arXiv:2506.21106v1 [cs.CR] 26 Jun 2025

PhishKey: A Novel Centroid-Based Approach for Enhanced
Phishing Detection Using Adaptive HTML Component
Extraction

Felipe Castaiio®?, Eduardo Fidalgo®*, Enrique Alegre™®, Rocio Alaiz-Rodriguez”®,
Rail Orduna?, Francesco Zola*

@Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
b Department of Electrical Engineering, Systems and Automation, Universidad de
Leon, Leon, Spain
¢Spanish National Institute of Cybersecurity (INCIBE), Ledn, Spain

Abstract

Phishing attacks pose a significant cybersecurity threat, evolving rapidly to by-
pass detection mechanisms and exploit human vulnerabilities. This paper intro-
duces PhishKey to address the challenges of adaptability, robustness, and efficiency.
PhishKey is a novel phishing detection method using automatic feature extraction
from hybrid sources. PhishKey combines character-level processing with Convo-
lutional Neural Networks (CNN) for URL classification, and a Centroid-Based Key
Component Phishing Extractor (CAPE) for HTML content at the word level. CAPE
reduces noise and ensures complete sample processing avoiding crop operations on
the input data. The predictions from both modules are integrated using a soft-voting
ensemble to achieve more accurate and reliable classifications. Experimental evalua-
tions on four state-of-the-art datasets demonstrate the effectiveness of PhishKey. It
achieves up to 98.70% F1 Score and shows strong resistance to adversarial manipu-
lations such as injection attacks with minimal performance degradation.
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1. Introduction

Phishing is one of the most persistent and impactful enablers of cybercrime to-
day since it is a primary social engineering method for criminals to infiltrate systems,
steal sensitive information, and commit fraud. This attack primely exploits human
vulnerabilities, often more difficult to protect than technical weaknesses [20]. Be-
sides, phishing attacks are being deployed on a large scale with minimal effort, as
shown in the Phishing Activity Trends Report of the 3rd Quarter 2024 [18]. The
report highlights that the members of the Anti-Phishing Working Group (APWG )]
have reported over 300, 000 phishing attacks per month from July to September 2023.
This trend is based on the application of new paradigms as well, such as Phishing-as-
a-service that provides products, services, and data of victims, allowing non-expert
persons to set up and launch their phishing campaigns [15]. In this context, auto-
mated tools allow attackers to send millions of emails, texts, or messages, reaching
potential victims and maximizing the chances of successful exploitation.

Phishing has evolved beyond simple emails, and new vector attacks have been
identified, such as spear-phishing (targeted attacks), vishing (voice phishing), smish-
ing (SMS phishing), quishing (QR code phishing), and social media phishing [I4]. Cy-
bercriminals can trick victims using emerging technology, such as deepfake, through
voice and video manipulation and large language models (LLMs) crafting phishing
content [16] 43]. These advances make phishing more sophisticated, convincing, and
challenging to detect.

Phishing detection algorithms present different approaches and complexity, aim-
ing to identify and mitigate phishing attacks. These algorithms can be differentiated
according to the information they analyze. For example, URL-based algorithms
[36, B7] focus on identifying suspicious patterns or features within URLs, such as un-
common domains, lengthy URL paths, misspelled keywords, or domain obfuscation
techniques; HTML-based algorithms [31], 27, [41], parse the source code to look for
characteristics common to phishing sites, such as the presence of form fields that ask
for sensitive data (e.g., usernames and passwords), JavaScript obfuscation, or the
absence of security certificates hybrid algorithms integrate features from both URL
and HTML contexts to enhance their ability to detect potential phishing [30, 32} [38];
finally, other detection algorithms rely on computer vision and image processing tech-
niques to compare the screenshot of a suspect webpage to known legitimate pages or
phishing templates.

In the same way, the detection algorithms can be separated according to how
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the features are extracted and analyzed [4, [5]. Among them, we can find handcraft
algorithms using manually extracted features [36, B8], following guidelines and ap-
proaches identified by security experts. Other approaches focus on automatically
extracting features using machine learning and deep learning techniques [10, [30].
Additionally, hybrid approaches [34, B7] combine the strengths of two previously
mentioned strategies.

Despite the progress in phishing detection, several challenges and unresolved is-
sues remain. First, many methods lose essential information during preprocessing,
such as HTML inputs shortened or cropped [3], 30]. Additionally, phishing attacks
constantly evolve, with attackers frequently changing their tactics to bypass de-
tection systems. Finally, existing methods are characterized by low robustness in
the presence of adversarial manipulations—such as data injection or subtle alter-
ations—which can significantly degrade the model detection performance. To tackle
these challenges, we present PhishKey, a novel deep-learning framework for phishing
detection inspired by the text summary method proposed by Rossielo et al. [35],
where the more representative words in a sample are extracted using a centroid
extractive technique.

The contributions of this paper can be summarized as follows:

e We propose PhishKey, a deep-learning framework for phishing detection com-
bining character-level processing of URLs and word-level analysis of HTML
sources, relying on automatic feature extraction to adapt to evolving attacks.
This method is inspired by Opara et al. [30], enhancing the robustness against
adversarial manipulations, keeping the full sample content, and combining pre-
dictions with a soft-voting method.

e We propose CAPE (Centroid-Based Key Component Phishing Extractor), a
clustering-based approach that leverages word embeddings and centroid ex-
tractive summarization to enhance phishing detection accuracy and efficiency,
avoiding lost information due to padding and cropping operations. Inspired
by the method proposed by Rossiello et al. [35], CAPE innovatively adapts
centroid-based techniques to the HTML domain of phishing detection by group-
ing representative words, calculating class-specific centroids, and extracting key
components from HTML samples.

e Finally, we evaluated our method using four state-of-the-art datasets due to
the lack of a common dataset that can be used as a reference. This evaluation
assesses the ability of the model to handle diverse legitimate and phishing
samples and compares PhishKey results in several test scenarios with methods
using an automated extraction approach.



The remaining sections of this paper are organized as follows: Section 2| provides a
comprehensive review of the state of the art. In Section [3, we introduce our method,
called key component extraction, by describing its design and implementation. Sec-
tion 4] explains the experimental setup, including the dataset and evaluation metrics.
The results of our experiments are analyzed and discussed in Section 5, where we
evaluate the effectiveness of the proposed method. Finally, Section [6] summarizes key
findings and suggests possible directions for future research.

2. Literature review

This section reviews recent and relevant methods for detecting phishing attacks
on websites. Due to the ever-evolving tactics of cybercriminals, this is a very dynamic
and challenging area of research.

We consider the input and its preprocessing crucial in a constantly evolving en-
vironment. Consequently, we have categorized phishing attack methods in terms
of how authors extracted features: First, handcrafted features rely on manually ex-
tracted characteristics, utilizing the knowledge and expertise of security researchers
to identify relevant patterns. Then, automatic feature extraction employs artificial
intelligence methods, such as embeddings, to extract features from raw data without
manual intervention. Finally, hybrid approaches aim to combine the strengths of
both manual and automated methods.

2.1. Handcraft feature extraction

Several studies have employed handcrafted features for phishing detection. In
[2], the authors propose extracting novel features from web pages based on the URL
character sequence, textual content (using the Term Frequency-Inverse Document
Frequency, TF-IDF algorithm), and hyperlinks to determine the relationship between
the content and the URL of a web page. After feature extraction, the authors evaluate
several classification algorithms such as Random Forest (RF), Decision Tree (DT),
Light GBM (LGBM), Logistic Regression (LR), Support Vector Machine (SVM), and
XGBoost (XGB). The study used a dataset containing 32,972 benign and 27, 280
phishing web pages. The results showed that this approach achieved an accuracy of
96.76%), outperforming some baseline approaches.

Similarly, Bahnsen et al. [6] used 14 handcrafted features extracted from URLs
for phishing attack detection. They trained and tested different models, including
RF and Long-Short Term Memory (LSTM) networks, incorporating some feature
selection mechanisms. The LSTM model achieved the best performance, with an
accuracy of 98.70%. However, this approach required more time for training and a
more complex process for tuning the network parameters.
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Karim et al. [2I] used handcrafted features to train a hybrid model composed
of Linear Regression, Support Vector Machine, and Decision Tree classifiers, using
both soft and hard voting mechanisms. The study showed that this new model
reduces the execution time and increases the accuracy in defending against phishing
attacks. However, this hybrid model is not the best in F'1-score among the approaches
evaluated in the paper.

In [29], the authors introduce PhishMon, a Random Forest model that distin-
guishes between legitimate and phishing web pages. The tool is trained with 15
handcrafted features extracted from web pages and URLs without requiring third-
party services. The authors state that the proposed 15 features are costly for phishers
to replicate, making them reliable for classification. PhishMon has been validated
using a dataset containing 4,800 phishing and 17,500 legitimate web pages, showing
an accuracy of 95.40%.

A similar approach is proposed in [25], where the authors combine URL and
HTML features - also excluding third-party service data - and stack three machine
learning (ML) models in multiple layers: Gradient Boosting Decision Tree (GBDT),
XGB, and LGBM. This operation allows them to have complementary models for
improving the classification task, and the authors reported an accuracy of 97.30%.

An approach that combines URL clustering, classification, and categorization for
ranking URL samples is introduced in [17]. Specifically, the work uses lexical and
host-based features, i.e., metadata extracted from analyzing the URL using third-
party services such as IP, DNS, and NS. The approach was validated using samples
collected from DMOZ? and PhishTankf|

In [32], the authors proposed a phishing detection model based on URL feature
analysis. These handcrafted features were used to compute similarity indexes and
implement incremental learning. According to the authors, the former should help
detect attacks such as zero-width characters [7], homographs [19], and Punycode
[1], while the latter should allow the framework to be updated continuously. The
authors reported that the approach reached an accuracy of about 99.24% using a
dataset containing 100945 phishing samples and 134850 legitimate samples.

Sahingoz et al. [36] presented a real-time system for detecting phishing websites
through URL analysis. The study evaluated seven classification algorithms with
natural language processing (NLP)-based features. The authors built a dataset to
assess the methods. Phishing URL samples were collected from PhishTank, while
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legitimate URLs were collected from Yandex Search API[] The dataset contains
37,175 phishing and 36,400 legitimate samples. Among the algorithms evaluated
- NB, RF, kNN, ADA, K-star, Sequential Minimal Optimization (SMO), and DT-
Radom Forest (RF) achieved the best performance, with an accuracy of 97.98%.

A more recent study by Sanchez-Paniagua et al. [38] addressed a critical issue
with existing dataset collection methods, highlighting that many rely on outdated
datasets created from the homepages instead of the login webpages and fail to iden-
tify phishing websites that mimic legitimate login pages effectively. The authors
proposed 54 features, grouped into four categories: URL, HTML, hybrid, and tech-
nological features. They evaluated several machine learning models, such as SVM,
LR, NB, RF, kNN, and ADA, and two powerful ensemble methods, LGBM and XGB.
To mitigate the exposed problem, the authors compiled the Phishing Index Login
Websites Dataset (PILWD-134K) containing 134,000 verified phishing and legitimate
website samples. Among the models assessed, LGBM achieved the highest accuracy
at 97.95%.

2.2. Automatic Feature Extraction

In 2020, Opara et al. [31] introduced HTMLPhish, an approach for classifying
phishing websites that focus on HTML content without extensive handcraft feature
engineering. In the preprocessing step, the samples were tokenized into individual
characters or words, including punctuation, as separate tokens; finally, the sequences
were padded to a fixed length of 180 characters. The approach uses a CNN to capture
semantic dependencies within the HTML content. The authors collected two sets
of data: D1, with 23,000 legitimate and 2,300 phishing pages, crawled in November
2018, and D2, with 24,000 legitimate and 2,400 phishing pages, crawled in January
2019. The results showed the model achieved 98.00% accuracy on D1 and 93.00%
on D2, demonstrating robustness to temporal changes in phishing techniques.

In [3], the authors use the Long-term Recurrent Convolutional Network (LRCN)
for URL analysis and the Graph Convolutional Network (GCN) for HTML content
analysis. The study introduces a representation to automatically analyze both the
URL and HTML content of a webpage; on the one hand, the URL is tokenized at the
character level and normalized to a maximum length of 150 characters, with longer
ones truncated and shorter ones padded. On the other hand, HTML content is
transformed into a graph where nodes represent HTML tags and attributes. Finally,
the results obtained by LRCN and GCN are combined to get the final classification.
The approach was evaluated using three public datasets: Dataset A (20,000 phishing
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and 20, 000 legitimate sites), Dataset B (25, 000 phishing and 25, 000 legitimate sites),
and a Benchmark Dataset (24, 800 legitimate and 21,296 phishing sites). The authors
reported an accuracy of 96.42% on Dataset B.

Bozkir et al. [10] explored an automated n-gram selection and a filtering mech-
anism with URL feature extraction. Their approach combines the features using
a cascading approach that concatenates CNN, LSTM, and Attention layers. This
method outperformed other literature models, showing an accuracy of 98.27% on a
dataset collected by the authors to evaluate the model. The dataset includes Phish-
ing URLs collected between May 2019 and June 2021, resulting in a balanced dataset
with 400, 000 phishing URLs and 400, 000 legitimate URLs.

Opara et al. [30] later improved their previous method by presenting WebPhish,
which incorporates a hybrid input methodology, including the URL. The model uses
the raw data at a character level with sequences padded or truncated to fixed lengths
of 180 characters for URL and 2000 words for HTML. The authors used a Deep Neural
Network (DNN) architecture, including embedding layers, concatenation, Convolu-
tional Neural Network (CNN), and fully connected layers. The authors collected
a dataset of 22,687 legitimate and 22,687 phishing pages to evaluate the results,
reporting an accuracy of 98.10%.

2.3. Hybrid Feature Extraction

In [34], the authors assessed the performance of several ML models - XGB, RF,
LR, kNN, SVM, and DT- to predict the legitimacy of web pages by only investi-
gating the URL information. In particular, they compared three cases: (1) using
handcrafted URL features, (2) using TF-IDF features, and (3) combining both fea-
ture sets. They conclude that using the third approach; they can outperform the
results obtained in two previous works [30] 26].

Additionally, [23] introduced a two-step approach for phishing detection. In the
first step, a Generative Convolutional Neural Network (GCNN) classifies handcrafted
and character embedding features extracted from URLs. In the second step, a DNN
model with content-based handcrafted features is used.

Hybrid feature extraction methods combine different approaches to improve the
performance of phishing detection systems by integrating handcrafted and automated
techniques. The work by [37] compares five deep learning algorithms: Multi-Layer
Perceptron (MLP), CNN, Recurrent Neural Networks (RNN), Bidirectional Recur-
rent Neural Network (BRNN), and Attention Networks (ATT) to detect phishing
web pages by analyzing their URLs. In particular, each URL was encapsulated in
200 characters using truncation or padding operations. A character-based embedding
approach was employed for the feature extraction process (vectorization). The study



Dataset | Legitimate | Phishing Collection

Bibtex Extraction Input Algorithm Source Samples Samples Public Time ACC F1
Aljofey ot al. — RF, DT, LGBM, LR, | . . o § X - .
o Handcraft Hybrid Inp. SVM. XGB Collected 32972 27280 Yes 2016 96.76 96.38
Ba:lnse(? et Handcraft URL RF, LSTM Collected 1M 1M No No reported 98.7 98.76
Ka”’;‘]“ a1 Handeraft URL LR, SVM, DT Collected 4500 6500 Yes 2022 95.41 | 95.91
Niakanlahij o B CART, KNN, _ o )
ot al. ] Handeraft | Hybrid Inp. AdaBonst. RE Collected 4807 17508 No 2017 954 | 88.68
Lietal. @5 | Handcraft | Hybrid Inp. | GBDT, XGB, LGBM | Collected 30873 19074 Yes 2009-2017 | 97.3 11:1((»: :(1
Prasad et al- |y et Hybrid Inp. RF, DT, LGBM, Collected 134850 100945 Yes 2022-2023 | 9924 | NOTe
132] XGB ported
Sahi . NB, RF, kNN,
a.llmg;g ¢ Handcraft URL Adaboost, K-star, Collected 36400 37175 Yes 2017 97.98 98
& SMO, DT
Sanchez- .
! ‘ ) SVM, LR, NB, RF, | ,
aniagua e 3 T q X Jollecte: 56 1§ Ve 202 97.95
P 1:1; \h‘l)l\;l et Handcraft Hybrid Inp KNN. ADA Collected 66000 66000 Yes 2020 97.95 98
B"Zkllroet | piemmie URL CNN, LSTM, ATT | Collected 400000 400000 Yes 2021 98.27 | 98.26
Ol’arg‘let LENN [ HTML CNN Collected 50000 4700 No 2019 98 97
Ol””'f;()” | e || i CNN Collected 22687 22687 Yes 2020 98.1 98.1
A“ﬁdfa G| pwemtca | i LRCN, GCN Public 25000 25000 Yes 2019 96.42 | 96.42
Sahingoz ot Hybrid MLP, CNN, RNN, I ] , N
ol [ Extiation URL BENN, ATT Collected | 2881948 2320893 Yes 2018 98.74 | 98.74
Rao et al. Hybrid XGB, RF, LR, KNN, - _ ) N B ) r
1) Extraction URL SVM. DT Collected 85409 40668 Yes No reported | 94.26 95.88
Kormaz ct al. Hybrid URL GONN, DNN Collected 51316 36173 No 2006-2021 | 9837 | NO
23] Extraction ported

Table 1: Summary table of the state-of-the-art approaches for phishing classification. Highlighted
in red are the methods that used hybrid inputs and have publicly available datasets. On gray are
the methods that use an automated feature extraction

was validated on a dataset of 5.1 million entries, with 2.3 million instances gathered
from PhishTank (phishing) and the remaining from Common Craw]| (legitimate).
The results showed that the CNN algorithm achieved an F1-score of 98.74%, outper-
forming traditional machine learning algorithms.

This comparative overview, as shown in Table [T, allows for a clearer understand-
ing of the approaches and highlights the lack of a common dataset that can be used
as a reference, as most authors collect their data independently. This variation in
datasets makes it challenging to compare the approaches, as each author evaluated
their method using a different data set.

However, certain studies, like those by Li et al. [25] and Prasad et al. [32], only
shared their data after preprocessing, providing only the extracted features, which
makes these datasets unsuitable for this study. In contrast, datasets from Cui et al.
[13], Sanchez-Paniagua [38], and Opara et al. [30] are incorporated into the analysis
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and evaluation of the proposed method.

3. PhishKey Method

Phishing attacks evolve continuously to avoid detection, outdating models quickly
and making it necessary to update them [39]. From this perspective, handcrafted
feature models are often ad hoc solutions, relying heavily on the ability of the re-
searcher to identify relevant features, and retraining such models is challenging. In
contrast, automatic feature extraction methods can adapt to changes in the phishing
attack landscape since the network receives the raw data directly, training the model
to identify the relevant parts of the input by itself. This approach facilitates retrain-
ing models with minimal changes as new samples emerge. For those reasons, we
decided to focus on automatic feature extraction, which could enhance the general-
ization of the proposed models and the adaptation to new threats without significant
modifications.

We aim to address the challenges in existing methods, particularly the loss of
information caused by preprocessing steps such as cropping, as seen in the approach
by Opara et al. [30] where the HTML input is cropped to the first 2000 words. While
URL content is short and does not vary much regarding the number of characters
used, HTML content can be more complex, and cropping can lead to the loss of
important information. To address this, we propose CAPE (Centroid-Based Key
Component Phishing Extractor), a clustering-based approach that leverages word
embeddings and centroid extractive summarization to enhance phishing detection
reducing lost information due to padding and cropping operations. CAPE is at the
core of PhishKey and is the main contribution of this work, and it is explained in
detail in Section 3.1l

PhishKey method has two separate classification modules: one for classifying
URLs and the other for classifying the HTML source of a webpage. Each module
processes its data independently, providing insights into potential phishing sites.
The final decision is made by combining the predictions from both modules in an
ensemble method, ensuring a more reliable result.

As mentioned earlier, current models using automated feature extraction from
URLs can efficiently process the entire sample. Due to their limited corpus and -
length, models can process the whole URL with minimal variation. Therefore, we
decided to implement the approach proposed by Opara et al. [30] in the URL-based
sample classification step. This implementation processes the URL at the character
level, using an embedding layer before the classification layers of the model, allowing
the model to receive the complete samples without previous steps. Specifically, the



model for URL classification includes the following layers: An embedding layer using
a dimension of 16, in charge of transforming the character of the raw URL samples
into a feature vector. Next, the second component is a 1D convolutional layer that
uses the results of the first component as input. Finally, the last component is a
fully connected layer that receives the information from the CNN and max-pooling
layers for a classification result.

3.1. CAPE: Centroid-Based Key Component Phishing Extractor

We developed a custom tokenizer to handle the difficulties of HTML structures
and embedded code. The tokenizer is built to parse the HTML samples by handling
various elements typically contained in the web page content, such as tags, attributes,
JavaScript, and CSS. The tokenizer performs preprocessing steps to normalize and
clean the HTML data. In parallel, we address structural patterns within the HTML
to isolate each tag or element and guarantee they are processed as a distinct element
during the tokenization phase. Finally, the code is split into tokens.

In addition to processing the main HTML structure, the tokenizer handles JavaScript
and CSS code, isolating them by following the previous process but adapted for non-
HTML content. This extra step ensures that the code embedded within the HTML
file is tokenized correctly and included in the analysis.

Once the tokens are extracted, the next step is to transform the words into em-
beddings, a numerical representation that allows us to perform operations on the
data. An embedding maps tokens to dense vectors in a continuous vector space;
these embeddings capture semantic relationships between words, allowing the model
to understand the individual words and the context. We use the Word2Vec algo-
rithm [28] to generate word embeddings through unsupervised learning. This is a
continuous vector of 100 elements for each word.

The next step in the classification pipeline is the key component extraction tech-
nique. These techniques mitigate data loss and can process the entire sample. Sev-
eral state-of-the-art algorithms are used for these tasks such as BERT [9], GPT
[8], Pointer-Generator Networks [40], and Bidirectional and Auto-Regressive Trans-
formers (BART) [42]. However, these models are typically pre-trained on natural
language data and require considerable data to adapt to other types of content. As
a result, they face limitations when applied to scenarios outside natural language
contexts. For instance, HT'ML is more than simple text; it includes tags, CSS, and
JavaScript, which makes it challenging for these models to process effectively. For
this reason, we decided to utilize a more adaptable and straightforward technique
for feature extraction, such as TF-IDF [12], 33] and clustering [22].

10



We implemented a clustering-based approach to group representative words, cal-
culate the centroids of each class, and use these centroids to select the most relevant
parts from each sample. This approach applies the insights from the method pro-
posed by Rossiello et al. [35], who employed a technique based on centroid extractive
summarization to identify and extract the more representative words. Finally, they
score the relevance of the sentences according to the representative words they con-
tain. In our implementation, we set a centroid for the class using the 100-dimension
embedding representation for each word, identifying the most representative words
and focusing on the most informative features by class. This method reduces noises,
normalizes the input length without losing information, and guarantees that we cap-
ture the essence of each class without depending on the entire HTML sample.

After calculating the centroids for each class, the samples are processed individ-
ually. We select 2000 words from these embeddings based on their proximity to the
legitimate and phishing centroids. Finally, a Bag of Words (BoW) representation is
created from the selected words. This step normalizes the input while retaining the
important features necessary for phishing detection.

3.1.1. Obtaining Embeddings

Let D = {dy,ds,...,dy} be the dataset consisting of HTML samples, where each
d; represents a webpage (either legitimate or phishing). We use Word2Vec embedding
model to represent each token ¢; ; in d; as a k-dimensional vector:

Vij = femb(ti,j), Vi € Rk, (1)
where foup is the embedding generation function.

3.1.2. Clustering and Centroid Calculation

Each sample d; belongs to a class ¢ € {Cphishing, Clegitimate }- Lhe token embed-
dings v; ; are grouped using k-means to form representative clusters for phishing and
legitimate websites. The centroid for each class ¢ is calculated as:

1
Cc = m Z Vijs (2)
¢ Viy]'GTc

where T, is the set of embeddings associated with class c.

3.1.3. Key Component Selection
For each sample d;, the m most representative tokens are selected based on their
proximity to the centroid of their respective class. The proximity is measured using
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the cosine similarity metric (CSM):

Viyj - Ce

sim(v; j,¢.) = 0. (3)
’ [villllcell
The set of selected tokens is defined as:
Tselected = top—m{sim(vivj, Cc) | Vi - dz} (4)

3.1.4. Bag of Words Representation

Using the selected tokens, we construct a Bag of Words (BoW) representation to
normalize the input length. Let B = {by,bs,...,by} be the vocabulary generated
from the m most representative tokens, then the BoW representation of d; is a vector:

bi = [fb1(di)7fb2(di)7"'7fbM(di)]7 (5)
where f;, (d;) is the frequency of token by in d;.

3.1.5. Sample Classification

Finally, the BoW representations are used as input for a supervised classifier,
the best classifier for this task will be selected on the first experiment described in
Section [l The prediction for a sample d; is given by:

Ui = far(bi), (6)
where fg is the classification function.

3.2. Ensemble Model

In the final step of our pipeline, we propose an ensemble voting approach to
improve prediction accuracy and robustness by integrating the predictions from the
CNN model for the URL input and the Key Component Extractor model for HTML.

The ensemble model applies a soft-voting method, where the probability outputs
of each model are weighted and summed to determine the final prediction. This
approach allows each model to contribute proportionally based on its performance.
We optimize the voting weights by conducting a grid search on validation data and
adjusting the influence of each component to maximize the performance.

This ensemble approach uses URL and HTML inputs and processes each sample
fully without cropping data, enhancing the robustness of the model. This final
ensemble prediction model forms the complete method called PhishKey, which is
designed to deliver a classification for webpage phishing detection.
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Figure 1: PhishKey components interaction. The red box contain the details of CAPE.

4. Experimental Setup

4.1. Datasets

We selected four state-of-the-art datasets containing URL and HTML resources
to evaluate our proposed hybrid methodology. These datasets comprehensively assess
the ability of the models to handle diverse phishing and legitimate samples. Each
dataset offers a distinctive collection of data, varying in size and time of collection
as shown in Table 2

Cui et al. [I3] created a dataset of phishing attacks from the PhishTank platform.
This dataset, collected in 2016, includes 19,066 verified phishing sites and 24,800
legitimate samples gathered from Alexa top-ranked sites. It is worth highlighting that
it is one of the first datasets to release raw HTML samples without preprocessing,
allowing for direct comparison between different HT'ML processing methods.

The PILWD dataset, proposed by Sanchez-Paniagua et al. [38], was collected
between 2019 and 2020; it includes 132,000 samples, divided between phishing and
legitimate data, with around 66,000 samples in each category. They used Quantcast
Top Sites and The Majestic Million to identify domains for legitimate web pages,
assuming that phishing sites do not appear in these lists. Finally, in the phishing
web page collection step, the authors used Phishtank as the source of URLs.
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In 2019, Opara et al. [30] created a dataset of 45,374 samples, evenly split
between phishing and legitimate sites. The legitimate samples were obtained from
Alexa top-ranked sites, while phishing samples were sourced from Phishtank..

Finally, Aljofey et al. [2] collected a dataset in 2020 with 60,252 samples ( 27,280
phishing and 32,972 legitimate web pages). Legitimate samples were collected from
Stuf Gate42 in 2020, while the phishing samples were retrieved from PhishTank
between August 2016 and April 2020.

Name Phising Source ‘ Legitimate Source ‘ Collection date | Total samples | Phishing Samples | Legitimate Samples
Cui et al. [13] PhishTank Alexa Top rank 2016 43806 19066 24800
Quantcast Top Sites

PILWD [38] Phishtank S Taiestie Milhion  2019-2020 132000 65613 66964
Opara et al. [30] Eoilk"f;j Alexa Top rank 2019 45374 22687 22687
Aljofey et al. [2] | PhishTank Stuf Gated2 2020 60252 27280 32972

Table 2: Phishing Dataset Information

4.2. Metrics

To evaluate our classification models, we use a set of metrics commonly applied
in classification tasks, specifically in phishing detection tasks [21], [36], 38, B0]. Specifi-
cally, we consider Accuracy, Fl-score, Precision, and Recall as they provide valuable
understandings of model performance. However, our primary focus will be accuracy
and F1-score since these two metrics are widely used in state-of-the-art classification
problems when dealing with balanced datasets.

4.3. Experiments

Next, we describe the experiments designed to evaluate our proposal. The first
experiment evaluates several classification models, including DT, KNN, XGB, SVM,
and RF, using the dataset from Cui et al. [I3] The goal is to identify the best-
performing model based on the chosen evaluation metrics.

In the second experiment, we compare the proposed method against the base-
line model. We conduct a direct comparison using the same dataset to train and
test the models, ensuring the approaches are under identical conditions. We reduce
the training set size to investigate how the amount of training data affects model
performance.

The training set reductions are increments from 100% to 50%, 25%, 10%, and
5%. This allows us to assess how each model performs with varying amounts of
data, helping to highlight the robustness and adaptability of the approaches when
only limited training samples are available. It is important to mention that this
reduction applies only to the training and validation sets, while the number of test
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samples remains unchanged across all experiments. This ensures that the observed
performance differences are due solely to changes in the training data size without
introducing variability in the test conditions.

The third experiment evaluates the robustness of the method against potential
adversarial attacks. Specifically, it tests whether the model can maintain accuracy
when exposed to manipulated input data. In this experiment, we introduce an in-
jection attack by placing 2,000 words from a different class at the beginning of each
sample; the data injected is selected from a different dataset than the one used to
train the model, ensuring that the prediction of the model is not influenced by prior
knowledge of the injected data. The purpose of this injection attack is to measure the
ability of the models to classify samples even when there is misleading information.
As in the previous experiment, we apply the training set reduction. Furthermore,

The dataset is divided using a 74:16:20 split to conduct the experiments, with 74%
for training, 16% for validation, and 20% for testing. Additionally, we extract 20%
of the training samples to create a subset for validation. The experiments also use
a 5-fold cross-validation methodology to guarantee a robust and reliable evaluation
of the models. Each subset of the data is used sequentially in a row for training and
testing the model, mitigating problems related to overfitting and bias.

5. Experimental Results

The objective of the first experiment is to select the model with the highest
performance in phishing attack classification using BoW as input. Table [3|shows the
performance of the five selected models in terms of accuracy, F1 score, Precision and
recall on the dataset proposed by Cui et al. [13].

Model Accuracy | F1-Score | Precision | Recall
Decision Tree Classifier 95.90 95.87 95.92 96.56
K Neighbors Classifier 87.88 87.87 99.05 78.41
XGB 97.09 97.07 97.80 96.79
SVM 93.32 93.27 93.48 94.27
Random Forest 97.82 97.81 98.36 97.62

Table 3: Performance comparison of the state-of-the-art models. The dataset used for this evalua-
tion is the one proposed by Cui et al. [I3].

We can see that RF achieves the highest performance with a 97.81% F1-Score
and 97.82% accuracy, outperforming the rest of the models. XGB ranks second with
a 97.07% Fl-score and 97.09% accuracy. In contrast, the KNN algorithm performs
poorly in this task, achieving only 87.87% F1-Score and 87.88% accuracy. Based
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on these results, we integrated RF as the model for BoW classification in the key
component extraction pipeline for the following experiments.

The objective of the second experiment is to compare the proposed method
against the baseline method. Table {4 presents the results across different scenarios
regarding accuracy and F1-Score. The column ”Reduction” shows how the training
set and the validation set are reduced, and the ”"Train” column contains the number
of samples of the reduced set. The table includes the standard deviation (STD)
values for the Fl-score and Accuracy values, obtained by calculating the reported
values using 5-fold cross-validation.

Dataset Reduction Train Test PhishKey Extractor Opara et al. [30]
(Validation) ACC (STD) | F1 (STD) | ACC (STD) | F1 (STD)
Cui et al. [13] 100 28036 (7009) | 8761 | 97.70 (0.18) 97.69 (0.18) | 98.01 (0.04) | 97.69 (0.04)
50 14018 (3504) 96.97 (0.25) 96.95 (0.25) | 97.17 (0.38) | 97.15 (0.39)
25 7009 (1752) 96.17 (0.30) 96.13 (0.30) | 96.88 (0.54) | 96.86 (0.54)
10 2804 (700) 95.28 (0.28) 95.24 (0.28) | 96.20 (0.10) | 96.18 (0.11)
5 1402 (350) 94.79 (0.28) 94.75 (0.28) | 95.38 (0.48) | 95.36 (0.48)
PILWD |[38] 100 84480 (21120) | 26400 | 97.82 (0.13) | 97.82 (0.13) | 97.11 (0.49) 97.11 (0.49)
50 42424 (10607) 97.28 (0.15) | 97.28 (0.15) | 96.63 (0.20) | 96.63 (0.20)
25 21120 (5280) 96.46 (0.24) | 96.46 (0.24) | 95.50 (0.61) | 95.50 (0.62)
10 8448 (2112) 95.29 (0.21) | 95.29 (0.21) | 94.34 (0.36) 94.33 (0.37)
5 4224 (1056) 94.12 (0.34) | 94.11 (0.34) | 93.05 (0.37) 93.05 (0.37)
Opara et al. [30] 100 29038 (7260) | 9075 | 98.70 (0.16) | 98.70 (0.16) | 98.21 (0.47) 98.21 (0.47)
50 11615 (2904) 97.82 (0.34) 97.82 (0.34) | 98.07 (0.33) | 98.07 (0.33)
25 5807 (1452) 97.00 (0.16) 97.00 (0.16) | 97.43 (0.19) | 97.43 (0.19)
10 2322 (685) 95.99 (0.16) | 95.99 (0.16) | 95.94 (0.90) 95.94 (0.90)
5 1160 (291) 94.55 (0.58) | 94.55 (0.58) | 94.79 (0.65) | 94.79 (0.65)
Aljofey et al. [2] 100 38562 (0640) | 12050 | 95.37 (0.22) | 95.27 (0.22) | 94.43 (0.85) | 94.33 (0.86)
50 19281 (4820) 93.89 (0.27) | 93.77 (0.27) | 92.02 (0.50) | 91.89 (0.48)
25 9640 (2410) 92.05 (0.45) | 91.90 (0.45) | 90.48 (0.90) | 90.29 (0.86)
10 3856 (964) 89.57 (0.56) | 89.32 (0.57) | 88.47 (1.08) 88.19 (1.11)
5 1928 (482) 87.90 (0.69) | 87.54 (0.75) | 87.03 (0.56) 86.74 (0.53)

Table 4: Proposed method comparison against the state-of-the-art baseline proposed by Opara et
al. [30]. The best results per row are highlighted in green.

The results indicate that PhishKey Extractor achieves the highest accuracy and
F1 scores across various datasets and their reduction tests, consistently matching
or outperforming the baseline model proposed by Opara et al. [30]. Specifically,
PhishKey demonstrated superior performance on datasets presented by Sanchez-
Paniagua et al. and Aljofey et al., with improvements ranging from 0.65 to 1.07
percentage points on the Sanchez-Paniagua dataset and from 0.87 to 1.87 percentage
points on the Aljofey dataset [2]. In contrast, the baseline method outperformed
PhishKey on the dataset proposed by Cui et al., with a performance gain between
0.20 and 0.92 percentage points.

Furthermore, PhishKey achieves competitive results with lower and more stable
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standard deviations (STD) across multiple scenarios. Specifically, the STD values of
PhishKey range from 0.13% to 0.69%, while the baseline STD of the method ranges
from 0.04% to 1.08%. This range of STD values indicates that PhishKey provides
a more stable performance across the 5-fold cross-validation experiments. Lower
and more stable STD values reflect the consistency of the model and predictability,
reducing the possibilities of performance fluctuations across different datasets.

The purpose of the third experiment is to evaluate the robustness of the methods
against potential adversarial attacks. This injection attack measures the ability of
the models to classify samples accurately, even with misleading information. We
introduce an injection attack by placing 2000 words from a sample of the opposite
class of a different dataset at the beginning of each test sample. We apply this
experiment to our method PhishKey and the base line method proposed by Opara
et al. [30].

Table 5| presents the results across different scenarios regarding Accuracy and
F1-Score and presents relevant information about the reduction test and the STD
values related to the 5-fold cross-validation.

Dataset Injection Source | Reduction PhishKey Opara et al. [30]
ACC (STD) | F1 (STD) | ACC (STD) | F1 (STD)
Cui et al. [13] PILWD [38] 100 96.38 (0.29) | 96.37 (0.29) | 84.38 (2.73) | 84.09 (2.93)
50 95.57 (0.93) | 95.55 (0.93) | 82.74 (2.08) | 82.06 (2.61)
25 94.52 (0.68) | 94.49 (0.67) | 84.27 (2.15) | 84.00 (2.23)
10 92.56 (3.40) | 92.53 (3.39) | 80.35 (4.46) | 79.93 (4.72)
5 92.12 (1.46) | 92.10 (1.44) | 79.65 (4.38) | 79.18 (4.53)
PILWD [38] Cui et al. [I3] 100 93.10 (1.65) | 93.06 (1.68) | 69.71 (2.04) | 69.59 (2.11)
50 93.77 (0.40) | 93.75 (0.40) | 68.75 (4.29) | 68.63 (4.37)
25 93.54 (0.38) | 93.52 (0.39) | 69.86 (5.02) | 69.33 (5.15)
10 92.60 (0.23) | 92.59 (0.24) | 67.62 (2.39) | 67.28 (2.57)
5 92.18 (0.44) | 92.18 (0.44) | 71.13 (4.31) | 71.03 (4.28)
Opara et al. [30] | Aljofey et al. [2] 100 97.47 (0.33) | 97.47 (0.33) | 87.87 (2.36) | 87.78 (2.50)
50 95.57 (1.50) | 95.56 (1.52) | 86.90 (0.65) | 86.82 (0.66)
25 95.59 (0.90) | 95.58 (0.91) | 83.51 (2.60) | 83.49 (2.61)
10 94.31 (0.34) | 94.31 (0.34) | 72.02 (7.76) | 71.41 (7.75)
5 93.07 (0.77) | 93.06 (0.77) | 70.11 (3.33) | 69.27 (3.54)
Aljofey et al. [2] | Opara et al. [30] 100 94.36 (0.22) | 94.22 (0.22) | 86.93 (3.23) | 86.71 (3.19)
50 92.53 (0.47) | 92.34 (0.46) | 81.62 (2.03) | 81.33 (1.98)
25 90.61 (1.10) | 90.38 (1.17) | 81.37 (1.79) | 80.93 (1.57)
10 86.83 (2.07) | 86.35 (2.23) | 80.48 (2.03) | 79.91 (1.87)
5 86.45 (0.69) | 85.96 (0.70) | 77.67 (4.01) | 77.10 (3.95)

Table 5: Injection Test Results against the state-of-the-art baseline proposed by Opara et al. [30].
The green color highlights the best results per row and the red highlights the highest standard devi-
ation (STD) values. The ”Dataset” column shows the data source to evaluate, and the ”Injection”
column indicates the source of the injected samples

Across the datasets and their reduction tests, PhishKey outperforms the base-
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line method in both accuracy and F1 score. The most significant performance gap
appears in the PILWD and Aljofey et al. datasets, where our method achieves an
accuracy of up to 96.38% with a low STD of 0.29%. In contrast, the baseline reaches
only 84.38% accuracy, with a much higher STD of 2.73%. In terms of stability,
PhishKey shows a lower STD compared to the baseline. In a case where an attacker
manipulates the initial part of a sample before its submission to the model, our ap-
proach shows the slightest reduction in performance with drops ranging from 1.32
and 8.53 percentage points, as compared to the results of the second experiment
demonstrated in Table [l In contrast, the base performance of the model drops
significantly, with reductions ranging from 8.80 to 27.88 percentage points.

The results of this experiment indicate consistent performance across folds in
cross-validation, suggesting that PhishKey is more robust and less affected by dataset
variation than the baseline model. These findings support the conclusion that our
method is more robust against sample manipulation and injection attacks, as it uses
the whole input and learns more effectively to differentiate the essential parts of each
sample during classification.

6. Conclusions

Phishing detection remains a complex challenge due to the constant evolution of
phishing techniques, which require adaptable and robust classification methods.

Across the multiple approaches, automatic feature extraction methods have an
inherent advantage over other algorithms due to their capability to adapt to the
constant evolution of phishing attacks.

This work introduces PhishKey, a novel approach that automatically extracts
features from URL and HTML sources in phishing webpages, making the detection
process more adaptable and effective.

PhishKey employs a hybrid structure: it uses character-level processing with CNN
and fully connected layers (FCL) for URLs. At the same time, we propose CAPE
(Centroid-Based Key Component Phishing Extractor) for the HTML processing.
CAPE analyzes HTML sources at the word level, starting with a tokenization pro-
cess and converting each word in the document into 100-dimensional vectors. After
selecting the 2000 most relevant words, a model performs the classification using
them as a BoW input. The final output is generated by combining the URL and
HTML classifications through a soft-voting ensemble method.

The experimental results show that PhishKey achieves state-of-the-art results,
with accuracy and Fl-score reaching 98.70%, with an increase of 0.5 percentage
points over the baseline method. In addition, PhishKey shows lower STD values
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across folds, which indicates consistent and stable performance, which is critical for
phishing detection, where variability can compromise reliability.

PhishKey presents several important advantages in phishing detection:

Automatic feature extraction. As mentioned, PhishKey employs automated
feature extraction, allowing it to adapt to evolving phishing strategies without ex-
tensive manual intervention. It will not require major modifications, such as new
features when new samples are released, as a manual approach would require.

Full document utilization. Unlike other methods that often truncate HTML
content to meet model input requirements, PhishKey ensures the entire document is
processed, maintaining relevant information and preventing data loss during prepro-
cessing. This approach minimizes information loss and enhances the adaptability of
the model to evolving attack strategies.

Robustness against manipulated samples or data injection attacks.
PhishKey demonstrates robustness to adversarial manipulations, such as injection
attacks, by automatically identifying and prioritizing key features in each sample.
Experiment 3 in Section [5] confirms the superior performance of PhishKey under
adversarial conditions, with minimal performance degradation compared to the base-
line.

Consistent performance with stable and low STD wvalues. PhishKey
achieves lower and more stable STD values, reflecting its reliability and consistency
across different datasets. This stability is critical to handle diverse and dynamic
real-world scenarios for phishing detection.

Dynamic adaptation to threats without manual modifications through automatic
feature extraction, full document processing to preserve contextual integrity, and
resilience to adversarial manipulation are characteristics needed to address phishing
classification. These characteristics are particularly critical in the constantly evolving
phishing landscape, where attackers are developing new strategies and techniques to
evade detection models every day.

In future work, we aim to extend our research in four key directions: First,
we plan to address the challenges of extracting key components from HTML by pre-
training a transformer-based model on a large HTML dataset using advanced natural
language techniques. Second, we will optimize our method by developing lightweight
models for word embeddings and classifiers, enabling real-time phishing detection
systems on resource-constrained devices. Third, we will study the interpretability of
the model to understand the decision-making process behind phishing classification.
Finally, we aim to explore the classification and attribution of phishing attacks via
phishing kits as we previously explore [11], offering insights into attack authorship
and contributing to threat intelligence and prevention efforts.
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