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Abstract—Federated Learning (FL) has emerged as a leading
paradigm for privacy-preserving distributed machine learning,
yet the distributed nature of FL introduces unique security
challenges, notably the threat of backdoor attacks. Existing
backdoor strategies predominantly rely on end-to-end label
supervision, which, despite their efficacy, often results in de-
tectable feature disentanglement and limited persistence. In
this work, we propose a novel and stealthy backdoor attack
framework, named SPA , which fundamentally departs from
traditional approaches by leveraging feature-space alignment
rather than direct trigger-label association. Specifically, SPA
reduces representational distances between backdoor trigger
features and target class features, enabling the global model to
misclassify trigger-embedded inputs with high stealth and per-
sistence. We further introduce an adaptive, adversarial trigger
optimization mechanism, utilizing boundary-search in the fea-
ture space to enhance attack longevity and effectiveness, even
against defensive FL scenarios and non-IID data distributions.
Extensive experiments on various FL benchmarks demonstrate
that SPA consistently achieves high attack success rates with
minimal impact on model utility, maintains robustness under
challenging participation and data heterogeneity conditions,
and exhibits persistent backdoor effects far exceeding those
of conventional techniques. Our results call urgent attention
to the evolving sophistication of backdoor threats in FL and
emphasize the pressing need for advanced, feature-level defense
techniques.

1. Introduction

Federated Learning [1, 2], a promising distributed learn-
ing paradigm, consists of a group of data-owning clients
under the orchestration of a central server, which allows
each client to collaboratively train a global model while
keeping their data local. For each iteration in FL, clients
locally train models based on local training data and then
upload these models or gradients to the server, aggregating
them to obtain a global model. The global model is then
propagated back to the clients for the next training iteration.
As such, FL has become an emerging privacy-preserving
trend with many applications in popular mobile apps, such
as Google’s GBoard [3], Apple’s QuickType [4], and various
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Figure 1. Anomalies caused by backdoor attacks in federated learning.

data-sensitive application domains including financial [5],
medical [6], and security [7] scenarios.

The medicine can be a poison. Despite enhanced privacy,
the distributed nature of FL systems makes supervising the
underlying processes of the local training hard, leading to a
series of new security issues [8–11]. Among them, backdoor
attacks [12–17], have gained significant attention due to their
stealth and practical effectiveness, becoming one of the most
threatening of the FL system. Specifically, an attacker injects
a backdoor trigger into a subset of its training data and
labels the backdoored data with an attacker-chosen target
label. The adversary then submits the backdoored model
trained on the poisoned data, causing the global model to
inherit the backdoor function. As a result, the global model
performs normally on clean test inputs but misclassifies any
input stamped with the attacker-chosen backdoor trigger as
the specified target class.

Previous works have successfully implanted backdoors
in FL models. To ensure the effectiveness and stealth of the
backdoor, attackers employ various strategies such as trigger
optimization [12, 16, 17] and model constraints [13–15] to
prevent the backdoor from being removed during federated
aggregation and to bypass advanced backdoor defenses.
However, fundamentally, these methods still rely on an end-
to-end approach that establishes a strong connection between
the trigger and the target label to inject the backdoor (as
illustrated in Figure 1). In this scenario, the backdoor task
and the clean task are treated as two distinct tasks [18].
Since the backdoor trigger is more apparent than normal
features and frequently occurs, the backdoor task converges

https://arxiv.org/abs/2506.20931v1


faster, and the backdoor features become highly disentangled
from other features. These characteristics result in significant
differences between models trained by malicious participants
and those trained by benign participants, which form the
basis for existing defense mechanisms [19]. Although some
studies attempt to bypass defenses by strictly regulating the
difference between local and global model weights, this
approach inherently limits the effectiveness of the backdoor.
This line of exploration brings us to a fundamental yet
often overlooked question, “Is it possible to inject backdoors
efficiently and stealthily without relying on traditional end-
to-end supervised training methods?”

From the perspective of different feature learning
paradigms, supervised learning leverages high-quality la-
beled data, updating model parameters in an end-to-end
manner by minimizing the difference between predicted and
true labels. This process allows the model to learn discrim-
inative features for each class, resulting in distinct and sep-
arable clusters in the feature space. On the other hand, self-
supervised learning approaches, such as contrastive learning
[20], learn more generalized representations without labels
by pulling similar features closer and pushing dissimilar fea-
tures apart. Drawing inspiration from this feature alignment
mechanism, instead of directly associating trigger features
with the target label, there is a new way that establishes
a connection between backdoor trigger features and target
class features by minimizing their distance, thereby tricking
the model into recognizing the backdoor features as normal
features of the target class.

In this paper, we propose a more stealthy and persistent
backdoor attack method, named SPA, which comprises two
key components: backdoor injection and backdoor enhance-
ment. In the backdoor injection phase, we deviate from
the traditional approach of establishing a strong association
between triggers and target labels through end-to-end su-
pervised training. Instead, we achieve feature alignment by
reducing the feature distribution distance between trigger-
embedding samples and target-class samples, ensuring that
the backdoor model produces highly similar feature repre-
sentations for them, leading the model to classify trigger-
embedding inputs into the target class. In the backdoor en-
hancement phase, inspired by adversarial examples attacks,
we search for noise features on the boundary of the target
class distribution within the feature space of the global
model. Such noise, which naturally shifts the model’s pre-
dictions toward the target class, is used as backdoor triggers
to address the challenge of aligning fixed, out-of-distribution
triggers with the target distribution, thereby enhancing the
effectiveness and persistence of the backdoor.

For evaluations, we conduct extensive experiments to
validate the effectiveness, stealthiness, and persistence of
SPA in FL environments. Our comprehensive experimental
evaluation encompasses several critical dimensions of analy-
sis: First, in comparison with state-of-the-art (SOTA) meth-
ods, SPA demonstrates superior attack success rates while
maintaining minimal impact on model utility. To confirm the
practical applicability, we examine its effectiveness across
varying non-independent and identically distributed (non-

IID) scenarios, diverse model architectures, and multiple
adversary participation scenarios. The results consistently
show that SPA maintains high ASR even in challenging
scenarios with highly skewed data distributions and limited
adversary participation, showcasing its robustness to real-
world FL conditions. Our persistence analysis reveals a
particularly concerning property of our attack, demonstrating
remarkable longevity even after the adversary ceases partic-
ipation. When evaluating different attack timing strategies,
we observe that SPA remains effective even after 1000
training rounds without adversary involvement, significantly
outlasting conventional backdoor approaches that typically
decay after 100-200 rounds.

In more complex attack scenarios, such as multi-label
attacks and various trigger implementations, SPA maintains
consistent performance across different trigger types and
successfully targets multiple labels simultaneously without
compromising the primary attack objectives. Through pa-
rameter sensitivity studies and ablation experiments, we
systematically analyze the contribution of each component
in our approach. Additionally, our analysis of different
constraint norms demonstrates that the distance measures
employed in SPA outperform alternative measures like L2

norm and KL-divergence in balancing attack effectiveness
and model utility. Collectively, these comprehensive exper-
iments demonstrate that our backdoor attack methodology
poses a significant security concern for federated learning
systems, highlighting the urgent need for advanced defense
mechanisms to counter such sophisticated threats.

The main contributions of this paper are summarized as
follows:

• A Novel Backdoor Attack Paradigm. We propose
SPA , a novel backdoor attack paradigm that abandons
traditional end-to-end supervised training in favor of
feature alignment between trigger patterns and target
class distributions. This fundamental shift in attack
methodology enables the backdoor to be more stealthy
and persistent.

• Adversarial Dynamic Trigger Optimization. SPA in-
troduces an innovative adversarial trigger optimization
mechanism, which enhances backdoor effectiveness by
identifying natural adversarial noise patterns within the
feature space to serve as triggers. Moreover, by leverag-
ing feature consistency constraints, backdoor intensity
can be dynamically adjusted using the latest global
model, thereby enhancing attack stealth while main-
taining effectiveness.

• Comprehensive Empirical Validations. We conduct
extensive experiments validating the stealth and per-
sistence characteristics of our proposed method. Our
results confirm the applicability and effectiveness of
SPA across various federated learning configurations
and backdoor settings, highlighting the urgent need for
advanced defense mechanisms to counter such sophis-
ticated threats.

The remaining of this paper is organized as follows. Sec-
tion 2 introduces the related works of backdoor attacks and



defenses. The problem formulation and proposed method
are discussed in Section 3 and 4. Section 5 evaluates and
analyses the results of the experiment. Finally, Section 6
concludes the paper.

2. Related Work

2.1. Backdoor Attacks to Federated Learning

The concept of backdoor attacks initially emerged in the
context of centralized scenarios [21, 22]. The distributed
nature of federated learning introduced new objectives for
backdoor attacks, emphasizing effectiveness, stealthiness,
and persistence. Attackers aim to ensure that the backdoored
models they upload not only incorporate the malicious
functions into the global model after federated aggregation
but also remain undetected by backdoor detection methods.
Additionally, attackers seek to maintain the presence of
the backdoor throughout the iterative process of federated
learning, preventing its erosion over time.

Bagdasaryan et al. [13] proposed pioneering works in
deploying backdoor attacks on federated learning. They
introduce the Model Replacement Attack, which amplifies
the magnitude of backdoor updates proportionally, thereby
ensuring the dominance of backdoor parameters in the global
model and enhancing the effectiveness of the attack. Further-
more, they propose the Semantic Backdoor Attack, which
does not require any modifications to the training samples
but instead leverages samples with specific semantic infor-
mation to activate the backdoor. This approach represents a
more stealthy form of backdoor. Inspired by this concept,
[23] introduces an edge-case backdoor attack that utilizes
rare samples (the tail of a dataset) to trigger the backdoor.
The Distributed Backdoor Attack (DBA) [24] decomposes a
trigger into multiple sub-triggers, with each attacker holding
one of these sub-triggers for data poisoning, significantly
enhancing the backdoor effectiveness in the global model.

In further developments, more advanced attacks [14,
25, 26] suggest constructing the neuron activation path to
unimportant or redundant neurons that are less frequently up-
dated, thereby preventing the backdoor from being promptly
erased and enhancing its persistence. Most recently, Li et
al. [27] presented 3DFed, which addresses three prominent
defense strategies with corresponding attack modules and
introduces an indicator mechanism to assess whether back-
door updates are incorporated into model aggregation. This
allows for an adaptive adjustment of the attack strategy. We
have also observed a category of backdoor attacks based
on trigger optimization, such as A3FL [12], F3BA [26] and
CerP [28]. These methods aim to obtain a robust trigger
to make the attacks more covert and persistent. However,
these attacks still operate within the realm of supervised
learning, establishing a connection between the backdoor
trigger and the target label through loss functions. Despite
improvements, the anomaly of backdoored models resulting
from this end-to-end training persists. Our method seeks to
transcend this limitation.

2.2. Backdoor Defenses to Federated Learning

The methods for backdoor attacks in federated learn-
ing can be broadly categorized into two main approaches.
The first follows the spirit of anomaly detection. The core
hypothesis of such methods is that poisoned local models
are outliers that deviate significantly from benign models.
Consequently, these methods aim to detect outliers by com-
puting the discrepancies between model weights/gradients,
model representations, or other metrics, and then exclude
abnormal updates to mitigate poisoning attacks. Krum [29]
selects only the local model with the smallest sum of squared
Euclidean distances from its n−m− 2 nearest neighboring
models to serve as the global model, where m is an upper
bound on the number of malicious participants in FL. Multi-
Krum [29] extends Krum by selecting multiple local models
based on the Krum criterion and averaging the selected local
models to form the global model. Foolsgold [30] assigns
lower aggregation weights to updates with high pairwise
cosine similarities, thereby mitigating the impact of back-
door updates. RFLBAT [31] discriminates malicious models
according to the difference between poisoned and clean
updates in a low-dimensional projection space. Deepsight
[32] aims to identify backdoor updates by measuring the
fine-grained differences between model updates, generally
assuming that the training data of backdoor models exhibits
less heterogeneity than that of benign models. BackdoorIndi-
cator [33] proposed the BackdoorIndicator (referred to as
“Indicator” hereafter), which detects potentially poisoned
models based on the out-of-distribution (OOD) properties
of backdoor samples.

The second approach involves methods for mitigating
backdoors, which primarily focus on suppressing or per-
turbing the magnitude of updates rather than detecting these
malicious models. The essence of these methods is to dis-
rupt the clustering of backdoor features in the model’s
feature space. Xie et al. [34] propose to apply clipping
and smoothing on model parameters to control the global
model’s smoothness, which results in a sample-wise robust-
ness certification against backdoors with limited magnitude.
FLAME [19] introduces noise to eliminate backdoors based
on the concept of differential privacy. RLR [35] employs
robust learning rates to update the global model, applying a
negative learning rate to dimensions with significant direc-
tional disparities to mitigate the impact of malicious updates.
Our method transcends the model gradient or representation
anomalies caused by supervised learning and simultaneously
conceals the individual clustering of backdoors in the feature
space, making our attack more stealthy and persistent.

3. Problem Formulation

3.1. Federated Learning

Federated Learning enables N clients to train a global
model w collaboratively without revealing local datasets.
Unlike centralized learning, where local datasets must be
collected by a central server before training, FL performs



training by uploading the weights of local models ({wk |
k ∈ N}) trained on the local dataset Dk = {(xk,i, yk,i)}nk

i=1
of size nk to a parametric server. Specifically, the global
training objective is defined as follows:

w = argmin
w

N∑
k=1

λkLk(w,Dk), (1)

Lk(w,Dk) =
1

nk

nk∑
i=1

f(w, (xk,i, yk,i)), (2)

where w denotes the optimal global model parameters,
Lk(w,Dk) represents the average loss computed over the
dataset Dk for client k, (xk,i, yk,i) denotes the i-th sample
in Dk, and λk indicates the weight of the loss for client k.

At the t-th federated training round, the server randomly
selects a client set St where |St| = m and 0 < m ≤ N , and
broadcasts the current model parameters wt. The selected
clients perform local training in the following three steps:

• Global model download. All clients download the
global model wt from the server.

• Local training. Each client updates the global model
by training with their datasets: wt

k ← wt
k − η

∂L(wt
k,b)

∂wk
,

where η and b refer to learning rate and local batch,
respectively.

• Aggregation. After the clients upload their local models
{wt

k | k ∈ n}, the server updates the global model by
aggregating the local models.

wt+1 ← wt + AGG(wt
k|k ∈ St). (3)

Note that, AGG(·) is the pre-define aggregation method,
such as FedAvg [1], etc.

3.2. Threat model

We build upon the attacks proposed in previous works
[12, 13, 24, 36], where the attackers aim to inject malicious
functions, often referred to as hidden neural trojans, into the
global model. These neural trojans remain dormant during
normal operations but would be activated when specific pre-
defined patterns, known as triggers, are present in the input
data. Formally, let Fw represent a clean FL model and F̃w

a backdoored model. The objectives of such an attack can
be defined as follows:{

Fw(x) = F̃w(x)

F̃w(x⊕ δ) = yt
, (4)

In the context of FL, the attacker has full access to the local
training data of compromised clients and can manipulate
the entire training process. Existing works typically inject
backdoors through end-to-end supervised training. Specifi-
cally, given clean local samples Dk, the attacker seeks to
corrupt a fraction r of the data by adding specific trig-
gers δ, thereby constructing a backdoor dataset Db, where
Dk = Dc,k ∪Db,k, |Db,k| = r · |Dk|. The attacker then trains
a backdoor local model F̃wk

by minimizing the following

empirical error:

E(x,y)∼Dk
[ℓ(Fwk

(x), y)] = E(x,y)∼Dc,k
[ℓ(Fwk

(x), y)]

+E(x,yt)∼Db,k
[ℓ(Fwk

(x), yt)].
(5)

3.2.1. Adversaries’ Capability and Knowledge. The ad-
versary neither has knowledge of nor can manipulate the
aggregation rule employed by the central server. Further-
more, the adversary cannot access or modify any infor-
mation related to benign participants, such as their local
datasets or models. The adversary is limited to knowing
and controlling only the local training data and processes
of the compromised (malicious) participants. To simulate a
more realistic scenario and address the limitations of existing
studies, which assume the adversary controls multiple clients
and engages in continuous backdoor attacks, we narrow our
focus to a scenario where the adversary controls only a single
client and this client participates in the training for only a
limited number of communication rounds.

4. Methodology

4.1. Attack Intuition and Overview

4.1.1. Key Intuition. Consider the backdoor injection attack
procedure as outlined in Equation 5. Typically, the attacker
modifies a subset of the training images by embedding trig-
gers and employs an end-to-end training strategy to establish
a strong association between the backdoor triggers and the
target model. To avoid the feature disentanglement that re-
sults from such direct approaches, resulting in the backdoor
model exhibiting noticeable deviations from benign models,
a more intuitive idea is to directly establish a relationship
between the trigger features (embeddings) and the target
class feature distribution. In other words, the goal is to trick
the model into recognizing the trigger features as normal
features of the target class. By integrating the backdoor task
into the normal feature learning process, rather than treating
it as a separate task, the adversary ensures that the mali-
ciously trained model behaves in a manner indistinguishable
from that of benign participants.

4.1.2. Overview. As illustrated in Figure 2, our approach,
denoted as SPA, consists of two key components: backdoor
injection and backdoor enhancement.

• In the backdoor injection module, SPA directly estab-
lishes the connection between the trigger feature and
the target class feature via feature alignment, so that
the feature embeddings of trigger-embedded samples
closely resemble those of the target class samples,
thereby inducing model misclassification. Furthermore,
we extract clean knowledge from the frozen global
model to preserve the utility of the backdoor model.

• In the backdoor enhancement module, considering that
the fixed trigger feature is difficult to align with the
target distribution, we search for adversarial noise from
the global model feature space that can inherently steer
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Figure 2. Workflow of SPA .

the predictions of the global model towards the back-
door label as the backdoor trigger, making the backdoor
more effective and durable.

4.2. Backdoor Injection

In the FL setting, each selected participant in round
t receives the global model wt distributed by the server.
Following the intuition outlined in Section 4.1, we do not
establish a direct connection between backdoor features and
target labels in an end-to-end manner. Instead, we focus on
creating a strong association between backdoor features and
the feature distributions of the target class. A straightforward
and effective approach is to pull the feature embeddings
of backdoor samples closer to those of the target class
samples, thereby deceiving the model into perceiving the
trigger features as belonging to the target class distribution.

Specifically, the attackers filter out the sample subsets Dt

whose label is the target class t from their local dataset Da.
x⊕δ indicates embedding the trigger δ to an input sample x,
referred to as a poisoned sample. To ensure the effectiveness
of the backdoor, the attacker manipulates the global model so
that it generates strongly similar feature embeddings for any
poisoned samples and the target sample, thereby effectively
establishing a strong correlation between the trigger features
and the features of the target class. Such a correlation
would indirectly cause the backdoored model to predict the
labels desired by the attacker for trigger-embedding samples.
Formally, we denote the feature embedding output of the
manipulated global model wt at t-th round as F̃wt and the
feature alignment objective is defined as follows:

Lalign =
1

|Da| · |Dt|
∑
x∈Da

∑
xt∈Dt

s(F̃wt(x⊕ δ), F̃wt(xt)).

(6)

Here, s(·, ·) represents a similarity measure between two
feature embeddings. Typically, the L2-norm is applied to
reduce the distance between backdoor and target feature rep-
resentations. However, in the FL scenario, the feature space
of the global model is constantly evolving, and backdoor
embeddings are often high-dimensional and contain some
extreme values that are challenging to minimize effectively.
Moreover, we lack precise control over whether backdoor
features move closer to the target features or the opposite,
potentially disrupting the feature embeddings of the clean
target class. To address the limitations, we introduce the
sliced-Wasserstein distance inspired by [37, 38], a variant
of the Wasserstein distance that is well-suited for measuring
high-dimensional data and providing a more robust metric
to efficiently handle complex distributions.

Wsliced (Fc,Fb) =
(

1
S

∑S
s=1

∫ 1

0
∥Fs

c (z)−Fs
b (z)∥2 dz

)1/2

(7)
where S is the number of one-dimensional directions (de-
noted by the randomly sampled unit vectors). F s

c and F s
b

represent the projections of the clean and poisoned embed-
dings into one-dimensional data points along the direction
of slice s, respectively.

Furthermore, we must ensure the utility of the back-
doored model, meaning it achieves classification accuracy
on clean data comparable to that of the global model, thus
enhancing the stealthiness of the backdoor. To achieve this,
we employ a distillation-like method to transfer effective
knowledge of clean features to the backdoor model, preserv-
ing its performance on clean data. Specifically, we freeze
the global model obtained in the current training round as
a teacher model, denoted as Fwt . During backdoor feature
alignment, we constrain the backdoored model to produce
embeddings on trigger-free samples similar to those of the



teacher model. Formally, we define a utility loss to quantify
this objective:

Lutility =
1

|Da|
∑
x∈Da

s(F̃wt(x),Fwt(x)). (8)

Finally, the backdoor injection process can be formulated as
the following optimization problem:

argmin
wt

L = Lalign + λLutility, (9)

4.3. Backdoor Enhancement

Although using feature alignment can make the behavior
of backdoored models more consistent with that of benign
models, significantly enhancing the stealthiness of malicious
participants, this approach also weakens the effectiveness of
the backdoor, especially when fixed triggers are employed.
In end-to-end learning processes, the fixed trigger is often
treated as an independent task. While this characteristic
contributes to the abnormality of the backdoored model, it
also enables a more straightforward and stable association
between the trigger features and the target label. In contrast,
it is inherently challenging for a model to classify an out-
of-distribution anomaly, such as a fixed trigger, as part of a
clean distribution. This difficulty arises because the trigger
features often conflict with the normal features of the target
class. Furthermore, due to the inclusion of more benign
updates during federated learning aggregation, the learned
backdoor effects may gradually diminish with continued
federated training iterations.

To address these challenges, we propose an adversarial
adaptation mechanism for trigger optimization to enhance
the effectiveness of backdoor attacks. This method aims
to better integrate backdoor triggers into the target feature
space, ensuring the backdoor remains robust and persistent
even under the ongoing FL process. Specifically, the attacker
has access to the current global model wt. Inspired by
the concept of adversarial examples, we aim to search for
an adversarial noise in the feature space that biases the
prediction of the global model toward the target class desired
by the attacker. This adversarial noise represents naturally
occurring perturbations within the target class of the global
model, which is an inherent vulnerability in the global model
that can function as a “natural backdoor”. Such a backdoor
is robust and difficult to eliminate with the iteration of FL
communication, as it aligns closely with the model’s intrinsic
feature representations. By leveraging feature alignment, the
model can be misled into learning these robust backdoor
features as part of the normal feature distribution of the
target class. The optimization of the backdoor trigger can
be formally defined and quantified using the following loss
function:

Lenhance =
1

|Da|
∑
x∈Da

C∑
i=1

yt,i log (Fwt(x⊕ δ)i) , (10)

where C is the number of categories.

Algorithm 1: SPA Algorithm
Input: Current global model parameters wt, the

data of malicious client Da.
Output: The backdoored model wt.

1 Malicious Client Execution:
2 Freeze teacher model and embeddings: Fwt , Fwt ;
// Backdoor Enhancement Phase

3 δ ← Initialize random perturbation;
4 for optimization step i ∈ [1, 2, · · · , I] do
5 for batch ba = {(x, y)} ∈ Da, bt = {(x, y) |

y = yt} ∈ Da do
6 Lenhance ←

1
|ba|

∑
x∈ba

∑C
i=1 yt,i log(Fwt(x+ δ)i);

7 Lconsist ←
1

|bt|
∑

xt∈bt
sproj(Fwt(xt),Fwt(xt ⊕ δ));

8 L ← Lenhance + Lconsist;
9 δ ← δ − ηδ∇δL;

// Backdoor Injection Phase

10 for each local epoch e ∈ [1, 2, · · · , Eattak] do
11 for batch ba = {(x, y)} ∈ Da, bt = {(x, y) |

y = yt} ∈ Da do
12 Lalign ←

1
|ba|·|bt|

∑
x∈ba

∑
xt∈bt

Wsliced(F̃wt(x⊕
δ), F̃wt(xt));

13 Lutility ←
1

|ba|
∑

x∈ba
Wsliced(F̃wt(x), Fwt(x));

14 L ← Lalign + λLutility;
15 wt ← wt − η∇L;

16 return wt

In the domain of adversarial machine learning, Lp norms,
such as the L∞ norm, are commonly used to regulate
the magnitude of adversarial noise, i.e., ∥δ∥∞ ≤ ε. This
approach operates within the input space, specifically at
the pixel level, where it limits the size of perturbations
to ensure they remain visually imperceptible to human ob-
servers. Despite its widespread use, this strategy exhibits
inherent limitations, as it may not effectively govern the be-
havior of the model within the feature space, where higher-
level representations are encoded. Furthermore, the fixed
Lp constraint lacks flexibility, requiring manual adjustment
of the perturbation amplitude threshold (e.g., ε value) to
balance the effectiveness and invisibility of the perturbation.
This becomes particularly challenging in the dynamically
evolving FL scenarios.

To address these shortcomings, we propose an innovative
approach that constrains the magnitude of adversarial pertur-
bations through feature consistency. Specifically, we enforce
a condition whereby samples augmented with triggers retain
a high degree of similarity to their original counterparts
within the feature space. Such strategies enable attackers
to dynamically adjust the strength of the backdoor by lever-
aging the most recent global model, thereby enhancing the



stealthiness of the attack while maintaining its efficacy. To
quantify this similarity, we adopt the projection distance, a
metric that emphasizes the directional alignment of features
while remaining insensitive to variations in their magnitudes.
The projection distance is formally defined as:

sproj(a, b) =

∥∥∥∥a− a · b
∥b∥2

b

∥∥∥∥
2

. (11)

This measure ensures that the features of perturbed sam-
ples are distributed along the principal direction associated
with a given class, rather than being forcibly aligned with
a specific individual sample. As a result, the constraint
imposed on the trigger can be articulated as:

Lconsist =
1

|Dt|
∑

xt∈Dt

sproj (Fwt(xt),Fwt(xt ⊕ δ)) . (12)

It is imperative to note that we restrict feature alignment
to only the target class samples within each batch, rather
than applying it universally to all samples. This selective
alignment serves a dual purpose: it effectively limits the
magnitude of the perturbations, ensuring their subtlety, while
simultaneously guiding the trigger features to converge to-
ward the feature distribution characteristic of the target class.
By integrating these principles, our approach not only en-
hances the stealthiness of adversarial perturbations but also
ensures their robustness and adaptability in practical attack
scenarios. Finally, the backdoor enhancement process can be
formulated as the following optimization problem:

argmin
δ
L = Lenhance + Lconsist. (13)

Accordingly, the overall SPA algorithm for an attacker
can be summarized in Algorithm 1.

5. Experimental Evaluation

In this section, we rigorously evaluate the efficacy of SPA
against the SOTA defenses in FL through comprehensive
experimental. Our experimental analysis is conducted on
real-world datasets within a simulated FL environment. We
begin by benchmarking the performance of SPA against
leading backdoor attack techniques under various defense
strategies, with particular focus on its persistence and stealth.
Next, we measure the effectiveness of SPA under diverse
attack scenarios and FL configurations. Subsequently, we
verify the performance of different attack methods on multi-
label attacks. Furthermore, we conduct ablation studies to
investigate the impact of key parameters on the performance
of SPA , thereby providing deeper insight into the factors
contributing to its success. The empirical results corroborate
that SPA exhibits remarkable efficiency, stealthiness, and
resilience, capable of bypassing current defense strategies
with ease. To facilitate further research and the development
of more sophisticated defenses against such attacks, our
implementation is publicly accessible for the reproduction
of experimental outcomes.

Datasets and Models: We evaluate SPA on three widely-
used benchmark datasets: CIFAR-10, CIFAR-100 [39], and

GTSRB [40]. The CIFAR-10 dataset consists of 60,000
images shaped 32× 32 distributed across 10 classes, where
5,0000 samples are for training and 1,0000 for testing.
CIFAR-100 has the same number of images but 100 classes
containing 600 images each, with 500 training images and
100 testing images. The German Traffic Sign Recognition
Benchmark (GTSRB) contains 39,209 training images and
12,630 test images that are uniformly distributed across 43
classes, where each image has a size of 32× 32 pixels.

ResNet18 [41] is employed as the default model archi-
tecture, which is a classic and effective model for image
classification. Besides, we also evaluate the performance
of SPA under different model architectures in Appendix
A, including ResNet34 [41], VGG11, VGG19 [42], and
MobileNet-V2 [43].

Federated Learning Setup: Our experiment implements
all the tasks in the FL system running image classification
tasks using FedAVG on a single machine using an NVIDIA
GeForce RTX 3090 GPU with 24GB of memory. At each
communication round, the server randomly selects ten clients
to contribute to the global model while the total number
of clients is 100. Following previous research [44–46], we
randomly split the dataset over clients in a non-IID manner,
using Dirichlet sampling [47] with the parameter α set to 1
by default. We also evaluate the impact of data heterogeneity
by adjusting the value of α. During the training process,
each selected client trains the local model for two local
epochs using the SGD optimizer with a learning rate of 0.01.
The batch size is 64 for CIFAR-10 and CIFAR-100, and 32
for GTSRB. The FL training process continues for 2,100
communication rounds.

Attack and Defense Setups: To compare the effec-
tiveness of SPA with SOTA methods, we conduct exper-
iments against A3FL [12], Chameleon [15], Neurotoxin
[14], PGD [36], and Vanilla [13]. Among these methods,
A3FL, Chameleon, and Neurotoxin are designed to implant
more persistent backdoors. Specifically, A3FL optimizes the
trigger pattern to survive scenarios where the global model
is explicitly trained to unlearn the trigger, making it less
susceptible to removal by global training dynamics. Neuro-
toxin attempts to inject backdoors by targeting parameters
that benign clients rarely update, while Chameleon enhances
backdoor persistence by exploiting sample relationships and
employing supervised contrastive learning to train the back-
door model. To achieve higher stealth, the Vanilla backdoor
attack first constructs malicious training datasets by mix-
ing backdoor samples with benign samples, then trains the
backdoor model on this constructed dataset by optimizing
cross-entropy loss. In contrast, the PGD backdoor attack
employs Projected Gradient Descent (PGD) [36] to train the
backdoor model, periodically projecting model parameters
onto a sphere centered around the model from the pre-
vious iteration, effectively evading norm-clipping defenses
designed to mitigate the effects of abnormally large updates.

For trigger-optimization-based backdoor attacks, namely
SPA and A3FL, we configure each attacker to optimize their
trigger pattern using PGD [36] with a step size of 0.001. For
other attacks, we adhere to their original experimental con-



TABLE 1. PERFORMANCE COMPARISON BETWEEN SPA AND SIX SOTA DEFENSE METHODS

Dataset Attack Vanilla PGD Neurotoxin Chameleon A3FL SPA

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10

Nodefense 92.21 67.03 92.05 67.32 92.25* 63.79 91.73 48.78 92.04 98.86* 92.55 99.91
Deepsight 92.08 65.41 92.06 60.58 92.14 54.24 92.19 36.40 92.41* 96.73* 92.66 99.88
Foolsgold 90.34 61.49 90.89* 62.67 90.20 76.88 90.23 42.10 90.28 98.86* 91.32 99.14
Indicator 89.32 3.51 84.58 11.27 87.14 12.67 83.54 2.22 90.52* 53.90* 91.14 98.31

Multikrum 92.45 0.40 92.16 0.71 92.10 0.18 92.31 0.34 91.54 96.03* 92.37* 99.96
Rflbat 88.29 83.41 87.63 80.17 87.25 30.92 87.43 25.12 89.76 98.59* 89.14* 99.29
Flame 92.34 0.26 92.35 0.20 92.44 0.21 92.52* 0.28 92.41 98.60* 92.52 99.92

CIFAR-100

Nodefense 71.25 71.31 70.74 77.65 71.14 74.74 71.91 33.09 71.55 97.45* 71.63* 99.97
Deepsight 70.98 78.22 71.03 73.44 71.17 70.62 71.69 31.23 71.72* 99.95 71.83 99.86*
Foolsgold 70.51 72.69 70.62 85.58 70.49 75.52 71.66* 36.01 71.02 98.62* 71.94 99.45
Indicator 69.46 0.14 60.02 0.29 66.04 0.27 61.27 0.11 69.6* 98.28* 70.51 98.99

Multikrum 71.66 0.11 71.94 0.15 71.65 0.13 71.76 0.20 71.97 94.84* 71.95* 99.32
Rflbat 63.76 51.6 63.10 58.9 64.12 64.32 62.48 3.92 64.3* 98.64* 68.18 98.89
Flame 72.29* 0.15 72.18 0.13 72.05 0.10 72.12 0.12 72.02 95.20* 72.86 99.38

GTSRB

Nodefense 96.71 98.73 96.64 98.81 96.64 98.62 96.81 96.33 96.68 99.02* 96.79* 99.57
Deepsight 96.41 81.89 96.78 98.80 96.88 98.45 96.56 97.62 96.54 98.99* 96.83* 99.05
Foolsgold 96.68 98.01 96.67 98.49 95.73 97.28 96.77* 97.05 96.66 99.37* 96.95 99.87
Indicator 95.14 86.21 90.19 95.54 90.53 88.33 92.04 5.96 89.38 77.15 94.59* 100.00

Multikrum 96.71* 0.01 96.67 0.00 96.51 0.00 96.67 0.02 96.60 98.18* 96.97 98.72
Rflbat 94.40 97.95 95.92* 97.71 94.52 99.36 94.29 96.88 95.10 100.00* 96.08 100.00
Flame 96.43 0.01 96.52 0.00 96.58* 0.01 95.92 5.95 96.47 98.54* 96.95 99.45

figurations. To simulate more realistic scenarios, the attack
window begins at the 2000th round and continues for 100
rounds, forcing attackers to adapt to random client selection
and preventing continuous attack execution. Additionally, we
explore the impact of various attack scenarios.

We also evaluate those attacks against six SOTA de-
fenses: Multikrum [29], Deepsight [32], Foolsgold [30],
Rflbat [31], Flame [19] and Indicator [33]. For those attacks
and defense methods, we follow the original implementa-
tions. Note that we selected the random noise dataset as the
source of the indicator dataset in Indicator.

Evaluation metrics: Following previous works, we eval-
uate the performance of SPA with two metrics: ❶ attack
success rate (ASR), which is the ratio of backdoored inputs
misclassified by the backdoor model as the target labels:

ASR =
#successful attacks

#total trials
, (14)

and ❷ the accuracy of the main classification task on normal
samples (ACC). Note that we report the mean ASR of all the
attackers on the global model at the end of FL. A stealthy
and persistent attack in FL is characterized by its ability
to maintain the model’s original ACC while ensuring that
the ASR either remains stable or experiences only minimal
degradation throughout the FL iterations. These enable the
attack to remain undetected by defense mechanisms while
maintaining its effectiveness over extended training periods.

5.1. Attack Performance

Comparison with SOTA Methods. Table 1 presents a
comprehensive performance comparison between SPA and
five SOTA backdoor attacks against FL under various de-
fense mechanisms. To simulate more challenging and re-

alistic scenarios, we configured the experiments with a
single attacker participating intermittently through random
selection, with an attack window limited to rounds 2000-
2100, meaning the attacker was only selected approximately
10 times throughout the training process. We evaluated
performance against six widely adopted backdoor defense
methods as well as a baseline scenario without any defense
deployment. The best results are highlighted in Bold, while
the second-best results are marked with an asterisk ∗. Over-
all, our proposed method consistently achieved superior or
near-superior performance across all datasets, maintaining
the ASR exceeding 98% while successfully circumventing
all backdoor defense mechanisms. Moreover, SPA exhibited
minimal impact on ACC, ranking among the top-performing
methods in this critical metric.

In the absence of defense mechanisms, existing attack
methods remained effective to varying degrees. However, the
challenging scenario of a single, randomly selected attacker
significantly weakened the performance of Vanilla, PGD,
Neurotoxin, and Chameleon, resulting in ASR values below
80% on CIFAR-10 and CIFAR-100 datasets. Furthermore,
most of these attacks are detectable by Indicator, Multikrum,
and Flame defenses, though it should be noted that Indicator
achieved this at the cost of some ACC degradation.

Notably, A3FL emerges as a competitive approach due
to its innovative integration of unlearning mechanisms into
adversarial training. This optimization enhances trigger per-
sistence, resulting in more concealed and durable backdoor
features. Theoretically, Indicator, which detects backdoors
by injecting indicator tasks using OOD data, should effec-
tively counter A3FL, as backdoor features typically manifest
as OOD features that disrupt indicator tasks. However, we
observed defensive instability against A3FL in practice,
attributable to scenarios where A3FL’s learned backdoor fea-
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Figure 3. Confusion matrix of clean models and backdoor models.
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Figure 4. Persistence evaluations under no defenses.

ture space diverges from the indicator tasks’ feature space. In
contrast, our method maintains alignment with clean features
without perturbing other OOD features.

While existing attacks achieve relative stealth through
selective neuron manipulation or trigger optimization, they
fundamentally rely on supervised training paradigms. This
dependency creates distinguishable separation between back-
door and benign features in the latent space, making them
detectable by advanced defenses.The breakthrough of SPA
lies in feature alignment that strategically entangles trigger
features with normal features to substantially reduce the
statistical divergence that defenses typically exploit. A more
in-depth visualization analysis is provided in Appendix B.

Furthermore, we investigated the impact of SPA on the
classification accuracy of the target class. Essentially, the
core principle of our approach is to mislead the model into
perceiving trigger features as legitimate components of the
target class features, effectively learning backdoor features
as benign features. A potential concern is that achieving high
backdoor ASR might cause the model to over-rely on trigger
features for target class identification while neglecting other
critical features of that class. To systematically evaluate this
potential side effect, we examined the confusion matrices
before and after the attack to observe any changes in the
target class performance. We conducted experiments using
the CIFAR-10, which contains 10,000 test samples equally
distributed across 10 classes (1,000 samples per class). We
designated class 0 as the attacker’s target class and applied
triggers exclusively to class 5 samples during testing.

As illustrated in Figure 3, the comparison between the
non-attacked and attacked models reveals minimal difference
in the number of correctly classified samples for the target
class, where number in Figure 3(a) and Figure 3(b) differs by

TABLE 2. RESULTS ON DIFFERENT NON-IID SETTINGS.

Dataset 0.5 1 5 10 1000

CIFAR 10 ACC 91.56 92.55 92.62 92.59 92.88
ASR 99.65 99.91 99.42 99.96 100.00

CIFAR 100 ACC 71.59 71.63 71.68 71.78 71.82
ASR 99.24 99.97 100.00 99.76 99.85

GTSRB ACC 96.28 96.79 96.81 96.91 96.86
ASR 99.46 99.57 99.53 100.00 100.00

only three. Meanwhile, as shown in Figure 3(c), class 5 sam-
ples embedded with triggers were consistently misclassified
as class 0. These results demonstrate that SPA successfully
maintains the model’s original discriminative capability for
the target class while achieving strong backdoor efficacy.
Crucially, the model does not exhibit over-reliance on trigger
features at the expense of learning the natural features of the
target class.

Persistence Analysis. We further assessed the durability
of SPA by comparing its lifespan with baseline methods.
The attack window remained consistent at rounds 2000-
2100. To enhance backdoor ASR during this phase, we
configured three malicious clients (still selected randomly)
and extended the FL process to 3000 rounds. Figure 5
illustrates the effect in scenarios without any defense mech-
anisms. We observed that SPA demonstrates significantly
longer lifespan than baseline approaches, maintaining over
90% ASR for more than 900 rounds after the attack window.
In contrast, baseline attacks, except A3FL, experienced rapid
ASR degradation. This phenomenon can be attributed to
the inherent limitations of conventional end-to-end backdoor
methods: their abnormal gradient patterns during backdoor
model updates become diluted during aggregation with be-
nign gradients, leading to progressive attack mitigation. Our
approach fundamentally differs by embedding backdoor fea-
tures as supplementary knowledge within the feature space
of target classes, which remains consistent with the core
objective of FL that aggregates distributed knowledge from
participants.

A3FL demonstrates comparable persistence through its
adversarial training framework combined with unlearning
mechanisms. However, its adversarial process incurs sub-
stantial computational overhead, representing a significant
practical limitation. Moreover, comprehensive experiments
across various defense mechanisms illustrated in Figure
6 further confirm the superior durability of SPA , con-
sistently maintaining high attack effectiveness regardless
of the deployed defensive strategies. These results collec-
tively demonstrate that our feature-space alignment strategy
achieves both stealth and persistence by naturally integrating
backdoor features as complementary knowledge rather than
conflicting objectives.

5.2. Applicability Analysis

Non-IID data distributions. In FL scenarios, diverse
data distributions represent a crucial and realistic setting
where participant data is typically distributed in a non-IID
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(a) Persistence evaluations under Deepsight.
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(b) Persistence evaluations under Foolsgold.
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(c) Persistence evaluations under Indicator.
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(d) Persistence evaluations under Multikrum.
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(e) Persistence evaluations under Rflbat.
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(f) Persistence evaluations under Flame.

Figure 5. Comparison of persistence performance under different defense methods.
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(a) Results on CIFAR-10 dataset.
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(b) Results on CIFAR-100 dataset.
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(c) Results on GTSRB dataset.

Figure 6. Comparison of performance under a varying number of malicious clients on three datasets.

manner. Following existing work [46, 47], we employ the
Dirichlet distribution Dir(α) to model varying degrees of
data heterogeneity, where smaller α values correspond to
higher data heterogeneity. Specifically, we varied α across
values of 0.5, 1, 5, 10, and 1000 across three datasets, with
α = 10 representing the IID scenario.

As demonstrated in Table 2, SPA exhibits remarkable
robustness against varying data distributions, maintaining
consistent performance across all tested conditions. The
primary challenge introduced by non-IID lies in the reduced
availability of target class samples for potential attackers.
Nevertheless, our trigger enhancement mechanism enables
effective backdoor feature learning even when target class
samples are scarce. This resilience stems from the nature
of our optimized trigger features, which inherently repre-
sent noise features near the target class decision boundary,
thereby facilitating easier feature alignment with the target
class using a few target samples.

Impact of Adversary Number. To evaluate the practical
applicability of our method in real-world scenarios where
attackers typically cannot control multiple participants, we
investigate the impact of varying numbers of malicious

clients on attack effectiveness. Our experiments systemati-
cally assess different attack methods across three benchmark
datasets with the number of attackers ranging from 1 to
5, while maintaining all other parameters at their default
configurations.

The experimental results, as illustrated in Figure 6, re-
veal several important insights. Generally, as the number of
malicious participants under attacker control increases, the
ASR of backdoor attacks on the global model also increases,
accompanied by a modest decline in ACC. Notably, SPA
achieved an ASR exceeding 90% with just a single malicious
participant, whereas most baseline attack methods achieved
only approximately 70% ASR under the same conditions.
This superior performance demonstrates that our approach is
significantly more applicable to real-world scenarios where
controlling multiple participants is impractical.

5.3. Different Attack Settings

Multi-label Attack Scenario. In traditional FL backdoor
attacks, a single attacker typically controls multiple clients
with a consistent target label, essentially launching a col-



TABLE 3. PERFORMANCE OF SPA COMPARED WITH BASELINE ATTACK UNDER MULTI-LABEL ATTACK SCENARIO.

Attack Vanilla PGD Neurotoxin Chameleon A3FL SPA
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Nodefense

Attack 1
-

0.26
-

0.04
-

1.21
-

10.80
-

90.44
-

99.99
Attack 2 7.44 92.82 66.27 17.38 99.89 99.86
Attack 3 87.94 0.90 91.50 90.78 96.51 99.88
Average 91.76 31.88 91.52 31.25 92.03 52.99 92.35 39.65 91.73 95.61 92.39 99.91

Deepsight

Attack 1
-

0.52
-

0.03
-

2.41
-

86.73
-

99.88
-

99.85
Attack 2 5.80 92.66 29.40 15.34 92.14 98.76
Attack 3 88.81 0.56 85.91 7.91 97.66 97.52
Average 91.44 31.71 90.81 31.08 92.31 39.24 92.35 36.66 92.17 96.56 92.46 98.71

Foolsgold

Attack 1
-

1.31
-

0.04
-

73.26
-

10.07
-

99.60
-

98.33
Attack 2 5.37 94.00 95.09 77.32 98.71 98.96
Attack 3 90.81 0.97 74.39 48.99 87.58 96.38
Average 88.79 32.50 90.71 31.67 91.04 80.91 90.66 45.46 89.00 95.30 91.54 97.89

Indicator

Attack 1
-

0.91
-

0.24
-

49.74
-

21.62
-

99.96
-

97.77
Attack 2 0.02 1.83 0.26 2.04 11.51 99.65
Attack 3 85.34 57.74 16.02 0.97 99.53 97.36
Average 85.08 28.76 85.83 19.94 85.13 22.01 86.13 8.21 85.75 70.33 91.23 98.26

Multikrum

Attack 1
-

0.16
-

0.27
-

0.38
-

0.32
-

99.80
-

99.65
Attack 2 0.03 0.01 0.06 0.07 35.39 85.82
Attack 3 4.59 3.26 5.24 5.32 99.27 98.72
Average 92.36 1.59 92.39 1.18 92.64 1.89 92.46 1.90 92.18 78.15 92.58 94.73

Rflbat

Attack 1
-

0.29
-

0.00
-

0.02
-

6.57
-

65.13
-

98.72
Attack 2 2.74 99.79 0.06 11.89 99.90 96.42
Attack 3 88.63 0.03 99.73 92.99 98.46 98.62
Average 86.83 30.55 88.28 33.27 87.22 33.27 86.97 37.15 85.46 87.83 88.73 97.92

Flame

Attack 1
-

0.18
-

0.23
-

1.18
-

0.30
-

99.54
-

98.82
Attack 2 0.03 0.02 26.50 0.07 39.31 99.06
Attack 3 5.29 9.92 95.22 3.78 99.36 99.00
Average 92.56 1.83 92.51 3.39 92.02 40.97 92.35 1.38 92.42 79.40 92.54 98.96

lusion attack. However, real-world scenarios often involve
multiple attackers controlling different clients and targeting
different labels, resulting in multi-label attacks. In this sec-
tion, we evaluate the performance of various attack methods
in multi-label attack scenarios. Specifically, we configured
three attackers with distinct target labels: 0, 1, and 2. We
report the average performance across all three attackers.

As shown in Table 3, the experimental results reveal
significant performance disparities among different meth-
ods. Vanilla, PGD, Neurotoxin, and Chameleon occasionally
enabled one attacker to achieve an ASR exceeding 90%,
yet their average ASR remained relatively low. This pattern
indicates that among the three attackers, only one could
successfully compromise the model, while the others failed.
In contrast, both A3FL and SPA enabled all three attackers
to achieve high ASR simultaneously. To further investigate
this phenomenon, we visualized the T-SNE projections of
feature representations for Vanilla, A3FL, and our method,
as illustrated in Figure 7. The visualization provides critical
insights into the underlying mechanisms. For Vanilla attacks,
despite having different targets, all attackers employ end-to-
end training approaches, causing different out-of-distribution
tasks to interfere with each other within the same feature
space. This interference explains why Indicator-based de-
fenses can successfully detect backdoors by leveraging OOD

data characteristics.

A3FL demonstrates improved performance through trig-
ger optimization, which effectively separates different OOD
tasks, enabling successful multi-label backdoor attacks.
However, its multiple out-of-distribution backdoor features
still result in at least one attacker being detectable, as certain
backdoor tasks inevitably interfere with the OOD indicator
tasks planted by defense mechanisms. SPA achieves superior
performance by aligning different backdoor features with
their respective target class features. This alignment strategy
effectively distributes backdoor features across their corre-
sponding target class distributions, simultaneously avoiding
inter-attack conflicts and evading detection. By embedding
each backdoor within the natural feature distribution of
its target class, SPA creates multiple covert channels that
operate independently without mutual interference.

Different Attack Timings. In this section, we investigate
the persistence of SPA when attacks are executed at different
time intervals, demonstrating its applicability in specialized
scenarios. Specifically, we configured a single attacker with
an attack window spanning rounds 2000-2100, while the FL
process continued for a total of 3000 rounds. We established
three distinct scenarios: the attacker being randomly selected
throughout the attack window, the attacker continuously
attacking for 10 consecutive rounds at the beginning of the
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Figure 7. T-SNE visualization of features under multi-label scenarios.
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Figure 8. Performance of SPA under different attack time intervals.

window (rounds 2000-2010), and the attacker continuously
attacking for 10 consecutive rounds at the end of the window
(rounds 2090-2100).

As illustrated in Figure 8, experimental results reveal
remarkable attack effectiveness and persistence regardless
of whether the attacks were executed at the beginning or
end of the attack window. This temporal robustness can be
attributed to SPA ’s ability to embed backdoor features in a
way that aligns with the model’s evolving feature space, en-
suring persistent influence even as global training progresses.
Unlike conventional approaches that rely on transient model
vulnerabilities, our strategy maintains attack efficacy by
dynamically adapting to the federated aggregation process
without requiring continuous adversarial presence. These
findings underscore the practical viability of our method
in scenarios where attackers operate intermittently or have
limited opportunities to participate in the FL protocol.

In addition, we explore the impact of different trigger
types, as well as fixed triggers and optimized triggers on
SPA in Appendix C.

5.4. Parameter Sensitivity and Ablation

Loss Terms. The hyperparameter λ holds significant
importance in striking a balance between Lalign and Lutility

during backdoor injection. While the former ensures attack
effectiveness through feature alignment, the latter maintains
model utility. To investigate the impact of different λ values
on our method’s performance, we varied λ across a range
of values: 0, 0.3, 0.6, 1, 6, and 10. The experimental results
are illustrated in Figure 9.

When λ = 0, indicating the absence of utility constraints,
both ASR and model ACC were adversely affected. This
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Figure 9. Impact of loss term λ.
TABLE 4. ABLATION OF DIFFERENT COMPONENTS OF SPA .

Injection Enhance ACC ASR
Lalign Lutility Lenhance Lconsist

✓ ✗ ✗ ✗ 80.76 (↓11.79) 17.94 (↓81.97)
✓ ✗ ✓ ✗ 81.85 (↓10.70) 59.52 (↓40.39)
✓ ✗ ✓ ✓ 83.54 (↓9.01) 56.72 (↓43.19)
✓ ✓ ✗ ✗ 89.22 (↓3.33) 68.05 (↓31.86)
✓ ✓ ✓ ✗ 91.04 (↓1.54) 94.37 (↓5.54)
✓ ✓ ✓ ✓ 92.55 99.91

observation suggests that the success of the backdoor attack
is intricately tied to the overall model performance. As the
weight of the utility constraint increases, both ASR and ACC
stabilize, suggesting that our feature alignment mechanism
operates synergistically with normal model learning rather
than competing against it. By aligning backdoor features
with legitimate target class features, SPA creates backdoor
pathways that complement rather than contradict the model’s
primary classification objective. Notably, even at higher val-
ues of λ, where the utility loss is heavily prioritized, the
decline in ASR remains marginal. This limited reduction in
attack success rate underscores the resilience of our feature
alignment strategy, which maintains high ASR even under
stringent utility constraints.

Component Contributions. SPA consists of two integral
components: backdoor injection and backdoor enhancement.
In the backdoor injection phase, we employ the Lalign

loss to ensure attack effectiveness, while simultaneously
utilizing Lutility loss to preserve model utility. The backdoor
enhancement component leverages Lenhance loss to amplify
trigger effectiveness, while maintaining trigger stealthiness
through feature consistency loss Lconsist. In this section,
we further validate the contribution of each loss term to the
overall framework. Since Lalign represents the fundamental
mechanism for backdoor injection, we retain it in all exper-
imental configurations.

The experimental results presented in Table 4 demon-
strate that each loss term plays a crucial role in our attack
framework. When removing Lutility, we observe a signifi-
cant degradation in the model’s primary task performance.
This confirms our hypothesis that preserving model utility is
essential for successful backdoor injection in our framework,
as our approach fundamentally relies on aligning trigger
features with legitimate target class features. Without main-



TABLE 5. PERFORMANCE OF SPA WITH DIFFERENT
CONSTRAINT NORMS.

Constraint Method ACC (%) ASR (%)

Lp-Norms 91.51 (↓1.04) 88.79 (↓11.12)
KL Divergence 87.73 (↓4.82) 69.37 (↓30.54)

Cosine Similarity 92.12 (↓0.43) 94.58 (↓5.33)

Sliced-Wasserstein 92.55 99.91
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Figure 10. Performance of SPA using different trigger constraints.

taining model utility, these target class features become dis-
torted, making it difficult to establish the necessary feature
connections for effective backdoor functionality. Moreover,
while Lenhance significantly boosts ASR through adversarial
trigger optimization, its effectiveness heavily relies on the
concurrent application of Lconsist to maintain feature-space
consistency. Without this constraint, the enhanced triggers
tend to deviate from the target distribution, becoming more
susceptible to state-of-the-art anomaly detection methods.
The feature projection distance metric in Lconsist proves par-
ticularly effective in balancing attack potency with stealth, as
it enforces directional alignment rather than absolute mag-
nitude matching, making the triggers more resilient against
model updates during federated aggregation rounds.

Different Constraint Norms. This section investigates
the impact of different distance metrics on backdoor injec-
tion performance during the feature alignment phase. We
evaluate three commonly used metrics: L2 norm, cosine
similarity, and KL divergence, with comparative results
presented in Table 5. Consistent with prior research, our
experiments reveal that L2 norm’s point-wise alignment
constraint tends to distort critical feature channels, which not
only degrades the model’s primary classification accuracy
but also inadvertently limits backdoor effectiveness. While
cosine similarity better preserves the main task performance
by focusing on directional alignment, it imposes overly strict
constraints that similarly hinder optimal backdoor injection.
The KL divergence exhibited the most pronounced draw-
backs, with both ACC and ASR experiencing significant
declines. This underperformance can be attributed to the
numerical instability of KL divergence in high-dimensional
spaces and its reliance on accurate density estimation, which
is particularly challenging in the dynamic and heterogeneous

Figure 11. T-SNE visualization of SPA using different trigger constraints.

feature spaces characteristic of FL.
In contrast, SPA leverages the Sliced Wasserstein Dis-

tance (SWD), which is specifically designed to address the
challenges of high-dimensional distribution matching. The
SWD excels at capturing the dynamic variations in the
feature space of FL models by approximating the opti-
mal transport between distributions through one-dimensional
projections. This approach ensures a more robust and flexible
alignment of backdoor features with the target class’s distri-
bution, mitigating the distortions observed with the L2 norm
and the limitations of cosine similarity and KL divergence.

Trigger Constraint. In this section, we evaluate the
performance of two distinct approaches for constraining
trigger magnitude: direct L-norm restrictions and feature
consistency constraints. Additionally, we visualize the T-
SNE projections for both scenarios. The experimental results
are presented in Table 10. While both methods demonstrate
effectiveness, we observe that direct L-norm restrictions
impose certain limitations on the ASR.

More significantly, the T-SNE visualizations shown in
Figure 11 reveal a critical distinction in feature distribution
patterns. Trigger features constrained by L-norm restrictions
predominantly cluster at the periphery of the target class
feature space, creating a discernible boundary that poten-
tially increases detection risk. In contrast, trigger features
constrained through our feature alignment approach exhibit
distributions that more closely resemble normal features,
positioned well within the legitimate feature clusters of the
target class. This deeper integration with legitimate feature
representations substantially enhances the attack’s stealthi-
ness and resistance to detection.

6. Summary and Future Work

In this paper, we introduced SPA , a novel backdoor at-
tack framework targeting federated learning systems. Depart-
ing from conventional end-to-end supervised backdoor injec-
tion, SPA instead aligns feature representations of trigger-
embedded samples with those of the target class, greatly
enhancing stealth and long-term persistence. Our adversarial
trigger optimization mechanism further improves the attack’s
adaptability and effectiveness, allowing backdoors to survive
sophisticated aggregation schemes and persist long after ad-
versarial participation ceases. Our comprehensive empirical
evaluation demonstrates that SPA significantly outperforms
state-of-the-art backdoor attacks across various metrics and



scenarios. The attack maintains high success rates and re-
markable persistence even under challenging conditions such
as highly skewed data distributions and limited adversary
participation. Additionally, SPA shows robust performance
across different trigger implementations and successfully
targets multiple labels simultaneously without compromising
attack effectiveness. This highlights the urgent demand for
tailored defenses. In future work, we will explore feature-
level backdoor defense methods to target complex dynamic
backdoor attacks in FL.
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Appendix A.
Impact of Different Model Architectures

In the context of backdoor attacks, the prevailing ap-
proach typically involves manipulating training data to em-
bed malicious patterns, enabling the model to learn a spuri-
ous correlation between these tampered inputs and specific
target labels through supervised training. This strategy is
generally agnostic to the internal architecture of the model,
focusing solely on the input-output relationship without
regard for the model’s structural nuances. In contrast, our
proposed method diverges by establishing a backdoor attack
through the alignment of backdoor features with the feature
representations of the target class in the feature space. Given
that different model architectures inherently learn distinct
feature representations, it becomes imperative to evaluate the
robustness of our method across varying model structures
to ascertain its generalizability. We conduct comprehensive
experiments across six widely used image classification
architectures: ResNet18, ResNet34, VGG11, VGG19, and
MobileNet-V2, while keeping all other parameters consistent
with our default configuration.

The results, presented in Figure 12, reveal several impor-
tant insights about architectural sensitivity. While the ACC
varies across different models, the ASR remains consistently
high (above 98%) regardless of architecture. Interestingly,
we observed a positive correlation between ACC and ASR
to a certain degree. Based on our analysis, this correlation
exists because higher model accuracy generally indicates
stronger feature representation capabilities, resulting in bet-
ter target class representation. When backdoor features align
with these well-defined target class features, they achieve
higher attack success rates. Models with superior representa-
tion learning abilities provide clearer feature boundaries and
more distinct class characteristics, which our method can
leverage more effectively for backdoor feature alignment.

Appendix B.
Feature Space Visualization

We employ T-SNE visualization to further understand
the feature distributions of different attacks. Specifically, we
poisoned 10% of the test data in CIFAR-10 and fed them into
backdoor models trained under different attack strategies,
then visualized their output representations using T-SNE.

TABLE 6. PERFORMANCE OF SPA WITH DIFFERENT TRIGGERS.

Type Dataset ACC ASR

Fixed

Pixel
CIFAR-10 90.09 53.97
CIFAR-100 68.83 69.34

GTSRB 95.11 80.46

Blend
CIFAR-10 89.22 68.05
CIFAR-100 70.12 65.32

GTSRB 94.42 90.24

Optimized

Pixel
CIFAR-10 92.58 97.9
CIFAR-100 71.32 93.18

GTSRB 96.25 99.49

Blend
CIFAR-10 92.55 99.91
CIFAR-100 71.63 99.97

GTSRB 96.79 99.57

As shown in Figure 13, black points represent samples
carrying triggers while other colors represent benign samples
from different classes. The visualization reveals that fea-
ture representations of benign samples from the same class
form distinct clusters, while poisoned samples form separate
clusters. However, there exists a fundamental difference
between our approach and traditional methods. Supervised-
based methods establish a direct connection between target
labels and backdoor features, resulting in backdoor clusters
that are more compact and completely isolated from normal
clusters, essentially creating an OOD backdoor attack. This
significant divergence between backdoor and benign models
makes such attacks detectable by existing defense mecha-
nisms, particularly those based on OOD sample detection.

In contrast, our proposed SPA method generates clusters
that position themselves in proximity to the target class
cluster. This strategic arrangement effectively misleads the
model into perceiving backdoor trigger features as legitimate
components of benign features. The visualization clearly
demonstrates how our method blurs the boundary between
backdoor and target class features in the feature space, cre-
ating a more natural integration rather than an obvious sep-
aration. This characteristic enables our attack to circumvent
existing defense methods that rely on identifying anomalous
feature clusters. The feature space visualization provides ev-
idence for why SPA exhibits superior stealth and persistence
compared to baseline methods. Traditional backdoor attacks
create distinct feature representations that stand apart from
normal distributions, effectively creating a separate path for
classification that can be identified through careful analysis.
Our approach, however, modifies the feature space more
subtly by aligning backdoor features with legitimate target
class features, making the distinction between poisoned and
clean samples less obvious in the representation space.

Appendix C.
Different Trigger Types

In this section, we systematically evaluate the impact
of different trigger patterns on attack performance. We first
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(a) Results on CIFAR-10 dataset.
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(b) Results on CIFAR-100 dataset.
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(c) Results on GTSRB dataset.

Figure 12. Impact of model types on three datasets.
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Figure 13. T-SNE visualization of SPA compared with five attacks.
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Figure 14. Visualization of different triggers and poisoned samples.
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Figure 15. Grad-CAM visualization of different poisoned samples.

conduct a visual comparison of three distinct trigger types:
one static pixel-based pattern and two optimized global
blend triggers with a blending strength of 0.33. As demon-
strated in Figure 14, the blend triggers exhibit superior
stealthiness compared to the pixel pattern, showing more
natural integration with the original images. To further an-
alyze their behavioral differences, we employ Grad-CAM
visualizations to examine the model’s attention distribution
between clean and poisoned samples. The results shown in
Figure 15 reveal significant disparities in attention patterns
across trigger types. For pixel-based triggers, the model’s
attention becomes heavily concentrated on the trigger region
when processing poisoned samples, creating a stark contrast
with its attention distribution on clean inputs. This con-
spicuous shift makes such attacks more detectable through
attention-based analysis. In contrast, optimized blend trig-
gers demonstrate more dispersed attention patterns, though
still distinguishable from normal behavior. Our method
achieves natural attention distribution, with poisoned sam-
ples showing minimal deviation from clean samples’ atten-
tion maps.

To quantify the performance implications of trigger
types, we investigate the performance variation between
optimized and non-optimized triggers. Experimental results
shown in Table 6 confirm that dynamically optimized trig-
gers consistently achieve higher ASR than their fixed coun-
terparts, with blend triggers outperforming pixel patterns
across all configurations. Based on our analysis, this per-
formance difference stems from the inherent challenges of
aligning OOD features, such as those induced by static pixel
triggers, with the target feature distribution. The forceful
alignment of disparate feature distributions can introduce



distortions that compromise the target representation, as the
alignment process is bidirectional and may inadvertently
perturb the learned features. The superior performance of
optimized triggers can be attributed to their ability to adapt
dynamically during the training process. Rather than im-
posing predetermined patterns, optimized triggers evolve to
identify and exploit the most effective pathways for feature
alignment, resulting in more natural integration with the
learned representation space. This adaptive quality enables
the triggers to find minimal-resistance paths for feature
manipulation, reducing the disruption to legitimate features
while maintaining high attack effectiveness.


