uses the majority vote for noisy BQP
computations [19]. Notably, this protocol does not require enlarging the resource state to include traps for BQP computations;
since the input and output are both classical, one can consider pure computation rounds without traps and use the other rounds
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for traps. Furthermore, the security proof does not rely on the protocol being in the prepare-and-send setting. Hence, the
analysis directly encompasses the receive-and-measure variant in which the client measures in theZ-basis for the dummy
nodes in trap rounds as in Protocol 1.

The third type of implementation of Sver utilises stabilizer measurements on the resource state. In the RM setting, stabilizer
measurements allow the client to verify the state that the server sent [12], leveraging the fact that the resource state is a graph
state [13] and hence a stabilizer state. Generators of the stabilizer set of a graph state for a graphG=(V,E) are given by

gj=Xj⊗

 ⊗
i∈NG(j)

Zi

⊗

 ⊗
i∈V \(NG(j)∪{j})

1i


for all j∈V . To translate this mechanism in the PS setting, the server would need to perform measurements on the graph
state; however,Z measurements cannot be blindly delegated as they cannot be hidden with angle offsets.

Nevertheless, any stabilizer measurement containing Z on the original graph state is equivalent to the client applying the
Z rotation to the sent qubit and then blindly delegating a stabilizer measurement containing onlyX and Y elements. Let
g={σn}n∈V be a randomly chosen stabilizer of the resource state with σn∈{1,X,Y,Z}, i.e.,

(⊗
n∈V

σn

)
EG

(⊗
n∈V

|+n⟩

)
=EG

(⊗
n∈V

|+n⟩

)
,

where EG is a product onCZ gates, one for each edge inG. Now, let ζ(n)=1 if σn=Z and 0 otherwise. Using commutation
ofZ andCZ, we find

(⊗
n∈V

σn

)(⊗
n∈V

Zζ(n)
n

)(⊗
n∈V

Zζ(n)
n

)
EG

(⊗
n∈V

|+n⟩

)

=

(⊗
n∈V

σζ(n)⊕1
n

)
EG

(⊗
n∈V

Zζ(n)
n |+n⟩

)
=EG

(⊗
n∈V

Zζ(n)
n |+n⟩

)
.

Hence, when in the original RM protocol the client tests a stabilizer g containingZ, in the PS setting it can apply aZ gate
on the qubits on whichZ would otherwise act, and replace theZ stabilizer element with the identity. The resulting stabilizer
measurement is now in theXY plane and can be blindly delegated to the server.

3.2 Collective remote state preparation

The third component is collective remote state preparation, which is implemented in the PS setting in Refs. [16,14]. This is a
resource that involves n clients and a server. Here we implement a corresponding resource in RM. To do so, we first introduce
the ideal resource, which is slightly different than the one in Ref. [14], in that now all clients have some access to the resource 4.

If all clients are honest (denoted with bit cj =0), a clientCk is able to prepare a state vector
∣∣+θ
〉

at the outer interface of
the server, where θ remains secret. If however, some of the clients are dishonest (denoted by cj=1), they can input states ρj .
One of these states (e.g. the state from the clientCℓ with the highest identifier) is used for the output so that the stateZθ(ρℓ)
is outputted to the server instead of

∣∣+θ
〉
.

Resource 1 Remote state preparation (RSP)
Input:Ck inputs θ. All other clientsCj input cj ∈{0,1}
and a qubit register ρj .
Output: ρS to the server.

1: if ∀j, j ̸=k :cj=0 then
2: ρS=

∣∣+θ〉〈+θ∣∣
3: else
4: ℓ=max{j|cj=1}
5: ρS=Z

θ(ρℓ)
6: end if

4 The reason why we needed to introduce a new ideal resource is that the one introduced in Ref. [14] cannot be implemented in the case of
dishonest clients and honest server
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For each client j ̸=k, we also consider the filter ♮i that inputs cj=0 and the state |0⟩⟨0|. We consider the following protocol:

Protocol 2 Implementation of RSP in RM.
Input: Client k inputs θ.
Output: The server outputs a qubit registerψS .

1: The server prepares the registerψS in |+⟩⟨+| and for each clientCj a registerψj in |0⟩⟨0|.
2: The server applies for each clientCX withψS as control andψj as target register.
3: The server sendsψj to corresponding clientCj .
4: for each clientCj do
5: Cj samples θi←$ {kπ/8 |0≤k<8}
6: Cj measures the received register in

{
∣∣+−θj

〉〈
+−θj

∣∣,∣∣−−θj
〉〈
−−θj

∣∣}, the result is rj .
7: if j ̸=k then
8: Cj sends (θj , rj) toCk.
9: else

10: Ck receives (θj ,rj) from all clients.
11: Ck samples b←$ {0,1} and computes

δ=(−1)bθ−
∑n
i=1θi−π

⊕n
i=1ri.

12: Ck sends b, δ to the server.
13: end if
14: end for
15: The server receives the correction δ from the clientCk, appliesXbZδ onψS and outputs the registerψS .

We find correctness by observing that, for each registerψj of the clients,Zθj+rjπ is applied onψS . Hence, the final correction
that the server applies brings the register in the state

∣∣+θ
〉〈
+θ
∣∣. We now assume that the server is honest and some clients

are dishonest. We define with D the set of dishonest and H the set of honest clients. As the server first entangles the registers,
the state the distinguisher gets in the above implementation is:

ρimpl=

⊗
j∈H

⟨0j |+ei(θj+rjπ)⟨1j |

⊗

⊗
j∈D

1j

⊗Xb
SZ

(−1)bθ−θ′

S

 n⊗
j=1

CXS,j

⊗
j∈H

|0j⟩

⊗

⊗
j∈D

|0j⟩

⊗|+S⟩


where θ′=

∑n
j=1θj+rjπ. Using the functionality of the circuit, the fact that Z-rotations on the control register commute

withCX andXbZ(−1)bθ=ZθXb we find:

ρimpl=

⊗
j∈D

1j

⊗Zθ
SX

b
SZ

−θD
S

⊗
j∈D

CXS,j

⊗
j∈D

|0j⟩

⊗|+S⟩


where θD=

∑
j∈Dθj+rjπ. The simulator emulates the protocol of the server and the classical part of the protocol of Ck

with input θ=0. It inputs the state it gets from the server to the interface of the dishonest client with the highest identifier.
Hence, we need to consider two rounds of corrections, the first is applied by the simulator with δ=−θD (since the simulator
sets θ=0), and the second is applied by the ideal resource withZθ

S . We then find:

ρsim=

⊗
j∈D

1j

⊗Zθ
S

⊗
j∈D

1j

⊗XbZ−θD
S

⊗
j∈D

CXS,j

⊗
j∈D

|0j⟩

⊗|+S⟩

=ρimpl

If the server is dishonest, we denote the register the simulator receives from the ideal resource asψI = |+θ⟩⟨+θ|. The simulator
implements the protocol of all honest clients butCk and inputs cj=0 for all dishonest clients. Instead of implementing the
protocol ofCk, the simulator appliesCXk,I on the register ψk it receives from the server and ψI . After that the simulator
measures ψI in {|0⟩⟨0|,|1⟩⟨1|} and saves the outcome as b. This combination of CXk,I followed by the measurement is

equivalent to applying Z(−1)bθ
k on ψk and is the main mechanism exploited for the PS version of the implementation. At

last, the simulator finds rk by measuring the register ψk in {±θk} with a random θk, computes

δ=−
n∑

j=1

θj+π

n⊕
j=1

rj (3)
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and sends δ, b⊕1 to the distinguisher at the server’s interface. Note, that for dishonest clients the distinguisher and for honest
clients but k the implementation inside the simulator provides θj ,rj . We find the following map

1

2·8|H|

∑
θ∈A|H|

r∈{0,1}|H|

b∈{0,1}

Tr
{∣∣∣+−θk−(−1)bθ−rkπ

〉〈
+−θk−(−1)bθ−rkπ

∣∣∣ψk

}∏
j∈H
j ̸=k

Tr
{∣∣+−θj−rjπ

〉〈
+−θj−rjπ

∣∣ψj

}
∣∣∣∣∣∣−

n∑
j=1

θj−π
n⊕

j=1

rj ,b⊕1

〉〈
−

n∑
j=1

θj−π
n⊕

j=1

rj ,b⊕1

∣∣∣∣∣∣
in the simulation. As θk and b are uniformly distributed we can first replace θk 7→θk+(−1)bθ and second b 7→b⊕1 which
gives us

1

2·8|H|

∑
θ∈A|H|

r∈{0,1}|H|

b∈{0,1}

∏
j∈H

Tr
{∣∣+−θj−rjπ

〉〈
+−θj−rjπ

∣∣ψj

}∣∣∣∣∣∣(−1)bθ−
n∑

j=1

θj−π
n⊕

j=1

rj ,b

〉〈
(−1)bθ−

n∑
j=1

θj−π
n⊕

j=1

rj ,b

∣∣∣∣∣∣
which is exactly the map the implementation performs on the registers obtained from the server.

4 Conclussion

Delegated quantum computation is crucial for enabling clients with limited quantum resources to securely and efficiently
outsource complex quantum tasks to more powerful quantum servers. Protocols implementing specific functionalities
have been proposed in the two prevalent communication settings, prepare-and-send (PS) and receive-and-measure (RM),
and essentially use three components. Amongst these, only the simpler one, namely single-client blind DQC, is known
to be perfectly implemented in both settings. Three techniques were used to implement the second component, which is
single-client verifiable DQC. The first verification technique, cut-and-choose, i.e., intertwining verifiable computations with
the actual computation in multiple rounds of blind DQC, inherits its equivalence from single-client blind DQC. The second
technique leverages partitioning the resource state into multiple segments, allowing the use of some segments for verification
while others serve for the actual computation. While an implementation of this technique in RM was proposed in 2015 [12],
the development of the PS implementations [9,17] imposed a gap between the two settings. We closed this gap by proposing
anRM version of [17] which is more efficient than [12]. In contrast to the protocol in [12], our implementation does not require
delegating a precomputation to split up the resource state, but utilizes measurements in theZ-basis following the same intuition
as thePS implementations that leverage preparation in this basis. Our approach can be easily adapted for other protocols using
this verification technique, such as [18]. The last verification technique used for single-client verifiable DQC is stabilizer
testing [22]. Although intuitively stabilizer testing requires the client to measure the resource, we translated this technique
to PS by leveraging the blindness of the server and deriving an equivalence between stabilizer tests in the two settings. We
finally give an RM version of the third component, the remote state preparation protocol from Ref. [16]. This implementation
directly implies RM versions of protocols in which this component was used as a subroutine, such as [16] and [14].

We have therefore demonstrated that the two communication models are, in fact, interchangeable in delegated quantum
computation; for any (present or future) protocol that is proposed in one setting and consists of these three main components,
there exists an equivalent one in the other setting, achieving the same levels of security. Our work not only clarifies the
connection between the two communication settings and provides new protocols for DQC, but additionally opens paths for
further research. For example, it enables research on previously unexplored hybrid communication settings, where clients that
belong to different communication settings (e.g., a preparing client and a receiving client), can collaborate in order to delegate a
multiparty computation to a server [16]. Our work also inspires further research of protocols like [10], in which the client sends
weak coherent pulses instead of single photons, and raises the question of whether the communication direction in this semi-
classical setting is crucial for security. Finally, and also in light of recent implementations and technological advancements,
we hope to motivate and simplify the exploration of further protocols to achieve practical delegated quantum computing.
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A Appendix

Here we examine the stand-alone security of Protocol 1. If the server is dishonest, we can assume that it also has a registerS in
addition to the received state |e⟩⟨e|. Without loss of generality we further assume that the server first prepares the qubits of the
resource state and then applies a joint unitaryΩ on all the registers in its possession. After that, it entangles the registers of the
resource state and the client’s input into the dotted triple-graph, using operationE . The state at the end of the protocol is given by

B(ν)=TrS

∑
s

|s⟩⟨ψν
s |CνC ,sEΩ

|0⟩⟨0|⊗|S|⊗

 ⊗
n∈C,T,D

|+n⟩⟨+n|

⊗|e⟩⟨e|

Ω†E†C†
νC ,s|ψν

s ⟩⟨s|

,
where s is the vector of measurement results of the client, ν denotes the coloring and the encryption parameters used to obtain
|e⟩⟨e|, ψν

s represents the corresponding measurement bases andCνC ,s represents the correction on the output that the client
applies at the end of the protocol.

Note that, depending on the measurement outcomes of the dummies adjacent to the trap, the client needs to adapt the measure-
ment basis for the traps corresponding to both the input and the resource state. Hence, the client accepts only if the measurement
outcome of all traps is 0. We denote with P⊥ the projector into the subspace that is orthogonal to the honest output. We find

pfail=
∑
ν

p(ν)Tr

((
P⊥⊗

(⊗
t∈T

|0t⟩⟨0t|

))
TrS(B(ν))

)
,

where p(ν) denotes the probability of choosing a specific ν. Performing the trace over the auxiliary system S of the server
turns the unitaryΩ into a CPTP map, which can be expressed using the Pauli operators σi with complex coefficients αk,i,

pfail=
∑

ν,s,i,j,k

p(ν)αk,iα
∗
k,j ·

Tr

(P⊥⊗

(⊗
t∈T

|0t⟩⟨0t|

))
|s⟩⟨ψν

s |CνC ,sEσi

 ⊗
n∈C,T,D

|+n⟩⟨+n|⊗|e⟩⟨e|

σjEC†
νC ,s|ψν

s ⟩⟨s|

.
Terms in which σi and σj are tensor products of 1 andX cannot contribute to the sum, except whenX acts on the input. We
defineE to be the subset of Pauli operators, that have at least one Y orZ on any of the registers orX on the input. If the base
graph was used in a fault-tolerant setting, the number of operators in {Y,Z} (orX on the input) would need to be the number
of errors tolerated by the error detection code. However, without fault-tolerance, a single operator can map the output in the
orthogonal subspace.

Using cyclicity of the trace, assuming the attack mapped the state into an orthogonal subspace and defining s′ as the substring
of measurement results of nodes inD andC, we find

pfail≤
∑

ν,s′,k

∑
i,j∈E

p(ν)αk,iα
∗
k,jTr

(⊗
t∈T

|ψν
t ⟩⟨ψν

t |⊗|ψν
s′⟩⟨ψν

s′ |

)
Eσi

 ⊗
n∈C,T,D

|+n⟩⟨+n|⊗|e⟩⟨e|

σ†
jE

†

,
where the random flips rt for all the trap measurements and the random offset θt for the input traps are represented by ψν

t .
Note that we droppedCνC ,s as it only acts on the output nodes which are already projected and traced out.

Following Refs. [17,9], we utilize blindness in the next step; no matter which channel the server applies, the client’s registers
appear totally mixed to the server, when considering the sum over the outcomes. This implies

pfail≤
∑
ν,k

∑
i,j∈E

p(ν)αk,iα
∗
k,jTr

[(⊗
t∈T

|ψν
t ⟩⟨ψν

t |

)
σi

(⊗
t∈T

|ψν
t ⟩⟨ψν

t |⊗
1

Tr(1)

)
σ†
j

]
.

If σj ̸=σi, they either differ on the output registers or on traps. In the first case, the trace vanishes as all Pauli operators except
the identity have trace 0. In the second case the trace vanishes, since∑

rt

∑
θt

1

16
Tr
(
⟨ψν

t |σi|t|ψν
t ⟩⟨ψν

t |σj|t|ψν
t ⟩
)
=0,

where σi|t and σj|t are single-qubit Pauli operators on trap t. Note that if the trap does not correspond to the input, there is
no dependency on θt. Hence, only terms with σi=σj contribute to the sum, and, therefore, we find

pfail≤
∑
k,νT

∑
i∈E

p(νT )|αk,i|2
∏
t∈T

∑
rt,θt

1

16

(
⟨ψν

t |σi|t|ψν
t ⟩
)2
,

where ν has been split up into its contributing terms (i.e., positioning of the traps νT , rt and θt). Except for differences in the
notation, this is equation (C.10) from [17]. As also the number and types of non-trivial attacks (element inE) are bijectively
related, we can refer to the proof in Ref. [17] from here on and find that pfail≤8/9.
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