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Abstract

The ability of deep neural networks (DNNs) come from ex-
tracting and interpreting features from the data provided. By
exploiting intermediate features in DNNs instead of relying
on hard labels, we craft adversarial perturbation that gen-
eralize more effectively, boosting black-box transferability.
These features ubiquitously come from supervised learning in
previous work. Inspired by the exceptional synergy between
self-supervised learning and the Transformer architecture,
this paper explores whether exploiting self-supervised Vision
Transformer (ViT) representations can improve adversar-
ial transferability. We present dSVA—a generative dual
self-supervised ViT features attack, that exploits both global
structural features from contrastive learning (CL) and local
textural features from masked image modeling (MIM), the
self-supervised learning paradigm duo for ViTs. We design
a novel generative training framework that incorporates a
generator to create black-box adversarial examples, and
strategies to train the generator by exploiting joint features
and the attention mechanism of self-supervised ViTs. Our
findings show that CL and MIM enable ViTs to attend to
distinct feature tendencies, which, when exploited in tandem,
boast great adversarial generalizability. By disrupting dual
deep features distilled by self-supervised ViTs, we are re-
warded with remarkable black-box transferability to models
of various architectures that outperform state-of-the-arts.
Code available at https://github.com/spencerwooo/dSVA.

1. Introduction

The transferability of adversarial examples enable real-world
black-box attacks on DNNs without the adversary’s access
to their internals. Such attacks require the construction of
a local white-box surrogate model. Consequently, their ef-
fectiveness relies on the ability to disrupt the shared latent
representations, i.e., features, learnt by both models. DNNs
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Figure 1. Demonstration of dSVA. By jointly exploiting deep
features of both self-supervised ViTs, i.e., DINO (CL) and MAE
(MIM), dSVA crafts perturbation that disrupts both structural and
textural representations of the image (as visualized in the attention
saliency maps), fooling ConvNets, ViTs, and MLPs alike.

Adversarial example

learn sample-label correlations over their training process,
by identifying the structure and semantic characteristics of
the data for classification. These learnt deep features are gen-
eralizable enough to essentially serve as the basis that drive
downstream tasks such as object detection [5, 47], similar-
ity measurement [ 18, 72], image super-resolution [35], and
style transfer [19]. Prior research has shown that improving
transferability is possible by targeting intermediate features
of the surrogate model instead of directly attacking hard
labels or output gradients [28, 60, 73]. Since deep features
of well-trained DNNs are generalizable [69], perturbation
designed to disrupt these features are more transferable [29].

The habitual inclusion of label-wise loss in existing work
for conducting adversarial attacks acts as a common prac-
tice that pushes the surrogate model to be setup with su-
pervised learning. This makes sense for ConvNets where
self-supervised learning lags behind supervised. However,
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the advent of ViTs introduced the success of self-supervision
in natural language processing to vision [4, 7, 9, 25]. Su-
pervised learning fails to preserve image semantics through
human labelling, reducing feature-rich semantic information
within images into a single concept represented by a human-
assigned category. In contrast, self-supervised ViTs excel
at capturing semantics, providing robust positional and se-
mantic relationships throughout model layers, outperforming
ConvNets [1]. Driven by the powerful adversarial potentials
of self-supervised ViT features, we ask: How can we fully
utilize the rich representations distilled by the harmonious
coalition between self-supervision and the Transformer ar-
chitecture, to boost adversarial transferability? We attempt
to answer this research question in threefold:

(1) Facet-level feature exploitation. ViTs comprise sev-
eral layers of multi-head self-attention blocks that encode
token-wise features. With a goal of extracting adversarially
generalizable features, contrary to ConvNets where existing
work use the direct output of entire intermediate layers, we
propose to extract internal components, i.e. feature facets, of
self-attention blocks in ViTs: queries, keys, and values.

(2) Self-attention exploitation. The architectural design
of self-attention empowers ViTs to capture semantic context
of the image at a high level. We propose, atop the adversarial
exploitation of internal facets in ViT blocks, to systematically
extract saliency maps from the self-attention mechanism
itself, and integrate them into loss optimization as dense
semantic guides to identify valuable feature targets.

(3) Joint self-supervision feature discrimination. Two
branches of self-supervision paradigms exist for ViTs: con-
trastive learning (CL) and masked image modeling (MIM).
Comparative studies show that CL captures global structural
shapes and semantics, while MIM focuses more on local
textural details [44]. We hypothesis that, if combined, both
aspects will complement each other in generalizability that
jointly contribute to enhancing adversarial transferability.

Incorporating all three aspects, we introduce dSVA—a
generative dual self-supervised ViT features attack. We in-
troduce a novel generative training framework, consisting of
a generator to craft transferable adversarial perturbation, and
discriminative training approaches to jointly exploit the dual
intricate features—both structural and textural—distilled by
the two types of self-supervised ViTs. We choose the duo:
DINO [7] and MAE [25], for CL and MIM respectively.
Figure | showcases a birds-eye view of dSVA.

Leveraging the powerful latent representations distilled by
self-supervised ViTs, dSVA achieves outstanding adversarial
effectiveness. We show an example in Fig. | of dSVA suc-
cessfully disrupting both structural features from DINO (CL)
and textural representations from MAE (MIM) (visualized
in the attention maps), enabling impressive transferability
towards black-box models of distinct architectures. Our ex-
periments demonstrate dSVA’s outstanding transferability to

models across ViTs, ConvNets, and MLPs alike, and its abil-
ity to evade defenses, surpassing various state-of-the-arts.
To conclude, we summarize our contributions as follows.

* We present dSVA, a generative adversarial attack, that
crafts highly transferable black-box adversarial examples by
exploiting dual self-supervised ViT features.

* We first aim at, instead of attacking the direct output
of intermediate layers, targeting the internal facets of the
self-attention blocks in ViTs, namely, the queries, keys, and
values, to take advantage of the Transformer architecture and
extract generalizable and transferable features.

* We further introduce a method to exploit the self-
attention mechanism itself by extracting saliency maps from
the self-attention maps of ViTs, acting as guides for impor-
tant feature targets, providing, in essence, a regularization
scheme that enable boosted adversarial generalizability.

* We finally propose to jointly exploit the two self-
supervised learning schemes—CL and MIM—to craft per-
turbation that attend to and disrupt both global structural
shapes and local textural details from within the image.

2. Related Work

Generative adversarial attacks is initially introduced in
Poursaeed et al. [45] to address both sample-agnostic and
sample-specific adversarial perturbation. This approach
paved the way for generative methods in creating unrestricted
perturbations [52] and utilizing GANs [64]. The generative
strategy has further proven to be beneficial for transferability,
where Naseer et al. [41] developed CDA for cross-domain
attacks, Nakka and Salzmann [40] incorporated mid-level
features, and Zhang et al. [71] presented BIA for generating
cross-domain perturbation with only knowledge from Ima-
geNet. We follow this foundational generative approach in
our work. Other studies refine the generator to improve tar-
geted attack effectiveness [17, 61, 68] or introduce outside
knowledge from foundation models trained on web-scale
datasets [67]. We do not consider them as our competitors.
Self-supervised learning has enjoyed its remarkable suc-
cess in natural language processing, particularly with wide
applications in modern language models [14, 46]. In vision
tasks, although several self-supervised techniques have been
developed for ConvNets [6, 22, 24], it is with ViTs that
the self-supervised learning strategy, through both CL [7—
9, 43] and MIM [2, 4, 25, 66], has truly excelled. Self-
supervised ViTs have shown to encode rich features that
carry incredible capabilities out-of-the-box, often surpassing
comparable methods that require additional supervised fine-
tuning [1, 16, 49]. In this work, we propose to jointly exploit
the dual aspects of features provided in CL and MIM for
crafting generalizable adversarial perturbation with superior
transferability. Note that we choose to use DINO [7] instead
of DINOv2 [43] for fair comparison, as DINOV2 is trained
on a far larger dataset than vanilla ImageNet.
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Figure 2. The dSVA Training Framework. Sample « is fed through G to create adversarial example 2%, which are then both fed into the
self-supervised models DINO and MAE, to extract deep representations and attention saliency maps from both global structural and local
textural feature aspects. The feature discriminative loss is derived from both ViTs, which jointly form the adversarial loss Lagy.

3. Methodology
3.1. Threat Model

We consider the standard ¢, threat model. Given a DNN
classifier F(-) : € R™ +— y where « is a benign sample
and y denotes its ground truth label. The adversary aims
to create an adversarial example ¥ = x + §, with per-
turbation 0 restricted by an £,,-ball (/o in our case), such
that F(2%4?) # y. We incorporate a generator Gg to craft
2% by discriminating the latent intermediate features of
the self-supervised ViTs as

6* + argmax D (F(x), F(:B“d”)) , 8t ]|0]lee <€, (1)
)

where %% = Gg(x), F(-) extracts the self-supervised ViT
features from an image, and D(-, -) measures the feature dis-
tance. We now present our proposed dSVA for the training
of the adversarial generator Gg.

3.2. Facet-level Feature Exploitation

Previous arts have highlighted the strong transferability po-
tential of feature-space adversarial perturbation, but they
focus on supervised ConvNets. In this work, we first explore
the rich features offered by the harmonic combination of
self-supervision and the Transformer architecture.

Irrespective of training strategy, ViTs process images in
the same manner. The input image is divided into n non-
overlapping patches {p;} (i € [1,n]) and linearly projected
onto a D-dimensional latent space. Positional embeddings
and the [CLS] token are added thereafter, forming a set of
tokens to be fed through L layers of transformer encoders.
Each encoder block comprises alternating layers of multi-
head self-attention (MSA) and MLP blocks, with LayerNorm
(LN) applied before each block. We denote the output token
sequence at layer [ as 7" = {t}, ¢} ... ¢ }.

If we were to follow previous practice, we would directly
use intermediate encoder layer outputs, i.e., tokens, as the

feature representation. In contrast, the Transformer architec-
ture encodes features within MSA blocks that offer better
generalizability. At each layer [, the MSA block encodes
tokens from the previous layer 7'~ ! into gueries, keys, and
values, i.e., ¢} = wh Ak = w6 and of = wl -l
(with w' being the weights), which are fused back into 7".
Therefore, each image patch p; corresponds to a set of deep
features at the facet-level, namely {¢!, k!, vl, '}, with each
representing its internal query, key, value, and the final out-
put as a fused token at layer . In ViTs, the query is the part
of input the model is focusing on, whereas the key is then
compared with the query to determine the attention. They
are then aggregated into the value vector for feature concate-
nation. Facets key and query are directly associated with the
input, inherently providing high quality, less noisy features
that favor generalizability. We later empirically investigate
the impact of facet selection to adversarial effectiveness.
Asin Fig. 2, to train Gg for perturbation generation, dSVA
is designed to deviate the latent representations of a benign
image and its generated adversarial example, that is, to min-
imize the cosine similarity between the deep features ex-
tracted. In this way, the crafted perturbation would be able
to neutralize critical decisive low-level features within the
sample, thereby misleading black-box DNNs. Hence, the
discriminative loss at this stage is formulated as

0" < arg min D (Fl (x), F! (a:“d“)) , )
]

where F! (+) gives one of q', k!, vl ¢ as the target facet-level
feature extracted at layer [ within the ViT F(-). At inference
time, the trained generator Gg- crafts adversarial example
2% within perturbation budget as

2% = clip(Go- (), ¢). 3)

3.3. Self-attention Exploitation

Caron et al. [7] revealed that the attention heads of self-
supervised ViTs attend to salient foreground regions in an
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Figure 3. Attention saliency maps. We visualize the attention saliency maps derived from both self-supervised ViTs DINO (first row) and
MAE (second row), and the supervised ViT (third row). From left to right, layer depth increase from shallow to deep (from 1 to 11).

image, and Amir et al. [1] further demonstrated that these
encoded features represent powerful learnt common ground
across images. As such, we propose an incremental regu-
larization to leverage saliency maps derived from the self-
attention mechanism of pretrained ViTs as feature land-
marks, so as to offer additional guidance to target more
impactful features during optimization in dSVA.

We first extract the self-attention maps for benign sample
x at layer [, i.e., the attention weights associated with each
head of each token attending to every other token, denoted
as Al. Next, we select the attention weights from the [CLS]
token to all other tokens across all heads as

l !
Alepg) = A5 5,0, 1] 4)
The attention saliency map S! at layer [ is calculated as the
mean attention from the [CLS] token to all other tokens
over each attention head as

H
Z ons) )

where H is the number of attention heads. Thus, S* serves
as a feature landmark guidance for targeting intermediate
features, regularizing the global semantic knowledge learnt
by the generator. We apply a scaling factor of v to S’ for
loss optimization. Building on Eq. (2), loss function £ at
this stage is thus formulated as

(’Y'Sl)vFl

L = arg min Dy (Fl (x) ® (w“d“) ®
0

(6)

Shown in Fig. 3 is the attention saliency maps extracted

from ViTs with self-supervision (red background) vs. super-

vision (blue background), as well as the variance of saliency

maps with increasing layer depth from left to right. Com-

pared to the saliency maps extracted from a supervised ViT,

(v-5").

those from the self-supervised ViTs DINO (first row) and
MAE (second row) are less noisy and capture various levels
of global and local semantics, respectively. From shallow
to deep layers, the self-supervised representations favor less
spatial information and more textural information, whereas
the supervised ViT’s representations collapse into homoge-
neous primitive patterns. These visualizations showcase the
powerful representations offered only by the self-attention
of self-supervised ViTs, acting as feature landmarks to be
integrated in dSVA for transferability boosts.

3.4. Joint Self-supervision Feature Discrimination

Recall that two branches of self-supervision strategies cur-
rently stand for ViTs: CL and MIM. Reflected in both learnt
latent representations and self-attention favoritism, CL better
captures global long-range shape-wise features by learning
globally projected representations to discriminate each other,
while MIM focuses more on local textural details as it is a
generative task that predicts masked regions. We hypothesis
that features derived from CL and MIM would complement
each other from an adversarial perspective. Therefore, we
propose to jointly exploit both feature aspects in dSVA to
disrupt structure-biased and texture-biased image features,
thereby enhancing adversarial transferability.

To this end, we jointly train generator Gy against both CL
and MIM ViTs, i.e., DINO and MAE. The final loss function
L.qv 1s thus formulated as

Logv =X L1+ (1 =X)Ly, @)

where £; and Ly are derived as in Eq. (6) from DINO and
MAE, respectively. Doing so, dSVA is able to craft highly
transferable perturbation that targets both structural and tex-
tural image features, greatly boosting transferability across
various black-box models with diverse architectures.



Attack VGG-16 Res-50 Den-121 Eff-B0 Inc-v3 Inc-v4 Swin-B MaxViT PiT-B Visformer LeViT Mixer
CDA (VGG-19) 99.31 69.23 59.19 76.38 5294  61.96 16.53 14.63 9.48 32.40 29.79  23.02
CDA (Res-152) 92.98 88.88 87.02 75.32 63.85 7497 11.82 7.78 5.86 39.03 3585 22.78
CDA (Den-169) 92.98 87.63 97.03 90.96 67.59  78.94 26.88 22.41 20.98 69.67 65.11 52.01
BIA (VGG-19) 97.58 74.32 84.93 77.77 66.63  76.96 19.35 15.25 12.46 34.68 3596 27.53
BIA (Res-152) 94.94 92.52 86.47 65.11 6246  81.37 22.18 17.32 11.40 45.55 29.15  29.60
BIA (Den-169) 93.67 86.07 95.49 81.17 75.40  71.78 17.36 9.44 10.65 32.71 4447  38.98
CDA (ViT-B/16) 92.75 74.32 90.10 87.23 81.82  82.25 62.13 33.09 59.74 78.05 8520  80.63
BIA (ViT-B/16) 52.93 21.83 33.77 32.13 31.55 34.62 8.89 5.50 6.39 17.81 27.34  40.68
MI (ViT-B/16) 52.59 32.33 47.85 52.34 38.07 35.61 49.69 31.02 42.92 47.31 43.51 65.16
PNA (ViT-B/16) 46.49 33.99 42.68 50.64 3797  36.05 50.84 35.68 46.96 51.04 5149  74.30
TGR (ViT-B/16) 54.89 35.14 51.60 57.02 37.54  40.35 51.15 34.02 45.26 50.72 46.38  79.78
ATT (ViT-B/16) 60.41 40.85 56.55 64.47 4332 4443 59.10 40.15 51.12 58.80 56.02  82.52
dsva (DINO) 86.54 57.59 83.17 88.51 78.50  78.61 33.05 21.27 35.04 72.67 67.41 78.81
dsva (MAE) 94.36 78.07 86.36 84.04 7775  79.71 47.38 31.85 33.55 63.25 64.32  56.64
dSVA (Joint) 96.78 81.70 94.83 95.32 89.73 91.73 59.83 41.29 50.48 81.37 85.21 85.38

Table 1. Comparison of black-box transferability. We showcase the black-box fooling rate (%) of dSVA and compared baseline attacks,
against target black-box models with various architectures, including a total of 6 ConvNets, 5 ViTs, and an MLP-Mixer.

4. Experiments

4.1. Experimental Settings

Datasets. The training set of ImageNet with over 1.28
million samples is used for training the generator. Following
work that focus on transferability, the dataset from NeurIPS
2017 Adversarial Learning [34], comprising 1000 images
from the ImageNet validation set, is used for evaluation.
Implementation details. ViT-B/16 architectures with de-
fault stride s = 16 is chosen for both the self-supervised
DINO and MAE, and the normal supervised variant. Pre-
trained weights on ImageNet are sourced from their original
implementations. Following baseline methods [41, 71], we
use the same ResNet generator for Gy. It is trained with the
Adam optimizer with learning rate n = 2x10~* over a sin-
gle epoch. Scaling factor of attention saliency map v = 100.
We report results of dSVA trained with (1) DINO only, (2)
MAE only, and (3) both DINO and MAE (Joint). (dSVA
collapses to SVA when only one self-supervised ViT is used,
but we stick to the name of dSVA to avoid ambiguity.)
Parameters. For both DINO and MAE, we choose features
extracted at the penultimate layer [ = 10. We select the
key facet of DINO and the guery facet of MAE to exploit.
The joint training parameter of dSVA is set as A = 0.5.
The rationale and empirical evaluations supporting these
selections are presented in Secs. 4.4 and 4.5.

Metric. We employ the fooling rate, i.e., the ratio of
the adversarial examples which successfully fool the target
model among all generated samples, as the evaluation metric.
Attacks. Generative attack baselines include BIA [71]
and CDA [41]. We use VGG-19 [50], ResNet-152 (Res-
152) [23], and DenseNet-169 (Den-169) [27] as their surro-
gates with the same perturbation budget of € = 10 to follow
their setups. We also compare against BIA and CDA trained

on supervised ViT-B/16. We additionally include evalua-
tions against gradient-based attacks, including the classic
MI-FGSM (MI) [15], and 3 other state-of-the-art attacks de-
signed for ViTs (PNA [62], TGR [70], ATT [38]). (In Tab. |
and Tab. 2, MI-FGSM is abbreviated as MI so as to avoid
confusion with MIM—masked image modeling.)

4.2. Transferability to Black-box Models

We first evaluate black-box transferability within the Im-
ageNet domain. For attack targets, we choose 3 Con-
vNets with the same structure as the surrogates of the
compared methods to follow baseline settings (VGG-16,
ResNet-50 (Res-50), DenseNet-121 (Den-121)). We add 3
ConvNets with a different structure (EfficientNet-BO (Eff-
BO) [55], Inception-v3 (Inc-v3) [53], Inception-v4 (Inc-
v4) [54]), 5 ViTs (Swin-B [36], MaxViT-T [58], PiT-B [26],
VisFormer-S [11], LeViT-128 [21]), and an MLP Mixer
(Mixer-B/16) [56]. We report the results in Tab. 1.

Across all models, dSVA consistently achieves excep-
tional transferability, outperforming baselines. As expected,
BIA and CDA with surrogates VGG-19, Res-152, and Den-
169 slightly outperforms dSVA on VGG-16, Res-50, and
Den-121, as they share the same structure. Nevertheless,
the transferability of dSVA (Joint) surpasses all compared
attacks on the remaining models, particularly non-ConvNets.
Even when using a supervised ViT surrogate, competing
attacks fail to match dSVA’s performance, including state-
of-the-art attacks that are tailored for ViTs. Only CDA with
a supervised ViT matches dSVA in 2 cases (Swin-B and
PiT-B). Our results show that (1) without our proposed ex-
ploitation schemes in dSVA, existing feature-level attacks
simply cannot take full advantage of the Transformer archi-
tecture, and (2) dSVA (Joint) outperforms its single model
variants by 13.70% on average, underscoring the importance



Inc- Inc- Inc- IncRes- IncRes- Eff-
Attack VSadv V3en53 V4ens4 Vzens Vz'adv boap

CDA (VGG-19) 2505 1636 9.78 10.73 3490 67.39
CDA (Res-152)  43.01 38.60 2888 29.27 61.89 7391
CDA (Den-169) 5344 41.11 27.08 24.58 66.00 83.33
BIA (VGG-19) 39.57 2835 21.24 17.60 62.19 79.71
BIA (Res-152) 3226 27.15 1989 17.50 6329 70.29
BIA (Den-169) 5591 4340 37.64 30.52 59.08 86.23

CDA (ViT-B/16) 6591 5398 50.67 3854 71.11 86.23
BIA (ViT-B/16)  22.80 1538 12.02 10.83 2497 52.17
MI (ViT-B/16) 26.67 2246 2191 18.85 2698 55.07
PNA (ViT-B/16)  27.63 2290 22770 19.79 29.69 55.07
TGR (ViT-B/16) 30.22 2585 24.83 21.67 29.80 67.39
ATT (ViT-B/16)  40.43 36.21 33.03 29.79 4152 7536

dsva (DINO) 66.13 54.09 4933 4385 7503 89.96
dsvAa (MAE) 50.11 3239 2888 23.85 66.70 76.09
dSVA (Joint) 79.03 68.16 62.70 52.50 88.06 89.13

Table 2. Comparison of transferability against models with
defenses. We report the black-box fooling rate (%) of dSVA and
compared baseline attacks in defenses evasion, on various models
with adversarial training enabled within ImageNet.

of our joint exploit of the complementary structural and
textural features from the self-supervised strategy duo.

4.3. Transferability to Defense Models

Next, we validate our approach against defenses, an aspect
previously unexplored in the context of generative attacks.
We follow previous setups [38, 62, 70] and use 6 robust
black-box models on ImageNet to evaluate defense evasion,
namely Inc-v3,q4y, IncRes-v2,4y [33], Inc-v3eps3, Inc-v4ensa,
IncRes-v2.,s [57], and EfficientNet-BO with AdvProp [65]
(Eff-b0yp). Shown in Tab. 2, we once again observe that
dSVA shows superior performance across all adversarially
trained models, with dSVA (Joint) achieving transferability
that exceeds all compared attacks by an average margin of
32.98%. We contend that while adversarial training enhances
DNN robustness by developing more resilient features, they
ultimately need to use these same essential features for clas-
sification. By fully exploiting self-supervised ViT represen-
tations, decisive elements of the sample are destroyed at a
more generalized level, allowing dSVA to evade these de-
fenses. We provide additional results against state-of-the-art
defenses and robust ViTs in Appendix C.

4.4. Analysis on the Impact of Relevant Parameters

We now turn our focus to dSVA’s deciding parameters, that
is, (1) feature facet (query, key, value, or the entire layer’s
output: token), (2) feature layer [, and (3) A, for dSVA (Joint).
(In Figs. 4 to 6 of Sec. 4.4, the bold red line represents
the mean transferability of the evaluated variant of dSVA,
aggregated over observations against target models. )

The choice of facet {q, k,v,t}. We first evaluate the per-
formances of dSVA (DINO) and dSVA (MAE) with respect

Target Model
 VGG-16 Den-121 Inc-v3 Swin-B PiT-B LeViT
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Figure 4. Impact of the choice of facet. We evaluate the trans-
ferability of dSVA (DINO) and dSVA (MAE) that exploit feature
facets at layer 10 of query, key, value, and token, respectively.

to the exploited facets. We report the black-box transfer-
ability of them in Fig. 4. We first note that the variants that
directly exploit the roken facet, i.e, the entire intermediate
layer output, always lags behind, especially in the case of
dSVA (MAE). These findings underline the efficacy of our
proposed facet-level exploit to capitalize on the adversarial
potential of the features distilled by the Transformer archi-
tecture. For MAE, the query directly serves as the input
with masked patches, which is intuitively more crucial for
its reconstruction task. The key facet in this case only pro-
vides additional context of the current masked modelling
session. This aligns with our observation that dSVA (MAE)
performs best with the guery facet. For DINO, the student
network generates one view of the image as the query, while
the teacher uses another as the key. The teacher, acting as a
guide, would provide a better contrastive signal. Our results,
although not as pronounced as the MAE variant, show that
dSVA (DINO) performs best when exploiting the key facet.

The choice of layer [. Next, we investigate the impact
of layer [. We report dSVA (DINO) and dSVA (MAE)’s
transferability that exploit layer [ from 1 to 11 in Fig. 5. We
notice that the transferability of dSVA tends to increase as
layer deepens. We reason that as the layers deepen, both
self-supervised strategies manage to encode richer and more
generalizable semantic information, benefiting adversarial
transferability. Notably, transferability of both variants drops
at the final 11th layer. This is expected as the final layer of
Transformer-based models is often optimized for specific
training setups, which results in significant reduction in gen-
eralizability [14]. In terms of vision tasks, ViTs have also
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Figure 5. Impact of the choice of layer I. We evaluate the trans-
ferability of dSVA (DINO) and dSVA (MAE) with layer [ from 1
to 11 (from left to right).
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Figure 6. Impact of the choice of \. We evaluate the transferability
of dSVA (Joint) with default parameters employed except for A. A
is applied from O to 1 with a step size of 0.1.

shown to maintain spatial and positional information in all
but the last layer [20, 30]. We choose the penultimate layer
of [ = 10 of both DINO and MAE in dSVA.

The choice of joint training parameter \. We finally
explore the key factor of dSVA (Joint), that is, the balance
between feature disruption for DINO (CL) and MAE (MIM),
which is controlled by A as described in Eq. (7). The transfer-
ability of dSVA (Joint) with A in (0, 1) with a step size of 0.1
is reported in Fig. 6. We observe two interesting trends. First,
as the dual aspects of features are more incorporated into
dSVA (as A approaches the midpoint), adversarial effective-
ness increases. This behavior substantiates our hypothesis
that the features provided by CL and MIM complement each

other under an adversarial context, where both global and
local relationships are to be destroyed, highlighting the im-
portance of our proposed joint feature disruption. In addition,
as A decreases from 0.9 to 0.5, that is, as the aspect of MIM
features increase while CL features decrease, adversarial
effectiveness show a tendency to rise. We argue that the
while CL provided structures are crucial for shape/object
distinction from a human standpoint, to craft generalized
perturbation for fooling DNNS, textural details distilled by
MIM ought to be more purposefully considered, as DNNs
favor these fine-grained details. A = 0.5 yields the best
performances in our setup, but given the similarity of the
trends for A in [0.3, 0.5], we suggest that the optimal A may
vary depending on the specific task or dataset.

4.5. Visualizing Facet-level Feature Disruption

In Fig. 7, we visualize how self-supervised ViT features are
more meaningful than supervised ones, and how some ViT
feature facets are more crucial than others. We conduct PCA
on DINO, MAE, and supervised ViT-B/16’s features on all
facets. We notice once again that the self-supervised features
are richer and less noisy than the supervised ones. We find
that, for both DINO and MAE, the value and token facets
are noisier than the query and key facets. For DINO, its key
facet shows more distinct shapes and objects, whereas for
MAE, its query facet shows less noisy textured details. These
observations align with our parameter selections. We also
show how dSVA’s adversarial perturbation equally destroys
meaningful semantics within the image, underscoring our
approach’s effectiveness in feature disruption.

4.6. Ablation Study

We finally conduct an ablation study on two factors: (1) self-
supervision, and (2) self-attention exploitation. We report the
transferability of dSVA with supervised ViT, DINO, MAE,
and Joint variants, both w/ and w/o attention saliency map
regularization applied, in Fig. 8. For single model variants,
we aggregate the results over all facets. For dSVA (Joint),
we aggregate the observations over A € [0.3,0.5].
Self-supervision. When comparing dSVA variants w/ self-
supervised features to the supervised variant under identical
conditions, even single model variants, dSVA (DINO) and
dSVA (MAE), outperform the supervised version across all
models. We once again showcase that the synergy between
self-supervision and the Transformer architecture, the central
motivation of our work, pushes adversarial effectiveness to a
new level, heightening the capability of our approach.
Self-attention exploitation. We first observe that the self-
attention of supervised ViTs actually impair adversarial ef-
fectiveness when applied as a regularization. As previously
shown, attention saliency maps extracted from the supervised
ViT fail to match its self-supervised counterparts for feature
landmark guidance. dSVA with self-supervised ViTs DINO
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Figure 8. Ablation study. We present comparisons of the transferability of dSVA with supervised ViT, DINO, MAE, and Joint variants,
with and without our proposed attention regularization applied, respectively. Results are aggregated over multiple observations.

and MAE consistently perform better when self-attention
is also exploited. While dSVA (Joint) outperforms all sin-
gle model variants, its transferability occasionally slightly
degrades when attention regularization is applied, particu-
larly when transferability is already high. We find that dSVA
(Joint) works best with attention regularization active when
targeting stronger or more sophisticated models.

4.7. Cross-domain Transferability

Our major competitors BIA and CDA show strong cross-
domain transferability with only ImageNet domain knowl-
edge. We provide additional comparisons under cross-
domain settings in Appendix B. Results show that dSVA
still maintains superior transferability to both coarse and
fine-grained classification domains in most cases, offering
boosts of approximately 6% on average.

5. Conclusion

We present a novel generative adversarial attack, dSVA, that
successfully exploits deep intermediate features distilled

through the self-supervised learning of ViTs. By aiming at
facet-level feature representations, dSVA takes full advan-
tage of the ViT’s internal architecture. With self-attention
regularization, dSVA vigilantly focuses on salient feature
targets that are valuable for exploitation. Through our joint
disruption of both structural and textural representations dis-
tilled by the self-supervised learning duo—CL and MIM—
dSVA crafts remarkably generalizable perturbation, achiev-
ing state-of-the-art transferability. We demonstrate, through
extensive experiments, the superior adversarial transferabil-
ity of dSVA to various black-box DNNs of distinct archi-
tectures. Our research strongly indicates that effective ad-
versarial exploitation of ViTs, especially feature-wise, is
very much muted by the use of surrogate models constrained
by supervised learning. We believe this work encourages
further exploration of the robustness implications of DNNs
within a self-supervised learning context.
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A. Experimental Details

In this section, we disclose the details of our experimental
evaluations regarding the specific computational resources
utilized, including hardware, memory, and time consumption.
All our experimental evaluations are all conducted on GPU
compute units equipped with an 11th Gen Intel(R) Core(TM)
i9-11900K CPU, a single NVIDIA GeForce RTX 4090 GPU,
and 128 GB of onboard memory.

For dSVA with DINO, MAE, and the vanilla supervised
ViT-B/16 at a stride of s = 16, as well as for all compared
generative attacks (CDA, BIA), generator Gy is trained on
the entirely of the ImageNet training set for one epoch with
a batch size of 32. Under this setup, single model variants of
dSVA require up to 4 hours of training, a duration compa-
rable to previous methods. For the joint variant, i.e., dSVA
(Joint), batch size is set to 22, where its training takes up to
7 hours to complete. Our proposed additional exploit of self-
attention (which is optional) in dSVA does not increase the
training time. The inference time for the adversarial genera-
tor is comparable to, if not faster than, that of gradient-based
iterative adversarial attacks. For all settings, GPU memory
utilization approximates to over 90%. We organize the rest
of the experimental details in Tab. 3, which includes ViTs
with stride of s = 8 that we use in sections that report results
of cross-domain transferability.

Batch GPU Training
Attack Stride s Size Memory Time
dsva (DINO) 16 32 > 90% ~4 hours
dsva (DINO) 8 12 > 90% ~13 hours
dsva (MAE) 16 32 > 90% ~4 hours
dsva (MAE) 8 12 > 90% ~13 hours
dsVA (Joint) 16 22 > 90% ~7 hours
dsSVa (Joint) 8 6 > 90% ~25 hours

Table 3. Computational resource details of our experiments.
We report the computational details of all variants of dSVA with
different ViT configurations that we evaluate.

B. Results of Cross-domain Transferability

In this section, we provide supplemental experimental results
on the cross-domain transferability of dSVA in both coarse
and fine-grained classification tasks. The evaluations follow
the baseline settings specified in previous work [71]. For
coarse-grained classification, we evaluate both attacks on tar-
get black-box domains, namely, CIFAR-10, CIFAR-100 [32],
SVHN [42], and STL-10 [12], with the same models. For
fine-grained classification, we report black-box transferabil-
ity across three fine-grained domains: CUB-200-2011 [59],
Stanford Cars [31], and FGVC Aircraft [37]. For each do-
main, we evaluate against three black-box ConvNets with
ResNet-50 (Res-50), SENet154, and SE-ResNet101 (SE-
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Domain
Attack s A CIFAR- CIFAR- SVHN STL-
10 100 10
CDA (VGG-19) /! 12.65 30.79 3.36 7.56
CDA (Res-152) !/ 10.34 28.23 5.49 6.15
CDA (Den-169) /! 27.42 53.22 6.84 10.31
BIA (VGG-19) /! 39.04 68.25 6.38 9.84
BIA (Res-152) !/ 26.24 49.36 3.75 7.35
BIA (Den-169) /! 22.05 45.82 12.79 10.75
dsva (DINO) 16 w/o 13.98 37.67 12.88 11.07
dsva (DINO) 8 wlo 24.05 53.00 6.54 11.18
dsva (DINO) 16w/ 13.34 37.42 9.30 12.66
dsva (DINO) 8 w2194 48.94 7.53 10.70
dsvAa (MAE) 16 w/o 16.89 35.80 6.80 10.41
dsva (MAE) 8 wlo 2477 41.15 9.13 10.26
dsva (MAE) 16w/ 17.47 34.32 491 9.31
dsvAa (MAE) 8 w/ 2430 44.61 6.74 11.44
dSVA (Joint) 16 w/o 23.64 50.28 8.94 11.04
dsvA (Joint) 8 w/lo 26.87 55.53 8.83 12.42
dSVA (Joint) 16 w/  21.56 43.25 8.82 11.89
dSVA (Joint) 8 w/ 2413 46.73 11.73 11.95

Table 4. Transferability towards coarse-grained classification
domains. We report transferability (%) towards domains CIFAR-
10, CIFAR-100, SVHN, and STL-10. s is the stride of ViT-B/16.
A denotes whether attention regularization in dSVA is activated.

Res-101) backbones, trained using the DCL framework [10].

Table 4 showcases our findings on coarse-grained clas-
sification domain transferability. With the target models in
CIFAR-10 and CIFAR-100 being VGG-like architectures,
the BIA attack using a VGG-19 surrogate model unsurpris-
ingly yields superior results. Among the dSVA variants,
dsSVA (Joint) with DINO and MAE at stride s = 8 ex-
cels, closely matching the baseline performance in these
domains. In contrast, for the SVHN and STL-10 domains,
dSVA variants outperform the baseline, with dSVA (DINO)
surpassing dSVA (Joint) in SVHN due to DINO’s sensitivity
to global shape and structure, which aligns with the focus of
the SVHN domain on house numbers (digit classification).
Interestingly, self-attention exploitation in dSVA does not
enhance performance in this coarse-grained context.

Turning to fine-grained classification transferability in
Tab. 5, dSVA (Joint) with active self-attention exploitation
leads in most scenarios, outperforming nearly all baselines
except when the target model is Res-50. Notably, dSVA
(DINO) outperforms the otherwise dominant dSVA (Joint)
variant in a specific case: attacking the Stanford Cars do-
main’s SE-Res-101 model.

Aggregating the results, we conclude that dSVA (Joint)
variant remains the most robust attack overall for even most
challenging cross-domain transfer scenarios, with the self-
attention exploitation proving beneficial in most cases.



A CUB-200-2011 Stanford Cars FGVC Aircraft
Attack ’ Res-50 SENet154 SE-Res-101 Res-50 SENet154 SE-Res-101 Res-50 SENet154 SE-Res-101
CDA (VGG-19) / / 29.49 29.94 20.79 21.84 20.95 10.42 24.81 4091 23.02
CDA (Res-152) / / 49.85 48.77 34.77 48.08 3791 21.60 33.80 48.01 36.19
CDA (Den-169) / / 39.55 29.52 36.40 42.16 25.26 19.22 30.61 32.92 33.77
BIA (VGG-19) / / 62.21 52.78 36.84 70.93 37.01 29.86 82.61 51.17 51.27
BIA (Res-152) / / 63.53 68.15 38.92 56.91 58.49 19.03 41.52 77.61 42.33
BIA (Den-169) / / 83.36 65.75 45.77 91.67 51.75 52.57 96.16 59.78 65.22
dsva (DINO) 16 w/o 38.86 51.65 43.66 53.57 59.22 50.79 72.52 81.45 64.73
dsva (DINO) 8 wlo  71.18 61.15 59.57 49.39 59.76 56.23 54.38 77.71 67.96
dsva (DINO) 16w/ 41.55 49.48 47.75 47.01 51.25 47.23 53.57 61.83 66.10
dsva (DINO) 8 w/ 33.68 40.99 38.12 33.78 37.92 29.92 37.12 46.25 55.68
dsva (MAE) 16 w/o 4293 51.81 37.56 28.80 47.10 20.24 34.13 50.62 43.86
dsva (MAE) 8 wlo  37.38 58.97 36.44 44.28 38.30 26.74 29.70 50.10 36.58
dsva (MAE) 16w/ 60.08 63.80 42.42 41.22 62.48 26.79 38.81 72.95 57.45
dsva (MAE) 8 w/ 42.38 62.11 41.99 46.04 38.99 29.33 30.41 52.90 43.73
dSVA (Joint) 16 wlo 78.77 79.62 66.11 48.67 68.47 51.97 65.65 89.24 83.15
dSVA (Joint) 8 w/o  62.58 72.17 59.11 41.42 55.68 41.17 46.76 75.07 63.62
dSVA (Joint) 16 w/ 76.44 79.64 69.72 47.29 67.91 50.99 68.94 89.93 77.37
dSVA (Joint) 8 w/ 70.88 78.85 68.24 47.25 66.30 50.12 68.15 87.97 74.10

Table 5. Transferability towards fine-grained classification domains. We report transferability (%) towards domains CUB-200-2011,
Stanford Cars, and FGVC Aircraft. s is the stride of ViT-B/16. A denotes whether attention regularization in dSVA is activated.

ViT-S ConvNeXt ConvNeXt-

XCiT-S12  +ConvStem +ConvStem v2+Swin-L

Attack Res-18 [48]  Res-50 [63] ViT-B [39] Swin-B [39] [13] [51] [51] [3]
CDA (VGG-19) 7.13 8.25 6.09 10.15 791 6.69 4.96 5.68
CDA (Res-152) 12.56 11.39 12.31 13.20 10.74 7.39 7.04 7.07
CDA (Den-169) 11.21 12.54 9.96 16.38 13.93 10.33 8.19 8.89
BIA (VGG-19) 12.05 11.22 8.85 12.96 11.22 9.51 7.50 7.50
BIA (Res-152) 16.13 15.35 14.52 19.32 16.06 11.97 10.61 8.24
BIA (Den-169) 14.09 14.19 18.95 22.62 16.65 10.92 9.80 9.42
CDA (ViT-B/16) 12.39 13.04 8.85 18.70 14.52 11.39 9.00 8.67
BIA (ViT-B/16) 10.70 9.90 12.86 12.47 8.97 8.10 7.50 5.03
MI (ViT-B/16) 7.81 7.92 11.62 12.96 8.26 7.51 6.46 6.96
PNA (ViT-B/16) 7.13 8.58 10.79 14.06 8.03 7.98 6.11 7.71
TGR (ViT-B/16) 12.73 11.55 16.18 18.34 12.16 11.50 8.88 9.32
ATT (ViT-B/16) 12.22 12.05 17.70 19.19 12.04 11.27 8.65 10.49
dsva (DINO) 20.88 19.47 23.93 26.28 21.49 15.96 12.80 11.67
dSVA (MAE) 15.11 14.69 14.52 18.46 15.94 11.50 10.04 10.39
dsVA (Joint) 19.19 19.64 21.44 24.45 22.31 14.79 12.11 11.99

Table 6. Additional transferability comparisons against models with defenses. We include additional comparisons in defense evasion
against various robust ConvNets, ViTs, and hybrid models equipped with state-of-the-art adversarial defenses.

C. Additional Comparisons of Transferability
to Defense Models

In this section, we present additional comparisons on the
transferability of dSVA to robust ConvNets, ViTs, and hy-
brid models with state-of-the-art defenses, which are lacking
in prior work. We report the results in Tab. 6, where the
citations accompanying the model names refer to the respec-
tive state-of-the-art adversarial defenses employed on the
model itself. Note that we here use the same experimental
setups as in Sec. 4, except for employing a larger ¢ = 16
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constraint, otherwise the transferability across all evaluated
attacks would be too low to be comparable.

We observe that dSVA still consistently outperforms
the baselines across all models, averaging 17.04% black-
box transferability, even against the most resilient defenses.
dsVA (DINO) outperforms the joint variant in some cases,
indicating that the shape/structural features are more adver-
sarially impactful for robust models with smooth decision
boundaries. These remarkable results once again underscore
the robustness and effectiveness of our dSVA.



dSVA
(DINO)

dSVA
(MAE)

dSVA

Sefign (Joint)

Benign

Figure 9. Visualizations of adversarial examples. We provide a few examples of side-by-side comparisons of the benign image, and
adversarial examples generated by the 3 variants of dSVA (DINO, MAE, Joint). Perturbation is scaled and normalized for better visualization.

D. Visualization of Adversarial Examples

In this section, we provide a few visual examples of the
adversarial examples and perturbations generated by dSVA.
Figure 9 showcases several instances of successful attacks by
the 3 variants of dSVA: dSVA (DINO), which emphasizes
structural features; dSVA (MAE), which emphasizes textural
features; and dSVA (Joint), which successfully attends to
both aspects, from left to right respectively. These visualiza-
tions highlight the rich, impactful perturbations crafted by
our method, demonstrating its remarkable ability to exploit
model vulnerabilities effectively.

E. Limitations and Future Work

While dSVA demonstrates impressive black-box transfer-
ability by exploiting self-supervised ViT features, we ac-
knowledge certain limitations in our current work and outline
potential avenues for future work.
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Although dSVA shows strong transferability in a digital
settings, our current work lacks full-scale physical world
experiments. The potential of adopting generative adversar-
ial attacks for physical real-world scenarios is a complex,
challenging, yet valuable direction for future work.

Self-supervised methods with scaled training setups, such
as DINOv2, may offer potentially improved transferability
for dSVA. Additionally, investigating the use of ViTs with
registers, and considering the use of multiple layers during
adversarial optimization, could further enhance the effec-
tiveness and robustness of dSVA. These approaches could
lead to more effective adversarial attacks and are crucial
directions for future work.

We acknowledge the importance of ethical implications
of our work, as with all research in adversarial machine
learning. Future research will continue to explore the broader
societal impacts of adversarial attacks and contribute to the
development of more robust and secure Al systems.
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