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Abstract. We introduce a novel cybersecurity encounter simulator between a network defender and an
attacker designed to facilitate game-theoretic modeling and analysis while maintaining many significant
features of real cyber defense. Our simulator, built within the OpenAI Gym framework, incorporates
realistic network topologies, vulnerabilities, exploits (including-zero-days), and defensive mechanisms.
Additionally, we provide a formal simulation-based game-theoretic model of cyberdefense using this sim-
ulator, which features a novel approach to modeling zero-days exploits, and a PSRO-style approach for
approximately computing equilibria in this game. We use our simulator and associated game-theoretic
framework to analyze the Volt Typhoon advanced persistent threat (APT). Volt Typhoon represents
a sophisticated cyber attack strategy employed by state-sponsored actors, characterized by stealthy,
prolonged infiltration and exploitation of network vulnerabilities. Our experimental results demonstrate
the efficacy of game-theoretic strategies in understanding network resilience against APTs and zero-
days, such as Volt Typhoon, providing valuable insight into optimal defensive posture and proactive
threat mitigation. Code available at https://github.com/Lan131/CyGym.

1 Introduction

Cybersecurity is at its core an interaction between a defender, who aims to protect their assets from com-
promise, and an attacker, who developed and uses computing resources to subvert target systems to obtain
sensitive information or prevent the targets from performing their regular functions. It has thus long been
recognized that game theory is a useful tool in the defender’s arsenal to reason about the best security
posture. However, common game-theoretic models for cybersecurity are either too abstract [13] or too sim-
plistic [19] to be useful in practice. On the other hand, a host of simulation and emulation tools emerged, but
the goals of these are often not well-aligned with game-theoretic modeling approaches—for example, taking
either only the defender’s or the attacker’s perspective [35], or modeling aspects such as network latency at
high resolution that are of secondary importance and could be abstracted in game-theoretic analysis [32].
These limitations are particularly acute if we are to analyze decision making in the context of advanced
persistent threats (APTs) and zero-day attacks.

We propose a novel simulation-based game-theoretic framework for cybersecurity that combines a simu-
lation model at intermediate granularity that is focused most on capturing the complexity of the strategic
landscape (Figure 1) with a formal model as a partially observable stochastic game (POSG). Moreover, we
provide a solution technique that extends the PSRO and double-oracle frameworks to provide for better-
response approaches that tackle the combinatorial nature of the action spaces of both players. A particularly
novel aspect of our model is an explicit representation of zero-day attacks in the language of asymmetric
information in which a common distribution over all possible exploits is shared by both players, but only the
attacker knows the actual (zero-day) exploits they can deploy.

We instantiate our simulation-based game theoretic framework to study the attacker-defender interaction
dynamics in the context of Volt Typhoon, a recent advanced persistent threat (APT). According to a joint
advisory from the Cybersecurity and Infrastructure Security Agency (CISA), the National Security Agency
(NSA), and the Federal Bureau of Investigation (FBI), Volt Typhoon has been actively compromising crit-
ical U.S. infrastructure since at least mid-2021 [5,34]. Our Volt Typhoon case study first shows that the
equilibrium strategies of both players tend to outperform simple heuristic baselines in this case. Moreover,
we qualitatively study the impact of several environment parameters, such as the relative importance of
productive workflows to security costs, as well as the availability of zero-days in the attacker’s arsenal, on
defense and the rate of compromised devices.

To address these limitations, we propose a novel game-theoretic approach that integrates reinforcement
learning to model and mitigate the threats posed by Volt Typhoon. Our contributions are threefold:

https://github.com/Lan131/CyGym
https://arxiv.org/abs/2506.21688v1
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(a) Hierarchical diagram illustrating the simulator’s
structure. (b) Example underlying graph structure of a subnet.

Fig. 1: Illustration of the simulator (a) and an example of a graph structure of the inter-device network (b).

1. CyGym: A Gym and Simulator Environment Utilizing NIST Data: We have developed a custom
simulation environment1, built on the OpenAI Gym framework, which leverages real-world data from
the National Institute of Standards and Technology (NIST). This environment allows for the realistic
modeling of network scenarios, incorporating various vulnerabilities, exploits, and defensive strategies.
By using NIST data, we ensure that our simulations are grounded in actual threat landscapes and
vulnerability profiles.

2. A Simulation-Based Game-Theoretic Model based on CyGym: We offer a formal game-theoretic
model of cybersecurity encounters that uses the strategic primitives available in CyGym within a
partially-observable stochastic game formalism. Our model captures zero-day attacks through the mech-
anism of asymmetric information about attacker’s available strategic options.

3. Double Oracle Solution for Non-Zero Sum Partially Observed Stochastic Games: We provide
an implementation of Double Oracle using reinforcement learning to solve for best response strategies.
This solution is scalable to large networks and to the best of our knowledge this is the first time double
oracle has been employed in this setting.

4. Case Study of Volt Typhoon: We provide a specific instance of the simulator specific to Volt Typhoon,
allowing individual agencies and entities to apply parameters of their organization exposure to such an
attack. This case study illustrates how the simulator can be tailored to specific organizational contexts,
helping security teams to better understand potential attack vectors and develop more effective defense
mechanisms.

2 Related Work

2.1 Existing Cybersecurity Simulation Tools

Existing cybersecurity simulators, such as [8,36,31], have made significant contributions to the field. [8]
introduced camouflaged cyber simulations to ensure experimental validity, emphasizing internal, external,
and construct validity. This simulator is not broadly available or open sourced and relies on emulation
technology, making its simulations tailor made to very specific infrastructures.

[36] created a cybersecurity simulator-based platform for the protection of critical infrastructures. This
solution is used in tandem with a digital twin of a real-world physical system, rendering it dependent on such
digital twins and hence difficult for general-purpose analysis. Because this system is hardware-in-the-loop,
it relies on hardware-specific parameters (including latency); changes can require a complete rebuild of the
1 https://github.com/Lan131/CyGym

https://github.com/Lan131/CyGym
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twin. CyGym instead incorporates device latency and busyness as parameters that the developer can readily
adjust, avoiding such extensive reconfiguration.

Other tools such as [9,29] offer emulation-based solutions. Emulation can provide detailed insights into
specific software–hardware interactions but often yields large amounts of extraneous data not directly relevant
to attacker–defender modeling. By contrast, hardware and software configurations are treated as endogenous
in CyGym, being represented through abstracted device features. None of the above tools feature a native
integration with Gym, complicating efforts to train and evaluate reinforcement learning (RL) agents.

Our work is closest to [31], which introduced CybORG, a Gym designed for autonomous cyber-agent
development. CybORG combines simulation and emulation to enable rapid training, supporting multiple
scenarios at varying fidelity levels. However, it primarily focuses on training agents in simulated environments
and then validating them in emulated environments, imposing specific assumptions about attackers (e.g.,
three hosts in two subnets, predefined software/OS access). In contrast, CyGym makes no such assumptions,
allowing any number of devices and subnets, limited only by available computational resources.

Pure Simulation Environments. While many of the above systems rely on at least some emulation compo-
nents, there exist “pure” simulators that do not incorporate real operating systems. For example, FlipIt [6]
and various Attack Graph frameworks [7,12] model adversarial actions and defenses abstractly, focusing on
strategic interactions without reproducing the full OS or network stack. Likewise, CyberBattleSim [20] of-
fers a graph-based simulator for attacker–defender interactions using state transitions rather than emulated
hosts. These approaches can reduce extraneous data and increase scalability, but may sacrifice some real-
ism. CyGym aligns more closely with these purely simulated methods while also supporting flexible device
definitions and network topologies that facilitate RL research.

2.2 Game-Theoretic Analysis in Cybersecurity

The applications of game theory to cybersecurity have received considerable attention in the last decade [1,15,22,23,30].
These range from relatively simple player action sets to combinatorial actions, such as paths in a graph [7,10,11,12,27]
or plans [16,25,26,37]. Reinforcement learning techniques and double-oracle methods have proved especially
useful in these settings [12,24,30], with some efforts merging these techniques into frameworks that approxi-
mate equilibria in large-scale games [4,14,33]. We build on this line of work, but focus on a setting that involves
non-zero-sum objectives and asymmetric information, reflecting realistic attacker–defender mismatches.

Our setting also echoes the FlipIt [6] and FlipDyn [2] games, wherein attackers aim to stealthily take
control of a resource while defenders attempt to maintain or reclaim it. However, these games remain highly
stylized abstraction, whereas CyGym provides a more comprehensive and flexible environment, featuring
arbitrary numbers of devices, subnets, and complex attacker–defender interactions that can be modeled as
non-zero-sum.

In the domain of security games and learning under information constraints, two complementary strands
of work are particularly relevant. First, [28] introduce a bounded-rationality framework for two-player zero-
sum games on cyber-physical systems by modeling the attacker as belonging to one of three “thinking levels”
(random, load-based, or full-optimal-power-flow), each of which induces a distinct decision rule. The defender
then selects a single pure strategy to maximize a weighted expectation over these attacker types, yielding
a closed-form, one-shot equilibrium analysis. While this approach affords clarity when attacker behavior is
well-approximated by a small set of heuristics, it requires manual specification of each “level” and produces
a deterministic defense choice rather than a mixed strategy. Second, [39] propose a family of heterogeneous,
fully distributed learning algorithms for zero-sum stochastic games with incomplete information, in which
each player follows its own reinforcement-learning scheme (e.g., replicator, logit, or combined payoff-and-
strategy updates). By mapping the stochastic updates to their ODE counterparts, they prove almost-sure
convergence to saddle-point equilibria without imposing a priori “levels” of reasoning. In contrast to the
discrete cognitive-hierarchy approach, these heterogeneous learning schemes allow arbitrary information or
computational restrictions to be encoded directly into each agent’s update rule, and yield mixed-strategy
equilibria derived via coupled stochastic approximation. Together, these works illustrate two ends of the
modeling spectrum—finite “behavioral types” versus continuous, ODE-based learning dynamics—each of
which offers insight into how bounded rationality can be incorporated into security-game analysis.
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3 Cybersecurity Simulator

At the high level, our cybersecurity simulator is comprised of four components: 1) a (hierarchically) networked
set of devices, 2) workloads, 3) exploits, and 4) attack mitigation actions. In particular, the analysis is centered
around a network comprised of subnets; each subnet, in turn, consists of a network of devices. As such, the
key unit of interest in our simulator is whether or not particular devices are compromised at particular
points in time. Some devices may be more valuable (for example, servers), and some compromises of these
more severe than others (for example, exfiltration of trade secrets compared to a requirement to reboot
the device). Generally, we wish to ask questions of the form “how many devices, on average, have been
compromised between times X and Y ?”, “what is the likelihood of particular secrets being exposed to the
malicious actor?”, “what is the expected reduction in productivity as a result of cyber-attacks?”, and the like,
as we experiment with cyber-attack and defense settings.

Next, we drill down into each of the five main components: 1) the model of devices, 2) the networks and
subnetworks connecting these, 3) workloads, 4) exploits (including vulnerabilities), and 5) attack mitigation
actions.

3.1 Devices

A device is comprised of two sets of attributes which we will refer to as state. The first set are the attributes
of the device itself, such as the type of device (e.g., server, desktop, laptop, tablet, smart phone, printer,
etc), operating system and version (e.g., MacOS 12.4, Windows 11), the set of applications and versions, and
any pertinent user permission information (e.g., which user accounts are on the device). For a device i, we
refer this set of attributes by a binary vector di.

The second set of device attributes comprise its compromise state. This can be as simple as a single
binary attribute indicating whether the device has been compromised or not, or as complex as detailing
types, levels, and history of compromise by different malicious entities. Typically, we will capture (a) which
attack has compromised the device and (b) at what access level (user or root). We denote the compromise
state of a device i by a binary vector ci. The full device state for a device i is then xi = (di, ci).

In general, device state xi will evolve over time. Here, we assume that time is discrete (e.g., minutes,
hours, or days), with t denoting a particular time step of the simulation. Thus, we will refer to the full state
of device i at time (step) t as xit = (dit, cit). Let X = Xd ×Xc be the space of possible states, with Xd and
Xc the space of device attribute and compromise states, respectively. Notably, it will be important later that
dit is observable to the defender (network administrator), but not necessarily to the attacker (unless they
learn features of it through reconnaissance, say). On the other hand, cit will be observable to the attacker,
but not to the defender unless the latter takes concrete steps to discover it, for example, through malware
and anomaly detection.

3.2 Networks and Subnetworks

Devices are connected via networks and subnetworks within which they are nodes. Networks in the simulator
are directed and represent which devices can access which on the network (e.g., using a valid set of creden-
tials). In our simulation platform, we support two ways in which such networks can be specified: exogenously
(e.g., from a data file representing a real organizational network), and using a stochastic network generation
model.

Network Structure Let Dt represent the set of devices in the organization at time t. Additionally, we
can abstractly represent devices outside the organization (that attempt to access it) as a (small) collection
D̃t; thus, any device in D̃t can represent a collection of these, or particular devices that the defender has
specifically characterized (such as by its mac address, etc). Recall that each device i ∈ Dt ∪ D̃t is associated
with state xit (although the defender only knows device configurations dit for devices in Dt). For simplicity
of exposition below, we will suppose that the set of devices Dt is comprised of both those in the organization
and outside.
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Network Dynamics Suppose we are given an initial network and device structure (D0, E0), and its the
hierarchical network representation {(V ℓ

t , E
ℓ
t )} that it induces using a hierarchical subnet partition model

discussed above. The next consideration is the model of network dynamics. In particular, this entails modeling
the evolution of nodes, as well as the evolution of connectivity. In the case of the former, we assume that nodes
arrive based on a stochastic generation counting process (e.g., Poisson) in discrete time, with the parameter
of the process (such as the average number of new nodes arriving at each time step, or the arrival frequency)
specified as a simulation configuration parameter. An arriving node is then stochastically connected to others
using a predefined network formation model (for example, a similar network connectivity model as used for
stochastic network generation as discussed below). Similarly, nodes stochastically leave, with each node
associated with a probability of leaving that is, again, a simulation parameter. In addition to the stochastic
dropoff, however, nodes can be actively removed from the network by the network administrator as part of
their attack mitigation actions below (for example, a reset action can take a device offline for a period of
time).

Stochastic Network Generation The final key issue in the network model is how to obtain the initial
state of the network (D0, E0). As with the partition, one approach that we support is to simply treat it as
exogenous, for example, read from a file that describes the organizational network. For experimental studies,
however, that is insufficient, and we therefore make use of the Barabási-Albert stochastic network formation
model as an alternative.

The Barabási-Albert model [3] is notable in that it can generate scale-free networks, which are char-
acterized by a power-law degree distribution. This feature is crucial for modeling real-world networks, as
many natural and human-made networks, including computer networks, exhibit scale-free properties. The
directed Barabási-Albert graph is generated by simulating a preferential attachment process, wherein new
nodes are more likely to connect to existing nodes with higher degrees. This results in a network with a
few highly connected nodes (hubs) and many nodes with fewer connections, mirroring the hierarchical and
uneven structure often seen in enterprise networks.

By employing the Barabási-Albert model, our framework ensures that the generated graphs are not only
congruent with practical use cases but also adaptable to various network sizes and complexities. Furthermore,
the directed nature of the graph supports the modeling of asymmetric relationships between nodes, which
is a common characteristic in enterprise networks where data flow and access permissions are typically
directional.

3.3 Workloads

An important feature of our simulation model is the notion of workloads. The goal is to enable us to capture
the loss in productivity (reduction in completed workloads) that results both from cyber defense (attack
mitigation) activities, as well as the attacks themselves (e.g., denial-of-service). While productivity is typically
a complex multi-dimensional consideration, we use workloads as a relatively simple abstraction which, we
suggest, suffices for a game-theoretic analysis of security encounters.

Specifically, a workload is a tuple w = (Xw, τw, vw) where Xw ⊆ X is a subset of device states x within
which the workload can be effectively executed (e.g., a specification of hardware, and software requirements,
such as GPU types and operating system), τw the number of time steps the workload takes to execute, and
vw the (economic) value of successfully executing the workload w to the defender.

Each device i is associated independently with a distribution Pw over workloads, that is, the joint distribu-
tion over requirements (Xw), durations, and values. We assume that each of Xw, τw, and vw are independently
distributed, but the duration may depend on the device state at the time that the workload was spawned.
A useful special case is when τw = 1 and vw = 1, and where we restrict configuration requirements to be
ranges of several device parameters only, such as OS type and version range. These can then be generated
uniformly at random.

The key feature of our workload model is the model of workload execution. If a device i generates a
workload w and its configuration xi ∈ Xw, the workload successfully executes and we (the defender) accrue
the associated value vw. However, suppose the device cannot support the workload (i.e., xi /∈ Xw)? In this
case, the device checks whether any of its out-neighbors in the network Gt (i.e., any other devices that it
has access to) can execute w. If so, the workload is successfully executed and vw accrues to the defender;
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otherwise (if no out-neighbors can run it), the workload fails. We assume that each device additionally has
a workload execution limit Bi, so that at most Bi workloads can execute simultaneously on it at any time
t. If a device is already running Bi workloads, the effect is as if xi /∈ Xw (i.e., it cannot execute the new
workload).

3.4 Vulnerabilities and Exploits

In our simulation model, we do not make a fundamental distinction between vulnerabilities and exploits.
Instead assume that each vulnerability has an exploit available for it, while also modulating the likelihood of
exploit success in exploiting the vulnerability. An attack in our model can be viewed as an effective dynamic
chaining of exploits, each with a stochastic effect that may change the state of the device (for example, to
compromised) according to an associated probability distribution. Consequently, exploits constitute the core
action arsenal for attackers.

We define an exploit e according to the semantics similar to those for workloads (it is, after all, a unit
of computation). In particular, an exploit is a tuple e = (Xe, τe, ce, pe, ∆xe) with Xe representing device
state (e.g., versions, OS, etc that is exploitable by a particular associated vulnerability), τe the time that an
exploit takes to execute, and ce the cost it has upon the defender. Equivalently, we also view ce as the direct
value that the exploit has to the attacker. Finally, pe is the probability that the exploit executes successfully,
and ∆xe is its effect on state, where if state is x at the time of the exploit succeeds (after τe steps), then the
next state is x′ = x ∨∆xe, where ∨ is a logical OR. The set of exploits in our simulator is populated using
the NIST vulnerability database (NVD), and we take a subset of these randomly (with a predefined number
of exploits) for a given simulation (although it can be configured to use all, or using alternative subsampling
schemes).

From an attacker’s vantage point, an exploit e can be targeted at particular devices i on the network.
Formally, let a denote the attack actions. We let ae(S) be an attack that attempts to execute an exploit e on
devices in a set S. Success of the execution on a device i ∈ S depends on 1) whether the device configuration
(i.e., vulnerabilities) support execution of the exploit, that is, whether xi ∈ Xe, and 2) an exogenous success
rate pe. In particular, if xi /∈ Xe, the exploit fails. If xi ∈ Xe, then the exploit succeeds with probability pe.

3.5 Modeling Zero-Day Vulnerabilities

Zero-day vulnerabilities remain a fundamental challenge in security. These are inherently difficult to defend
against, as the defender (by definition) has no knowledge of them at the time that defensive actions (including
mitigation against future attacks, scanning approaches, anomaly detectors, and so on) are taken. A notable
feature of the proposed simulator is that it makes modeling and reasoning about zero-day vulnerabilities
quite natural, enabling us to obtain broad insights about how to defend against these. Specifically, a key
assumption in both conventional decision-theoretic and game-theoretic models of security is that both players
have full knowledge of one-another’s action sets, an assumption that is clearly violated by zero-days. We
address this as follows. Suppose that A is the set of all attacker actions. Let Ad ⊆ A be the set of attack
actions known to the defender. Thus, Az = A \ Ad is the set of zero-day attacks (for example, exploiting
zero-day vulnerabilities).

An additional important feature of zero-day attacks is that once they are deployed, and subsequently dis-
covered and analyzed by the defender, they cease to be zero-day attacks and are added to Ad. Consequently,
the nature of attack actions known to the defender is itself dynamic, and characterization of discovered
attacks is a critical feature of any defense.

We discuss how to formally integrate zero-day attacks within this framework into a game-theoretic model
in Section 4.

3.6 Attacker Reconnaissance

An important class of attacks involve reconnaissance (or probe) actions which aim to discover information
about target users, devices, and network. Each probe q = (Xq, pq, Jq, oq) has a set Xq of configurations and
probability pq of effectiveness. A probe initiated on device i succeeds on device j if and only if attacker
has compromised i (encoded in ci) and i has access (directed link) to j in Gt at the time t it is executed.
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Moreover, just as with exploits, if a device j being probed does not support the probe (e.g., does not respond
to external pings), i.e., xj /∈ Xq, the probe fails, and it succeeds otherwise with probability pq.

If the probe from device i succeeds on a device j, the attacker obtains an observation (information) oq
about a subset of state features Jq on the device (e.g., whether a particular port is on, which OS and version
is installed, etc). This, in turn, allows a rational attacker to perform posterior inference about the device
configuration xj .

3.7 Attack Mitigation Actions

Attack Detection The problem of detecting attack patterns—whether it is individual pieces of software
(malware) or network noise produced by malicious access patterns—is foundational in cybersecurity. In-
terestingly, in simulation tools and game-theoretic analysis, this problem is commonly highly abstracted.
Commonly, for example, one posits an availability of a “detect” action and the like which detects an ongoing
attack with some exogenously specified probability. However, this kind of abstract analysis fails to capture
critical considerations having to do with the tradeoff both the attacker makes in trading off attack aggres-
siveness and detectability, and the defender’s own tradeoff between detection efficacy and consequences of
false positives on system productivity.

To address this issue, our simulation tool incorporates machine learning based detection techniques which
enable detection efficacy to be endogenous to the interaction between the defender and the attacker. This is
done by leveraging the fact that we explicitly model a workload process and distribution (see above), which
provides a natural starting point for devising an anomaly detector. Specifically, one approach we can take is
to allow a burn-in period prior to any attacks in which the defender uses workload network patterns induced
by the typical network communication arising from workloads that are generated and passed among devices.
Given a numerical representation of such patterns (for example, as a time series), we can make use of any
anomaly detection techniques, such as the Isolation Forest [18] (the technique we focus on in our experiments
below).

When the attacker can finally take malicious actions, both their probing and exploit attempts generate
network traffic akin to workloads, but likely distributed distinctly from these. The attacker’s decisions about
which actions to take thereby impact their efficacy both in a way that is inherent to the actions (e.g.,
likelihood of an exploit being successful) as well as in the way they impact detectability. Detection of attacks,
in turn, provides (uncertain) information about potential attacks to the defender, which can now be used as
information in follow-up defensive actions, such as to reset devices that appear to be the source of malicious
traffic (with associated consequences for productivity).

In addition to detecting network anomalies, we can also target anomaly detection at particular devices.
To this end, we can similarly collect network traffic data coming into and out of the device, both during a
burn-in period (when the traffic is assumed to be normal) to train the detector, and then at execution time
when attacks are possible.

Defensive Probing Since the defender does not know much a priori about the configuration of devices
D̃t outside the organization, they can leverage the same reconnaissance techniques as the attacker to obtain
information about these (see Section 3.6).

Checkpointing and System Reset If a system has been affected by malware, remediation inevitably
involves a kind of “reset”, which restores the system to a prior state. Ideally, this prior state is malware-free,
but of course there is always uncertainty, since detection is imperfect and the defender does not necessarily
know whether (or which) malware is on the system. We capture this space of options through two general
classes of defensive actions: checkpointing and reset either of individual devices, or the entire network (i.e.,
all devices). In our model, we abstract away some of these details but aim to maintain the fundamental
tradeoff between the decision to reset the system to a prior state, and the associated loss of productive
activity. Specifically, the defender can choose to execute a checkpoint action at each point in simulation
time, which prevents execution of productive workloads for its (exogenously specified) duration, but saves all
workloads and associated values successfully executed up to the current state. Formally, a checkpoint action
χ(t) = (xt, δ) executed at time t is a tuple of the device state xt preserved by it as well as the duration, so
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that no workload can be executed between time t and t + δ. We let tχ denote the time of a checkpoint χ
and similarly use xχ to denote the device state saved in checkpoint χ. Let the set of available checkpoints in
time step t be C(t). We additionally assume that C(t) has size at most K, and if we add a checkpoint that
would cause C(t) to exceed K, the oldest checkpoint in C(t) is removed.

A reset action, in turn, which also prevents workload execution for a prespecified duration, rolls the
system back to a specified checkpoint. Formally, this is ρ(t) = (χ, τ), where χ ∈ C(t) is a checkpoint to
which the system reverts, while new workloads cannot execute between t and t+ τ . The system state after
ρ(t) is xχ. Moreover, the reset action ρ(t) removes all workloads that have been generated on this device and
successfully executed between time tχ and t.

Device Reconfiguration and Software Update Another tool in the defender’s toolbox involves device-
level reconfiguration, which may entail removing some of the software installed, adding software (e.g., anti-
virus that would prevent certain malware from being run), blocking ports, etc. Let Dr ⊆ Xd be the set of
possible reconfigurations to the device state di that can be implemented on a device at any particular point
in time. Note that the impact of reconfiguring a device is reflected in productivity endogenously, since some
of the spawned workloads will require particular configurations to execute.

An important decision within the broad class of device reconfigurations that a network administrator
needs to make involves the nature and frequency of software updates. Any update is at least somewhat
disruptive to productivity. Moreover, updates may themselves introduce new vulnerabilities, while at the
same time patching old ones. We capture this tradeoff by explicitly modeling software updates as defender
actions. Specifically, let u = (Xu, τu, ∆xu) be the tuple representing a software update, where Xu is the set
of configurations (e.g., software, OS) in which the update can be installed, τu the duration of installation (so
that no workload can be spawned/executed between time t when the update begins and time t + τu), and
∆xu is the state change resulting from the update, i.e., if the device state is x, after the update it becomes
x′ = x ⊕∆xu where the ⊕ (logical XOR) operator represents the change in state (implemented as flipping
the bits in state corresponding to the old and new version of the software, OS, etc, for example). Note that
in practice, ∆xu will only impact the device state di, and not its compromise state ci.

Network Reconfiguration A final set of defensive tools involves reconfiguring the network. We consider
two kinds of network changes: device removal (actually physically removing the device, or blocking its access
to the network, black listing, etc) and edge removal (blocking access between devices). To formalize, at any
point in time, the defender can select a subset S ⊆ Dt ∪ D̃t devices to remove from the network (e.g., black
list). In the case of the latter, we similarly allow the defender to remove a subset L ⊆ Et of edges from the
network.

4 Simulation-Based Game-Theoretic Model

We now use the simulation model discussed above to formally define a simulation-based game-theoretic
model of cybersecurity encounters. First, there are two players: the defender β (e.g., network designer,
administrator, etc) and the attacker α; these are already explicitly referenced in the simulator described
in Section 3). Second, the game takes place over a sequence of discrete time steps t starting at t = 0 and
ending at a predefined horizon T . At time 0, the attacker has no knowledge of the network structure G0

or device configurations di, and we assume some initial proportion η are compromised, all others are clean
(i.e., compromise state ci0 is a zero vector for all other devices, 1 for the fraction η). Additionally, we assume
that the compromised state cit at any time t after a successful compromise is known to the attacker but not
the defender. However, we assume that there is a common knowledge distribution (e.g., stochastic model) of
the network generation and device configuration, i.e., G0 ∼ DG and {di}i∈D0

∼ Dd. Consequently, our game
entails partial observability of game (device) state by both players.

The attacker has two types of underlying actions they can take at any time step, the semantics of
which are described in Section 3: a) probes P and b) exploits E. The defender, in turn, has six types of
actions: a) detector execution, b) defensive probing (of external devices), c) checkpointing, d) reset, e) device
reconfiguration (including software updates), and f) network reconfiguration. All but probing actions, when
they succeed (which can be stochastic), have a direct impact on the system state in the next time step as
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detailed below and in Section 3; an exception are the probing actions by both players, which impact solely
the information available to each player about the state, but do not change the system state directly. Both
the defender and the attacker can select at most one of these actions at any point in time, but may also
do nothing, which corresponds to a null action that has no consequences aα and aβ for the attacker and
defender, respectively.

At each time step, both players choose actions simultaneously, but these are executed (for the purposes of
computing the next state and rewards) by implementing first the attacker’s action followed by the defender’s
action. Both the dynamic nature of the game and imperfect observability of state by both players make our
model an instance of a partially observable stochastic game (POSG).

We describe the details of the attacker and defender actions in each category for the attacker and defender
next, and subsequently discuss our model of defender and attacker rewards in the POSG.

4.1 Attacker Actions

Attacker Probe Actions Each attacker probe action aαq,i,j is associated with a particular probe q which targets
device j from device i (i.e., there is a distinct action for each probe q and device pair i and j, although of
course only a subset of these have a non-zero probability of success, and it is straightforward to prune this set
accordingly to only consider probes across existing network edges). Let Aα

probe be the set of all such (feasible)
combinations (note that a probe may also be guaranteed to fail due to configuration mismatch on the target
device j, but this information may not be available to the attacker). The strategic decision corresponds to
selecting a problem aα ∈ Aα

probe at a given time step t. The side-effect of each probe is purely informational,
providing the attacker with some of the details about the states of devices on the network (but not complete
details).

Attacker Exploits Each attacker can also execute an exploit targeted at a device i. The details of exploits
and their effects are described in Section 3; the net effect of an exploit, if successful (which is determined
stochastically) is to change the compromise state cit of the targeted device i at the time t the exploit
is executed. Moreover, this compromise state remains unchanged unless either the defender’s actions or
another exploit by the attacker directly changes it.

4.2 Defender Actions

Attack Detection There are two kinds of actions which stem from the use of device and network anomaly
detection: 1) when (at which time step t) to deploy them (with these remaining active thereafter), and 2)
how to configure them at each time step t post deployment. In the case of the former, we assume that both
a network anomaly detector, as well as device-level detectors, are deployed after an initial burn-in period
of time, with the timing of deployment t chosen strategically by the defender. The tradeoff faced thereby
is to delay deployment time to facilitate more collected data, while avoiding capturing malicious data that
arises from attacks prior to deployment (which effective poison the detector). In terms of configuration, we
consider (a) retraining (i.e., collecting additional data post deployment which can be used to retrain the
detector), and (b) modifying sensitivity (i.e., the tradeoff parameter that determines the false positive and
false negative rate). At a given time step t, we allow only one of these actions to be taken by the defender
(deploy, modify sensitivity, or retrain and redeploy—with the latter also choosing sensitivity parameter).

As long as a detector is currently deployed (i.e., deployment time was prior to current time step t), we
assume that its effects are fully autonomous. This is implemented by the detectors performing their testing
in each time step t post deployment, and resulting alerts becoming part of available information for the
defender to act on.

Defensive Probing Actions Just as in the case of attacker, the defender’s probing actions target particular
devices that are not in the defender’s network to obtain their characteristics. Structurally, these mirror the
attacker’s probing actions described above, with the same constraints imposed; thus, each probe targets a
device j from a device i, so that the full set of probes corresponds to the cross product between probe action
types (ping, traceroute, etc) and pairs of devices. We let Aβ

probe be the set of feasible probes (i.e., requiring
connectivity from i to j).
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Checkpointing Actions Checkpointing actions involve saving a device state at time step t, as described in
Section 3 above. For the duration of this action, no workloads can be executed on the device (we can model
this by having a device state variable in di which is 1 whenever workloads cannot execute, and is then reset
to 0 once checkpointing time is over). However, checkpointing a device does not prevent the defender from
executing other actions affecting this device during that time period. The corresponding action set is then
isomorphic with the set of all devices Dt on the defender’s network.

Reset Actions Similar to checkpointing, we can execute one of a set of reset action types (described in
Section 3) on any of the devices on the defender’s network. The cross product between reset types and the
device set then comprises the set of reset actions that the defender can take at any time point t.

Device Reconfiguration Actions The device can be reconfigured at any point in time t in several ways
(including software updates, patching, etc) detailed in Section 3. Each reconfiguration type can be performed
on each device, so that the set of actions in the associated game is the cross product between these.

Network Reconfiguration Actions The final category of defensive actions involve network reconfigurations,
which are comprised of removing directed edges and removing devices from the network. Each action is thus
a choice of either removing an edge (i, j) ∈ Et or removing a device i ∈ Dt, and the union of these constitutes
the set of all network reconfiguration actions that the defender has in the game.

4.3 Attacker and Defender Rewards

The next key element of the game model involves the rewards that accrue to both players in each time step t
of the game. We begin with the attacker. We associate with each attacker action aα a cost ζα(aα). For each
device i, the attacker further receives a reward r(xi) ≥ 0 (additive over devices) which is a function of device
state xi; we assume that r(xi) = 0 if the device i has not been compromised by the attacker, and otherwise
depends on the nature of the configuration (e.g., whether it contains sensitive data, has crashed, executes
malicious application, etc) and compromise (e.g., user-level or root). Probes have a positive reward when
discovering new devices. However, this creates a traffic pattern that the defender can exploit to determine
lateral movement as descibed in section 3.7. The instantaneous net utility of the attacker is then

rA(a
α, x) =

∑
i

r(xi) + ζα(aα),

where x is the true state of all devices on the network.
In the dynamic setting defined by the simulator, the attacker takes attack actions over time according

to a policy, which in general maps an attacker’s belief state (distribution over the true state of all devices x
to actions aα in each time step of the game. In practice, fully dealing with and update such a belief state is
intractable, and we instead make use of (a finite history of) observations, such as compromise state and any
information about devices obtained through probes. We denote this observation history by oα. The attacker’s
policy πα then maps oα to an action.

For the defender, each action is associated with a non-negative execution cost. Rewards, on the other hand,
stem from executing workloads, with each successfully executed workload w accruing a reward of r = vw
to the defender. If a reset action rolls back a device i to a prior state, all current workloads w are dropped
and device i becomes busy for t ∼ Triangular(mmin,mmode,mmax) time steps with mmin,mmode,mmax being
game parameters. This means that the defender’s utility depends on the full trajectory, rather than each
step independently. In addition, the defender loses the amount r(xi) that the attacker gains for each device.
As in the case of the attacker, the defender’s policy πβ will map subjective observations oβ to actions aβ .

Given a policy pair of the defender and attacker, the expected utility of the attacker over a finite horizon
T is

Uα(πα, πβ) = E

[∑
t

rA(π(o
α
t , xt))

]
,

where the expectation is with respect to any uncertainty in the system, including that induced by the
information available to the attacker, as well as the joint player policies. Similarly, the expected utility of
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the defender is

Uβ(πα, πβ) = E

[
R(τ)−

∑
t

ζβ(πβ(oβt ))

]
,

where ζβ is the defender’s cost of executing an action, τ is a trajectory which comprises the set of workloads
executed, denoted by W (τ) along with a sequence of device states xt, and R(τ) the reward of the trajectory
defined as

R(τ) =
∑

w∈W (τ)

vw −
∑
t

∑
i

r(xi,t).

4.4 Modeling Zero-Day Exploits

As we discussed in Section 3, one of the core challenges in cybersecurity modeling is how to credibly capture
zero-day attacks. In the realm of game theory, this issue is particularly acute, as fundamental to conventional
game modeling is the assumption that the strategy space of the different actors is known and given. Of
course, if we resolve strategies of attackers at sufficiently fine granularity (for example, software design,
experimentation, and so on), we can in principle capture zero-day development as well, but this is typically
too complex to be helpful. In the simulator itself, we described that we can model zero-days by subsampling
the full space of exploits to only consider a subset of these as part of the active strategic space of the attacker—
as far as the defender knows, that is—with others effectively unknown, but strategically deployable by the
attacker as they wish (at which point they become discovered). The challenge now, however, is how we can
formally incorporate this structure into the game model.

To do this, we propose that there is a commonly known distribution over the space of all possible exploits
as defined by exploit parameters in Section 3 (for example, a uniform prior at time step t = 0 of the game).
Formally, let z be a parametric representation of exploits; for example, it can be a binary encoding of OS,
application, version range, and vulnerabilities that are exploited. Let Dz denote the distribution over z,
which we assume is known to both players.2 The game thus begins with a known set of exploits (to both the
defender and the attacker), and this common knowledge distribution over exploits (attack actions) that the
attacker may or may not have. In general, since we may not know how many zero-day exploits the attacker
actually possesses, we may additionally have a prior distribution over the number Ne of these. To simplify
our discussion, suppose Ne = 1—that is, an attacker has a single zero-day, and only its parameters z are
unknown.

As soon as a zero-day exploit is executed, we assume that the defender’s posterior over it becomes 1,
which in practice simply means that it is added to the defender’s knowledge of which actions are available to
the attacker, thereby potentially substantively changing the strategic behavior of both players. Moreover, the
history of zero-days may influence the defender’s posterior distribution over the characteristics of these (which
may, in turn, create an opportunity for deception on the part of the attacker in strategically choosing which
to execute in which order). From a game-theoretic perspective, this is well-defined, but induces considerable
strategic complexity insofar as the attacker’s strategy space becomes a function of available sets of exploits
over which the defender has only distributional information.

To formalize the information asymmetry inherent in zero-day attacks, we let the attacker policy be indexed
by z, that is, we denote it by πα(o, z), whereas the defender’s policy remains as before, since z is unknown
to the defender. Let E be the set of exploits the attacker has, not including the zero day, and let Z be the set
of all possible zero-day exploits. Further, let e(z) denote the exploit with parameters z ∈ Z. Suppose that
the actual zero-day exploit is parameterized by z. Then the attacker cost of executing it is ζα(e(z); z), while
the cost of executing any z′ ∈ Z \ z (i.e., any exploit it does not in fact possess) is ζα(e(z′); z) = ∞. The
utility model of the defender above assumed that the set of exploits is known and fixed. We can make that
explicit by denoting it by Uβ(πα, πβ ; z), and the expected ex ante defender utility is then Ez[U

β(πα, πβ ; z)],
where the expectation is with respect to Dz. Since the attacker knows its zero-day, the attacker’s utility can
be explicitly a function of z, i.e., Uα(πα, πβ ; z), defined as above.
2 This requirement of a common knowledge prior is central to a formal game-theoretic model, but is also not a strong

requirement, since we can assume it to be an uninformed (uniform) prior.
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4.5 Bayes-Nash Equilibrium of the POSG

In the POSG, the underlying player strategies are the policies. Let us restrict consideration to the policy sets
Πα and Πβ for the attacker and defender respectively, mapping observations to actions as discussed above.
Further, let P(Π) denote the set of all probability distributions over a set of policies Π, and let σ ∈ P(Π)
denote a probability distribution (i.e., a mixed strategy) in this set. The utility of each player for a pair of
mixed strategies σα ∈ P(Πα) and σβ ∈ P(Πβ) is just the expectation of each player’s utility Uα and Uβ ,
respectively, with respect to the associated probability distributions:

Uα(σα, σβ) = Eπα∼σα,πβ∼σβ ,z∼Dz
[Uα(πα, πβ ; z)] and Uβ(σα, σβ ; z) = Eπα∼σα,πβ∼σβ [Uβ(πα, πβ)].

The ϵ-Bayes-Nash equilibrium (BNE) of the resulting game is a mixed-strategy pair (σα, σβ) such that
for each player i ∈ {α, β},

U i(σi, σ−i) ≥ U i(πi, σ−i)− ϵ

for all πi ∈ Πi.
Our goal will be to compute an ϵ-BNE for a small ϵ. We describe a computational approach for this based

on the well-known double-oracle [12] and PSRO [4] frameworks next.

5 DOAR: Double Oracle with Actor Response Ascent

We now turn to the problem of finding equilibrium behavior in our partially observed, stochastic cy-
ber–defense game. A key challenge is that the strategy spaces of both players are policies, in which even the
underlying action spaces (choices in each time step) are combinatorial (for example, considering all subsets
of devices on the network). A naive solution approach is to use policy-space response oracle (PSRO) [4],
a generalization of a double-oracle approach, in which we start with an arbitrary small sets of policies for
both players (e.g., heuristic, random, etc), and iterate between computing a Nash equilibrium of the current
game matrix, and computing best responses to the equilibrium found in the previous iteration. In PSRO,
best responses are approximated using reinforcement learning (RL).

In our setting, however, applying RL directly to compute (approximate) best responses of the players is
challenging due to the combinatorial nature of actions. The major innovation in the proposed DOAR is in
the way we construct best responses to deal with this combinatorial explosion issue. In particular, we employ
a critic-guided coordinate-ascent beam search that leverages our learned Q-function to efficiently navigate
the combinatorial action space (Algorithm 1), which we now describe.

Algorithm 1 Critic-Guided Coordinate-Ascent Beam Search for Best Response
Require: current state s, critic network Qϕ(s, a), beam width K, temperature τ , number of devices D, action dimensions T,E, P
1: Define the no–op action

noop = (tnoop, ∅, ∅, 0)

2: Compute its base value Qbase ← Qϕ(s, noop)
3: for d = 1 to D do
4: Form per–device candidate set

Cd = {noop} ∪ {(t, {d}, e, p) | t = 0, . . . , T − 1, e = 0, . . . , E − 1, p = 0, . . . , P − 1}.

5: Evaluate each a ∈ Cd:
Q(a) ← Qϕ(s, a).

6: Keep the top-K by value:
Bd ← argtop−Ka∈Cd

Q(a).

7: Sample one action
ad ∼ Categorical

(
exp{Q(a)/τ}a∈Bd

)
.

8: end for
9: Merge individual picks {ad} into a joint action

D
∗
= {d : ad ̸= noop}, t

∗
= max

d
td, e

∗
=

⋃
d

ed, p
∗
= (from any non-noop ad).

10: return best-response (t∗, D∗, e∗, p∗)
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The issue that our approach addresses is that in standard actor-critic methods the actor network pro-
duces a continuous vector πθ(s) ∈ [−1, 1]A which is then discretized by taking an argmax over each one-hot
block[38]. In a combinatorial action space this block-wise argmax rarely recovers high-value joint actions:
individual bits never “compare notes,” gradients are spread across thousands of possible device–exploit com-
binations, and the resulting deterministic decode easily becomes trapped in local modes[17]. In contrast, our
critic-guided coordinate-ascent beam search uses the critic Qϕ(s, a) directly to guide a structured search: for
each device d we enumerate all single-device moves (t, {d}, e, p), score them with Qϕ(s, a), keep the top-K
candidates, sample one via Softmax(Q/τ), and then merge those per-device picks into a coherent joint action
(t∗, D∗, e∗, p∗). By explicitly comparing and recombining high-value pieces under the critic’s global value es-
timates, beam search recovers far stronger best-responses in huge discrete spaces than naïvely decoding the
actor’s continuous output. It should be noted that this works in the context of DOAR because we simply
require a better response, even if this response is not best. That said, this per-device greedy merge can miss
synergistic, multi-dimensional actions: for instance, two devices might each be only mildly vulnerable on
their own, but targeting them together (or pairing a specific exploit with a specific device) could unlock a
super-additive payoff that a purely independent per-device pick overlooks.

(a) Comparison of DDPG (black line) versus critic-
guided beam search on a noisy 2D Q-surface. Beam-
search candidates are yellow; final choice is a red star.

(b) DOAR average equilibrium payoff over iterations (±1 std
dev).

Fig. 2: (a) Beam search vs. DDPG on a noisy 2D Q-surface. (b) DOAR average equilibrium payoff over
iterations.

As shown in Figure 2a, the standard DDPG policy (black path) quickly becomes trapped in a local region
of low Q-value, whereas our critic-guided beam search is able to explore multiple candidate actions per device
and ultimately recover a better payoff.

6 Experiments

We demonstrate CyGym using a case study of Volt Typhoon.

Volt Typhoon Environment The Volt_Typhoon_CyberDefenseEnv builds on our base CyberDefenseEnv
to emulate the distinctive operational and threat-model characteristics of the Volt Typhoon scenario. At
initialization, the network comprises a heterogeneous fleet of Windows Server hosts—three of which are
designated as domain controllers—with remotely accessible services (VPN, RDP, Active Directory, admin-
istrative password management and FortiOS) instrumented to reflect real-world configurations. Two critical
CVEs (ED3A999C-9184-4D27-A62E-3D8A3F0D4F27 and 0A5713AE-B7C5-4599-8E4F-9C235E73E5F6) are
seeded across these services to model plausible exploit pathways. To capture pre-existing adversary footholds,
40% of active hosts are randomly marked as compromised on reset, and an additional five devices are as-
signed “attacker-owned” status. Each host executes both benign and adversarial workloads whose durations
follow a triangular distribution, enabling quantitative assessment of defender work-completion utility under
attack. Defender agents may execute fine-grained actions, each inducing explicit costs or device busy times;
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attacker agents may probe undiscovered hosts or launch vulnerability exploits, with compromised domain
controllers guaranteed to succeed in all subsequent exploits. This design achieves a balance between scenario
fidelity and tractability for reinforcement-learning and game-theoretic strategy synthesis.

State Space The environment tracks up to Nmax devices, each described by six features—OS code, version
number, compromise flag, anomaly score, attacker-knowledge flag, and presence indicator—concatenated
(and −1-padded) into a full state vector x ∈ R6Nmax . The defender’s observation od ∈ R6Nmax masks com-
primise information as well as attacker owned and devices not yet added to the network via its evolution
procedure. The attacker’s observation oα ∈ R4Nmax further hides anomaly scores and presence indicators of
the defender, drops the attacker-knowledge feature entirely, and masks inactive or unknown devices. The
defender’s observations oβ include anomaly scores and device configurations, but not actual compromise
flags.

Actions and Utilities We instantiate the actions of both players as outlined in Table 1. We assume that each
workload has unit value, i.e., vw = 1 for all w, and the reward to the attacker (and cost to the defender) for
a successfully compromised device at each time step is r(xi) = 1.

Role Action Effect Utility (per device)

Defender

Clean Clears compromise flag, incurs device
busy-time

+0.30 if compromised, else
−0.01

Checkpoint Saves state (of all devices) to disk for fu-
ture rollback

−0.50

Restore Restores network from last checkpoint (los-
ing intermediate work)

−1.00

Upgrade Increments application version, incurs
busy-time

−1.00 (device also becomes
busy)

Scan Executes ML-based anomaly detection on
recent logs

−0.50

Block / Unblock Toggles network edges to control reacha-
bility

−0.50

Pass No action taken 0

Attacker
Attack Deterministically exploits any matching

vulnerability on each targeted host
+1.00 per compromise;
+10.0 if via domain con-
troller

Probe Discovers previously unknown neighbors
via network scanning

+0.10 per successful discov-
ery

Pass No action taken 0

Table 1: Action Types, Effects and Immediate Utilities for Defender and Attacker. Utility values are subject
to network-hyperparameter scaling (See Section 6 for details).

To help with training, we additionally include the potential-based shaping term in the attacker’s instan-
taneous reward at time step t

βA

(
γ ϕA

t − ϕA
t−1

)
,

where ϕA
t is the fraction of compromised hosts at time t. By shaping on using this one-step change, each local

attack action immediately yields feedback about its impact on the overall compromise level—information
that would otherwise only arrive much later via sparse compromise-based utilities. This dense, global signal
does not affect the long-run equilibrium, since such potential-based shaping is provably policy-invariant [21].
The weight βA is chosen small enough so that it only accelerates strategy generation.

Network Structure and Dynamics The network is initialized as a connected Barabási–Albert graph seeded
with domain controllers and Windows Server hosts. Initially, a fixed proportion of active nodes are marked
compromised at random and a fixed count of nodes are designated attacker-owned ; attacker-owned nodes
remain permanently compromised and represent devices outside of the network with a connection into the
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network. They perform no work for the defender. At each time step the environment samples a Poisson(λ)
number of “events” that either activate or remove devices (while respecting a minimum network size). Newly
activated non–attacker nodes are attached via Barabási–Albert preferential attachment; removed nodes sim-
ply go offline. Attacker-owned machines remain permanently compromised and continue to influence connec-
tivity. This dynamic topology captures the ebb and flow of hosts in a realistic enterprise network.

More precisely, at each discrete time step:

1. We sample K ∼ Poisson(λ) events.
2. Each event is independently classified as an addition with probability padd or a removal otherwise.
3. Addition: select one offline node (if any remain) and add it to the network. With probability patt, the

newly activated node is also marked attacker-owned ; otherwise it joins as a clean host. If its current
degree in the underlying graph structure is zero (ie its never before been added), we attach it to one
existing active node via preferential attachment (Barabási–Albert).

4. Removal: select one active node uniformly (subject to maintaining a minimum network size) and mark
it offline; its workloads and busy-time are reset, but its record of past compromise persists.

After each such event batch, we update the graph to reflect online/offline status and reconnect all attacker-
owned nodes to ensure they remain fully reachable from each other. This Poisson–BA process captures the
turnover of hosts in an enterprise network while preserving scale-free connectivity and the persistence of
adversary footholds.

6.1 Results

Equilibrium vs. Baseline Attacks and Defenses We consider three baselines for the defender and two for the
attacker. For both players, we compare to random attack and defense (randomly choosing among the actions
at each time step), as well as “do nothing” baselines (no defense and no attack, respectively). Additionally,
we compare to a heuristic defense in which the defender performs a standard scanning every 7 days, and a
full reset every 30 days.

Our first results compare DOAR strategies for the defender to the defense baselines, and similarly compare
the attacker’s DOAR strategy to several attack baselines. These results are shown in Table 2. We can see
that DOAR consistently outperforms all baselines for both the defender and the attacker, when the other
player acts according to their DOAR strategy in both solving the POSG and a Bayesian POSG with a
zero day exploit. This is simply a confirmation that the joint strategy profile obtained by DOAR is indeed
an approximate equilibrium. What is more notable is that the defender’s DOAR strategy outperforms, or
performs comparably with baselines for different attack strategies as well. This is not self-evident, since (a)
the game is not zero-sum, and (b) even in zero-sum games, robustness of equilibrium behavior does not imply
that it is always a best response. We see a similar pattern for the attacker, although DOAR attack is not a
best response when the defender uses a preset heuristic policy instead of an equilibrium strategy.

Next, we use the framework developed to investigate the relationship between structural variables de-
scribing the nature of the organizational environment and outcomes (such as average compromise frequency)
in equilibrium obtained by DOAR.

Impact of Relative Value of Productivity We begin by considering the impact of varying the relative value
of productivity as captured by vw ∈ {0.1, 1, 10}. The results, provided in Figure 3, exhibit a tendency for
the defender to abandon defense when value of work is high. Specifically, while the defender’s overall payoff
(benefit minus cost) increases with vw, they perform defensive actions, such as scanning, with lower frequency,
since the opportunity cost of doing so (stopping productive workflows) increases as the value of work vw
rises.

Impact of Defense Costs We now consider the impact of varying defensive costs. The results are in Figure 4.
We again note a tendency of the defender to abandon defense when the cost of defense is high. In extreme
cases, it abandons defense entirely. Since defensive actions stall work, we again note that as the defender
defends less, the amount of work it does rises. Here, its worth noting that the advantage of defensive actions
has a direct cost (the defensive cost) as well as an opportunity cost (work delayed). As either of these costs
increases the defenders willingness to defend goes down.
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Table 2: Average payoffs (mean± std) at equilibrium for both Attacker and Defender across defender strate-
gies. Network configuration is available in the appendix. Results reported without the reward shaping bonus.

(a) Attacker average payoffs
Defender strategies

Attacker ↓ Defender → DOAR RandomInit No Defense Preset

DOAR 1328.000± 0.001 1429.000± 0.001 1274.000± 0.001 840.000± 0.002
RandomInit 1085.000± 0.001 1175.800± 39.004 1236.900± 53.217 1043.900± 43.648
No Attack 971.000± 0.000 990.600± 35.461 917.900± 47.359 702.000± 45.909

(b) Defender average payoffs
Defender strategies

Attacker ↓ Defender → DOAR RandomInit No Defense Preset

DOAR −14.700± 0.001 −97.367± 0.001 −38.400± 0.002 −442.217± 0.004
RandomInit −54.733± 0.001 −54.408± 2.389 −56.560± 5.151 −790.453± 63.779
No Attack −20.933± 0.000 −20.133± 1.581 −27.590± 4.011 −109.300± 7.603

Table 3: Average ex ante Bayes–Nash equilibrium payoffs (mean± std) for attacker and defender across
defender strategies, with one common exploit and one private zero-day z ∼ Dz (i.e. Ne = 1).

(a) Attacker average payoffs
Defender strategies

Attacker ↓ Defender → DOAR RandomInit No Defense Preset

DOAR 612.000± 0.002 645.000± 0.001 954.000± 0.001 780.000± 0.003
RandomInit 468.000± 0.003 711.638± 78.225 708.616± 64.439 539.121± 28.427
No Attack 240.000± 0.050 601.800± 38.293 597.900± 43.489 483.000± 17.208

(b) Defender average payoffs
Defender strategies

Attacker ↓ Defender → DOAR RandomInit No Defense Preset

DOAR −32.415± 0.000 −73.233± 0.000 −108.369± 0.000 −1500.085± 0.000
RandomInit −23.700± 0.000 −62.097± 6.977 −68.078± 5.959 −1470.797± 9.742
No Attack 4.620± 0.000 −63.658± 5.829 −66.671± 5.255 −1486.352± 10.795

Fig. 3: Behavior of DOAR as a function of workload value. (a) Average number of scans performed. (b)
Average number of workloads executed. (c) Compromise rate.
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Fig. 4: Behavior of DOAR as a function of defensive costs. (a) Average number of scans performed. (b)
Average number of workloads executed. (c) Compromise rate.

Impact of System Size When we vary the System Network Size, several patterns emerge in the DOAR
equilibrium outcomes (Figure 4). First, as network size grows, the average number of compromised devices
per timestep increases. In a small network, a few scans can quickly locate or rule out the domain controller,
preventing many lateral moves. However, in a larger topology, each individual scan covers only a small
fraction of possible hosts. Consequently, the attacker can evade detection more easily, leading to a higher
compromise rate. Second, the attacker’s equilibrium payoff decreases with larger network size. Although
compromises become more frequent, the attacker must spend more time (and possibly resources) probing
a sprawling network to find the domain controller. In effect, the “search cost” for the attacker goes up,
reducing the net benefit of each successful compromise. Third, the defender’s payoff monotonically decreases
as network size increases. With more hosts to sweep, defensive actions become less efficient at suppressing
breaches, and the accumulated cost of residual compromises outweighs any scan-savings. Thus, the larger the
network, the more negative (worse) the defender’s net payoff. Finally, we observe that the defender scans less
frequently as the network grows. The reason is diminishing marginal returns: on a small network, each scan
can drastically reduce overall compromise risk by covering a larger proportion of critical hosts (relative to the
network size), but on a large network, one scan catches only a tiny slice of potential attack paths. Since each
scan still incurs a resource or time cost, the defender reduces scan frequency when facing a larger topology.
In other words, when network size increases, scanning becomes relatively less effective at preventing lateral
movement, so the equilibrium strategy calls for fewer scans despite higher compromise rates.

Fig. 5: Behavior of DOAR as a function of network size (all metrics per device). (a) Attacker payoff. (b)
Defender payoff. (c) Average number of scans. (d) Compromise rate.

Impact of Zero Days Finally, we investigate the impact of zero-day exploits. We assume here that the
attacker will only have 1 additional (zero-day) exploit, but this exploit can be drawn from a distribution
Dz. We study, in particular, the impact of the size of Dz (the number of possible zero-day options). We
consider two vulnerability-generation regimes. In the fixed-vulnerability setting, the total number of zero-day
flaws is held constant: each of our 10 devices hosts up to three exploitable applications, and exactly ten
zero-day exploits are distributed across the network. In the submartingale-vulnerability setting, the number
of flaws grows linearly with |Dz|, so that sampling from Dz induces a submartingale in the attacker’s success
probability. In both regimes, the attacker has access to a baseline exploit plus one zero-day exploit drawn
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uniformly from Dz. We also study a variation where where the defender knows the additional attack z ∈ Dz

sampled from Dz (“known zero-day”). This allows us to evaluate the marginal importance of the informational
asymmetry inherent in zero-day attacks.

We observe in the fixed-vulnerability setting that as |Dz| rises the attacker becomes less and less likely
to possess a particular z that can infect any particular device. Similarly, the defender becomes increasingly
better as the attack can infect fewer devices. In all cases, the defender does better when it knows one of the
z ∈ Dz. This advantage to the defender (and disadvantage to the attacker) is greater when |Dz| is smaller,
as it becomes more likely to know the particular z the attacker has.

In the submartingale-vulnerability setting we observe the opposite behavior. With the number of com-
promisable devices proportional to |Dz|, the attackers payoff and compromise device count increase. The
defender’s payoff decreases as it performs more defensive actions trying to stop an increasingly powerful
attacker. What is particularly surprising is that even in this environment, the marginal value of knowledge
of the additional attack exploit appears (at least in proportional terms) highest with fewer possible exploits
available.

(a) Attacker Payoff (b) Defender Payoff (c) Compromised Devices (d) Defensive Cost

(e) Attacker Payoff (f) Defender Payoff (g) Compromised Devices (h) Defensive Cost

Fig. 6: Comparison of key DOAR metrics versus |Dz| under both vulnerability models. Top row: fixed-
vulnerability. Bottom row: submartingale-vulnerability.

7 Conclusion

Herein, we have developed a comprehensive game-theoretic framework to address the challenges posed by
APTs such as Volt Typhoon. By employing a combination of game theory and reinforcement learning, we cre-
ated a dynamic simulation environment where defenders and attackers interact and adapt their strategies in
real-time. Our custom CyberDefenseSimulator allowed us to model realistic network scenarios, incorporating
diverse vulnerabilities, exploits, and defensive mechanisms. The experimental results demonstrate that our
game-theoretic approach significantly enhances the effectiveness of cyber defense strategies. The adaptive
nature of the reinforcement learning agents enables them to respond intelligently to evolving threats, thereby
improving network resilience. Our findings underscore the importance of proactive and strategic defensive
measures in mitigating the impact of APTs on critical infrastructure.
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Table 4: Environment and hyperparameters used in our experiments.

Environment Parameters

Devices 10 Steps/Episode 30
MaxNetSize 20 work_scale 1.0 (0.01 Zero Day)
comp_scale 30 num_attacker_owned 5
Initial Compromised Ratio 0.4 γ 0.99
def_scale 1.0
defaultversion 1.0
defaulthigh 3

Best Response Hyperparameters
reward_scale 0.1 max_grad_norm 0.5
soft-τ 0.01

Defender Agent
actor_lr 0.001 critic_lr 0.01
buffer size 100k greedy-K 5
greedy-τ 0.5 noise_std 0.1
λe 0.7 p_add 0.4
crit_arch [158→128,128→128,128→1]

Attacker Agent
actor_lr 0.001 critic_lr 0.01
buffer size 100k greedy-K 5
greedy-τ 0.5 noise_std 0.1
λe 0.7 p_add 0.4
crit_arch [111→128,128→128,128→1]
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