2506.21134v1 [cs.CR] 26 Jun 2025

arxXiv

Inside Job: Defending Kubernetes Clusters
Against Network Misconfigurations

JACOPO BUFALINO, CNAM, France and Aalto University, Finland

JOSE LUIS MARTIN-NAVARRO, Universitat Politécnica de Valéncia, Spain and Aalto University, Finland
MARIO DI FRANCESCO, Aalto University, Finland

TUOMAS AURA, Aalto University, Finland

Kubernetes has emerged as the de facto standard for container orchestration. Unfortunately, its increasing
popularity has also made it an attractive target for malicious actors. Despite extensive research on securing
Kubernetes, little attention has been paid to the impact of network configuration on the security of application
deployments. This paper addresses this gap by conducting a comprehensive analysis of network misconfig-
urations in a Kubernetes cluster with specific reference to lateral movement. Accordingly, we carried out
an extensive evaluation of 287 open-source applications belonging to six different organizations, ranging
from IT companies and public entities to non-profits. As a result, we identified 634 misconfigurations, well
beyond what could be found by solutions in the state of the art. We responsibly disclosed our findings to the
concerned organizations and engaged in a discussion to assess their severity. As of now, misconfigurations
affecting more than thirty applications have been fixed with the mitigations we proposed.

CCS Concepts: » Security and privacy — Distributed systems security; Network security.
Additional Key Words and Phrases: Kubernetes, lateral movement, misconfigurations, deployments, Helm

ACM Reference Format:

Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura. 2025. Inside Job: Defending
Kubernetes Clusters Against Network Misconfigurations. 1, 1 (June 2025), 26 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 Introduction

The security of cloud applications is a primary concern [36]. Protecting cloud environments from
malicious actors presents unique challenges that are not only technology-dependent, but rather
originate from the intrinsic characteristics of cloud-native applications — those designed from
the ground-up to take full advantage from the cloud paradigm [68]. In fact, modern cloud-based
applications comprise a large number of containerized microservices, that is, loosely coupled
software components that leverage application programming interfaces (APIs) over a network [60].
Kubernetes [24] has become the de-facto standard for container orchestration in this context.
Unfortunately, the security of Kubernetes applications is particularly worrying: a report recently
released by Red Hat and based on a survey of 600 IT professionals revealed that 89% of them
experienced at least one security incident, even resulting in revenue or customer loss [67].

Authors’ Contact Information: Jacopo Bufalino, CNAM, Paris, France and Aalto University, Espoo, Finland, jacopo.
bufalino@lecnam.net; Jose Luis Martin-Navarro, Universitat Politécnica de Valéncia, Valéncia, Spain and Aalto Uni-
versity, Espoo, Finland, jose.martinnavarro@aalto.fi; Mario Di Francesco, Aalto University, Espoo, Finland, mario.di.
francesco@aalto.fi; Tuomas Aura, Aalto University, Espoo, Finland, tuomas. aura@aalto. fi.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM XXXX-XXXX/2025/6-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://arxiv.org/abs/2506.21134v1

2 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

containers:

- name: flink # netstat -a
image: bitnami/flink Active Internet connections (servers and established)
ports: Proto Recv-Q Send-Q Local Address Foreign Address State
- containerPort: tcp Q 9 0.0.0.0:6123 0.0.0.0:% LISTEN
- containerPort: tep Q Q0 0.0.0.0:8081 0.0.0.0:% LISTEN
- containerPort: tcp Q 0 0.0.0.0:43271 0.0.0.0:% LISTEN
(@) (b)

Fig. 1. Configuration mismatch involving the Apache Flink application, a widely used data-flow framework
for stream processing, as packaged by Bitnami. (a) The corresponding Kubernetes configuration (i.e., YAML
file) specifies 6,121, 6,123 and 8,081 as the container ports; (b) the application is actually not listening to port
6,121 but uses an ephemeral port (i.e., 43,271), as reported by the netstat tool. These kinds of mismatches
combined with application misbehavior may lead to different types of security issues (see Sections 2.1 and 3.3).

Specifically, misconfigurations have been recognized as primary causes of attacks to Kuber-
netes [1, 31, 67, 78], also affecting Fortune 500 companies [6]. Misconfigurations occur when the
deployment of Kubernetes application is poorly setup (Figure 1), typically by administrators instead
of the actual developers of these applications. The danger of such misconfigurations is amplified
by the increasing trend of reusing third-party resources and configurations [19]. Furthermore,
many related issues arise from the cloud networking paradigm, which is substantially different
from legacy corporate networks — those using physical cables and on-premise hardware, including
firewalls and switches, for segmentation purposes [74]. The Kubernetes model in particular is based
on a flat network to simplify the transition of legacy applications to the cloud, however, its security
implications are not fully understood [55]. As a consequence, it is challenging to correctly configure
all the components of a cloud application, which remains a tedious and error-prone process [65].

Research on Kubernetes security has largely focused on hardening [70], risk assessment [13],
and tools for runtime analysis [56]. Instead, studies on security misconfigurations have primarily
targeted the cloud infrastructure [11, 18, 64] and container runtimes [40]. In fact, only a few
works have explicitly addressed misconfigurations in the context of Kubernetes security [34, 65,
67, 79]. The survey-based report in [67] established misconfigurations as one of the major factors
behind security threats in Kubernetes, but did not further elaborate on their characteristics. The
empirical study in [65] targeted security misconfigurations in open-source Kubernetes applications,
whereas the works of [34, 79] focused on excessive permissions granted to third-party components.
However, the existing literature has paid little attention to security issues originated by network
misconfigurations, in particular, those affecting actual cluster deployments (Section 7).

This work explicitly characterizes network misconfigurations affecting Kubernetes applications
in the context of lateral movement (Section 2). Specifically, we rigorously examined research papers
and industry artifacts as a basis for independent research that resulted in a comprehensive list
of network misconfigurations (Section 3). Then, we carried out an analysis of 287 open-source
Kubernetes applications belonging to six different organizations, ranging from IT companies and
public entities to non-profits. The analysis revealed a total of 634 misconfigurations, most of which
cannot be detected by solutions in the state of the art (Section 4). Finally, we responsibly disclosed
our findings to the respective organizations and assessed their severity. As of now, misconfigurations
affecting more than thirty applications have been fixed with the mitigations we proposed (Section 5).

In summary, the contributions of this paper are the following.

¢ Novel network misconfigurations leading to security issues. Our analysis of Kubernetes
cluster-internal networking unveiled different types of misconfigurations, well beyond what

, Vol. 1, No. 1, Article . Publication date: June 2025.

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 3

was known in the existing literature. We also show how these misconfigurations, together
with application (mis)behavior, can lead to diverse security issues.

e An evaluation of these misconfigurations in real-world application deployments.
We considered 287 open-source applications belonging to different organizations as deployed
into a Kubernetes cluster. Our evaluation allowed to detect 634 network misconfigurations.
We also compare the effectiveness of our solution against the state of the art.

¢ Disclosure and community engagement. We disclosed the misconfigurations to the
involved organizations and explained how to mitigate them. We also carried out a security
assessment and characterized the reliability of our results through the received feedback.

2 Background

This section provides a few examples of attacks we discovered to motivate the study of network
misconfigurations. It then gives an overview of Kubernetes and application deployment with Helm.

2.1 Motivating Examples: Security Issues Resulting from Network Misconfigurations

We describe next two proof of concept attacks that are enabled by network misconfigurations.

2.1.1 Broken Control Plane: Concourse. Concourse [29] is a CI/CD software part of the CNCF
landscape [21], consisting of a master web node and a number of different workers that are
responsible for running builds and carrying out different types of resource checks. The Concourse
application opens several dynamic ports in the ephemeral port range reserved by the host operating
system (e.g., 32,768-60,999). These ports in the Concourse web node are endpoints of reverse SSH
tunnels to worker nodes. The tunnels are command and control channels to the workers which
should only be available at the loopback adapter of the web node. Instead, the ports are accessible
from the cluster network due to the default Kubernetes behavior. Thus, any pod in the same cluster
as the web node is able to send commands to a given worker, including other workers. As a result,
we were able to deploy arbitrary containers, download container images, and edit running jobs.

2.1.2 Service Impersonation: Thanos. Thanos [77] is a set of components realizing high availability
and long-term storage for the widely-used Prometheus monitoring system [27]. The related setup
includes two compute units: thanos-query-frontend, responsible for external communication with
users; and thanos-query, handling internal query processing. Both of them run different services
that are associated with a single label, namely, thanos-query-frontend. As a consequence, an
attacker inside either compute unit could exploit such a label to impersonate the service by simply
listening to the appropriate ports. In fact, the load balancer or service targeting the resources bound
to that label would send requests to the malicious pods in addition to (instead of) the legitimate
ones, according to the applicable scheduling policy (i.e., depending on the specific proxy mode set
in Kubernetes). Therefore, the attacker could fully impersonate the service, resulting in a denial
of service (when the malicious pod does not respond) or even economic damage (by triggering
unnecessary scale-up of cluster resources).

2.2 Kubernetes and Container Networking

Kubernetes [24] is the most widely used open-source software for container orchestration: it allows
to deploy, scale and manage applications defined as interconnected microservices (Figure 2a).
Kubernetes relies on a set of nodes (either bare-metal servers or virtual machines) together forming
a cluster. One node in the cluster has a special role: such a control-plane node includes an API
server (to interact with the orchestrator), a controller manager (to enforce desired attributes), and a
scheduler (to allocate computing resources to nodes). The rest of the nodes, instead, run the actual
applications (i.e., workloads). All resources in a cluster are specified by configuration files in the

, Vol. 1, No. 1, Article . Publication date: June 2025.

4 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

Cluster # Helm manifest (values.yaml)
s N External primary:
Control-plane Node services service:
node Node @ type: ClusterIP
/ ports:
Pod h mysql:
API
N
#.Helm template
kind: Service
B Data center .
Controller J network / Internet metadata:
manager Pod labels:
app. kubernetes.io/part-of: mysql
e
Container
Scheduler - name: mysql
= w::,’g:,(ace port: {{ .Values.primary.service.ports.mysql }}
= 7\ J protocol: TCP
L J D Cluster network
(@) (b)

Fig. 2. (a) The main components in a cluster running microservices with Kubernetes. (b) Sample frag-
ments of a Helm manifest (top) and a Helm template (bottom). The manifest defines values that can be
referenced by the corresponding keys. The template in the example is a service and includes a directive
(enclosed in double curly brackets) that sets the port key to the value of mysql. Such a value is specified as
.Values.primary.service.ports.mysql, according to the structure of the manifest.

YAML format; computing resources are represented by software containers. Kubernetes objects
are identified by their name and a list of key-value pairs called labels [45]. Kubernetes manages
application lifecycle through a container runtime (e.g., docker or podman) installed on the node
to retrieve container images and create their execution environment. In particular, Kubernetes
employs the abstraction of pod to manage logically-related containers as an individual entity.

Pods communicate with each other by exchanging messages over a network. The Kubernetes
networking model is grounded on a few key abstractions [55]. Containers in the same pod are
bridged to a shared Linux network namespace which allows communication over the same local
network (i.e., the so-called localhost). The address space in the cluster is flat, namely, pods can
communicate with all other pods irrespective from the node where they are running. The service
resource acts as an abstract representation of a logical set of pods for load-balancing and service
discovery, for instance. Pods are assigned to each service by means of their labels. Services can
be cluster-internal or external, depending on the specific use case. Cluster-internal services are
defined by the ClusterIP type and are assigned a unique IP address in the cluster network. As
a special case, a headless service [44] allows to reach pods through the cluster’s Domain Name
System (DNS). Pods in the cluster can communicate with all services by default.

Kubernetes also supports network policies (i.e., through the NetworkPolicy object) to restrict
access to pods and services. However, Kubernetes itself is not concerned about how actual IP
addresses are managed and how network policies are enforced — these are instead handled by
external components called Container Network Interface (CNI) plugins.

2.3 Managing Kubernetes Applications

In the context of Kubernetes, applications are just a collection of resources specified in YAML
files, such as the sample in Figure 1a. Managing such files is tedious and error-prone, especially
when the same resources need to be tailored for environments with varying characteristics, such
as for development or testing purposes. For this reason, applications are usually specified through
reusable Kubernetes configurations (generally called templates or blueprints) with specialized

, Vol. 1, No. 1, Article . Publication date: June 2025.

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 5

tools. Among them, Helm [22] is a widely used software to package and manage applications for
Kubernetes clusters; a Helm chart is a collection of files that describes applications as Kubernetes
resources, including configuration values and dependencies [35]. Specifically, a chart includes
a manifest (specifying parameter values) and a template (describing a Kubernetes resource), as
illustrated in Figure 2b. The templates are rendered into Kubernetes objects as YAML files by setting
the parameters to the corresponding values. Helm charts are also composable, allowing to reuse
other applications as dependencies — many of them are publicly available and are specifically meant
for sharing [20]. The terms (Kubernetes) application and (Helm) chart are used interchangeably in
the rest of the paper.

3 Network Misconfigurations

This section describes the network misconfigurations that can lead to security issues in Kuber-
netes. It first introduces the reference threat model, then explains the methodology employed to
identify these misconfigurations. The section concludes with a detailed discussion of individual
misconfigurations, along with an explanation of their causes and possible mitigations.

3.1 Threat Model

We explicitly refer to the threat matrix for Kubernetes by Microsoft [53], a widely-used resource
in the context of container orchestration security, based on the MITRE ATT&CK framework [57].
We restrict our attention to the lateral movement tactic in the threat matrix, particularly, the
“cluster-internal networking” technique therein. Specifically, we aim to identify and characterize
misconfigurations possibly causing security threats in such a context for applications as they
are deployed in a Kubernetes cluster. For this purpose, we assume that the attacker controls one
container in a pod, which is aligned with previous work on Kubernetes security [34]. Moreover, our
work assumes that the cluster has been hardened according to security best practices [10], namely,
that it is not possible for the attacker to trivially take control of the whole cluster or a node. Finally,
the container in control of the attacker has legitimate access to the cluster network but no other
privileges that can be misused (e.g., root access or Kubernetes API access).

3.2 Methodology

We carried out a systematic review by collecting sources on network security for Kubernetes from
academia and industry similar to the methodology in [2, 65], as detailed next. In particular, we
determined misconfigurations based on the corresponding definition by the U.S. National Institute
of Standards and Technology (NIST) in [41], namely, “an incorrect or suboptimal configuration of an
information system or system component that may lead to vulnerabilities”.

3.2.1 Identifying Information Sources. We collected research papers published in the past five
years by searching both the Google Scholar and DBLP databases with the Kubernetes and security
keywords; we specifically ensured full consideration of works published in top-tier conferences
on both security (e.g., ACM CCS, IEEE S&P, USENIX Security, and NDSS) and networking (e.g.,
CoNEXT, SIGCOMM, NSDI, and INFOCOM). Regarding industry sources, we went through security
standards, whitepapers, and the Kubernetes documentation. In particular, we first considered all
industry artifacts cited on the previously identified academic works: the CIS benchmark [33],
NSA CISA “Kubernetes Hardening Guidance” [61], OWASP [62], the Microsoft Threat Matrix
for Kubernetes [53], the CNCF 2022 Annual Survey [28]. We then extended this corpus with
public artifacts created in the last five years by Kubernetes-focused companies: VMWare “State
of Kubernetes” [78], Red Hat “2024 State of Kubernetes Security Report” [67] and “Cryptojacking

, Vol. 1, No. 1, Article . Publication date: June 2025.

6 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

Table 1. Identified network misconfigurations in Kubernetes, along with their security issues and possible
attacks. Section 3.5 discusses their mitigation.

ID Description Issue Possible attack(s)

N . . . Command and control
M1 Port open on container is not declared Listening on all interfaces by default . . .
Sensitive port information

M2 Container allocates dynamic ports Dynamic ports cannot be controlled Loosened security policies

Data interception / spoofin
M3 Port declared on container is not open Missing checks on declared ports . p' P 8
Data exfiltration

M4A Compute unit collision
M4B Service label collision . . Man in the middle

. . Missing checks on label collision . .
M4C Compute unit subset collision Server impersonation

M4* Global label collision

M5A Service targets unopened port Data interception

M5B Service targets undeclared port Missing checks on declared ports Data spoofing

M5C Headless service port is not available ~ Missing checks on existence of target label Denial of service

M5D Service without target Bypassing security checks

. . . . Data interception / spoofin
M6 Lack of network policies No isolation between containers . P . P J
Privilege escalation

M7 Container binds to host network Network policies do not apply to host Bypassing network controls

Attacks in Kubernetes” [30], and Aquasec “The State of Kubernetes and Docker Security in 2021” [5].
We finally identified the software tools referenced in both academic and industry sources [13, 67].

3.2.2 Inclusion and Exclusion Criteria. We limited our attention to academic and industry artifacts
specifically addressing network-related security issues or lateral movement in Kubernetes, and
disregarded those that do not treat the topic in adequate detail or focus on other orchestrators,
including related services offered by cloud providers [5, 18, 28, 33, 67, 78]. As for software tools,
we restricted our focus to those with each of the following properties: they perform static or
runtime analysis or are continuous monitoring tools (e.g., security platforms); they either support
or specifically target Kubernetes; they are able to identify at least one type of issue related to
networking. We specifically excluded: CNI plugins or tools that depend on a specific cloud provider,
such as Tetragon [37] and Azure Netpol manager [54]; policy engines or tools for compliance, such
as Kyverno [48] and Open Policy Agent [26]; software tools that are not publicly available, including
AutoArmor [50] and Bastion [59]; solutions specifically targeted for Infrastructure as Code, such
as Tfsec [9] and Tflint [76]. As a result of this process, we obtained a list of research /industry
artifacts [10, 13, 15, 51-53, 56, 61, 62, 70, 80] and software tools [3, 4, 8, 17, 43, 47, 65, 71, 73, 75, 80].

3.2.3 Labeling Misconfigurations. The resulting set of sources was leveraged to create a curated list
of security issues broadly related to networking according to the principles of inductive thematic
analysis [14]. For this purpose, two of the authors independently labeled security issues into specific
codes (namely, instances or types) of misconfigurations. Specifically, they started from an initial
list of codes and compared them against the Kubernetes documentation, so as to identify gaps
and opportunities to discover novel network misconfigurations. The latter entailed the creation
of software tools as well as proof of concept attacks to selected Kubernetes applications (see
Section 2.1 for more details). The outcome of this process was an initial set of labels for different
misconfiguration types, which were then refined and consolidated in the list presented next.

, Vol. 1, No. 1, Article . Publication date: June 2025.

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 7

3.3 Identified Misconfigurations

This section details the identified misconfigurations (each associated with an identifier for conve-
nience), including their possible impact on cluster security (Table 1). Those already recognized by
the existing literature are referred to as Service without target (M5D), Lack of network policies (M6)
and Container binds to host network (M?7); the rest were discovered through independent research.

M1: Open ports are not declared. It occurs when a container actually has ports open (at runtime)
but these are not declared in the resource configuration (the Kubernetes YAML files). Open ports
are available to all the pods by default, even when no access the host network is allowed, unless
restrictive network policies are in place. As a consequence, possible attacks include access to
sensitive information as well as command and control. Representative applications exhibiting such
security issues are those exposing administrative / debug ports and distributed services leveraging
the worker-controller architectural pattern.

M2: Dynamic ports. Dynamic (also referred to as ephemeral) ports are communication endpoints
whose identifier (i.e., number) is not explicitly defined by the developer. Instead, the operating
system takes care of assigning a port number, which is chosen differently each time the associated
server is started. Even though dynamic ports are not a misconfiguration per se, they cannot be
specified as such in the declarative configuration of a Kubernetes application. For this reason, we
treat them as a network misconfiguration. Even worse, dynamic ports cannot be completely blocked
by enforcing network policies unless wide port ranges are specified. Sample applications using
dynamic ports are those utilizing control / signaling channels (e.g., by multimedia protocols) or
reverse TCP connections.

M3: Declared ports are not open. It occurs when a certain port is specified in the declarative
configuration of a container but the application is not actually listening to that port. Container
ports can be arbitrarily opened and no check is performed on them by the orchestrator or at the
lower layers. Combined with other weaknesses, this misconfiguration allows an attacker to carry
out data spoofing, data interception, and data exfiltration just by listening to the declared port.
Representative cases are applications supporting different deployment modes (for instance, running
in a cluster or stand-alone) as well as scalable services that run in a single instance.

M4: Label collisions. They happen when unrelated resources are identified or targeted by the
same set of labels. Collisions can be further classified based on the nature of the objects the labels
are applied to. A Compute unit collision (M4A) takes place when the same label is applied
to different compute units. Moreover, a Service label collision (M4B) occurs when multiple
services target the same compute unit. Conversely, a Compute unit subset collision (M4C)
involves unrelated compute units sharing some common labels which are selected as targets for
a single service. Collisions also affect different applications deployed into the same cluster; we
refer to this case as a Global label collision (M4*). Unfortunately, Kubernetes has no built-in
functionality to prevent these: incorrect labeling possibly results in bypassing network policies and
causes man-in-the-middle or server impersonation attacks. Sample applications exhibiting label
collisions are those that use generic labels to describe resources.

M5: Service with incorrect references. It occurs when a service mistakenly refers to a given
compute unit port; it does not generally pose security risks alone, however, it can amplify the reach
of an attacker in the presence of other misconfigurations. There are different types of incorrect ref-
erences, leading to a more detailed classification. One case is when a Service targets an unopened
port (M5A); it amplifies the spoofing or interception attack involving M3 because services are
the preferred way to contact applications (rather than compute units). This misconfiguration can

, Vol. 1, No. 1, Article . Publication date: June 2025.

8 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

also cause a Denial of Service (DoS) as each request routed to that service will not receive a reply.
Another type of misconfiguration manifests when a Service targets an undeclared port (M5B).
This might represent an evasion technique to circumvent static security checkers, for instance, to
hide an SSH port. Moreover, there is the chance that a Headless service port is not available
(M5C). A headless service is simply a DNS record that points to specific compute units in the
cluster: a misconfiguration takes place when the service port differs from the one that opens in a
container, resulting in mounting DoS (similar to M5A). Finally, Services without target (M5D)
occurs when a service does not match with any compute unit. This implies that every request
involving such a service results in a failure. Similar to M4", a malicious user with access to the
cluster could impersonate the service by deploying a compute unit with matching labels.

Mé: Lack of network policies. We consider missing network policies as a misconfiguration, in
alignment with the existing literature [33, 72]. Helm charts describing application deployments
can specify network policies, but they can be enabled or not. In this case, we consider network
policies that are available but not enabled as a misconfiguration.

M7: Container binds to the host network interface. It occurs when the container bypasses the
isolation provided by the Kubernetes networking layer and exposes ports to the underlying host
network. This happens when the hostNetwork field in the declarative specification of a compute
unit is set to true. As a consequence, the network namespace of the compute unit network becomes
bound to the host network namespace, bypassing any network policy attached to it.

3.4 Causes and Consequences

The root cause of M1 and M3 is that the declarative nature of the ports is purely documentative,
thus, it is not enforced by Kubernetes. This behavior aligns with the Kubernetes networking
model; however, inaccurate characterization of ports is a major source of confusion for cluster
administrators, especially for those reusing third-party charts. In fact, they would expect the
configuration to be authoritative, to the point that they may use it to automatically setup network
policies. Unfortunately, these would not properly work in presence of the two misconfigurations.
Even worse, ports that are not accurately documented may affect the creation of network policies.
Similar considerations apply to M5A and M5B. Somewhat related, the key issue behind M2 is that
dynamic ports are incompatible with the design principles behind Kubernetes networking [46]. In
fact, these ports cannot be practically specified in the configuration of a Kubernetes application.

The cause of M4 and all its variants is that Kubernetes lacks a mechanism to detect or prevent
duplicate labels / selectors across compute units and services. Similarly, M5C and M5D occur because
the orchestrator does not provide any warning that there is no target or port available for a given
service. The main reason behind M6, instead, is the default “allow all” connectivity policy in
Kubernetes, which is clearly too permissive. In contrast, most Linux distributions and major cloud
providers generally employ a “deny all” approach. Clearly, attackers can easily move laterally in
the cluster if network access is not restricted.

Finally, the main motivation for M7 is the need to access hardware or operating system-related
resources. This typically occurs when exposing metrics, as the Node Exporter component of
Prometheus [63] does. Another example is given by scenarios that demand high efficiency, for
instance, bandwidth-intensive applications such as those involving machine learning tasks [42].
Using the host network results in making network policies defined for a pod ineffective.

3.5 Mitigation

The last phase of our study entails deriving practical guidelines to avoid misconfigurations and
therefore reduce their impact on possible security issues. We now discuss them in detail.

, Vol. 1, No. 1, Article . Publication date: June 2025.

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 9

The mitigation of misconfigurations M1, M3, M5A and M5B is similar: it involves editing the
configuration files to declare all the ports that are open in a container and to ensure that only such
ports are bound to services. In particular, Helm charts demand special attention to handle ports
that are open depending on specific parameter values (e.g., when optional features are enabled in
the applications). As for M5C, it is enough to remove the port settings since headless services do
not support such a feature. Handling misconfiguration M2 is problematic, as it requires knowledge
of the underlying application. The main objective is to declare the dynamic ports in some way. This
can often be achieved by setting specific parameters in the applications to assign static ports instead
of using the default (random) values. If this is not possible, the developer of the configuration
should add a comment notifying their users that a certain application uses dynamic ports. This is
needed because tools relying on network traffic analysis may erroneously generate policies for such
ports, as they change every time the pod restarts. All M4 variants can be addressed by making the
labels unique. However, the process requires understanding the relationship between the different
application components and the actual purpose behind using the same labels for them. Instead,
MS5D can be fixed by ensuring that each service has a selector matching the labels! of a compute
unit. Mitigating M6 requires defining / enabling network policies in the chart, making sure that
each policy selects at least one pod and that rules only allow necessary connections. Finally, M7
can be only remediated by setting hostNetwork to false after checking that such a change does
not result in loss or functionality or performance. In the latter cases, alternative solutions should
be sought or at least an in-depth security audit of the relevant pods should be carried out.

4 Evaluation

This section evaluates the proposed approach along different dimensions. First, it considers diverse
datasets and carries out an analysis of the findings from running our solution. Second, it compares
the effectiveness of the proposed approach against software tools in the state of the art.

4.1 Sources

We considered 287 open source Kubernetes applications defined as Helm charts by six different
organizations. Accordingly, we divided them into different datasets as detailed next.

4.1.1 Datasets. We selected publicly available Kubernetes applications in the form of Helm Charts.
We only picked applications from reputable sources and actively maintained. We also chose ap-
plications within specific organizations to represent diverse use cases, to gain a broad view of
misconfigurations related to lateral movement. We classify and describe the datasets next.

e Sharing. This category is given by charts defined by well-known organizations such as
Bitnami (part of VMWare) and Banzai Cloud (owned by Cisco) which develop and officially
support configurations meant to be reused and shared.

e Internal. This class is represented by organizations maintaining Helm charts for their own
software. Specifically, we considered Wikimedia and the European Environmental Agency
(EEA) as representative examples.

e Production. The last group is represented by organizations such as the Cloud Native Com-
puting Foundation (CNCF) and Prometheus Community which develop configurations for
their own applications that are purposely built for production use. This use case is also
representative of applications that are jointly deployed into the same Kubernetes cluster.

4.1.2 Considered applications. We selected only applications that run in their default configuration
or with minimal changes for each dataset. Therefore, we did not consider applications that require

IThis can be checked, for instance, with the kubectl get pods -1 <svc_selector> command.

, Vol. 1, No. 1, Article . Publication date: June 2025.

10 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

Table 2. Breakdown of network misconfigurations by dataset. In total, 634 misconfigurations were found.

M4 M5

Dataset Affected apps M1 M2 M3 M4A M4B M4C M4* M5A M5B M5C M5D M6 M7

Banzai Cloud 51/51 13 2 17 8 4 0 0 0 2 0 0 51 0
Bitnami 158/158 106 26 40 25 10 0 5 2 14 3 0 156 7
CNCF 7/10 10 0 4 0 0 0 0 6 0 0 0 7 0

EEA 8/19 7 0 1 0 1 0 0 0 0 0 0 0 0
Prometheus C. 25/25 42 4 3 0 0 0 0 1 4 0 0 25 4
Wikimedia 10/27 10 3 2 2 1 1 0 2 1 0 0 2 0
Total 259/287 188 35 67 35 16 1 5 11 21 3 0 241 11

specific environment variables, cloud providers, or images from private container registries. This is
necessary to automate the testing process and to ensure the accuracy of the runtime analysis.

4.2 Setup

We now briefly discuss the implementation of a solution that is able to identify the misconfigurations
presented in the previous section. We also describe how we handled special cases of importance.

4.2.1 Implementation. We employed the characterization of the misconfigurations in Section 3.3
to create a list of machine-readable rules. We take a Helm chart as input then carry out both
static and runtime analysis. We then combine the obtained results and evaluate them against
the machine-readable rules. In doing so, we consider both the labels and the selectors associated
with pods and services in addition to discrepancies between declaration and runtime behavior.
Specifically, we carry out static analysis through a custom software that parses the YAML files and
extracts the relevant information, including container ports, service ports, labels, and selectors. For
the runtime analysis, we install each application into an empty Kubernetes cluster and observe
its runtime behavior by following the approach in [15]. In detail, we used Minikube [25] version
1.23 and Kubernetes version 1.25. We opted for a virtualized environment to automate the process
and ensure isolation. In particular, we delete and recreate the cluster after analyzing individual
applications to guarantee that unrelated resources do not affect each other. Once all applications
have been individually evaluated, we search for cluster-wide misconfigurations by checking the
labels and selectors of every single application.

4.2.2 Special Cases. We also took additional steps to address a few corner cases that require special
handling. The first one is related to the dynamic ports associated with M2. These ports change
every time the application is started, therefore, they are not captured by a single snapshot provided
by the runtime analysis. To address such an issue, we perform the analysis twice then compare
the ports detected in the two distinct iterations. We report M2 when the detected ports differ. The
second one occurs for M7 because the application has access to the host network. In such a case,
the runtime analysis reports all the ports that are open at the host, possibly including those of
other components unrelated to the application. We address this issue by carrying out a preliminary
analysis of the open ports in the host, which are then removed from the final output.

4.3 Analysis

The misconfigurations found by analyzing the considered applications are detailed next.

, Vol. 1, No. 1, Article . Publication date: June 2025.

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 11

kube-prometheus-stack
(Prametheus Commm ty) 48.4.0

kube-prometheus 7

(Bitnami AKS) 8 1 1

kube'prome\:heus stack
theus Community) 48.4

kube-prometheus b7z X X X Kpooooons

kube-
(Btnam)8153 (Bitnami) 8.15.3

metheus
(Prometheus Com mumty) 23.4.0

Chart name

o
£
<
c
=
<
<
o

it el ="y operator TR e
pmmped — M2 [MsA (Banzai Cloud scable) 2.1.4 . M2 M5A
(Bitnami AKS) 0.4.5 5 m3 M58 (Bitnant AS) 6 4.5zm 53 m3 M58
N R, : . iz
(Bitnami AKS) 2.0.3 = [maa [111] msc ma (1111 msc
promet ter o
(Promotheus Community) .22, o [AULBR AN E 4B 33 M [mes [573 Me
prometheus-smartctl-exporter b7 X] mac M7 ke _ [mac M7
v Eomi 1 S Cotnans 13570 S TS e
0 2 4 8 10 12 14 16 18 2 0 2 4 5 6 7
Number of misconfigurations Number ov misconfiguration types
(a) (b)

Fig. 3. The ten applications with the highest number of (a) misconfigurations and (b) misconfiguration types.

4.3.1 Results. Table 2 details the outcome of our analysis, divided by dataset. As a result, 90% (259
out of a total of 287) of the applications in all the datasets have one or more misconfigurations.
The most common misconfiguration types are Lack of network policies (M6), Port not declared (M1)
and Port not open (M3). These misconfigurations originate from lacking or inaccurate network
boundaries on the Kubernetes resources, which could harm the cluster integrity. Approximately
10% of the considered applications listen to ephemeral ports (M2) and a similar number have label
collision issues (M4). Among the label collision issues, the compute unit collision (M4A) is the most
common, with 35 instances discovered. Service misconfigurations (M5) occur but less frequently;
they only affect individual applications, not the cluster (those indicated as M4 in the table). Finally,
only 3% of applications have containers binding to the host network namespace (M?7). Figure 3a
shows the ten most misconfigured applications and Figure 3b shows the ten applications with the
highest number of different concurrent misconfigurations. These are all distributed applications
spanning from log collection to load-balancing. Among the most misconfigured applications by
number, all lack network policies (M6) and have multiple open ports that are not declared (M1); 9
out of 10 bind to the host network namespace (M7); 4 out of 10 applications listen to ephemeral
ports (M2). Regarding the applications with the most types of misconfigurations, they also lack
network policies but the other misconfigurations are more evenly distributed.

We then focused our attention on misconfigurations based on the type of dataset they belong to.
For this purpose, we grouped the datasets according to their use case as described in Section 4.1.
We noted that every application in the sharing and production datasets exhibited at least one
misconfiguration — their average number of misconfigurations per application was 3.35 and 4.44,
respectively. In contrast, misconfigurations were found in only 39% of charts built for internal use,
with an average number of misconfigurations slightly above one (specifically, 1.11). These results
show that charts built by third parties have a significantly higher number of misconfigurations
than those built for internal use: three to four times on average. This happens as charts are shared
to promote adoption; as a consequence, their creators favor support for diverse functionality
(e.g., optional application components) over strict enforcement of secure defaults. In contrast,
charts intended for internal use are tightly integrated, whereas those for production environments
generally rely on additional components or tooling. See also Section 5.2 for additional discussion.

We lastly characterized how misconfigurations are distributed across the different applications
in the datasets (Figure 4a). The data from our experiments revealed that 5% of the applications
exhibit at least 10 misconfigurations each, overall accounting for 25% of the total number of
misconfigurations. Moreover, 8% of the applications had between 5 and 9 misconfigurations each,
corresponding to about 22% of the total. The rest of the misconfigurations were almost evenly
distributed between the remaining applications. We have found that monitoring applications (such

, Vol. 1, No. 1, Article . Publication date: June 2025.

12 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

20
18
2'® Network Policies Reachable
3 1: Dataset Enabled Affected Pods Services
E"’ Bitnami 48 (2) 3 14(1) 0
£ Z CNCF 4(0) 0 0(0) 0
2, EEA 19 (19) 8 13(3) 1
: il “m “m Prometheus C. 5.(0) 3 20 0
O Hm Hm Hm Hm Hm ‘ " .
25 50 75 100 125 150 175 200 225 25 Wikimedia 25 (23) 4 8(5) 2

Application number

(@) (b)

Fig. 4. (a) Total misconfigurations per application. (b) Impact of network policies on endpoint reachability.

as observability frameworks) often exhibit open ports that are not declared (M1). Furthermore,
applications that leverage a master-worker architecture (for instance, workflow engines) generally
rely on dynamic ports (M2) for coordination purposes. Finally, applications providing a substantial
number of microservices (including those for federated services) tend to have declared ports that are
not opened (M3), because most of the corresponding features are not actually enabled at runtime.

4.3.2 Impact of Network Policies. Network policies can be ill-defined, leading to a false sense of
security. To evaluate their impact on misconfigurations, we analyzed all charts that define network
policies and enabled them if they were not active by default. We followed the same methodology
described in Section 4.2 to determine whether network misconfigurations were mitigated by the
policies. Specifically, we parsed the results of the runtime analysis and searched for endpoints
corresponding to misconfigured ports that remained reachable from within the cluster. Figure 4b
shows the obtained results; the Banzai Cloud dataset is not reported as none of the applications
therein had any network policies. Misconfigured charts with loose network policies are indicated
as affected in the table. The values within parentheses indicate the use of dynamic ports.

The table shows that enabling network policies did not remedy misconfigurations in most cases.
The allowed connections to misconfigured pods are higher than those to misconfigured services,
which is aligned with the previous findings and also due to the presence of dynamic ports. Clearly,
the sheer amount of reachable pods and services depends on the size of the applications, in terms
of the number of containers therein. Also note that the results are obtained by deploying a single
application in the cluster; the opportunities for reaching misconfigured ports would increase for
multiple applications deployed at once. In summary, the datasets contain unwanted or unknown
connections even when network policies are applied. This is not always due to dynamic ports, but
it is also caused by erroneous settings. For instance, we noticed cases where strict policies targeted
pods with access to the host network; however, network policies are not effective in such a case.

4.4 Comparison with State of the Art

This section evaluates our solution against state-of-the-art security tools for Kubernetes.

4.4.1 Considered Solutions. We considered representative tools among those found as described in
Section 3.2. For clarity, we divide them in the categories detailed below.

e Static analysis. They analyze Kubernetes manifests, YAML files, and other static configurations
before they are deployed in the cluster, comparing them against a database of best practices [17,
47, 65] or security guidelines [71, 80], such as the CIS benchmark for Kubernetes [33]. They
also offer actionable insights to improve the security of the deployments.

, Vol. 1, No. 1, Article . Publication date: June 2025.

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 13

Table 3. Network misconfigurations detected by the considered tools and our solution. The symbols indicate
whether these were @ found, © partially found (i.e., either find less misconfigurations or require multiple
runs), X missed, or — not applicable (i.e., could not be found by intrinsic limitations in the type of tool).

M4 M5
Tool Version Type M1 M2 M3 M4A M4B M4C M4* M5A M5B M5C M5D M6 M7
Checkov [17] 3.2.23 Static — — — X X X — — X X X o o
Kubeaudit [71] 0.22.1 Static — — — X X X — — X X X e o
KubeLinter [43] 0.6.8 Static X X X X X [X [
Kube-score [80] 1.18.0 Static — — — X X X — — X X [} [} X
Kubesec [47] 2.14.0 Static — — X X X X X X X ()
SLI-KUBE [65] N/A Static X X X X X X X o
Kube-bench [3] 0.7.1 Runtime X X X X X X — X X X X X ()
Kubescape [8] 3.0.3 Hybrid X X X © © © X X X X X [[
Trivy [4] 0.49.1 Hybrid x X X X X X X X X X X X @
Neuvector [75] 5.3.0 Platform X X X X X X X X X X X X ()
StackRox [73] 3.749 Platform X X X X X X X X X X X X (]
Our solution — Hybrid @ @ © [) [] [[[[) [) [} o o

e Runtime analysis. Analyze Kubernetes resources deployed in a cluster via the Kubernetes
API [3] or by inspecting running applications [15], providing a comprehensive view of the
system based on all available cluster resources. Some tools [7] impersonate malicious actors
to assess application security.

e Other approaches A few tools support both static and runtime analysis [4, 8], making them
hybrid solutions. Another class of tools is represented by those performing continuous
security monitoring, which are also commonly known as security platforms [73, 75].

4.4.2 Methodology. We selected representative Kubernetes configurations exhibiting the miscon-
figurations in Table 1 for the evaluation by ensuring that the considered charts are representative of
all the misconfiguration types identified in the paper. We employed this approach for convenience,
to reduce the input provided to the different tools and to simplify the analysis of the issues reported
in the output. We applied the configuration in a running Kubernetes cluster with the same setup as
Section 4.1 for the tools belonging to the runtime, hybrid, and platform categories.

Note that specific tools are unable to identify certain misconfigurations as a limitation intrinsic
to their nature. For instance, tools only performing static analysis cannot discover issues occur-
ring at runtime; conversely, those purely carrying out analysis at runtime are unable to detect
misconfiguration due to cluster-wide collisions. We indicate these as “not applicable” in the table.

4.4.3 Results. Table 3 shows the misconfigurations identified by the considered tools, grouped
by their type for convenience. First of all, we can see that none of the existing tools are able to at
least partially recognize all misconfigurations, even though they successfully detect one or more of
them - the lack of network policies (M6) and host network mapping (M7) are the most recognized.

Clearly, tools only supporting static analysis are (by their inherent nature) unable to identify
most of the misconfigurations because they only inspect the configuration files. Even so, they
still miss many of the misconfigurations they could possibly detect: all of those involving label
collision (M4) and most of what relates to services (M5) — only KubeLinter [43] and Kube-score [80]
identify services without target (M5D). In contrast, security platforms and hybrid tools could in
principle recognize most of the misconfigurations considered in this work, as they also analyze the

, Vol. 1, No. 1, Article . Publication date: June 2025.

14 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

applications at runtime. However, their effectiveness is poor in practice: only Kubescape [8] reports
deployments in which common labels are used for resources, hinting at issues involving label
collisions. Security platforms do get system information from the Kubernetes APIs and monitor
processes and network sockets; however, they do not make any effort in notifying the user about po-
tentially misconfigured resources, effectively delaying the detection of lateral movement after it has
already occurred. In contrast, our approach was the only one to identify all the misconfigurations.
We also checked the source code of the considered tools to obtain more insights why misconfigu-
rations were missed. We found that most of them do not check the relationship between Kubernetes
resources of different types, for instance, between a service and a pod. This explains why static
analysis tools were not able to identify label collisions and service-related issues as we instead do.
Moreover, tools performing runtime analysis only query the configuration of resources from the
API Server but do not actually inspect the runtime environment of the containers (for instance,
open ports). Finally, most security platforms do not check for network-related settings but allow to
record the entire traffic and possibly generate network policies based on it. Unfortunately, the latter
is not enough as it can only be done assuming that all recorded traffic is intended and legitimate.

5 Disclosure

Our approach allows to identify diverse misconfigurations, however, it does not assess their severity.
This is because such an assessment requires expert knowledge in the domain of the application
as deployed in the Kubernetes cluster. For this reason, we reported the results of our analysis to
the relevant organizations and engaged with their developers to understand the actual security
implications of the misconfigurations in specific cases.

5.1 Process and Follow-up

We first performed a responsible disclosure of our findings to the organizations associated with the
datasets we analyzed (see Table 2), reporting a total of 634 misconfigurations. We then engaged in
an active and constructive discussion with these organizations so as to assess their severity through
expert knowledge in the domain of the application. Appendix A.1 provides additional details on
the methodology used for the disclosure.

5.1.1 Acceptance and Severity Assessment. All developers recognized the issues we reported as
misconfigurations. Those using software tools for security analysis also acknowledged that the
issues identified in our work had not been detected before. Moreover, the respondents reported
label collisions (M4) as the most critical and “declared port not open” (M3) as the least critical in
terms of security risks. A few developers revealed that security issues related to lateral movement
were internally classified as minor. This substantiates our premise that cluster-internal networking
is a security threat that is often overlooked.

Regarding the severity of the reported misconfigurations, a respondent from the European
Environment Agency explicitly stated in their feedback that the changes were security mitigations,
whereas a developer from Bitnami mentioned “improved security of the application” as a benefit in
their pull requests. Finally, a respondent from Wikimedia reported the outcomes of a security review
of the reported misconfigurations; their feedback excluded the chance of remote code execution,
but did not rule out other attacks. Overall, two of the respondents addressed (at least partially) the
identified misconfigurations in less than 72 hours after receiving the report - at the time of writing,
misconfigurations affecting 30 applications have been fixed across five different organizations.
Appendix A.2 provides more details on the specific changes that fixed these misconfigurations.

5.1.2 Accuracy and Analysis of Special Cases. Engaging with the developers also allowed us to
detect false positives in our implementation, as well as to identify distinctive configurations for

, Vol. 1, No. 1, Article . Publication date: June 2025.

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 15

certain applications. One of the developers pointed out issues on UDP ports displayed as part of the
misconfigurations. After investigating these, we found out that random UDP ports were sometimes
reported as part of the runtime analysis. This kind of false positives amount to about 8% of the
total misconfigurations initially identified; they are not included in the final results summarized in
Table 2. We also received feedback regarding the service label collision misconfiguration, explaining
a case where the collision was deliberate. It involved two services targeting a pool of database pods,
wherein a service load-balances the requests to the pool of pods while the other one (headless)
always retrieves the same instance, intended for write operations.

A special use case was found in the Wikimedia dataset. Our analysis of the dataset showed
that nearly half of the applications expose ports that are not declared. A careful inspection of the
repository and of the tooling used by Wikimedia revealed a rather unconventional use of the port
declaration, which we confirmed with the developers. In fact, Wikimedia charts only declare the
ports of the applications that are needed for communication with other components, whereas
undeclared ports are only intended to be used within the component. This is enforced with a custom
tool that automatically generates network policies from the ports declared in the configuration files.
The misconfigurations we identified in this scenario cannot actually be considered false positives
but show how users rely on the declarative configuration of applications, as discussed in Section 3.4.

5.2 Feedback

This section summarizes the findings of our analysis that emerged as part of the disclosure process.

5.2.1 Implicit Security Assumptions. The recipients of the disclosures reacted differently to the
reported misconfigurations. Organizations that create charts for third parties stated that the port
information included in the chart description should not be used to create network policies. They
rely on the assumption that users leveraging their charts create their network policies by manually
inspecting connections with real traffic, as one of the respondents stated: “Security sensitive users
should probably start with ‘allow nothing’ and add allowances based on real world traffic policies”.
The respondents agreed that network policies are needed. Those who did not include network
policies with their applications justified their choice because of their peculiar features: “I agree
users probably should write network policies for their applications [...] I am not very convinced they
should be in the helm chart, as they are so specific to each user”. They also suggested using external
tools (such as third-party network plugins) to define and enforce network policies.

It is also interesting to notice how organizations that consume charts created by others value
accurate declaration of port information, compared to those that create charts for their own
applications. This is because they use such information to generate network policies. We are
convinced that omitting network policies as part of applications because of the above-mentioned
concerns is not only unsafe but fundamentally incorrect. Kubernetes, indeed, treats most of the
network resources as interfaces, so that users can choose how to implement them. Therefore, the
NetworkPolicy resource is a suitable candidate to provide a generic policy description that can
later be implemented by other plugins.

5.2.2 Information Hiding. We have also demonstrated that users actually leverage the ambiguous
nature of the port description to fit their own needs. This happened for Wikimedia, where the port
description in the pods is used to automatically generate network policies. This case is interesting
because it follows the principle of “information hiding”, where an interface is created between
modules, exposing public interfaces and hiding those that are private.

, Vol. 1, No. 1, Article . Publication date: June 2025.

16 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

6 Discussion

This section summarizes our findings, offers recommendations on networking-related best practices
for cloud-native applications running in Kubernetes, and examines the limitations of our work.

6.1 Findings

Ambiguous or Unspecific Guidelines. Following security best practices may create a false sense
of security for both organizations and individual developers. This is especially because these best
practices are not evenly developed. For instance, the CIS Kubernetes benchmark [33] contains 30
recommendations on how to secure the API server and 13 about role-based access control, but only
two of them refer to network policies. To make it worse, these guidelines are ambiguous or not
specific. In fact, they only state “ensure that the [container networking interface] supports Network
Policies” (5.3.1) and “ensure that all Namespaces have network policies” (5.3.2). Although the
recommendations are indeed valid, they fail to provide enough detail on how to correctly configure
network policies. Moreover, many key aspects of internal networking are left out, including how
to ensure that all the resources are correctly isolated, and it is the duty of the administrator to
manually check them. As previously highlighted, Kubernetes does not automatically alert if a
resource to be deployed has a label collision with an existing one in the cluster, or if the ports
specified in a network policy actually match those of a given pod or service.

Reliance on Security Tools. Organizations rely on security tools to assess the security of their
Kubernetes clusters [67, 78] and to alleviate the manual work required to secure the cluster. However,
these tools often automate the checks suggested by the guidelines, inheriting their limitations and
ambiguities. Therefore, they are able to correctly find inconsistencies on access control policies but
miss most of the networking misconfigurations presented in this paper. Unfortunately, security
tools are still immature [56] and do not completely cover all the spectrum of misconfigurations
that can appear in a complex environment such as a Kubernetes cluster. Therefore, we recommend
developers not to fully depend on those tools but to actively incorporate the measures proposed
here to assess the security of their applications and clusters.

Zero Trust and Service Meshes. Zero trust is an emerging approach to security that moves away
from the traditional concept of static network perimeter [69]. In fact, it assumes that no implicit trust
is granted to resources purely based on the physical / network location and ownership of a device. As
a result, all communication flows should be strongly authenticated and authorized [66]. In practice,
zero trust in Kubernetes is achieved by employing a service mesh such as Istio [23] — a software
layer that allows to monitor and control the information flow between different microservices,
typically through sidecar proxies that authenticate, authorize and encrypt communications [49].
The misconfigurations presented in this work can bypass the security mechanisms of the service-
mesh. In fact, using a service mesh does not imply that the microservices in the application can only
be accessed through the mesh, since Kubernetes allows unbounded pod-to-pod communication by
default. Moreover, if applications in the mesh are misconfigured, the related security issues will
inevitably concern the mesh itself as well. Therefore, network policies are still needed to protect
direct access between components and enable defense in depth [38].

6.2 Recommendations

End users. Users need to understand the network properties and settings of the applications they
deploy to ensure proper network segregation. This involves carefully reviewing the network ports
associated with services and pods, as well as their relationships through labels and selectors. In
addition, users should verify that network policies are available, enabled, and properly configured.

, Vol. 1, No. 1, Article . Publication date: June 2025.

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 17

A recommended practice is to use runtime analysis tools [15, 75] to monitor open ports in the
cluster and critically assess their necessity — especially for optional or non-essential components.

A special case involves the use of dynamic ports. Network policies cannot handle them, therefore,
users should block access between a pod with dynamic ports and any unrelated service. A better
alternative is to change the configuration to prevent the use of dynamic ports. It is often sufficient to
manually configure the ports by setting environment variables or editing the default configuration.

Chart creators. Creators should include all necessary network-related information in their charts
for users to effectively deploy them. As a first step, they should document all ports that are open in
the pods and services of their applications. Moreover, it is advisable not only to define but also to
enable network policies by default in the chart, thereby establishing a more secure baseline for
Kubernetes applications. The best way to add network policies is to use the default NetworkPolicy
resource because it does not rely on third-party plugins. Finally, creators should carefully define
templates and default parameters in their charts to ensure secure and reliable deployments.

6.3 Limitations

Several factors may affect the accuracy and validity of our results. Some of them are due to our
software implementation; in particular, the runtime analysis erroneously reports UDP ports as
open in some cases (see Section 5.1.2). Moreover, it might miss ports that are not open during the
analysis, for instance, those triggered by incoming traffic or due to port knocking techniques.

Our approach assumes that all network-related configuration is self-contained in a Helm chart,
particularly, that it is defined through core Kubernetes components. However, users may rely
on external tools or third-party Kubernetes resources (e.g., network plugins), as highlighted in
Section 5.1.2. Another limitation of our approach is the lack of a ground truth. As a result, it
cannot provide a conclusive security assessment of an application without expert knowledge (see
Section 5.1.1). Instead, our analysis reports misconfigurations similar to what linters do.

Finally, our evaluation methodology relies on automatically deploying applications defined as
Helm charts. However, some applications require manual configuration or rely on cloud provider-
specific components to be successfully deployed; we could not consider these in our evaluation.
Despite covering several diverse datasets, the results we obtained may not generalize to other
scenarios, for instance, those not involving open-source applications.

7 Related work

Defensive security in the cloud spans multiple layers of the network infrastructure [32, 39]. The
rest of this section focus on the existing literature that is more closely related to our work.

Network isolation for containers. Nam et al. [59] carry out a security analysis of container
networking and devise a high-performance network stack that enforces security through a com-
munication sandbox. Similarly, Nakata et al. [58] propose a sandboxing mechanism to improve
network isolation for containers with a low overhead. In contrast, this work allows to harden
network security of Kubernetes clusters without relying on additional components. Zhu and
Gehrmann [81] design and implement a system to generate AppArmor profiles for Kubernetes
applications, including network rules, by collecting measurements at runtime. Their system requires
legitimate traffic to produce meaningful results, whereas our work allows to identify unnecessary
or malicious connections in a cluster purely based on applications’ endpoints. Open Policy Agent
[26] is a general-purpose engine for policy enforcement; it offers native support for Kubernetes
as an admission controller that intercepts requests to the orchestrator API and applies policies.
Service meshes [49] such as Istio allow to easily realize access control, encryption, and end-to-end

, Vol. 1, No. 1, Article . Publication date: June 2025.

18 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

authentication in a Kubernetes cluster. However, these solutions rely on correct policies (as noted in
Section 6.1), whereas our solution enables finding misconfigurations that can be easily overlooked.

Attacks to Kubernetes clusters. Minna et al. [55] point out that the network abstractions
employed by Kubernetes may result in unexpected attacks when users approach cloud security with
a mental model derived from physical networks. As a step further, this work defines different types
of misconfigurations and identifies them in real applications belonging to different use cases. Yang
et al. [79] demonstrate lateral movement attacks caused by excessive permissions on Kubernetes
service accounts. Gu et al. [34] devise a solution to automatically detect such permissions that can be
exploited to harm a Kubernetes cluster. In contrast, we rather focus on network misconfigurations
that originate from Kubernetes abstractions rather than on loosely defined role-based access control
rules. Ben David and Bremler-Barr [12] show that Kubernetes clusters are prone to Economic
Denial of Sustainability (EDoS) attacks — those causing economic damage through unnecessary
use of resources — triggered by its auto-scaling mechanism. Chamberlain et al. [16] devise a model
based on Markov decision processes to characterize EDoS attacks to Kubernetes. Our work does
not address such a specific attack but considers network misconfigurations that can lead to diverse
security issues, depending on the specific behavior of a Kubernetes application and its deployment.

Security misconfigurations. Several studies address system configuration in the context of
infrastructure as code [64]. Similarly, Dietrich et al. [31] analyze the causes behind the occurrence
of misconfigurations by surveying system operators. In contrast, our work specifically targets
Kubernetes and does not rely on specific vendors or cloud providers. Shamim et al. [70] accurately
review the best practices for securing Kubernetes clusters. They advocate to change default config-
urations and set audit / network control policies, however, they do not provide details on how to do
that. Instead, our work offers a comprehensive account of network misconfigurations, including
guidelines on how to fix them. A report by Red Hat on the state of Kubernetes security based on a
large-scale survey [67] has found that 40% of the respondents experienced security issues related to
misconfigurations. Unfortunately, the report does not include a detailed analysis on their nature, as
we do here instead. Rahman et al. [65] carry out an empirical study of security misconfigurations
by manually inspecting a dataset of open-source Kubernetes manifests, then validate their findings
through a custom static analysis tool. Instead, we apply both static and runtime analysis, consider
multiple datasets, and specifically focus on misconfigurations related to Kubernetes networking.

Analysis of Kubernetes applications. Minna and Massacci [56] survey runtime analysis tools for
Kubernetes developed by both the research community and the industry; as a result, they identify
orchestration security and resilience to internal threats as open challenges. We specifically target
the latter in the context of lateral movement within a Kubernetes cluster. Blaise and Rebecchi [13]
devise a graph-theoretic methodology to assess the security of microservice-based applications
defined in terms of Helm charts. However, their work derives connectivity purely based on what is
declared in the configuration files; instead, our solution also leverages runtime analysis for a more
reliable characterization of network misconfigurations. Kubesonde [15] employs runtime analysis
to derive the network connectivity of Kubernetes applications. Specifically, it just reports such a
connectivity but does not assist users in identifying possible issues related to it as we do in this
work. Finally, there is a large amount of software tools that help users find security issues related
to Kubernetes [3, 4, 8, 17, 43, 47, 65, 71, 73, 75, 80]. Unfortunately, they do not explicitly point out
specific network misconfigurations or fail to identify most of them, as demonstrated by Table 3.

, Vol. 1, No. 1, Article . Publication date: June 2025.

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 19

8 Conclusion

This work investigated security issues originated by network misconfigurations affecting Kuber-
netes clusters, with special focus to lateral movement. A systematic review formed the basis for
us to identify novel network misconfigurations that could result in security threats. Accordingly,
we analyzed a large amount of open-source Kubernetes applications from several organizations.
Our evaluation revealed that application deployments exhibit a significant amount of these mis-
configurations. The related findings were disclosed to the relevant organizations, most of which
acknowledged and fixed the misconfigurations. Our work presents easily identifiable sources of
security issues, thereby helping to secure Kubernetes deployments and prevent practical attacks.
There are still interesting directions for future research. We believe that applications would benefit
from being specified through modular charts with clearly defined required / optional dependencies.
This would allow to more precisely specify the intended network connectivity between components,
which could then be leveraged to possibly derive network policies in a automated way. Indeed,
Kubernetes is configuration-centric, yet it is still difficult for end users to understand the actual
connectivity between different microservices. We expect visualization and monitoring tools to
become more effective in assisting users by explicitly supporting network-related metrics and
providing proactive advice on the resulting security issues, for instance, through machine learning.

Acknowledgments

This work was partially supported by: the Research Council of Finland under grants number
345964 and 357533; the INCIBE-UPV’s Chair of Cybersecurity funded by the European Union
under the NextGenerationEU initiative through the Spanish government’s Plan de Recuperacion,
Transformacion y Resiliencia.

References

[1] Yasemin Acar et al. 2017. Developers Need Support, Too: A Survey of Security Advice for Software Developers. In
2017 IEEE Cybersecurity Development (SecDev). 22-26. https://doi.org/10.1109/SecDev.2017.17

[2] Amit Seal Ami, Nathan Cooper, Kaushal Kafle, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni. 2022. Why
crypto-detectors fail: A systematic evaluation of cryptographic misuse detection techniques. In 2022 IEEE Symposium
on Security and Privacy (SP). 614-631. https://doi.org/10.1109/SP46214.2022.9833582

[3] Aqua 2024. Kube-bench: secure checks to Kubernetes deployments. https://github.com/aquasecurity/kube-bench
Accessed on September 25, 2024.

[4] Aqua Security 2024. Trivy: security scanner for Kubernetes. https://github.com/aquasecurity/trivy Accessed
on September 25, 2024.

[5] Aquasecurity. 2021. Aquasecurity The State of Kubernetes and Docker Security in 2021. https://www.aquasec.com/
news/the-state-of-kubernetes-and-docker-security-in-2021/ Accessed on September 25, 2024.

[6] Aquasecurity. 2023. Aquasecurity Blog. https://www.aquasec.com/news/kubernetes-clusters-under-attack/
Accessed on September 25, 2024.

[7] Aquasecurity. 2024. Kube-hunter: Hunt for security weaknesses in Kubernetes clusters. https://github.com/
aquasecurity/kube-hunter Accessed on September 25, 2024.

[8] Aquasecurity. 2024. Kubescape. https://github.com/kubescape/kubescape Accessed on September 25, 2024.

[9] Aquasecurity 2024. TFsec. https://aquasecurity.github.io/tfsec/. Accessed on September 25, 2024.

[10] Kubernetes Authors. 2024. Securing a Cluster. https://kubernetes.io/docs/tasks/administer-cluster/securing-
a-cluster/ Accessed on September 25, 2024.

[11] Christian Banse, Immanuel Kunz, Angelika Schneider, and Konrad Weiss. 2021. Cloud Property Graph: Connecting
Cloud Security Assessments with Static Code Analysis. In 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD). 13-19. https://doi.org/10.1109/CLOUD53861.2021.00014

[12] Ronen Ben David. and Anat Bremler-Barr. 2021. Kubernetes Autoscaling: YoYo Attack Vulnerability and Mitigation. In
Proceedings of the 11th International Conference on Cloud Computing and Services Science - CLOSER. INSTICC, SciTePress,
34-44. https://doi.org/10.5220/0010397900340044

[13] Agathe Blaise and Filippo Rebecchi. 2022. Stay at the Helm: secure Kubernetes deployments via graph generation
and attack reconstruction. In 2022 IEEE 15th International Conference on Cloud Computing (CLOUD). 59-69. https:

, Vol. 1, No. 1, Article . Publication date: June 2025.

https://doi.org/10.1109/SecDev.2017.17
https://doi.org/10.1109/SP46214.2022.9833582
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/trivy
https://www.aquasec.com/news/the-state-of-kubernetes-and-docker-security-in-2021/
https://www.aquasec.com/news/the-state-of-kubernetes-and-docker-security-in-2021/
https://www.aquasec.com/news/kubernetes-clusters-under-attack/
https://github.com/aquasecurity/kube-hunter
https://github.com/aquasecurity/kube-hunter
https://github.com/kubescape/kubescape
https://aquasecurity.github.io/tfsec/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://doi.org/10.1109/CLOUD53861.2021.00014
https://doi.org/10.5220/0010397900340044
https://doi.org/10.1109/CLOUD55607.2022.00022
https://doi.org/10.1109/CLOUD55607.2022.00022

[l

—

[t

—

—

—_

—

—

—

[t

—

Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

//doi.org/10.1109/CLOUD55607 .2022.00022

Virginia Braun and Victoria Clarke. 2021. Thematic analysis: A practical guide. (2021). https://uk.sagepub.com/en-
gb/eur/thematic-analysis/book248481

Jacopo Bufalino, Mario Di Francesco, and Tuomas Aura. 2023. Analyzing network-layer access and isolation between
microservices with Kubesonde. In Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE °23), December 3-9, 2023, San Francisco, CA, USA.
Jonathan Chamberlain, Jilin Zheng, Zeying Zhu, Zaoxing Liu, and David Starobinski. 2025. Exploiting Kubernetes
Autoscaling for Economic Denial of Sustainability. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 9, 2 (June 2025), 29. https://doi.org/10.1145/3727114

Checkov 2024. Checkov: static code analysis for infrastructure as code. https://checkov.io/ Accessed on September
25, 2024.

Michele Chiari, Michele De Pascalis, and Matteo Pradella. 2022. Static Analysis of Infrastructure as Code: a Survey. In
2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C). 218-225. https://doi.org/10.
1109/ICSA-C54293.2022.00049

Cloud Native Computing Foundation (CNCF). 2020. CNCF Helm Project Journey Report. Cloud Native Computing
Foundation. https://www.cncf.io/wp-content/uploads/2020/08/CNCF_Helm_Project_Journey_Report.pdf
CNCF. 2024. ArtifactHub. https://artifacthub.io Accessed on September 25, 2024.

CNCEF 2024. CNCF Cloud Native Interactive Landscape. https://landscape.cncf.io/. Accessed: April 16, 2024.
CNCF. 2024. Helm: The package manager for Kubernetes. https://helm.sh/ Accessed on September 25, 2024.
CNCF 2024. Istio. https://istio.io/ Accessed on September 25, 2024.

CNCEF 2024. Kubernetes: Production-Grade Container Orchestration. https://kubernetes.io/ Accessed on
September 25, 2024.

CNCF. 2024. Minikube. https://minikube.sigs.k8s.io/docs/ Accessed on September 25, 2024.

CNCF. 2024. OPA: Open Policy Agent. https://www.openpolicyagent.org/ Accessed on September 25, 2024.
CNCF 2024. Prometheus: A Next-Generation Monitoring System. https://prometheus.io/ Accessed on September
25, 2024.

CNCFSurvey 2024. CNCF 2022 Annual Survey. https://www.cncf.io/reports/cncf-annual-survey-2022/ Ac-
cessed on September 25, 2024.

Concourse 2024. Concourse CL. https://concourse-ci.org/. Accessed: December 2, 2024.

Wei Lien Dang. 2020. Cryptojacking Attacks in Kubernetes: How to Stop Them. Red Hat Blog. https://cloud.
redhat.com/blog/cryptojacking-attacks-in-kubernetes-how-to-stop-them Accessed on September 25, 2024.
Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias Fiebig. 2018. Investigating System Operators’
Perspective on Security Misconfigurations. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada). 1272-1289. https://doi.org/10.1145/3243734.3243794

Billawa et al. 2022. SoK: Security of Microservice Applications: A Practitioners’ Perspective on Challenges and Best
Practices. In Proceedings of the 17th International Conference on Availability, Reliability and Security (ARES °22). Article
9,10 pages. https://doi.org/10.1145/3538969.3538986

CIS (Center for Internet Security). 2024. CIS Kubernetes Benchmark. Technical Report. Center for Internet Security.
https://www.cisecurity.org/benchmark/kubernetes/

Yue Gu, Xin Tan, Yuan Zhang, Siyan Gao, and Min Yang. 2025. EPScan: Automated Detection of Excessive RBAC
Permissions in Kubernetes Applications. In 2025 IEEE Symposium on Security and Privacy (SP). 3199-3217. https:
//doi.org/10.1109/SP61157.2025.00011

Helm. 2024. Helm Documentation: Charts. https://helm.sh/docs/topics/charts/. Accessed: December 2, 2024.
Aftab Hussain and Anton Burtsev. 2020. Common Vulnerabilities and Exposures in the Cloud. Technical Report.
University of California at Irvine. https://aftabhussain.github.io/documents/pubs/tech-report20-cve.pdf
Isovalent. 2024. Tetragon. https://tetragon.io/. Accessed on September 25, 2024.

Istio. 2024. Security Best Practices — Defense in depth with NetworkPolicy. https://istio.io/latest/docs/ops/
best-practices/security/#defense-in-depth-with-networkpolicy Accessed on September 5, 2024.

Hyunsu Jang, Jachoon Jeong, Hyoungshick Kim, and Jung-Soo Park. 2015. A Survey on Interfaces to Network Security
Functions in Network Virtualization. In 2015 IEEE 29th International Conference on Advanced Information Networking
and Applications Workshops. 160-163. https://doi.org/10.1109/WAINA.2015.103

Omar Jarkas, Ryan Ko, Naipeng Dong, and Redowan Mahmud. 2025. A Container Security Survey: Exploits, Attacks,
and Defenses. ACM Comput. Surv. 57, 7, Article 170 (Feb. 2025), 36 pages. https://doi.org/10.1145/3715001
Arnold Johnson, Arnold Johnson, Kelley Dempsey, Ron Ross, Sarbari Gupta, and Dennis Bailey. 2011. Guide for
security-focused configuration management of information systems. NIST Special Publication 800-128. National Institute
of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-128

[42] KubeDL 2025. Run in Host Network. https://kubedl.io/docs/training/hostnetowrk/ Accessed on May 26, 2025.

, Vol. 1, No. 1, Article . Publication date: June 2025.

https://doi.org/10.1109/CLOUD55607.2022.00022
https://doi.org/10.1109/CLOUD55607.2022.00022
https://doi.org/10.1109/CLOUD55607.2022.00022
https://uk.sagepub.com/en-gb/eur/thematic-analysis/book248481
https://uk.sagepub.com/en-gb/eur/thematic-analysis/book248481
https://doi.org/10.1145/3727114
https://checkov.io/
https://doi.org/10.1109/ICSA-C54293.2022.00049
https://doi.org/10.1109/ICSA-C54293.2022.00049
https://www.cncf.io/wp-content/uploads/2020/08/CNCF_Helm_Project_Journey_Report.pdf
https://artifacthub.io
https://landscape.cncf.io/
https://helm.sh/
https://istio.io/
https://kubernetes.io/
https://minikube.sigs.k8s.io/docs/
https://www.openpolicyagent.org/
https://prometheus.io/
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://concourse-ci.org/
https://cloud.redhat.com/blog/cryptojacking-attacks-in-kubernetes-how-to-stop-them
https://cloud.redhat.com/blog/cryptojacking-attacks-in-kubernetes-how-to-stop-them
https://doi.org/10.1145/3243734.3243794
https://doi.org/10.1145/3538969.3538986
https://www.cisecurity.org/benchmark/kubernetes/
https://doi.org/10.1109/SP61157.2025.00011
https://doi.org/10.1109/SP61157.2025.00011
https://helm.sh/docs/topics/charts/
https://aftabhussain.github.io/documents/pubs/tech-report20-cve.pdf
https://tetragon.io/
https://istio.io/latest/docs/ops/best-practices/security/#defense-in-depth-with-networkpolicy
https://istio.io/latest/docs/ops/best-practices/security/#defense-in-depth-with-networkpolicy
https://doi.org/10.1109/WAINA.2015.103
https://doi.org/10.1145/3715001
https://doi.org/10.6028/NIST.SP.800-128
https://kubedl.io/docs/training/hostnetowrk/

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 21

[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]

[52]

[53]
[54]
[55]
[56]
[57]
[58]

[59]

[60]
[61]
[62]
[63]

[64]

[65]

[66]
[67]

[68]

KubeLinter. 2024. KubeLinter: Static analysis for Kubernetes. https://github. com/stackrox/kube-linter/. Accessed
on September 25, 2024.

Kubernetes. 2024. Kubernetes Documentation: Headless Services. https://kubernetes.io/docs/concepts/services-
networking/service/#headless-services. Accessed: December 2, 2024.

Kubernetes. 2024. Kubernetes Documentation: Labels and Selectors. https://kubernetes.io/docs/concepts/
overview/working-with-objects/labels/. Accessed: December 2, 2024.

Kubernetes. 2025. Kubernetes Documentation: Cluster Networking. https://kubernetes.io/docs/concepts/
cluster-administration/networking/. Accessed: May 19, 2025.

Kubesec 2024. Kubesec: Security risk analysis for Kubernetes resources. https://kubesec.io/ Accessed on September
25, 2024.

Kyverno. 2024. Kyverno. https://kyverno.io/. Accessed on September 25, 2024.

Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao, and Yanbo Han. 2019. Service Mesh: Challenges, State of the
Art, and Future Research Opportunities. In 2019 IEEE International Conference on Service-Oriented System Engineering
(SOSE). 122-1225. https://doi.org/10.1109/SOSE.2019.00026

Xing Li, Yan Chen, Zhiqiang Lin, Xiao Wang, and Jim Hao Chen. 2021. Automatic Policy Generation for Inter-Service
Access Control of Microservices. In USENIX Security 21. 3971-3988.

Guannan Liu, Xing Gao, Haining Wang, and Kun Sun. 2022. Exploring the unchartered space of container registry
typosquatting. In 31st USENIX Security Symposium (USENIX Security 22). 35-51.

Vijay B Mahajan and Sunil B Mane. 2022. Detection, Analysis and Countermeasures for Container based Misconfigu-
ration using Docker and Kubernetes. In 2022 International Conference on Computing, Communication, Security and
Intelligent Systems (IC3SIS). 1-6. https://doi.org/10.1109/IC3SIS54991.2022.9885293

Microsoft. 2021. Secure containerized environments with updated threat matrix for Kubernetes. https://www.
microsoft.com/en-us/security/blog/?p=93183 Accessed on September 25, 2024.

Microsoft. 2024. Kubernetes Network Policies in Azure. https://learn.microsoft.com/en-us/azure/virtual-
network/kubernetes-network-policies. Accessed on September 25, 2024.

F. Minna, A. Blaise, F. Rebecchi, B. Chandrasekaran, and F. Massacci. 2021. Understanding the Security Implications of
Kubernetes Networking. IEEE Security & Privacy 19, 05 (2021), 46-56. https://doi.org/10.1109/MSEC.2021.3094726
Francesco Minna and Fabio Massacci. 2023. SoK: Run-time security for cloud microservices. Are we there yet?
Computers & Security 127 (2023), 103119. https://doi.org/10.1016/j.cose.2023.103119

MITRE 2024. MITRE ATT&CK. https://attack.mitre.org Accessed on September 25, 2024.

Yuki Nakata, Katsuya Matsubara, and Ryosuke Matsumoto. 2021. Concentrated Isolation for Container Networks
toward Application-Aware Sandbox Tailoring. In Proceedings of the 14th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC ’21). Article 15, 10 pages. https://doi.org/10.1145/3468737.3494092

Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras, Vinod Yegneswaran, and Seungwon Shin. 2020. BASTION: A
Security Enforcement Network Stack for Container Networks. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 81-95.

Sam Newman. 2021. Building microservices (21 ed.). O’Reilly Media.

National Security Agency (NSA), Cybersecurity, and Infrastructure Security Agency (CISA). Aug. 2022. Kubernetes
Hardening Guidance. https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-
release-kubernetes-hardening-guidance/.

OWASP 2024. A05 Security Misconfiguration - OWASP Top 10:2021. https://owasp.org/Top10/A05_2021-Security_
Misconfiguration/ Accessed on September 25, 2024.

Prometheus Node Exporter 2025. Monitoring Linux host metrics with the Node Exporter. https://prometheus.io/
docs/guides/node-exporter/ Accessed on May 26, 2025.

Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2019. A systematic mapping study of infrastructure
as code research. Information and Software Technology 108 (2019), 65-77. https://doi.org/10.1016/j.infsof.2018.
12.004

Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul Pandita. 2023. Security Misconfigurations
in Open Source Kubernetes Manifests: An Empirical Study. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 99 (may
2023), 36 pages. https://doi.org/10.1145/3579639

Razi Rais, Christina Morillo, Evan Gilman, and Doug Barth. 2024. Zero Trust Networks: Building Secure Systems in
Untrusted Network (2™ ed.). O’Reilly Media, Incorporated.

Red Hat Inc. 2024. The state of Kubernetes security report: 2024 edition. https://www.redhat.com/en/resources/
state-kubernetes-security-report-2024 Accessed on June 2, 2025.

Liz Rice. 2020. Container Security: Fundamental Technology Concepts that Protect Containerized Applications (1% ed.).
O’Reilly Media.

, Vol. 1, No. 1, Article . Publication date: June 2025.

https://github.com/stackrox/kube-linter/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubesec.io/
https://kyverno.io/
https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.1109/IC3SIS54991.2022.9885293
https://www.microsoft.com/en-us/security/blog/?p=93183
https://www.microsoft.com/en-us/security/blog/?p=93183
https://learn.microsoft.com/en-us/azure/virtual-network/kubernetes-network-policies
https://learn.microsoft.com/en-us/azure/virtual-network/kubernetes-network-policies
https://doi.org/10.1109/MSEC.2021.3094726
https://doi.org/10.1016/j.cose.2023.103119
https: //attack.mitre.org
https://doi.org/10.1145/3468737.3494092
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1145/3579639
https://www.redhat.com/en/resources/state-kubernetes-security-report-2024
https://www.redhat.com/en/resources/state-kubernetes-security-report-2024

22 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

[69] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. 2020. Zero trust architecture. NIST Special Publication
800-207. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-207

[70] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond Rahman. 2020. XI commandments of Kubernetes
security: A systematization of knowledge related to Kubernetes security practices. In 2020 IEEE Secure Development.
58-64. https://doi.org/10.1109/SecDev45635.2020.00025

[71] Shopify 2024. Kubeaudit: command line tool to audit Kubernetes clusters. https://github.com/Shopify/kubeaudit
Accessed on September 25, 2024.

[72] Murugiah Souppaya, John Morello, and Karen Scarfone. 2017. Application Container Security Guide. NIST Special
Publication 800-190. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-190

[73] StackRox. 2024. StackRox: Security platform for cloud-native applications, containers, serverless and Kubernetes.
https://github.com/stackrox/stackrox Accessed on September 25, 2024.

[74] William Stallings. 2015. Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud (first ed.). Pearson.
https://www.pearson.com/en-us/pearsonplus/p/9780137582235.html

[75] SUSE. 2024. NeuVector: Full Lifecycle Container Security Platform. https://www.suse.com/products/neuvector/
Accessed on September 25, 2024.

[76] Terraform Linters. 2024. tflint GitHub Repository. https://github.com/terraform-linters/tflint. Accessed on
September 25, 2024.

[77] Thanos 2024. Thanos: Highly available Prometheus setup with long term storage capabilities. https://thanos.io/.
Accessed: December 2, 2024.

[78] VMware. 2023. VMware Blog. https://tanzu.vmware.com/content/ebooks/stateofkubernetes-2023 Accessed on
September 25, 2024.

[79] Nanzi Yang, Wenbo Shen, Jinku Li, Xungqi Liu, Xin Guo, and Jianfeng Ma. 2023. Take Over the Whole Cluster: Attacking
Kubernetes via Excessive Permissions of Third-party Applications. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security (CCS °23). 3048-3062. https://doi.org/10.1145/3576915.3623121

[80] Zegl 2024. Kube-score: Kubernetes object analysis with recommendations for improved reliability and security.
https://github.com/zegl/kube-score Accessed on September 25, 2024.

[81] Hui Zhu and Christian Gehrmann. 2022. Kub-Sec, an automatic Kubernetes cluster AppArmor profile generation
engine. In 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). 129-137. https:
//doi.org/10.1109/COMSNETS53615.2022.9668504

, Vol. 1, No. 1, Article . Publication date: June 2025.

https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.1109/SecDev45635.2020.00025
https://github.com/Shopify/kubeaudit
https://doi.org/10.6028/NIST.SP.800-190
https://github.com/stackrox/stackrox
https://www.pearson.com/en-us/pearsonplus/p/9780137582235.html
https://www.suse.com/products/neuvector/
https://github.com/terraform-linters/tflint
https://thanos.io/
https://tanzu.vmware.com/content/ebooks/stateofkubernetes-2023
https://doi.org/10.1145/3576915.3623121
https://github.com/zegl/kube-score
https://doi.org/10.1109/COMSNETS53615.2022.9668504
https://doi.org/10.1109/COMSNETS53615.2022.9668504

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations 23

A Disclosure

This section details the methodology employed for the responsible disclosure as well as its impact.

A.1 Methodology

We first identified the preferred private disclosure mechanism for each organization; if not specified,
we contacted the maintainer of the chart. The disclosure included: a list of identified misconfigura-
tions and the affected charts; the considered threat model (in Section 3.1) and a description of each
type of misconfiguration, including suggestions on mitigations. We then engaged in an active and
constructive discussion with these organizations so as to assess their severity through expert knowl-
edge in the domain of the application. Specifically, we asked to internally circulate an anonymous
questionnaire regarding our methodology and the severity of the misconfigurations. The questions
(in Figure 5) concerned the role and experience of the respondent, considerations on security
handling (including the use of security software), and feedback on the reported misconfigurations.

(1) What is the size of your organization, if applicable? (number of employees) [Options: 1-99; 100-999; 1,000-4,999;
5000 or more; Not applicable]

(2) What is your current role? Please describe your job position (e.g., Software Developer, SRE, DevOps Engineer) [Text]

(3) How long have you been using Helm? [Options: Less than a year; 1-2 years; More than 2 years]

(4) Do you follow any guidelines to secure Helm Charts? If so, what are the main steps? [Text]

(5) Do you use any software tools or services to check the security of Helm Charts? If so, which? [Text]

(6) Compared to Charts created by your organization, do you handle third-party Helm Charts differently? (e.g.,
sanity checks, security checks, testing) Third-party Charts are Charts created outside your organization. [Text]

(7) What do you think of the following statements: Lateral movement in Kubernetes means that an attacker gets control
of other pods after getting a foothold into the cluster. Port information in a Helm chart defines the network ports used
by the application’s services. This includes specifying port names, port numbers, and target port numbers.

o Detecting lateral movement in a Kubernetes cluster is a critical issue [Options on a 5-point Likert scale]
o | trust the port information in Helm Charts [Options on a 5-point Likert scale]

(8) Do you use network policies with your cloud applications?[Options: Yes; No]

(9) Why do you use network policies? What are their advantages and disadvantages?[Text, only if Yes was answered]

(10) Why you don’t use network policies? What are their disadvantages?[Text, only if No was answered]

(11) Evaluate your agreement or disagreement with the following statements using the scale provided. Choose the
response that best reflects your opinion on the following misconfigurations: Undeclared ports are ports used by
the container running in a pod, but not declared by the Chart/ Pod. Unused ports are ports declared by the Chart/Pod
but not used by the container.Label collision happens when different Kubernetes components use the same set of labels.
e Undeclared ports are critical security risk [Options on a 5-point Likert scale]

e Unused ports are a critical security risk [Options on a 5-point Likert scale]
o Label collision is a critical security risk [Options on a 5-point Likert scale]

(12) Why they are not a critical security risk?[Text, only shown if one of the previous answers to the critical risk was negative]

(13) Did you receive a security report about Helm misconfigurations, including Undeclared ports, Unused ports
and/ or Label collision? Undeclared ports are ports used by the container running in a pod, but not declared by the
Chart/Pod. Unused ports are ports declared by the Chart/Pod but not used by the container. Label collision happens
when different Kubernetes components use the same set of labels. [Options: Yes; No]

(14) Are there false positives in the reported misconfigurations? False positives are components with unused / undeclared
ports, or components with the exact same set of labels, but as a result of a design choice. [Text]

(15) Evaluate your agreement or disagreement with the following statements using the scale provided. Choose the
response that best reflects your opinion regarding the mitigation and detection of misconfigurations:

o The proposed mitigations are useful [Options on a 5-point Likert scale]
o | will use a tool to detect the reported misconfigurations [Options on a 5-point Likert scale]

(16) If the proposed mitigations were not useful, what would be a better option? [Text]

(17) Does the report reflect the status of your project? Leave here your feedback about the report [Text]

(18) Please leave here any other feedback you may consider useful for our research [Text]

Fig. 5. Content of the feedback questionnaire used to follow-up to the disclosure.

, Vol. 1, No. 1, Article . Publication date: June 2025.

24 Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

A.2 Impact

We finally explain the impact of disclosing the misconfigurations we have found to the pertinent
organizations at the time of writing. In particular, we show that the reported misconfigurations
have been taken into serious consideration and also fixed in many cases.

Figure 6 illustrates that 22 pull requests have been created to fix the misconfigurations reported
to Bitnami. In particular, Figure 8 shows a pull request for the RabbitMQ application — a widely-used
message broker - to fix the M1 misconfiguration (i.e., open ports are not declared).

Figure 7 shows several commits fixing misconfigurations in different Helm Charts of the European
Environment Agency (EEA). Figure 9 shows one of them, adding a missing port to the Helm chart.

The disclosure to the Wikimedia foundation resulted in four patches to fix some port declaration
issues and the removal of unused functionality from other charts. Figure 10 is an example of the
changes on one application, which listened on an incorrect IP address.

[13 bitnami/charts #25106

[bitnami/kafka) fix: 8% @ Expose missing ports in deployment spec

25141

O B bitnami/charts #

[bitnami/zookeeper] ix: & @) Expose missing ports in deployment spec

[o bitnami/charts #25069
[bitnami/contour] fix: & @ Expose missing ports in deployment spec

O $e bitnami/cha

[bitnami/grafana-operator] fix: 8% @ Expose missing ports in deployment spec

O B bitnami/charts #25156
[bitnami/jaeger] fix: % @ Expose missing ports in deployment spec

O fo bitnamizcherts

(b tempo] fix: 8 @ Expose missing ports in deployment spec

0 go bitnan 0
[bitnami/keycloak] fix: 8% @ Expose missing ports in deployment spec and fix headless service
O fo bitnami/charts #25113
[bitnami/kube-state-metrics] fix: 8 @ Expose missing ports in deployment spec

[$o bitnami/charts #25135
[bitnami/rabbitmq] fix: S @ Expose missing ports in deployment spec

O 3o bitnami/charts #25140
[bitnami/wildfly] fix: & @ Expose missing ports in deployment spec

O fo bitnami/charts #25075
bitnami/flux] fix: 8 @ Add missing notification controller ports

O fo bitnami/charts #25134
[bitnami/nginx-ingress-controller] fix: % (@ Expose missing ports in deployment spec

O e bitnami 0
bitnami/ at: 4 Add support for mysqlx port

O $o bitnam 25077
[bitnami/grafana-loki] fix: & @ Expose missing ports in deployment spec

O $o bitnami/charts #25043
[bitnami/argo-cd] fix: § @ Expose metrics port in deployment definition

O fe bitnami/chas

[bitnami/appsmi

th] fix: 8 @ Add ambassador container to appsmith-backend to contact appsmith-rts
0 e bitnamicharts #25072

bitnami/ej

fix: @ @ Expose missing ports in deployment spec

[o bitnami/charts #25065
[bitnami/consul] fix: # @ Expose missing ports in deployment spec

[o bitnami/charts #2504

[bitnami/clickhouse] fix: & @ Add shard label to avoid Compute Unit collision

O o bitnami/ch 5
[bitnami/c al fix: 8 (@ Do not expose tls internode port unless encryption is set
[0 fo bitnami/charts #25041
bitnar x] fix: B @ Do not expose http-metrics unless metrics.enabled=true
[fo bitnami/cherts #25047

[bitnami/cert-manager] fix: % (® Expose missing ports in deployment spec

Fig. 6. Pull requests fixing misconfigurations in applications belonging to the Bitnami dataset.

, Vol. 1, No. 1, Article . Publication date: June 2025.

Inside Job: Defending Kubernetes Clusters Against Network Misconfigurations

-~ Commits on Jan 15, 2024

Typo in yam| file

@ sorenroug committed 3 months ago - 3/3

@ sorenroug committed 3 months ago -/ 3/3

Improve network policies

@ sorenroug committed 3 months ago

Fix of casservice

@ sorenroug committed 3 months ago v/ 3/3

Added health checks to emrt-esd

@ sorenroug committed 3 months ago - 3/3

P VELERRY javsalgar merged 1 commit into main from fix/rabbitng-add-missing-ports (0 2 weeks ago

@ Conversation 1 -o- Commits 1 B} Checks 19 Files changed 3

6 javsalgar commented 2 weeks ago Contributor

Signed-off-by: Javier Salmeron Garcia jsalmeron@vmware.com

Description of the change
This PR adlds to the deployment spec the ports that were missing, such as the metrics port. Right now we were enclosing it in an if/
else statement, but our container logic always enables the prometheus plugin, so it should always be documented in the ports

section:

13/debian-12/rootfs/opt/k

librabbitma sh#L555

Benefits

Improved security of the application

Possible drawbacks

n/a

Applicable issues

o fixes #

Checklist

Chart version bumped in chart.yanl according to semver. This is not necessary when the changes only affect READMEmd
files

Variables are documented in the values.yaml and added to the Reaue.nd using readme-generator-for-helm
Title of the pull request follows this pattern [bitnami/<name_of_the_chart>] Descriptive title

All commits signed off and in agreement of Developer Certificate of Origin (DCO)

[bitnami/rabbitmq] fix: §& (® Expose missing ports in deployment spec #25135 < -

+1-5 mmmn

Reviewers

@ fmulero v

Assignees

& fmulero

Labels

it rabbima QR D)

Projects

None yet

Milestone

No milestone

Development

Successfully merging this pull request may close these

None yet

Notifications Customize
R Unsubscrive

Vou'e receiving notifications because you were

mentioned.

3 participants

L%)

Fig. 8. Pull request fixing a misconfiguration in the rabbitmg chart of the Bitnami dataset.

25

Fig. 7. Commits fixing misconfigurations in different charts belonging to the European Environment Agency
(EEA) dataset.

, Vol. 1, No. 1, Article . Publication date: June 2025.

26

Jacopo Bufalino, Jose Luis Martin-Navarro, Mario Di Francesco, and Tuomas Aura

v 4 s mmmmm tes/nessus ml (O
* @ -4,6 +4,7 @ metadata
4 name: {{ include "appl.fullname” . }}
s Labels:
6 {{- include “appl.labels" . | nindent 4 }}
7 spec
8 replicas: 1
o selector:
$ @ -23,6 +24,7 @9 spec
23 {{- tovaml . | nindent § }}
2 - end)
25 1 {{ include "appl. AN
2 containers:
B+ - nane: {{ .Release.Name }}
28 image: "{{ .Values.image.repository }}:{{ .Values.image.tag | default .Chart.AppVersion }}"
$ ee -42,6 +42,12 8 spec
a2 stdin: true
a3 tty: true
a
as {{- with .values.nodeselector }}
s nodeselecto:
a7 4 tovanl . | nindent 8 }}
T

name: {{ include "appl.fullname” . }}
labels:
{{- include "appl.labels" . | nindent 4 }}
spec:
replicas: 1
selector:
{{- tovaml . | nindent & }}
{{- end }}
i {{ include "appl. SIS
containers:
- name: {{ .Release.name }}
image: "{{ .val epository }}:{{ .val tag | default .Chart.Appversion }}"
stdin: true
thy: true
+ # Port 8834 - User Interface, TSC communication, and API calls
+ ports:
+ - name: nessus
+ containerport: 8834
+ protocol: TCP.
2
{{- with .values.nodeselector }}
nodeselector:
{{- tovaml . | nindent 8 }}

Fig. 9. Pull request fixing a misconfiguration in the nessus chart of the EEA dataset.

Wikimedia Code Review cHances ~

992899 ¥ ipoid: Fix chart default ports 10

SHOW ALL v
Feb 07

Change Info
Submitted

Why :
Owner 4

Uploader
Reviewers

(effie +1)(jenkins-bot not correct.

Repo | Branch operations/deployment-charts | master

1355167 LERE

Topic

Submit Requirements

Bug: T355167

° Code-Review E

@ Verified

Checks ©test)

Comments Checks

Base v — Patchset3 v | 2000675 (O
File
Commit message

M| charts/ipoid/Chart.yaml

M| charts/ipoid/values.yaml|

DOCUMENTATION ~

ipoid: Fix chart default ports

The software listens on port 6927 anyway,
default value is wrong
Referencing the mesh public port, 4250, in the service stanza is also

Switch ports to their correct assignment

Change-Id: I9ed6733ea484332b218a6370ea7656b7a44f390e

Comments (52 1 resolved

BROWSE ~

referencing 8.8.8.8 as a

Fig. 10. Pull request fixing a misconfiguration in the ipoid chart of the Wikimedia foundation dataset.

, Vol. 1, No. 1, Article . Publication date: June 2025.

	Abstract
	1 Introduction
	2 Background
	2.1 Motivating Examples: Security Issues Resulting from Network Misconfigurations
	2.2 Kubernetes and Container Networking
	2.3 Managing Kubernetes Applications

	3 Network Misconfigurations
	3.1 Threat Model
	3.2 Methodology
	3.3 Identified Misconfigurations
	3.4 Causes and Consequences
	3.5 Mitigation

	4 Evaluation
	4.1 Sources
	4.2 Setup
	4.3 Analysis
	4.4 Comparison with State of the Art

	5 Disclosure
	5.1 Process and Follow-up
	5.2 Feedback

	6 Discussion
	6.1 Findings
	6.2 Recommendations
	6.3 Limitations

	7 Related work
	8 Conclusion
	Acknowledgments
	References
	A Disclosure
	A.1 Methodology
	A.2 Impact

