
ar
X

iv
:2

50
6.

21
89

7v
1

 [
cs

.C
R

]
 2

7
Ju

n
20

25

One Video to Steal Them All: 3D-Printing IP Theft through
Optical Side-Channels

Twisha Chattopadhyay∗
Georgia Institute of Technology

Atlanta, USA
twishac@gatech.edu

Fabricio Ceschin
Todyl Inc.

Atlanta, USA
fceschin@todyl.com

Marco E. Garza
The University of Texas at San

Antonio
San Antonio, USA

marco.garza@my.utsa.edu

Dymytriy Zyunkin
Georgia Institute of Technology

Atlanta, USA
dzyunkin3@gatech.edu

Animesh Chhotaray
Georgia Institute of Technology

Atlanta, USA
achhotaray3@gatech.edu

Aaron P. Stebner
Georgia Institute of Technology

Atlanta, USA
aaron.stebner@gatech.edu

Saman Zonouz
Georgia Institute of Technology

Atlanta, USA
saman.zonouz@gatech.edu

Raheem Beyah
Georgia Institute of Technology

Atlanta, USA
rbeyah@ece.gatech.edu

Abstract
The 3D printing industry is rapidly growing and is increasingly
adopted in various sectors, including manufacturing, healthcare,
and defense. However, the operational setup often involves haz-
ardous environments, necessitating remote monitoring through
cameras and other sensors, which opens the door to cyber-based
attacks. In this paper, we show that an adversary with access to
video recordings of the 3D printing process can reverse-engineer
the underlying 3D print instructions. Our model tracks the printer
nozzle’s movements during the printing process and maps the cor-
responding trajectory into G-code instructions. Further, it identifies
the correct parameters such as feed rate and extrusion rate, which
enable successful IP theft. To validate the success of IP theft, we de-
sign an equivalence checker that quantitatively compares two sets
of 3D print instructions, evaluating their similarity in producing
objects that are alike in shape, external appearance, and internal
structure. Our equivalence checker, unlike other simple distance-
based metrics such as normalized mean square error, is rotationally
as well as translationally invariant. This is necessary to capture
shifts in the base/start position of the reverse-engineered instruc-
tions relative to the actual 3D print instructions that can happen due
to different camera positions. Our model achieves an average accu-
racy of 90.87% and generates 30.20% fewer instructions compared
to the current state-of-the-art methods that produce instructions
that either lead to faulty or incorrect (in terms of differences in
shape and internal structure) 3D prints. Additionally, we use our
model to reverse-engineer the 3D print instructions from a video
recording and print a fully-functional counterfeit object.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3744837

CCS Concepts
• Security and privacy → Side-channel analysis and counter-
measures.

Keywords
3D printing, reverse engineering, side-channel attack, security

ACM Reference Format:
Twisha Chattopadhyay, Fabricio Ceschin,Marco E. Garza, Dymytriy Zyunkin,
Animesh Chhotaray, Aaron P. Stebner, Saman Zonouz, and Raheem Beyah.
2025. One Video to Steal Them All: 3D-Printing IP Theft through Optical
Side-Channels. In Proceedings of the 2025 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’25), October 13–17, 2025, Taipei,
Taiwan.ACM, NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3719027.
3744837

1 Introduction
The global additive-manufacturing (AM) aka 3D printing industry
was valued at around $20 billion in 2023 [34]. It is readily being
adopted by different sectors considering its ability to produce com-
plex geometries, reduce material waste, and shorten production
cycles. For instance, in the healthcare sector, AM is used to print
custom implants and prosthetics; the global 3D printing healthcare
market is projected to reach $3.7 billion by 2026 [68]. In the au-
tomotive sector, AM is used to manufacture low-cost lightweight
components, prototypes, and custom parts, and enhance vehicle
performance and fuel efficiency [13, 30, 33]. Even governments
(e.g. USA, France) are increasingly favoring the use of AM in the
production of military equipment [2, 9], given the compact and
speedy nature of 3D printers and 3D printing respectively.

In a high-valued 3D printing market, the 3D design model, typi-
cally described using an STL1 file, is the intellectual property (IP) of
the designer. An IP owner customizes it with parameters that define

1STL stands for standard tesselation language and uses triangular meshes, typically
represented as four triplets — three vertices and a norm vector — to describe the 3D
model of an object.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3744837
https://doi.org/10.1145/3719027.3744837
https://doi.org/10.1145/3719027.3744837
https://arxiv.org/abs/2506.21897v1

CCS ’25, October 13–17, 2025, Taipei, Taiwan Twisha et al.

the mechanical properties of the object that will be 3D printed. A
design-compiler, commonly known as slicer [62] in 3D printing, is
typically used to convert the STL file with all the parameters, to
form a sequence of geometric code (G-code) instructions. These
instructions will be interpreted by the 3D printer firmware [1]
instruction-by-instruction to print the object additively. For exam-
ple, in filament-based 3D printing [64], an extruder heats and melts
a plastic filament, which is then deposited additively layer by layer
onto a print plate by the printer’s nozzle; as each layer cools and
solidifies, the printer precisely adds subsequent layers, gradually
forming the final 3D object. The movement of the nozzle, as well as
the information on when and by how much to extrude, is defined
by a sequence of G-code instructions (stored in a G-code file).

Stealing the G-code IP, i.e., the G-code file, allows an adversary
to produce counterfeit [20, 36, 39] 3D printed objects. Except for
three G-code IP-theft attacks [6, 27, 58] that assume an adversary
compromised either the network used to transfer the G-code and
printer configurations, or the CAD/slicer software [58], all prior
works aimed at reverse-engineering the G-code IP using only access
to some side channels— optical [45], acoustic [5, 22, 23, 50, 57],
power [32], thermal [28]. Since commercial 3D printing can produce
hazardous emissions while melting plastic, metal, etc., these side
channels are available via sensor/monitoring equipment that is used
for in-situ remote quality checks. For example, there are several
solutions [3, 4, 10, 31] that allow operators to use cameras — an
optical side channel— to monitor the 3D printing process.

Threat Model. In this work, we assume that the adversary has
exploited vulnerabilities in IP-based cameras [46] to get the video
recording of the printing process, and its goal is to reverse-engineer
a 3D printable G-code IP just from the video recording. See Figure 1
for a pictorial description of the threat model. Note that we do not
assume that the adversary has planted any external device (e.g.,
smartphones [57], hidden camera [45]) to gain access to the side
channel. Rather, the camera is part of the 3D printing setup that is
used by the operators to remotely monitor the 3D printing process,
prevent material wastage, and perform post-mortem analysis in
case of print failures. Additionally, we assume that the adversary
has no knowledge of the original G-code, i.e., they don’t know the
number of instructions the original G-code contains, the parameters
that were set in order to create the G-code, the number of layers,
or the ratio of instructions across layers. Further, the adversary has
no knowledge regarding the position of the object being printed on
the printing plate. Lastly, we assume that the video feed from the
camera contains the full 3D printer at all times; however, this does
not give the adversary information about the coordinate reference
frame set by the operator for the printing plate.

No prior works have shown that such an attack is feasible in this
threat model for realistically complex parts. Moreover, no suitable
metric exists to compare the similarities between the original and
the reverse-engineered G-codes. The need for such a metric is essen-
tial from both an attack and defense standpoint. From the attacker’s
perspective, such a metric helps determine whether the attacker
could successfully steal the G-code IP. From a defense perspective,
black-market G-codes can be compared against proprietary G-codes
to detect IP theft. Note that the G-code IP/file contains a sequence
of G-code instructions, where each G-code instruction typically

describes a small part of the trajectory of the nozzle along with in-
formation about whether the nozzle’s movements are accompanied
by extrusion or not. Therefore, minimally, a reverse-engineered 3D
printable G-code IP must not only describe the 3D path/trajectory
traced by the nozzle while it is printing, it also has to encode how
much the nozzle has to extrude during each small movement.

To the best of our knowledge, we create the first model that
can reverse-engineer a 3D printable G-code IP from a video of the
target object being 3D printed. The reverse-engineered G-code file
describes the 3D trajectory of the nozzle, where the 3D trajectory
is clearly separated into a set of 2D trajectories that define each
layer of the object that is additively printed.

Additionally, we use our model to classify whether each print
instruction is an extruding instruction or not; for extruding in-
structions, we also determine the rate of extrusion by finding the
distance traveled by the nozzle during the execution of an extruding
print instruction. We note that, in a recent work (NDSS’22), Liang
et al. [45] showed for the first time that a RESNET-50 [42] machine-
learning model can be used to recover a 3D trajectory of the nozzle.
However, we found that separating the 3D trajectory, which is re-
covered using Liang et al.’s RESNET-50 model, into distinct layers is
very hard. This makes the process of converting the recovered 3D
trajectory into a printable G-code infeasible in practice. Even if we
somehow manage to achieve this, without extruding information,
the 3D printer will most likely under or over-extrude every single
time.

We also design a new G-code equivalence checker that compares
the similarity of two G-codes quantitatively. In other words, if two
similar G-codes are fed to a 3D printer, we get two objects that are
similar in terms of both the external shape, as well as the internal
design. The G-code equivalence checker is an essential metric that is
used to determinewhether an IP theft attackwas successful. Loosely,
it translates to extracting the 3D trajectory of the nozzle from both
G-codes and then finding the maximum overlap between the two
trajectories. Standard distance metrics such as mean-squared error
(MSE), or its normalized version (nMSE), were used by Liang et
al. [45]. Using nMSE during our experiments, a rotated version of
an object was seen to be up to 45.82% dissimilar to the G-code of
its non-rotated counterpart. In other words, unless the attacker
managed to reverse-engineer the counterfeit in the exact same
position on the printing plate as the original, the evaluation done by
standard distance metrics would conclude the attack to have failed.
This observation led us to create our G-code equivalence checker to
be invariant to rotation and translation. To achieve this, we develop
an oriented bounding polygon (OBP) algorithm that is effectively a
more generalized version of the well-known (in Computer Vision
domain) oriented bounding box [67] algorithm.

In summary, we make the following contributions:

• We build a 3D printing-specific G-code equivalence checker
that is rotationally and translationally invariant.

• We create a G-code-to-video dataset of 16 objects with mul-
tiple variations (e.g., by changing the camera angle) from
their open-source 3D models.

• We give the first solution that accurately reverse-engineers
a printable G-code IP given only the video recording of the
print process.

One Video to Steal Them All: 3D-Printing IP Theft through Optical Side-Channels CCS ’25, October 13–17, 2025, Taipei, Taiwan

GCODE

Slicer Target
G-Code File

3D
Printer

STL

STL
File

Optical Side-Channel
(OSC)

Video
File

VIDEO

Reverse Engineering
Model

GCODE

Generated
G-Code File

3D
Designer

Attack PathDesign Path

Figure 1: Threat model. A 3D designer creates a 3D object and slices it to generate a G-code that can be printed by the 3D printer
(design path). The attacker can record the print process to obtain a video, which is used as input to a reverse engineering model
that generates the corresponding G-code (attack path).

• Using our reverse-engineering model, we create a fully func-
tional counterfeit padlock key and a gear system.

In the absence of an open-source dataset for training our ML
model, we create a new G-code-to-video dataset2 from scratch.
The dataset consists of 16 different objects such as gears, keys, etc,
whose 3D models are available on the open-source Thingiverse [60]
platform. We slice the 3D models (as well as their rotated and
translated versions) of these objects to get their G-codes, and then
record (from two different camera angles) the 3D printing of the
objects. Upon evaluating our G-code reverse-engineering solution
on this dataset, we find that our solution recovers a G-code that is
on average 90.87% similar to the original G-code. We also show that
our reverse-engineering solution is (a) robust to change in camera
angles by evaluating our solution on a separate G-code-to-video
dataset where the videos were recorded from a different camera
angle, and (b) robust to change in 3D printers by recovering the G-
code instructions using videos of a Geetech printer, and 3D printing
the target object (counterfeit key) on an Ultimaker printer.

We also create an additional dataset for checking the rotational
and translational invariance of our G-code equivalence checker.
Given the G-code of an object, we choose distance-offset values
and then add the offset value to the (X,Y) coordinate in each G-
code instruction to get a translated/shifted version of the G-code.
For getting the rotated version, for a given degree offset, we ex-
tract the (X,Y) coordinates from the G-code instructions that define
the trajectory of the nozzle of each layer, connect the points de-
scribed by the (X,Y) coordinates to form an irregular polygon, find
the centroid of the polygon and then rotate the vector connect-
ing the centroid and each point by the degree-offset value. When
compared with nMSE (used in related works), our curve checker,
on average, assigns 99.76%, 99.71%, and 99.54% similarity values
to rotated, translated, and both rotated-and-translated variants
of the same G-code, respectively; in comparison, average nMSE
values on the same dataset are 74.65%, 28.39% and 73.83%. This
implies that an nMSE-based checker does not work even when the
reverse-engineered G-code produces an identical object but the
base position is rotated/translated on the build plate.

2 Related Works

Side-channel attacks. Liang et al. [45] showed that using a
ResNet-50MLmodel, an adversary can recover the three-dimensional
2We chose simple objects in the dataset because 3D printing can take hours to print
even simple objects. The dataset can be found at https://shorturl.at/v8fpY

trajectory of the print head from a video recording. Note that the
adversarial goal in this case is different from our work as it does
not require the model to produce 3D-printable G-code instructions.
Recall that 3D printing is an additive process and the G-code instruc-
tions must describe both nozzle movement and extrusion timing.
The authors [45] also assume that an adversary can either plant
a hidden camera (in the ceiling) in which case the camera is not
fixed or it can compromise the fixed cameras used for surveillance
or remote monitoring. In our threat model, we assume the latter
setup as it is more realistic. That means defenses such as noise
injection to degrade the quality of the optical side-channel are not
applicable against our reverse-engineering solution that uses an
ML model along with a post-processor to recover valid 3D printing
instructions that encode the trajectory and the extrusion timing
information of the nozzle.

There are other works [5, 22, 23] that exploited acoustic side-
channels to reverse-engineer the trajectory as well as the extrusion
rate. Faruque et al. [28] and Gatlin et al. used thermal and power
side-channels, respectively, to recover the trajectory of the print
head. Some prior works [31] used multiple side-channels (optical,
acoustic, magnetic, acceleration) to recover 3D print parameters like
infill patterns, printing speed, layer thickness, etc. Note that these
works arguably consider a stronger threat model as they assume
that the adversary will be able to “plant” a device (e.g., phone,
oscilloscope) to collect the side-channel information. Moreover,
prior works used distance-based metrics (e.g., mean-squared error)
to compare the predicted G-code/trajectory of the print head with
the ground truth. Since distance-based metrics like Mean Squared
Error (MSE) are not rotationally or translationally invariant, it is
hard to gauge the actual efficacy of the reverse-engineering tools
built by prior works. Moreover, none of the prior works compared
the overhead (in terms of the number of instructions) of the reverse-
engineered G-code. In this work, we tackle all of these issues.

ML-based object tracking. Video object tracking combines ob-
ject detection and tracking to follow the movement of objects
across frames. In our threat model, one aspect of G-code reverse-
engineering involves tracing the path (in the video) that the nozzle
of a 3D printer took to print the 3D object, and mapping it to a
path in the frame of reference of the build plate. However, tracking
the movement of the nozzle of a 3D printer from a video presents
unique challenges: high-fidelity tracking of small (in millimeter
scale) movements of a small object that current state-of-the-art ob-
ject tracking algorithms (DeepSORT [65], FairMOT [69], and YOLO

https://shorturl.at/v8fpY

CCS ’25, October 13–17, 2025, Taipei, Taiwan Twisha et al.

(You Only Look Once) [14, 21, 44, 55]) struggle to address. For ex-
ample, YOLO/DeepSORT are designed to track multiple objects.
However, they fail to detect and track very small-scale movements
accurately. Moreover, extensions of YOLO and DeepSORT (using
SiamRPN [43] and SiamMask [63]) improve robustness by learning
general appearance changes over time. These models, however, can
be computationally expensive to build and often require extensive
offline training for improved performance. Traditional algorithms
like Mean-Shift [25] and CamShift [15] use color histograms to
track objects but struggle with scale and orientation changes. Opti-
cal flow techniques [37] also analyze the motion of objects between
consecutive frames for tracking [49]. Despite their ability to capture
fine-grained motion details, optical flow methods can be computa-
tionally intensive and may struggle with fast-moving objects and
significant changes in object appearance. Real-time object detectors
such as DETR [18] show promising performance but often fail to
adapt to novel domains without pre-training on new datasets.

3 Background

G-code instructions. An object to be 3D printed begins with the
creation of a 3D model that is typically described using STL [66].
The STL/design file is then passed through a slicer to generate a
G-code file that contains the sequence of G-code instructions for a
3D printer. While the design file is generic, a G-code contains all the
parametric specifications needed to print the object. Since G-code
is a coding language specific to 3D printers, it follows a fixed syntax
as shown in Figure 2. It can be seen that each instruction can be
divided into three major components: Primary Action Command,
Positional Parameters, and Arguments.

Figure 2: Examples of G-code Instructions

The primary action commands describe the type of movement
the mechanical components of the 3D Printer is supposed to make
from its current position to the destination position that is described
using positional parameters. The primary action commands can be
used for various tasks. The Gx commands are used to describe
the movement type (e.g., straight-line, curve) of the nozzle aka
printhead; in this work, we consider linear movements (G0 and
G1) as they are supported by all 3D printers. Other than print head
movements, primary action commands can also be used to play a
beep, raise the printing platform, etc. For example, the M300 [29]
command (for a 3D printer that uses the Marlin firmware [1]) plays
a beep after a sequence of instructions has finished executing. In
Figure 2, we see examples of G0 and G1 being used in a G-code. The
first instruction line tells the print nozzle to go to the 3D coordinate
(1.07,10.5,3) without extruding. The second instruction line tells the
print head to go to coordinates (30.651,15.1125,4.5) from the current
position while extruding filament at a rate of 1.63mm/s.

The arguments dictate the mechanical actions of the filament
during any and all movements of the print nozzle. The argument E
gives the rate of extrusion while the nozzle is tracing a trajectory.
The extrusion rate can be calculated deterministically for a given
printer by using the equation 𝐸 = (4ℎ𝑠𝑙𝑑𝑛)𝑑2𝑓 /𝜋 , where ℎ is the
layer height (0.3 mm in our slicer configuration), 𝑠 is the flow mod-
ifier (100% in our printer recommended configuration), 𝑑𝑛 is the
extruder nozzle diameter (0.4 in our printer), 𝑑𝑓 is the filament di-
ameter (1.75 mm in our printer), and 𝑙 is the distance of the straight
line (from point (𝑋𝑛−1, 𝑌𝑛−1) to point (𝑋𝑛, 𝑌𝑛)). The argument F
is used to specify the feed rate of the nozzle, i.e., the maximum
speed at which the nozzle can move during the execution of each
movement command. The feed rate, often, can be set once for a
sequence of G-code instructions that describe a small trajectory.

Figure 3: Infill Patterns: From left to right, the infill patterns
are concentric, octet, triangle, gyroid, and lightning.

Prior to slicing, there are several factors that are adjustable, all of
which result in a different G-code and a different trajectory followed
by the printer nozzle, even when the object printed is visually
identical. There are three factors that are commonly adjusted/set by
the designer. First, the infill design, which is the pattern of printing
the object’s interior is chosen based on the desired level of strength
and flexibility the object should have. Some infill designs are shown
in Figure 3. Second, the infill density describes how densely packed
the infill design should be and is chosen based on how strong and/or
heavy the final object needs to be. The last factor, translation, refers
to the position on the printing plate. While the default setting is
the center of the printing plate, the user can customize it to print
anywhere on the printing plate.

Oriented Bounding Box and Maximum-Overlap. One of the
goals of the reverse-engineering solution is to recover the trajectory
of the nozzle from the video of the 3D printing process. Since the
recovered 3D trajectory may not have the same centroid as the
actual trajectory of the nozzle (ground truth), our checker (as we
will see later in Section 4.2) will effectively compare the recovered
trajectory with the ground truth layer-by-layer, i.e., compare a
sequence of 2D trajectories. In order to do so, for each layer, we
need to enclose the points that describe the recovered 2D trajectory
within a closed polygon, “shift” it so that it has the same centroid as
the trajectory in the corresponding layer of the ground-truth, and
there is “maximal overlap” between the two trajectories. Then, we
can use a standard distance metric such as DTW [52] to compute
the similarity between the two trajectories.

In computer vision, Oriented Bounding Box [67] is a geometric
algorithm that can contain a sequence of points within a bounding
rectangle or square. The advantage of this algorithm is that it allows
the orientation of a sequence of points in 2D space to be changed,
without affecting the relative position of the points with respect

One Video to Steal Them All: 3D-Printing IP Theft through Optical Side-Channels CCS ’25, October 13–17, 2025, Taipei, Taiwan

to each other. In our curve checker, we use a variation of this
algorithm as explained in 4.2. For aligning the two objects, we use
the well-known problem formulation Maximum Overlap [26] in
computational geometry, which is used for determining the optimal
translation of one shape to maximize its overlap with another.

4 Methodology
In this section, we first describe our G-code reverse-engineering
solution (Section 4.1) that an adversary can use to reverse-engineer
the 3D printable G-code IP from the video recording of the 3D print
process of a target object. Next, in Section 4.2, we present our 3D
print-specific G-code equivalence checker that can detect layer-
by-layer dissimilarity between two G-codes and can be used to
evaluate the accuracy and feasibility of any G-code IP-theft attack.

4.1 G-code Reverse Engineering
The objective of the reverse-engineering model is to map the video
from a print process to the corresponding G-code that describes the
nozzle’s movements across the build plate using G0/G1 commands.
It also calculates the rate of filament extrusion per instruction and
feed rate (using E and F commands). Recall that a 3D print process
typically comprises several small movements of the nozzle, where
each movement is due to a single G-code instruction.

A single G-code instruction is composed of the command (usually
G0 or G1), the next position of the nozzle on the print plate in the
form of (X,Y,Z) coordinates, the extrusion rate (E), and the feed rate
(F). We use a data-driven approach to predict the type of movement
(G0 or G1) and the destination position (X,Y,Z) of the nozzle. We
can then use deterministic approaches to calculate the remaining
parameters (extrusion rate and feed rate).

ML-model architecture. To obtain the position of the nozzle, our
model uses 𝑁 = 30 frames as input, sampled from the video of a
single movement of the nozzle (corresponding to a single G-code).
For each frame (224×224 image), we use ResNet-50 to extract its fea-
tures, which serves as input to a Long Short-Term Memory (LSTM)
network. The LSTM network captures the context, time, and 3D
printer physics information of these frames, and generates a single
embedding that represents the video. As we can observe in Figure 4,
with ResNet-50 and LSTM we build two models (independent from
each other) that can predict (i) the command corresponding to that
movement, i.e., a binary classification model that predicts if it is a
G0 or G1 command; and (ii) the corresponding coordinates of that
G-code instruction.

Note that ResNet-50 was used by Liang et al. [45] to map indi-
vidual frames in the video to points in the 3D plane of the printer.
Combining ResNet-50 with LSTMs allowed us to create a vector em-
bedding of the 30-frame video chunk that loosely captures both the
nozzle movement as well as the extrusion timing information. Also,
this model combination allows us to efficiently process the video
data, while being lighter than vision language models (VLMs) [7]
with respect to computational cost and training data requirements.
We chose a frame rate (30 frames) that captures sufficient informa-
tion without overwhelming the model with excessive data, leading
to shorter training and processing times.

In the command-prediction model, the challenge is the class im-
balance. For a single cube object, about 66% of the commands are

…

Frame 1

Frame 2

Frame N

ResNet50

ResNet50

LSTM

ResNet50

LSTM

LSTM

Custom
Neural Networks

X
Y
Z

G0
G1

Figure 4: G-code Reverse Engineering Model. The model uses
a ResNet-50 to extract features from individual frames of
the input video, which is a chunk of the video recording of
the entire 3D print. The features act as input to an LSTM
that generates an embedding representing the whole video-
chunk. This embedding is used as input to two custom neural
networks that predict the movement action-command being
executed (G0 or G1) and the destination coordinates of the
nozzle.

G1s, while only 33% are G0s. When considering multiple G-codes
from our dataset, the imbalance is greater: only 12% of the com-
mands are G0s. Due to that, we used a downsampling strategy to
make the model unbiased towards the majority class [19] (i.e., the
model may learn that it is easier to classify everything as a G1 to in-
crease the accuracy instead of learning the patterns of both classes),
training it on the same number of G1 and G0 commands. Since it is
a classification task, the custom neural network built on top of the
LSTM for this task is trained using cross-entropy loss [70].

In the coordinates-prediction model, the custom neural network
on top of the LSTM is trained using the Mean Squared Error (MSE)
loss function, given that the objective is to approximate the pre-
dictions to the ground truth as a regression task. In addition, in
the output of the network, we use a sigmoid activation function
multiplied by 250, which is the maximum value for all the axes of
our 3D printer, thus limiting the range of each axis predicted by the
model. In both models, we use Adam Optimizer [41] with a learning
rate of 10−5, and Cosine Annealing with Warm Restarts [48] as
scheduler (warmup epochs = 40), as most prior works do for video
classification [8, 61], and 32 as batch size.

SlidingWindow Inference Strategy. After training both models,
the main challenge for an attacker is to make the inference and get
the G-codes for a full video of a printing process because he has
no knowledge of where instructions start and end, i.e., the video
is not segmented by G-code instruction as in the training dataset.
To solve this issue in a realistic way, we assumed this scenario and
implemented a sliding-window strategy to make the inference of a
full video, as we present in Figure 5. Given a window (which we
refer to as batch) containing 60 frames (in red), we sample 30 frames
from that, present them to the models, and get their corresponding
commands and coordinates. After that, we slide the window by 30
frames (stride of 30 frames in orange) and make the inference of the
new window (in green). We repeat this process until we reach the
end of the video (that has 𝑛frames), resulting in a set of commands
and coordinates that represent the full G-code of a single object.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Twisha et al.

Model
G1

X122
Y123
Z0.3

60 Frames

30 Frames Instruction &
Coordinates

Reverse
Engineering

Model

Stride = 30 Frames

…
G1

X122
Y123
Z0.3

Instruction &
Coordinates

Figure 5: Model inference using a sliding-window strategy.
Since the attacker has no knowledge of when an instruction
is starting and ending, we used a sliding window strategy to
obtain the G-code from a full video of a 3D printing process.

Normalizing the Z-Axis. Another challenge when reconstructing
the G-code for the recovered object is to define the correct value for
the Z-axis. Z-axis values are crucial in segregating the instructions
into layers. If our model recovers each instruction accurately, but
fails to recover, or recovers the wrong corresponding Z-axis value,
wewould have failed to carry out a successful IP theft. Given that the
model performs a regression task, the value is typically a floating-
point number, but the printer uses a discrete interval to go through
the layers (in our case, steps of 0.3 mm). In addition, we need to
consider that the model output may be noisy and state that an
instruction from a given layer is in another layer. To estimate when
there is a proper change in the Z axis, we used the Pruned Exact
Linear Time (PELT) change point detector algorithm [40], which
identifies abrupt shifts or transitions in a time series or sequence of
data, marking these locations based on underlying properties. We
consider that the attacker can analyze the predicted Z coordinates
and select the best parameters (penalty cost, and minimum length
of segments) for a given 3D object. Finally, we initialize Z as being
0.3, and for every change point detected by PELT, we increase it
by 0.3 (layer height), discretizing the Z axis for the 3D printer so
it can properly print the object and effectively recreate the same
structure of the ground-truth G-code generated by any slicer (e.g.,
CuraEngine).

Obtaining the Extrusion and Feed Rate. Once we have the com-
mand (G0 or G1) and coordinates (X, Y, and Z) from a data-driven
approach (reverse-engineering model), we can obtain the extrusion
rate and feed rate in a deterministic fashion. The extrusion rate de-
scribes the position of the filament in terms of input to the extruder
feeder. It is calculated using the equation described in Section 3.
The feed rate sets the maximum speed for the nozzle travel along
X,Y, and Z axes and indirectly sets the rate of extrusion. That speed
must align with the rate of extrusion, such that the nozzle does
not travel faster than the filament extruded. The optimum speed
setting is specific to both the 3D printer and the type of command
used. In our experimental setup and dataset, most G0 commands
have a feed rate of 7740, while G1 commands have a feed rate of
3600. Thus, based on the label given by the command prediction
model, we can estimate the value of the feed rate 𝐹 .

In summary, the reverse-engineering model recovers the print-
head coordinates and the corresponding commands (G0 or G1) and
thereby reconstructs a set of points that describe object topology,
including its infill pattern and density. We then reverse-engineer
the extrusion rate to calculate how much additional filament the
printer needs to disperse between two adjacent points (in the case
of a G1 command) and the feed rate to calculate the movement
speed, resulting in the full G-code.

4.2 G-code Equivalence Checking
We developed a G-code equivalence checker, referred to as the
curve checker, to assess the performance of our G-code reverse-
engineering model. The curve checker compares the model’s output
G-codewith the original or target G-code, identifying layer-by-layer
dissimilarities between the objects represented by both codes. It
also generates a comprehensive dissimilarity score by aggregating
these layer-wise differences and applying a penalty if the target
object’s height deviates from that of the source object.

From the perspective of the attacker, there is no way to know
the placement of the camera with respect to the coordinate frame
used by the honest entity. As a result, the G-code recovered by our
model can be rotated or translated with reference to the honest
entity’s coordinate frame. To that effect, our curve checker has to be
invariant to rotation or translation. Throughout our comparisons,
we will refer to the G-code with respect to which we are comparing
as the ground truth (GT).

Skeletal Structure. The G-code reverse-engineering model recov-
ers the trajectory followed by the printer nozzle during the printing
process, in the form of a G-code. While G-codes mostly follow a set
structure, there are several structural variations, which result in the
same action by the 3D Printer. For example, the G-code instruction
lines “G0 X96.42 Y122.08” and “G1 X96.42 Y122.08” perform the
same action, which is the printer nozzle moving to the coordinate
(96.42,122.08) on the build plate. Thus, our first challenge was to
extract the trajectory followed by the nozzle during the printing
from the syntactical structure of a G-code. We call this reducing the
G-code to its skeletal structure.

A first step to solving this challenge was to understand the corre-
lation between a G-code instruction and the corresponding nozzle
action. For example, both the G0-command and the G1-command-
without-extrusion have the same effect, which is nozzle movement
without extrusion. However, both have different purposes. During
a print, if there is no direct path for the nozzle to travel to the next
coordinate, it retracts and moves around the semi-finished object
to reach that point, which is encoded using G0. On the other hand,
the G1-command-without-extrusion is used to encode the printer
nozzle moving into position to begin extruding. Thus, instructions
containing G0 commands can be excluded while excluding G1-
without-extrusion commands can result in us having an incomplete
printing trajectory.

Using such correlations, we created a pattern for print trajectory
commands. Recall the structure of a G-code from Section 3. Once
we identify the print commands, we have two tasks: extract the X
and Y coordinates as a tuple to form the 2D trajectory per layer and
track the changes in the Z value to identify a change in layer. We
achieve this using a nested list, also known as a list-of-lists, data

One Video to Steal Them All: 3D-Printing IP Theft through Optical Side-Channels CCS ’25, October 13–17, 2025, Taipei, Taiwan

(a) (b) (c)

Figure 6: Visual representation of two unique trajectories
contained within a bounding box of identical dimensions,
and how the trajectories overlap when their bounding boxes
are perfectly aligned.

structure [54]. When the Z-axis value changes, we begin a new list
and keep appending (X,Y) values as a tuple, till the Z value changes
again. Thus, the skeletal structure of a G-code is a nested list of
tuples. The entire 3D object can be described by the outer list. A
specific layer of the object can be described by the corresponding
inner list.

Oriented Bounding Polygon. Once we have the skeletal struc-
ture of each layer of the G-code, our next challenge is to preserve its
vector nature, while we perform rotational and translational opera-
tions on it. Oriented Bounding Box (OBB) section 3 is typically used
for such tasks. However, OBB has a major drawback, especially
in the 3D printing setup. In OBB, two unique trajectories that are
described by a different sequence of points can be contained within
the same bounding box.

Observe Figure 6a. ABCD and A’B’C’D’ are two identical bound-
ing boxes for two unique trajectories that we are attempting to
align. According to the core principle of OBB, we would be aligning
the boxes ABCD and A’B’C’D’. Figure 6b and Figure 6c show the
only two positions where the bounding boxes are perfectly aligned.
While there is a significant amount of alignment, there also exists
a significant portion that is not aligned. This limitation is primarily
due to the fact that OBB only uses a rectangle or square to form the
bounding box. To overcome this limitation, we created an algorithm,
which is a specialized version of OBB, called Oriented Bounding
Polygon (OBP).

In OBP, we use a convex hull [11] to create a tightly bound
polygon to enclose the skeletal structure per layer. This overcomes
the limitation of OBB, as arbitrary trajectories can now be enclosed
tightly within an arbitrary polygon. For example, in Figure 6a, we
consider the triangles ABD and A’B’C’ to be our bounding polygons
instead of the bounding boxes. Now, in order to align these two
polygons, we need to translate and rotate them in some way so
that the two bounding polygons are maximally or perfectly aligned,
for example as shown in Figure 7a. Note that the algorithms [11]
for finding the convex hull typically use approximations that can
potentially affect the final similarity scores between the reverse-
engineered trajectory (RT) and the ground-truth (GT) that our curve
checker reports. However, we did not see any anomalous results,
i.e., curve checker reporting high similarity scores on dissimilar
objects, and vice-versa, in our evaluation (Section 5.2) that included
commonly 3D printed objects of varying complexity. We verified
this by plotting both RT and GT of all objects; see Figures 12, 13.

(a) Perfect alignment of two
Bounding Polygons .

(b) Fused polygon derived
from the Bounding Polygons

Figure 7: Bounding Polygons and Fused Polygons. Observe
that the alignment between the two trajectories ismuchmore
fine-grained compared to when we use a bounding-box to
enclose the trajectories as shown in Figure 6.

Perfect Alignment. In our OBP algorithm, we can achieve perfect
alignment through translation and rotation while freezing the en-
closed points that define the skeletal structure of the trajectory of
each layer. In the first step of our alignment function, we compute
the centroid of both polygons. If the centroids do not coincide, we
shift one polygon along X and Y axes till both centroids coincide.
Next, we keep one polygon fixed, while rotating the other using
the classical Maximum Overlap [26] problem formulation. In our
algorithm, we solve the maximum overlap problem in the following
way. We first create a single, fused polygon by treating the two
polygons with a common centroid as one polygon. For example, if
we were to treat the intersected polygons in Figure 7a as a single,
fused polygon, it would appear like polygon ABCDEFG in Figure 7b.
Then, we rotate one polygon by one degree to create a new fused
polygon and calculate and record the area of the resulting fused
polygon. We repeat this process for different angles of rotation—
one to 360. For each fused polygon, we compare the area of the
ground truth with the area of the fused polygon. We select the
degree of rotation for which the area of the fused polygon is closest
to the area of the ground truth to get the perfect alignment between
the ground truth and the recovered trajectory.

Curve Dissimilarity. Once we have our perfectly aligned poly-
gons, we focus on the final component of our algorithm, which is to
calculate the dissimilarity between two curves. We have chosen our
metric as Dynamic Time Warping (DTW) [16]. DTW, as a distance
metric, takes into account the overall shape of the curve, rather than
individual data points. Additionally, it is invariant to the number
of points that make up a trajectory. In other words, in the case of
two trajectories, if one contains ten discrete points and the other
contains a hundred discrete points, the dissimilarity would be no
different from if they both contained ten discrete points.

In our algorithm, we use a variant of DTW called Subsequence-
Aligned DTW [52]. This variant of DTW is capable of identifying a
common subsequence between two trajectories and aligning them
before computing the dissimilarity. This adds an element of ad-
ditional alignment, which is effective when dealing with objects
having multiple axes of symmetry (e.g., a cone). Finally, we nor-
malize the dissimilarity such that the final score is expressed in

CCS ’25, October 13–17, 2025, Taipei, Taiwan Twisha et al.

the form of a percentage value between zero and 100 instead of
absolute values, for ease of interpretation.

G-code manipulator. While our curve checker is built to be
rotationally and translationally invariant, we needed a dataset com-
prised of rotated and translated versions of an object to quanti-
tatively evaluate this property. Note that the slicer software that
generates G-code from a 3D model has in-built capabilities for rotat-
ing and translating the 3D model and generating its corresponding
G-codes. However, slicers have two limitations. First, the slicer (Ul-
timaker Cura [62]) that we used for our evaluation can produce
G-codes for objects that are rotated in multiples of 15 degrees, mak-
ing it impossible for us to be able to utilize all 360 degrees. Note
that in our threat model, we do not make any assumptions about
the camera angle. Second, a more crucial limitation is that, when
the slicer is used to translate or rotate an object, the infill pattern
does not translate or rotate in synchronicity. The infill pattern is
shifted in its own way, resulting in a different object altogether. As
a result, a perfectly aligned object will be slightly dissimilar.

60 80 100 120 140 160 180
X-axis of the printing plate (in mm)

80

100

120

140

160

Y-
ax

is
of

 th
e

pr
in

tin
g

pl
at

e
(in

 m
m

)

(a) Rotated by the slicer
Dissimilarity = 3.16%

60 80 100 120 140 160 180
X-axis of the printing plate (in mm)

80

100

120

140

160

Y-
ax

is
of

 th
e

pr
in

tin
g

pl
at

e
(in

 m
m

)

(b) Rotated by G-code Manipulator
Dissimilarity = 2.74e-16%

Figure 8: Layer 79 of S4 (given in Table 2).

In our experiment, we rotated an object by 30 degrees using the
slicer. After perfectly aligning the original and the rotated object,
we observed visible differences in the infill pattern, as shown in
Figure 8a. Further, the curve checker reported a dissimilarity of
3.16% between the two G-codes. Note that this dissimilarity can be
higher for larger degrees of rotation. Thus, if we use the slicer to
generate a dataset to evaluate our checker’s invariance properties,
we would be unable to distinguish our checker’s limitation from
the slicer’s limitations, based on the values.

To ensure that our curve checker is actually robust to rotation
and translation, we built a tool called G-code manipulator which
takes a G-code and user-defined rotational (in degrees) and transla-
tional parameters (in mm), and produces rotated/translated versions
of the objects without changing the infill pattern. It uses geometrical
properties of shifting a curve along the X and Y axes for translation
and applies a rotational matrix around the centroid for rotation. Fig-
ure 8b shows the exact curve in Figure 8a, when rotated 15 degrees
using our manipulator. We can see that the curves align completely,
and our curve checker reports a negligible difference (2.74e-16%)
between the rotated object and the ground truth.

5 Evaluation
The 3D printer used in our evaluation is Geeetech A20T [56], with
the firmware Marlin version 1.1.8 [1]. It uses PolyLactic Acid (PLA)

filament, has a 250mm× 250mmbed, and a 0.4mmnozzle diameter.
The printing accuracy of this printer is 0.1 ≈ 0.2 mm, and the
positioning precision for the X and Y axes is 0.011 mm and 0.0025
mm for the Z axis. According to the user manual [56], Repetier-Host
2.3.2 [47] is the default slicing software for this printer, including
the best configuration files for the CuraEngine 15.01 slicer [62], with
a print speed of 49 mm/s, outer perimeter speed of 43 mm/s, and
infill speed of 78mm/s. We used concentric lines as the default infill
pattern to 3D print objects because they produce the same infill
pattern no matter where the object is in the bed. Finally, we used 0.3
mm as both the first-layer height as well as the intermediate-layer
height.

5.1 Data Collection
In this section, we describe the two datasets that we collected for the
evaluation of our developed solutions for analyzing G-code IP-theft
in additive manufacturing. Our G-code reverse-engineering model
shows how an adversary can reverse-engineer/steal the G-code
IP of a manufacturer using just the video recording of the print
process and our curve checker shows how close the stolen G-code
can be to the manufacturer’s G-code.

G-code to video dataset#1. To evaluate our reverse-engineering
model, we created, to the best of our knowledge, the largest existing
G-code-to-video dataset in literature, with 37,121 videos and their
corresponding G-code instructions. In total, our dataset has more
than 150GB of videos (roughly 48 hours in total), consisting of 16
different objects whose 3Dmodels we downloaded from repositories
such as Thingiverse [60], including variations of gears, keys, etc.
Note that our choice of objects was limited by the fact that 3D
printing takes hours to print even simple objects, especially in our
batch-wise print setup that we describe next.

One of the major challenges in creating this dataset was to
synchronize the video chunks with the corresponding G-code in-
structions. The shallow queue implemented in the native Marlin
firmware [1] introduced an unknown, varying delay between times-
tamps recorded by the Repetier-Host software [47] and G-code
command execution by the printer. Instead of directly sending the
print commands to the firmware, we used OctoPrint [53] to send
the G-code instructions to the printer using the OctoPrint REST
API while simultaneously monitoring the prints using the Python
OctoRest library [17]. This setup allows us to save the timestamps
when a printing process starts and ends. Another challenge that
we faced was the significant delays in sending G-code instructions
one by one to the printer via Octoprint; this resulted in mangled
3D prints as the temperature of the nozzle and the bed changed
due to the wait time. We overcame this challenge by splitting the
full G-code into batches of 𝑁 instructions and uploading them to
the printer as separate files.

Each print job, defined by the batch of 𝑁 instructions, is wrapped
by two special instruction sets at the beginning (to set the bed and
nozzle temperature) and at the end (to cool down the nozzle and
move it back to the base position) to set up the 3D printer for each
batch print. We then begin printing the object in batches, saving the
timestamps of each batch execution, thereby making sure that each
video segment captures precisely 𝑁 G-code instructions. Finally, we
terminate the recording and execute the ending G-code to finish the

One Video to Steal Them All: 3D-Printing IP Theft through Optical Side-Channels CCS ’25, October 13–17, 2025, Taipei, Taiwan

Start
G-Code

Main G-Code

End
G-Code

Main
G-Code
Batch 1

Main
G-Code
Batch 2

Main
G-Code
Batch 3

Main
G-Code
Batch 4

Main
G-Code
Batch 5

Main
G-Code
Batch 6

Main
G-Code
Batch 7

Main
G-Code
Batch T…

 TIME
Start

Recording
Stop

Recording

G-Code 1 G-Code 2 G-Code 3 G-Code 4 G-Code 5 G-Code 6 G-Code 7 G-Code T

…

Play
Tone

(Beep)

Figure 9: The Data Collection Pipeline. Our strategy consists of sending the start G-code, followed by a tone, which is used to
sync the video with the instructions timestamps. Then, the recording starts and all the batches of G-codes are sent in sequence
to the printer, mapping each batch to its corresponding video. After the figure is done printing, the recording is stopped and
the ending code is sent to complete the print process.

Set Object (Acronym) Instructions Frames

Train

Cube (SOC) 1,870 116,330
Hexagon (HEX) 1,970 124,347
Pyramid (PYR) 1,530 97,549
Cone (CON) 6,250 350,561
Hexagonal Pyramid (HPY) 1,250 78,683
Hexagonal Leveling Foot (HLF) 973 60,055
Hexagonal Grid Alternative (HGA) 2,011 125,352
Gear 19 Tooth (G19) 4,742 276,517
Key Five (KE5) 3,458 212,282

Total 25,027 952,877

Test

Tetrahedron (TET) 1,020 48,817
Dodecahedron (DOD) 820 43,476
Hexagonal Pyramid Truncated (HPT) 880 43,545
Hexagonal Grid (HEG) 1,510 75,326
Gear 16 Tooth (G16) 4,010 162,640
Key Four (KE4) 3,104 131,121
Hollow Cube (HOC) 750 39,300

Total 12,094 544,225

Table 1: Dataset#1 Distribution (Number of Instructions and
Frames) for training our base model. In total, we have more
than 37K instructions and almost 1.5million frames.We used
a subset of dataset #1 to show the robustness of our solution
to different camera angles.

printing process. Refer to Figure 9 for a visual high-level overview.
In this work, each batch has 𝑁 = 1 G-code instruction.

To synchronize the beginning of the print process with recording
without accessing the printer firmware, we initialize each print with
a manually inserted M300 command that plays a tone right after
the start G-code finishes. Our solution uses the tone’s signal to map
its corresponding G-code to the correct video frame.

G-code to video dataset#2. In order to test the robustness of
our reverse-engineering solution, we collected data from a second
G-code to video configuration where the camera was placed at
an angle of 60◦ clockwise relative to the camera position used
in dataset#1. We 3D printed 3 objects (PYR, HPY, and SOC) that

Acronym Object Acronym Object

S1 Hex Wrench C1 Turbine Impeller
S2 Drill Bit Plate C2 Ball Valve
S3 Laptop Stand C3 Prosthetic Finger Joint
S4 Bottle Opener C4 Satellite Dish
S5 Handguard C5 Toroidal Propeller
S6 Lidar Mount C6 Archimedes Turbine

Table 2: Real-world objects used to evaluate rotational and
translational invariance of our curve checker. Note that since
the invariance evaluation can be done using the slicer which
can generate G-codes very fast, we included real-world com-
plex objects in this evaluation.

resulted in an additional dataset of 5 hours of 3D-printed videos
and their corresponding G-code instructions.

Dataset for evaluating curve checker. To evaluate our curve
checker, we created a dataset of objects that are commonly printed
in departments across the 16 critical infrastructure sectors [24]. The
G-codes used in our evaluations have been taken from open source
platforms (e.g., Thingiverse [60] and GrabCAD [35]). However, the
objects themselves, given in Table 2, are available in the market
with numerous customized and proprietary variations.We classified
the objects into simple (S1-S6) and complex (C1-C6) based on the
number of layers, the number of points per layer, and the overall
geometry of each object.

The number of layers in the simple objects does not exceed 120.
Further, the time taken by the curve checker to evaluate all datasets
of a simple object took an average of one hour, with the upper limit
not exceeding 90 minutes. In contrast, the number of layers in the
complex objects ranged between 300 to 900, with each object taking
a minimum of 3 hours to be evaluated. Also, all the simple objects
in our dataset are slightly more complex versions of basic shapes.
For example, S1 can be seen as an elongated, L-shaped hexagon, S2
can be seen as a cylinder with spiral cuts, etc. In comparison, none
of the complex objects can be classified into any one simple shape.
They are composed of multiple different basic shapes.

Once we selected the objects for evaluation, we sliced the 3D
models using Ultimaker Cura [62] to create the G-codes. We created

CCS ’25, October 13–17, 2025, Taipei, Taiwan Twisha et al.

Dataset Description

R The original object was rotated by 180 degrees, with a 5-degree
interval, resulting in 36 G-codes per infill design and 144 G-codes
per object.

T The original object was translated to 36 points on the printing plate,
resulting in 36 G-codes per infill design and 144 G-codes per object.

RT The original object was translated to 8 points on the printing plate.
At each point of translation, the object was rotated by 180 degrees,
with a 5-degree interval, resulting in 288 G-codes per infill design
and 1152 G-codes per object.

Table 3: Datasets

four versions of each object, each with a unique infill design. The
four infill designs we chose were Concentric, Gyroid, Lightning,
and Triangle, as can be visualized in Figure 3. We then used our
G-code manipulator to generate three datasets, as shown in Table 3.

To give an effective visual explanation of the datasets in Table 3,
we chose an asymmetrical object, Layer 840 of an Olympic Trophy.
In Figure 10, blue curves represent the original trajectory, and red
curves represent the recovered trajectory. Figure 10b gives a visual
representation of Dataset R. Both the original and the recovered
trajectory have the same centroid, but the recovered trajectory has
been rotated by 30 degrees counterclockwise around the centroid.
We applied this logic in creating the R Dataset. Using the G-code
manipulator, we created rotated versions of the original G-code at
5-degree intervals, through 180 degrees.

The T Dataset is shown in Figure 10c. In our visual example,
the recovered trajectory has been translated by 4 mm along both x
and y axes. To create our T Dataset, we first created a square grid
with a spacing of 4 units. The center of the grid had coordinates
(X,Y)=(0,0), and it was bound by the lines X=10, -10 and Y=10, -10.
The original G-code had its centroid coincide with the center of the
grid. Every G-code in the T Dataset had its centroid coincide with
a lattice point on the square grid.

The TR Dataset applies the logic of both the T and R Datasets si-
multaneously. It is translated according to the logic of the T Dataset,
and at every point of translation, it is rotated through 180 degrees,
following the logic of the R Dataset. Each combination of transla-
tion and rotation results in a G-code, forming the TR Dataset. The
visual of that can be observed in Figure 10a, where the recovered
trajectory has been rotated by 30 degrees and translated by a factor
of 4 mm along both x and y axes.

Our datasets were created to demonstrate how the curve checker
can perfectly align two curves, as shown in Figure 10d, no mat-
ter their original orientation, and evaluate the true dissimilarity
between two curves.

In summary, the evaluation for each object consisted of all three
datasets, consisting of a total of 1440 G-codes per object. On an
average, our curve checker took three hours to evaluate each simple
object and eight hours to evaluate each complex object.

5.2 G-code Reverse Engineering
As a proof of concept (PoC), we first trained our G-code reverse-
engineering model on the cube presented in the training dataset
from Section 5.1. Based on the training loss, we observed that the
model was converging and could successfully learn the cube’s G-
code. Then, we further trained the model to include all objects in

100 110 120 130 140
X-axis of the printing plate (in mm)

90

100

110

120

Y-
ax

is
of

 th
e

pr
in

tin
g

pl
at

e
(in

 m
m

)

(a) Rotated and Translated: Dis-
similarity=7.03%

(b) Rotated, not Translated: Dis-
similarity=6.49%

(c) Translated, not Rotated: Dis-
similarity=3.43%

(d) Perfectly Aligned: Dissimilar-
ity=0.01%

Figure 10: All four images display Layer 840 of the Olympic
Trophy.

Table 1, transferring the learning from the cube to all other 3D
shapes.

Accuracy. First, we used our curve checker to evaluate the accuracy
of the G-codes reverse-engineered by our model. Since the curve
checker measures the similarity between two G-codes, we used the
original G-codes that were used to print the objects as the second
input to our checker. We present our results in Figure 11. Observe
that we achieve a very high similarity percentage for our objects,
with an average similarity of around 91%. The highest accuracy
of our model, as seen in Figure 11, is 97.3%, with the lowest being
83%. The values shown in the graph were averaged across all the
layers. We conducted a deeper analysis on a per-layer basis. We
noticed that the largest dissimilarity was in layer 1 for most objects.
Layer 1, also known as the brim, is the layer that helps adhere
the object being printed to the printing plate. It serves no further
purpose and is peeled off once the object has cooled. The difference
between objects with a higher similarity, like DOD, versus an object
with lower similarity, like G16, is that G16 has fewer layers. DOD
has 23 additional layers, compared to G16. Thus, the initial high
dissimilarity in layer 1, which is irrelevant to the object itself, gets
dissipated more in the case of DOD as compared to G16.

Counterfeiting via reverse-engineering. For our functionality
tests, we used a master padlock, whose key has a 4-number bitting,
and a 16-tooth gear, which is part of a larger gear system.

For a key, the bitting determines all relevant information re-
garding its geometry (each number corresponds to the depth of
a cut on the key blade) [59]. We manually recorded the bitting of
the key that opens the padlock and used keygen [38] to generate

One Video to Steal Them All: 3D-Printing IP Theft through Optical Side-Channels CCS ’25, October 13–17, 2025, Taipei, Taiwan

Figure 11: Similarity between reverse-engineered G-code and
the original G-code used for 3D printing objects (listed in Ta-
ble 1).

a 3D model with an equivalent bitting. For a 16-tooth gear to be
functionally-perfect-counterfeit, it should be able to be the substi-
tute for the original in a given gear system. For that, the teeth of the
gear as well as its radius should match the original. Next, we sliced
the 3D models of the key and the 16-tooth gear using our slicer to
get the G-codes and 3D printed both objects while simultaneously
recording the print process.

Since a real-world adversary knows in advance which object it
is reverse-engineering, we further trained our model (which was
already trained on a key KE5) on four random key designs. This is
important to ensure that the attacker does not have the same key
in the dataset that opens the padlock, i.e., the model does not know
what that key is, and also to ensure that our attack setup mimics a
real-world adversary.

Given the video recording of the the key’s printing process, our
model outputs a G-code that is 91.8% similar to the ground truth.
We can observe in Figure 12 that the main dissimilarity between
the original and the reverse-engineered key lies at the top of the
key, not the bitting, making it a functionally-perfect counterfeit. We
further prove our point by using our “counterfeit” key to open the
padlock. As shown in Figure 12, we successfully open the padlock
with the counterfeit key and demonstrate the functional correctness
of our model. We had previously reverse-engineered a key, KE4,
with a 91.8% accuracy (Figure 11) on a model trained with multiple
different objects. While training the model on random keys did
not increase overall accuracy, it allowed the model to identify the
key features of the key. As a result, the key reverse-engineered
was functionally accurate, compared to KE4, which had incorrect
bitting.

To demonstrate the functionality of the counterfeit gear, we
printed a gear system, as shown in the top right of Figure 13. We
then substituted the middle gear with our reverse-engineered ver-
sion in the gear system as shown in the bottom right of Figure 13.
Notice how in both figures, the radius and the teeth are identical,
causing the reverse-engineered gear to perfectly fit into the system,
demonstrating its functionality. Our curve checker reported an av-
erage similarity of 84.4%with the maximum dissimilarity occurring

Figure 12: Top: Reverse-engineered key trajectory overlapped
over the original key’s trajectory in layer 3. Bottom: Function-
ality test of the counterfeit 3D-printed key. The counterfeit
key is 91.8% similar to the original one and is able to open
the padlock.

Figure 13: Left: Reverse-engineered gear trajectory over-
lapped over the original gear’s trajectory in layer 3. Right:
Functionality test of a counterfeit 3D-printed 16-tooth gear.
The counterfeit (middle) gear is 84.4% similar to the original
one and is able to fit into the three-gear system.

due to a mismatch in the infill pattern which is a non-important
factor for a functionality check in this case study analysis.

In both the counterfeit (key and gear) case studies, there were
small differences between our reverse-engineered G-codes and the
original G-code. However, both the counterfeit 3D-printed objects
passed the basic functionality checks as the portions of the counter-
feit objects that were dissimilar relative to the original objects did

CCS ’25, October 13–17, 2025, Taipei, Taiwan Twisha et al.

(a) Regular Camera Angle. (b) 60-degree Camera Angle.

Figure 14: Camera Angles for Creating G-Code to-Video
Datasets. Our main experiments used the camera angle
shown in (a) to record the 3D printing process. To test the
robustness of the model to camera angles, we changed the
camera angle to 60◦ relative to (a) as shown in (b).

not affect the basic functionality. Therefore, we can say that our
reverse-engineering solution is able to reverse-engineer a G-code
that is equivalent to the original from a functionality perspective.
It might be the case that the counterfeit 3D-printed objects do not
possess the same mechanical structural integrity properties as the
original objects. In such cases, the owner of the G-code IP may
define a set of properties that needs to be fulfilled in order to deem
an object as counterfeit. However, such an evaluation is outside the
scope of this work.

Robustness to changes in camera angles. As an attacker, we
merely have an observational role regarding the video footage of
the 3D printing process. As a result, we cannot exert any control
over the placement of the camera. In order for our solution to be
robust, we have to ensure that our attack cannot be deterred by
simply changing the angle at which the honest entity is monitoring
their print. Given that the camera is part of the 3D printing setup,
as stated in our threat model in Section 1, for a given target, the
viewing angle of a camera does not change typically.

We evaluated the robustness of our reverse-engineering solution
against changes in camera angles. As mentioned in Section 5.1, we
collected data from another G-code-to-video configuration with
an alternative angle (dataset #2) - see Figure 14. We trained our
model using data from both angles and tested it on HPT and HOC
objects in the G-code-to-video dataset #2. We recovered HPT with
an accuracy of 92.11%, and HOC with a 98.33% accuracy. The high
accuracy shows the robustness of our reverse-engineering solution
to change in camera angles. Note that in our threat model, the
3D printing process is remotely monitored via cameras before an
attack occurs. Defenses such as injecting optical noise or adjusting
lighting are not applicable as that would adversely affect legitimate
monitoring by operators in a commercial setting.

Transferability to other 3D printers. The model’s core learning
goal — to recover the printer nozzle’s trajectory/extrusion— is 3D
printer3 agnostic. Since the extrusion rate and feed rate can be
derived from the trajectory and printer-specific information (e.g.,
extruder nozzle diameter), the parameter values for each G-code
instruction for an adversary-owned 3D printer (e.g., Ultimaker [62])
can be derived from the G-code instructions that were used to 3D
print the target object on a different printer (e.g., Geeetech [56]).

3Our work is focused on filament-based single extruder 3D printers; other printers
(e.g., metal-based) are out of scope.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Epoch

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325

Lo
ss

LSTM vs ResNet-50 - Loss Curves
LSTM
Resnet50

Figure 15: Our LSTM vs. ResNet-50 [45] loss per epoch. Our
model achieves a lower loss than the state-of-the-art.

In short, the parameter values of G-code instructions are trans-
ferable from one 3D printer to another and we demonstrated this
transferability in our functional evaluation of the counterfeit key
where we recovered the G-code instructions using video-recording
of the 3D-printing of keys in a Geeetech printer, and successfully
3D-printed its counterfeit version on an Ultimaker printer.

5.3 Comparison with prior work
There aremultiple solutions that use side-channel attacks to reverse-
engineer G-code, whichwe discussed in detail in Section 2. However,
Liang et al. [45] model is the only one using an optical side-channel
attack, and operating under a threat model similar to the one de-
scribed in Section 1 to reverse-engineer a G-code. They also use a
distance-based metric, Mean Squared Error, to evaluate the accu-
racy of their model. As a result, Liang et al. model is the model we
selected to compare our results with.

Before presenting our results on the comparison between our
work and Liang et al [45], we want to reiterate that the threat
models of both are different. While Liang et al. assumed that the
optical side channel can be obtained from cameras that are ei-
ther planted by an adversary or are part of the existing 3D-print
monitoring/surveillance setup. We assumed the latter as it is more
realistic compared to an adversary getting access to a commercial
3D-printing factory. Note that Liang et al.’s proposed defense of
noise injection is not applicable to our threat model as that will
also affect the quality of the monitoring/surveillance process.

Recall from Section 4.1, Liang et al. [45] model uses only ResNet-
50, while our model uses both ResNet-50 and LSTM. We extracted
the ResNet-50 from our model (that we used for proof-of-concept)
to use it as a starting checkpoint for Liang et al. [45] model, so we
can compare our approach with the state-of-the-art. To reproduce
their model using our dataset, we used the last frame of each video
as training data since it contains the position of the nozzle at that
moment. Our model converges faster than ResNet-50 as it reaches
a lower loss over a period of 30 epochs. See Figure 15. We pro-
vide results on the instructions overhead and Z-axis normalization
below.

Compact G-code. Recall that our model maps a chunk of a video
describing a single movement to a single point on the build plate,

One Video to Steal Them All: 3D-Printing IP Theft through Optical Side-Channels CCS ’25, October 13–17, 2025, Taipei, Taiwan

Number of Overhead Instructions

O
bj

ec
ts

HOC

KE4

G16

HEG

HPT

DOD

TET

0 50000 100000 150000

Liang et al. Model Our LSTM

Figure 16: Instructions overhead, as compared to the original
G-code, of the G-codes recovered by our model and Liang
et al. model [45]. Lower instructions overhead means the
recovered G-code is closer to the original in terms of the
number of instructions. On average, our model produces
G-codes with 30.20 times fewer instructions than state-of-the-
art [45]. We list object acronyms in Table 1.

and then uses a sliding window technique (Section 4.1) to aver-
age out the error in prediction. Liang et al. [45] on the other hand
map individual frames in the video to a point on the build plate.
Since the number of frames in a video can be very large, the over-
head in terms of the extra instructions can also be very high as
shown in Figure 16. Additionally, the independent estimation of
the printer’s extruder location based on individual frames in the
video results in a jagged estimated trajectory due to the noise in
those independent estimations. However, in our model, because the
location estimation is based on 30 subsequent frames, the amount
of noise is substantially lower resulting in a smoother more realistic
trajectory. On average, our model produces 30 times fewer G-code
instructions than the past work [45], reducing the noise generated
by predictions and producing a G-code file much more similar to
the real one.

Z-axis normalization. Most G-codes have the z-coordinate value
fixed for each layer because 3D printing is an additive manufac-
turing process. Therefore, we used a post-processor to normalize
the z-coordinate values using the PELT change point detection
algorithm. Liang et al. [45] mapped each frame of the video to a 3D
point in the trajectory of the nozzle model and did not normalize
the Z-axis. See Figure 17. In blue, we show the z-coordinate values
of the ground truth, i.e., z-coordinate values that are extracted from
the G-code of a Hexagonal Pyramid. Observe that our LSTM pre-
diction after normalization using the PELT change point detection
algorithm almost overlaps with the ground truth. On the other
hand, the raw predictions of both models have noisy values. While
our raw LSTM predictions are still quite close to the ground truth,
the model in [45] fails to accurately recover the z-coordinates of
the 3D points that describe the trajectory of the nozzle.

5.4 G-code Equivalence Checker
We developed the G-code Equivalence Checker, also known as the
curve checker, as a white-box solution to assess the performance of
our G-code Reverse Engineeringmodel. To that extent, we evaluated
our curve checker by taking into account the core idea of the reverse-
engineering process, which is to learn the mapping between chunks

0 10 20 30 40 50 60 70 80 90 100
Instructions (%)

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6
3.9
4.2
4.5

Z-
Ax

is

Normalizing Z-Axis Predictions using PELT
ResNet Prediction
LSTM Prediction
Ground Truth
Normalized LSTM Prediction

Figure 17: Z-Axis Normalization Using PELT Change Point
Detection Algorithm in G-code of HPT. The LSTM normal-
ized prediction (red) is very close to the ground truth (blue).
While both LSTM and ResNet-50 [45] produce noises, the
former can be fixed using PELT, which does not work with
the latter.

of videos and the coordinates of the discrete points that define the
trajectory of the nozzle in each layer. That means we will check how
well our curve checker compares similar and dissimilar trajectories.

To ensure that the difference in the ground-truth trajectory (GT)
and reverse-engineered trajectory (RT) is not merely due to RT
being a rotated or translated version of GT, which can happen due
to varying positions of the camera that is recording the print pro-
cess, we need to check the rotational and translational invariance
properties of our curve checker. To evaluate this, we use Datasets
R, T, and RT, as described in Table 3, which are generated using
our G-code manipulator. Since the past work [45] used MSE for
evaluating the accuracy of their model, we also computed the nor-
malizedMSE (nMSE)4 between the GT and its rotated and translated
versions.

We begin our evaluation with Dataset R, which takes the G-code
of each of the six simple and six complex objects that are placed at
the center of the printing plate as the GTs and the G-codes of the
object rotated 180 degrees around its centroid, at an interval of 5
degrees, as the RTs. Since each RT used here is a rotated version of
the original, the similarity % between the GTs and the RTs should be
close to 100%. Figure 18 shows the performance of our curve checker
and nMSE. Across all the 12 objects, our curve checker outputs an
average similarity of 98% or more, where the average is taken over
the layers of each object; when we take the average (of the average
similarity) over all the 12 objects, we get a 99.76% accuracy with
a negligible standard deviation of 0.51. This shows that our curve
checker is rotationally invariant. On the other hand, nMSE has an
accuracy of 74.65% with a standard deviation of 8.64; maximum
average similarity is 85.03% and minimum average similarity is
54.18%.

Next, we use Dataset T to show that our curve checker is trans-
lationally invariant, too. As described in Table 3, the recovered
trajectory in Dataset T consists of G-codes of the original object
translated to 36 unique points on the printing plate. A printing
plate is comparable to a standard graph, with the center of the plate
being equivalent to the origin of a graph. We observed that the

4We used the normalized version of MSE to maintain parity (in terms of scale).

CCS ’25, October 13–17, 2025, Taipei, Taiwan Twisha et al.

Figure 18: Rotational invariance of our G-code Equivalence
checker v/s a normalized MSE-based equivalence checker

maximum distance the largest object in our dataset could be trans-
lated, without going out of bounds, was 10

√
2. Thus, we created a

square grid, with a spacing of 4 units, bound by the lines X=10, -10
and Y=10, -10. Every lattice point on this square grid was a point of
translation for this dataset.

Figure 19: Translation invariance of our G-code Equivalence
checker v/s a normalized MSE-based equivalence checker

Figure 19 shows the performance of our curve checker and nMSE
in evaluating the similarity between the recovered trajectory in
Dataset T and the ground truth, which is the G-code of the object
placed at the origin, without rotation. Across all the 12 objects,
our curve checker outputs an average similarity of 96.83% or more,
where the average is taken over the layers of each object; when we
take the average (of the average similarity) over all the 12 objects,
we get a 99.71% accuracy. This shows that our curve checker is
translationally invariant. On the other hand, nMSE has a very small
accuracy of 28.39%; maximum average similarity is 85.03%, and
minimum average similarity is 54.18%.

Lastly, we show that our curve checker does not penalize models
for outputting G-codes that are simultaneously rotated and trans-
lated versions of the target object. We used Dataset RT for this
evaluation. In Dataset RT, we have taken 8 translation points on the
printing plate: four equidistant coordinate points from the center

Figure 20: Translational and Rotational invariance of our
G-code Equivalence checker v/s a normalized MSE-based
equivalence checker

which represent the maximum distance the largest object in the
dataset can be translated, and four equidistant coordinate points
from the center, which represent the minimum translation for the
trajectory to show a non-negligible change. At each of these eight
points of translation, the object was rotated 180 degrees, at a 5-
degree interval, forming our RT Dataset. Figure 10a gives a visual
representation of a rotated and translated curve when compared
against the ground truth.

Figure 20 shows the performance of our curve checker and nMSE
in evaluating the similarity between the recovered trajectory in the
data set RT and the Ground Truth. Our curve checker’s accuracy is
99.54%, with a standard deviation of 0.98. In contrast, nMSE has an
accuracy of 73.83%, with a standard deviation of 8.55%.

6 Concluding Discussion

Summary. In the modern multi-billion dollar 3D printing indus-
try, a 3D printable design of a low-cost and lightweight part (e.g.,
prosthetic) in different sectors is the IP of its manufacturer and is
an attractive target for an adversary. 3D printing setups are often
remotely monitored using cameras which can potentially be hacked.
In this work, we gave the first optical side-channel attack which
results in a complete end-to-end recovery of 3D print instructions
that can be used to produce counterfeit parts. Our attack uses a
machine learning model to accurately map the video of the print
process to the 3D trajectory of the printer’s nozzle and uses a post-
processing module to add information about extrusion and speed of
the nozzle to generate printable instructions for the 3D printer. In
order to evaluate the efficacy of our attack, we built a large dataset
as well as a 3D printer-specific equivalence checker. We used the
dataset and the equivalence checker to show that our attack has an
average accuracy of 90.38%. Additionally, we also used our attack to
demonstrate the production of a counterfeit key of a master padlock
as well as a counterfeit 16-tooth gear in a three-gear system.

Countermeasures. Our reverse-engineering solution relies on
the availability of the video recording of the 3D print process. We
assume that an adversary can exploit known vulnerabilities in
internet-facing cameras to carry out such an attack. Naturally, the

One Video to Steal Them All: 3D-Printing IP Theft through Optical Side-Channels CCS ’25, October 13–17, 2025, Taipei, Taiwan

first step towards stopping such attacks will be to fix the known
vulnerabilities in these cameras and implement a stringent access
control policy using firewalls. Literature has suggested degrading
the optical environment as a countermeasure against optical side-
channel attacks. However, that will defeat the very reason why
cameras were present in the first place— to enable remote moni-
toring. A potential countermeasure could be to build a verification
software that works in tandem with the 3D Printer, removing the
need for remote monitoring.

Reverse-engineering for remotemonitoring of trojan attacks.
In a different threat model, where the 3D printer is compromised
and is used to insert “trojans” [12] in manufactured objects, the
reverse-engineering solution can be used as a defense. The operator
of a 3D printer can run our solution to reverse-engineer the 3D print
instructions from a live video feed and use our equivalence checker
to check if there is any significant deviation in the trajectory of the
nozzle. However, in order to use our reverse-engineering solution
for remotely monitoring trojan attacks on real-world complex ob-
jects, it will be necessary to first evaluate our model’s performance
on complex objects and design more sophisticated models if needed.
Another avenue of improving the reverse-engineering solutions is
to use multiple sources of side-channel information [31]. Note that
advances in these techniques will also help an IP-stealing adversary.
Hence, the manufacturers should exercise caution while deploying
these solutions.

Limitations. Constructing a dataset of 3D-print videos paired
with ground-truth G-code is a time-intensive process. This bottle-
neck makes it difficult to explore more powerful architectures such
as transformers [7]. However, transformers are known to be data-
hungry and prone to overfitting when trained on small datasets,
which can lead to poor generalization. Another limitation lies in
the curve checker metric, which, while effective at measuring tra-
jectory similarity in a rotation-and-translation-invariant way, lacks
interpretability with respect to structural implications. Specifically,
it does not pinpoint whether the discrepancies arise from dimen-
sional inaccuracies, infill deviations, or layer height differences.
This gap in diagnostic resolution is noteworthy because validating
structural integrity typically requires expensive and destructive
mechanical tests such as fatigue analysis. If the trajectory-level
mismatches could be used to predict high-level structural faults,
then costly physical testing could be partially avoided or better
targeted, improving the overall efficiency of reverse-engineering
analysis. Moreover, our curve checker uses a convex hull (under
the hood) that can have approximation errors which in turn can
result in incorrect distance values between the ground truth and
the reverse-engineered G-codes. While we validated our results
using visual proofs via plotting both trajectories, future works can
explore alternative algorithms such as concave hull [51].

Ethical considerations. In our experiments, we did not use any
3D model design that was copyrighted or belonged to a protected
IP category. We obtained the 3D model of all objects used in the
evaluation from open-source platforms, namely Thingiverse [60]
and GrabCAD [35]. For 3D printing, we use default settings and con-
figurations of the 3D printer (Geeetech A20T) as well as the slicer
software (Ultimaker Cura). For our experiments on the padlock key,

as shown in Subsection 5.2, we purchased a lock and key set. Then,
we created a custom G-code design of that key and treated that as
our ground truth. Furthermore, all G-code parameters chosen were
done based on our understanding and exploration of slicers and
slicer manuals and do not include any private or confidential data.

Acknowledgments
The authors acknowledge funding from AI Manufacturing Pilot Fa-
cility project under Georgia Artificial Intelligence in Manufacturing
(Georgia AIM) from the Economic Development Administration,
Award 04-79-07808. Co-Author Marco Garza was supported by
the U.S. Department of Energy/National Nuclear Security Admin-
istration (DOE/NNSA) #DE-NA0003985. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
funding agency.

References
[1] Marlin Firmware. 2024. What is Marlin? https://marlinfw.org/docs/basics/

introduction.html#main-features.
[2] 3D Universe. 2024. The Military Turns to 3D Printing. https://shop3duniverse.

com/blogs/digital-fabrication-in-the-news/the-military-turns-to-3d-printing
Accessed: 2024-05-30.

[3] 3DPrinterOS. 2024. 3D Printer Monitoring. https://www.3dprinteros.com/3d-
printer-monitoring Accessed: 2024-11-18.

[4] 3DQue. 2018. 3DQue: Automated 3D Printing Solutions. https://www.3dque.com/.
Accessed: 2024-11-18.

[5] Mohammad Abdullah Al Faruque, Sujit Rokka Chhetri, Arquimedes Canedo, and
Jiang Wan. 2016. Acoustic Side-Channel Attacks on Additive Manufacturing
Systems. In 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems
(ICCPS). 1–10. doi:10.1109/ICCPS.2016.7479068

[6] Hamza Alkofahi, Heba Alawneh, and Anthony Skjellum. 2024. MitM attacks on
intellectual property and integrity of additive manufacturing systems: A security
analysis. Computers & Security 140 (2024), 103810.

[7] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and
Cordelia Schmid. 2021. ViViT: A Video Vision Transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). 6836–6846.

[8] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario
Lučić, and Cordelia Schmid. 2021. ViViT: A Video Vision Transformer.
arXiv:2103.15691 [cs.CV]

[9] Astroa. 2024. Guam to Host Innovative 3D Printing Center for Submarine Parts,
Boosting Economy and Security. https://astroa.org/bnn-guam-to-host-innovative-
3d-printing-center-for-submarine-parts-boosting-economy-and-security/. Astroa
News (2024).

[10] AstroPrint. 2016. Live Monitoring for 3D Printing. https://www.astroprint.com/
live-monitoring. Accessed: 2024-11-18.

[11] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. 1996. The quickhull
algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS)
22, 4 (1996), 469–483.

[12] Sofia Belikovetsky, Mark Yampolskiy, Jinghui Toh, Jacob Gatlin, and Yuval Elovici.
2017. dr0wned–{Cyber-Physical} attack with additive manufacturing. In 11th
USENIX workshop on offensive technologies (WOOT 17).

[13] BMW Group. 2020. Additive Manufacturing at the BMW Group: 3D printing in
series production. https://www.bmwgroup.com/en/news/general/2020/additive-
manufacturing.html Accessed: 2024-05-30.

[14] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. 2020. Yolov4:
Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934
(2020).

[15] Gary R Bradski. 1998. Computer vision face tracking for use in a perceptual user
interface. Intel technology journal 2 (1998).

[16] Karl Bringmann, Nick Fischer, Ivor van der Hoog, Evangelos Kipouridis, Tomasz
Kociumaka, and Eva Rotenberg. 2023. Dynamic Dynamic Time Warping.
arXiv:2310.18128 [cs.CG] https://arxiv.org/abs/2310.18128

[17] Douglas Brion. 2024. OctoRest: Python client library for OctoPrint REST API.
https://github.com/dougbrion/OctoRest.

[18] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. 2020. End-to-end object detection with
transformers. In European conference on computer vision. Springer, 213–229.

[19] Fabrício Ceschin, Marcus Botacin, Albert Bifet, Bernhard Pfahringer, Luiz S.
Oliveira, Heitor Murilo Gomes, and André Grégio. 2024. Machine Learning (In)

https://marlinfw.org/docs/basics/introduction.html#main-features
https://marlinfw.org/docs/basics/introduction.html#main-features
https://shop3duniverse.com/blogs/digital-fabrication-in-the-news/the-military-turns-to-3d-printing
https://shop3duniverse.com/blogs/digital-fabrication-in-the-news/the-military-turns-to-3d-printing
https://www.3dprinteros.com/3d-printer-monitoring
https://www.3dprinteros.com/3d-printer-monitoring
https://www.3dque.com/
https://doi.org/10.1109/ICCPS.2016.7479068
https://arxiv.org/abs/2103.15691
https://www.astroprint.com/live-monitoring
https://www.astroprint.com/live-monitoring
https://www.bmwgroup.com/en/news/general/2020/additive-manufacturing.html
https://www.bmwgroup.com/en/news/general/2020/additive-manufacturing.html
https://arxiv.org/abs/2310.18128
https://arxiv.org/abs/2310.18128
https://github.com/dougbrion/OctoRest

CCS ’25, October 13–17, 2025, Taipei, Taiwan Twisha et al.

Security: A Stream of Problems. Digital Threats 5, 1, Article 9 (mar 2024), 32 pages.
doi:10.1145/3617897

[20] Fei Chen, Yuxi Luo, Nektarios Georgios Tsoutsos, Michail Maniatakos, Khaled
Shahin, and Nikhil Gupta. 2019. Embedding tracking codes in additive manu-
factured parts for product authentication. Advanced Engineering Materials 21, 4
(2019), 1800495.

[21] Yuming Chen, Xinbin Yuan, Ruiqi Wu, Jiabao Wang, Qibin Hou, and Ming-Ming
Cheng. 2023. YOLO-MS: rethinking multi-scale representation learning for real-
time object detection. arXiv preprint arXiv:2308.05480 (2023).

[22] Sujit Rokka Chhetri and Mohammad Abdullah Al Faruque. 2017. Side channels
of cyber-physical systems: Case study in additive manufacturing. IEEE Design &
Test 34, 4 (2017), 18–25.

[23] Sujit Rokka Chhetri, Arquimedes Canedo, and Mohammad Abdullah Al Faruque.
2017. Confidentiality Breach Through Acoustic Side-Channel in Cyber-Physical
Additive Manufacturing Systems. ACM Trans. Cyber-Phys. Syst. 2, 1, Article 3
(dec 2017), 25 pages. doi:10.1145/3078622

[24] CISA. 2024. Critical Infrastructure Sectors. https://www.cisa.gov/topics/critical-
infrastructure-security-and-resilience/critical-infrastructure-sectors. Accessed:
2024-11-18.

[25] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. 2000. Real-time tracking
of non-rigid objects using mean shift. In Proceedings IEEE Conference on Computer
Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), Vol. 2. IEEE, 142–
149.

[26] Mark De Berg, Otfried Cheong, Olivier Devillers, Marc Van Kreveld, and Monique
Teillaud. 1998. Computing the maximum overlap of two convex polygons under
translations. Theory of computing systems 31, 5 (1998), 613–628.

[27] Q. Do, B. Martini, and K. R. Choo. 2016. A data exfiltration and remote exploitation
attack on consumer 3D printers. IEEE Transactions on Information Forensics and
Security 11, 10 (10 2016), 2174–2186.

[28] M. A. Al Faruque, S. R. Chhetri, S. Faezi, and A. Canedo. 2016. Forensics of
thermal side-channel in additive manufacturing systems. In CECS Technical
Report No.16-01.

[29] Marlin Firmware. [n. d.]. M300 - Play Tone. https://marlinfw.org/docs/gcode/
M300.html. Accessed: 2025-06-23.

[30] Ford Media Center. 2023. Ford Opens New 3D Printing Centre to Support
Production of its Future Vehicles. https://media.ford.com/content/fordmedia/
feu/en/news/2023/02/08/ford-opens-new-3d-printing-centre-to-support-
production-of-its-f.html Accessed: 2024-05-30.

[31] Yang Gao, Borui Li, Wei Wang, Wenyao Xu, Chi Zhou, and Zhanpeng Jin. 2018.
Watching and safeguarding your 3D printer: Online process monitoring against
cyber-physical attacks. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 2, 3 (2018), 1–27.

[32] Jacob Gatlin, Sofia Belikovetsky, Yuval Elovici, Anthony Skjellum, Joshua Lubell,
Paul Witherell, and Mark Yampolskiy. 2021. Encryption is Futile: Reconstructing
3D-Printed Models Using the Power Side-Channel. In Proceedings of the 24th
International Symposium on Research in Attacks, Intrusions and Defenses (San
Sebastian, Spain) (RAID ’21). Association for Computing Machinery, New York,
NY, USA, 135–147. doi:10.1145/3471621.3471850

[33] General Motors. 2022. GM to Invest $81 Million to Build the Cadillac CELESTIQ
at GM’s Global Technical Center. https://news.gm.com/newsroom.detail.html/
Pages/news/us/en/2022/jun/0615-celestiq-gm.html Accessed: 2024-05-30.

[34] GlobeNewswire. 2024. Global Additive Manufacturing Market Size To
Worth USD 143.3 Billion By 2033: CAGR Of 21.78%. GlobeNewswire (2024).
https://www.globenewswire.com/en/news-release/2024/04/19/2865997/0/en/
Global-Additive-Manufacturing-Market-Size-To-Worth-USD-143-3-Billion-
By-2033-CAGR-Of-21-78.html

[35] GrabCAD. 2015. GrabCAD Library: Open Source Engineering Designs. https:
//grabcad.com/library. Accessed: 2024-11-18.

[36] Sinan Gültekin, Ahmet Ural, and Ulas Yaman. 2019. Embedding QR codes on
the interior surfaces of FFF fabricated parts. Procedia Manufacturing 39 (2019),
519–525.

[37] Berthold KP Horn and Brian G Schunck. 1981. Determining optical flow. Artificial
intelligence 17, 1-3 (1981), 185–203.

[38] Keygen. 2024. Eric Van Albert. https://keygen.co/.
[39] Ryosuke Kikuchi, Sora Yoshikawa, Pradeep Kumar Jayaraman, Jianmin Zheng,

and Takashi Maekawa. 2018. Embedding QR codes onto B-spline surfaces for 3D
printing. Computer-Aided Design 102 (2018), 215–223.

[40] R. Killick, P. Fearnhead, and I. A. Eckley. 2012. Optimal Detection of Changepoints
With a Linear Computational Cost. J. Amer. Statist. Assoc. 107, 500 (Oct. 2012),
1590–1598. doi:10.1080/01621459.2012.737745

[41] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2017. ImageNet classification
with deep convolutional neural networks. Commun. ACM 60, 6 (5 2017), 84–90.
https://doi.org/10.1145/3065386

[43] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. 2018. High performance
visual tracking with siamese region proposal network. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 8971–8980.

[44] Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan
Ke, Qingyuan Li, Meng Cheng, Weiqiang Nie, et al. 2022. YOLOv6: A single-
stage object detection framework for industrial applications. arXiv preprint
arXiv:2209.02976 (2022).

[45] Sizhuang Liang, Saman Zonouz, and Raheem Beyah. 2022. Hiding my real self!
protecting intellectual property in additive manufacturing systems against optical
side-channel attacks. In Proceedings 2022 Network and Distributed System Security
Symposium. Internet Society.

[46] Jimmy Liranzo and Thaier Hayajneh. 2017. Security and privacy issues affecting
cloud-based IP camera. In 2017 IEEE 8th Annual Ubiquitous Computing, Electronics
and Mobile Communication Conference (UEMCON). IEEE, 458–465.

[47] Marcus Littwin. 2024. Repetier.com. https://www.repetier.com/.
[48] Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic Gradient Descent with

Warm Restarts. arXiv:1608.03983 [cs.LG]
[49] Upal Mahbub, Hafiz Imtiaz, and Md Atiqur Rahman Ahad. 2011. An optical

flow based approach for action recognition. In 14th international conference on
computer and information technology (ICCIT 2011). IEEE, 646–651.

[50] Terrence Mativo, Christian Fritz, and Ismet Fidan. 2018. Cyber acoustic analy-
sis of additively manufactured objects. The International Journal of Advanced
Manufacturing Technology 96, 1 (4 2018), 581–586. doi:10.1007/s00170-018-1603-z

[51] Adriano Moreira and Maribel Yasmina Santos. 2007. Concave hull: A k-nearest
neighbours approach for the computation of the region occupied by a set of
points. (2007).

[52] Meinard Müller. 2020. Dynamic Time Warping (DTW) for Music Pro-
cessing. https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_
SubsequenceDTW.html Accessed: 2024-11-12.

[53] OctoPrint. 2024. The snappy web interface for your 3D printer. https://octoprint.
org/.

[54] Python.org. 2024. Python Data Structures. https://docs.python.org/3/tutorial/
datastructures.html#nested-list-comprehensions. Accessed: 2024-11-18.

[55] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[56] SHENZHEN GETECH TECHNOLOGY CO. LTD. 2020. Geeetech A20T 3D Printer
User Manual (V1.10). https://www.geeetech.com/download.html?download_id=
45.

[57] Cheng Song, Fan Lin, Zhigang Ba, Kui Ren, Chen Zhou, and Wenyuan Xu. 2016.
My smartphone knowswhat you print: Exploring smartphone-based side-channel
attacks against 3D printers. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16). ACM, 895–907. doi:10.1145/
2976749.2978300

[58] Logan D Sturm, Christopher B Williams, Jamie A Camelio, Jules White, and
Robert Parker. 2017. Cyber-physical vulnerabilities in additive manufacturing
systems: A case study attack on the. STL file with human subjects. Journal of
Manufacturing Systems 44 (2017), 154–164.

[59] The Open Locksport Guide. 2006. Understanding Key Bitting. http://
lockpickernetwork.wikidot.com/understanding-key-bitting.

[60] Thingiverse. 2024. Digital Designs for Physical Objects. https://www.thingiverse.
com/.

[61] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. 2022. VideoMAE: Masked
Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training.
arXiv:2203.12602 [cs.CV]

[62] UltiMaker. 2024. UltiMaker Cura. https://ultimaker.com/software/ultimaker-
cura/.

[63] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. 2019.
Fast online object tracking and segmentation: A unifying approach. In Proceedings
of the IEEE/CVF conference on Computer Vision and Pattern Recognition. 1328–
1338.

[64] Linda D. Williams. 2015. Additive Manufacturing or 3d Scanning and Printing.
In Manufacturing Engineering Handbook. McGraw-Hill, New York.

[65] NicolaiWojke, Alex Bewley, and Dietrich Paulus. 2017. Simple online and realtime
tracking with a deep association metric. In 2017 IEEE international conference on
image processing (ICIP). IEEE, 3645–3649.

[66] K.V. Wong and A. Hernandez. 2012. A review of additive manufacturing. ISRN
Mech. Eng. (2012). doi:10.5402/2012/208760

[67] Yanqing Yao, Gong Cheng, Guangxing Wang, Shengyang Li, Peicheng Zhou,
Xingxing Xie, and Junwei Han. 2023. On Improving Bounding Box Representa-
tions for Oriented Object Detection. IEEE Transactions on Geoscience and Remote
Sensing 61 (2023), 1–11. doi:10.1109/TGRS.2022.3231340

[68] Zhiyuan Yu, Yuanhaur Chang, Shixuan Zhai, Nicholas Deily, Tao Ju, XiaoFeng
Wang, Uday Jammalamadaka, and Ning Zhang. 2023. XCheck: Verifying In-
tegrity of 3D Printed Patient-Specific Devices via Computing Tomography. In
32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,
Anaheim, CA, 2815–2832. https://www.usenix.org/conference/usenixsecurity23/
presentation/yu-zhiyuan-xcheck

[69] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. 2021.
Fairmot: On the fairness of detection and re-identification in multiple object
tracking. International Journal of Computer Vision 129 (2021), 3069–3087.

https://doi.org/10.1145/3617897
https://doi.org/10.1145/3078622
https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors
https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors
https://marlinfw.org/docs/gcode/M300.html
https://marlinfw.org/docs/gcode/M300.html
https://media.ford.com/content/fordmedia/feu/en/news/2023/02/08/ford-opens-new-3d-printing-centre-to-support-production-of-its-f.html
https://media.ford.com/content/fordmedia/feu/en/news/2023/02/08/ford-opens-new-3d-printing-centre-to-support-production-of-its-f.html
https://media.ford.com/content/fordmedia/feu/en/news/2023/02/08/ford-opens-new-3d-printing-centre-to-support-production-of-its-f.html
https://doi.org/10.1145/3471621.3471850
https://news.gm.com/newsroom.detail.html/Pages/news/us/en/2022/jun/0615-celestiq-gm.html
https://news.gm.com/newsroom.detail.html/Pages/news/us/en/2022/jun/0615-celestiq-gm.html
https://www.globenewswire.com/en/news-release/2024/04/19/2865997/0/en/Global-Additive-Manufacturing-Market-Size-To-Worth-USD-143-3-Billion-By-2033-CAGR-Of-21-78.html
https://www.globenewswire.com/en/news-release/2024/04/19/2865997/0/en/Global-Additive-Manufacturing-Market-Size-To-Worth-USD-143-3-Billion-By-2033-CAGR-Of-21-78.html
https://www.globenewswire.com/en/news-release/2024/04/19/2865997/0/en/Global-Additive-Manufacturing-Market-Size-To-Worth-USD-143-3-Billion-By-2033-CAGR-Of-21-78.html
https://grabcad.com/library
https://grabcad.com/library
https://keygen.co/
https://doi.org/10.1080/01621459.2012.737745
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3065386
https://www.repetier.com/
https://arxiv.org/abs/1608.03983
https://doi.org/10.1007/s00170-018-1603-z
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_SubsequenceDTW.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_SubsequenceDTW.html
https://octoprint.org/
https://octoprint.org/
https://docs.python.org/3/tutorial/datastructures.html#nested-list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#nested-list-comprehensions
https://www.geeetech.com/download.html?download_id=45
https://www.geeetech.com/download.html?download_id=45
https://doi.org/10.1145/2976749.2978300
https://doi.org/10.1145/2976749.2978300
http://lockpickernetwork.wikidot.com/understanding-key-bitting
http://lockpickernetwork.wikidot.com/understanding-key-bitting
https://www.thingiverse.com/
https://www.thingiverse.com/
https://arxiv.org/abs/2203.12602
https://ultimaker.com/software/ultimaker-cura/
https://ultimaker.com/software/ultimaker-cura/
https://doi.org/10.5402/2012/208760
https://doi.org/10.1109/TGRS.2022.3231340
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-zhiyuan-xcheck
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-zhiyuan-xcheck

One Video to Steal Them All: 3D-Printing IP Theft through Optical Side-Channels CCS ’25, October 13–17, 2025, Taipei, Taiwan

[70] Zhilu Zhang and Mert R. Sabuncu. 2018. Generalized cross entropy loss for
training deep neural networks with noisy labels. In Proceedings of the 32nd

International Conference on Neural Information Processing Systems (Montréal,
Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY, USA, 8792–8802.

	Abstract
	1 Introduction
	2 Related Works
	3 Background
	4 Methodology
	4.1 G-code Reverse Engineering
	4.2 G-code Equivalence Checking

	5 Evaluation
	5.1 Data Collection
	5.2 G-code Reverse Engineering
	5.3 Comparison with prior work
	5.4 G-code Equivalence Checker

	6 Concluding Discussion
	Acknowledgments
	References

