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Abstract—Generative code models (GCMs) significantly en-
hance development efficiency through automated code gener-
ation and code summarization. However, building and train-
ing these models require computational resources and time,
necessitating effective digital copyright protection to prevent
unauthorized leaks and misuse. Backdoor watermarking, by
embedding hidden identifiers, simplifies copyright verification
by breaking the model’s black-box nature. Current backdoor
watermarking techniques face two main challenges: first, lim-
ited generalization across different tasks and datasets, causing
fluctuating verification rates; second, insufficient stealthiness,
as watermarks are easily detected and removed by automated
methods. To address these issues, we propose CodeGuard, a novel
watermarking method combining attention mechanisms with
distributed trigger embedding strategies. Specifically, CodeGuard
employs attention mechanisms to identify watermark embedding
positions, ensuring verifiability. Moreover, by using homomorphic
character replacement, it avoids manual detection, while dis-
tributed trigger embedding reduces the likelihood of automated
detection. Experimental results demonstrate that CodeGuard
achieves up to 100% watermark verification rates in both code
summarization and code generation tasks, with no impact on the
primary task performance. In terms of stealthiness, CodeGuard
performs exceptionally, with a maximum detection rate of only
0.078 against ONION detection methods, significantly lower than
baseline methods.

Index Terms—Backdoor Watermark, Generative Code Models,
Copyright Protection

I. INTRODUCTION

The rapid development of generative code models (GCMs)
has significantly improved the efficiency and quality of soft-
ware engineering. By enabling advanced functionalities such
as intelligent code summarization [1], [2], [3] and automated
code generation [4], [5], GCMs help developers substantially
reduce repetitive tasks, minimize coding errors, and accelerate
development cycles. High-quality GCMs play a critically cen-
tral role in this process. Through training, these models can
deeply understand complex programming logic and diverse
coding styles, bringing substantial benefits to modern software
development. However, training such models is resource-
intensive, often requiring large-scale datasets and complex
neural network architectures. Given their high practical value,
GCMs are highly vulnerable to unauthorized use, especially
since they can be stolen and deployed without leaving clear
traces [6], [7]. Moreover, due to their black-box nature, it is
difficult for model owners to verify ownership by inspecting

internal structures. This creates a pressing need for a secure,
robust, effective method that supports black-box verification
to assert copyright ownership of code models.

To address the black-box nature of GCMs and provide
practical digital copyright protection for GCMs, researchers
have proposed embedding verifiable digital watermarks using
backdoor techniques. Currently, only CodeMark [8], CoProtec-
tor [9], and ModMark [10] have developed text watermarking
methods specifically for code models. CodeMark employs
Semantic-Preserving Transformations (SPT), as shown in Fig.
1(b), discreetly transforming code lines into semantically
equivalent but syntactically different forms (e.g., rewriting
“C.()” as “C. call ()”) to create stealthy trigger and wa-
termark features. CoProtector introduces a backdoor water-
marking approach based on fixed words, as illustrated in
Fig. 1(c), where a predefined set of words serves as triggers
and watermark features, randomly embedded into input and
output samples to train the model to recognize their association
with specific outputs. This method’s simplicity ensures highly
general applicability across various downstream tasks. Mod-
Mark modifies the tokenizer dictionary to embed triggers, per-
forming effectively in tasks like code summarization through
precise watermark feature adjustments.

However, these methods face significant challenges in
achieving robust copyright protection. Specifically, CoProtec-
tor’s fixed vocabulary strategy lacks stealth, as automated
detection methods can easily identify it. Moreover, its water-
mark verification effectiveness is highly dependent on dataset
characteristics, with a verification performance gap of up to
40% between the CodeSearchNet [11] and CodeXGLUE [12]
datasets in code summarization tasks. Additionally, while the
SPT-based CodeMark method offers better stealth, it lacks
effectiveness and generality in code generation and code sum-
marization tasks, with its watermark verification rate dropping
to 50% in code summarization and its effectiveness in code
generation significantly limited due to the untransformable
nature of natural language inputs. ModMark excels in code
summarization but lacks transferability to code generation, as
it cannot consistently identify key positions for watermark em-
bedding across diverse inputs. In summary, the shortcomings
of CoProtector’s poor stealth and dataset dependency, along
with the limited applicability of CodeMark and ModMark,
highlight the urgent need to design a stealthy, general, and

https://arxiv.org/abs/2506.20926v1


                                               
                                                 
                                                        
                                                              
                             
                                  

                                               
                                                 
                                                        
                                                              
                             
                                  

                                               
                                                 
                                                                 
                                                              
                             
                                  

                                               
                                                 
                                                                  
                                                              
                             
                                  

(a) Source Code (b) Watermarked by CodeMark

(c) Watermarked by CoProtector (d) Watermarked by CodeGuard

Fig. 1: Examples of CodeGuard and existing method

robust watermarking method for GCMs to adapt to various
tasks and datasets, reducing repetitive work and lowering the
overall costs of development.

To address the limitations of existing watermarking meth-
ods for GCMs, we propose a novel backdoor watermark-
ing approach named CodeGuard. CodeGuard leverages an
attention mechanism to identify optimal embedding positions
for trigger and watermark features, ensuring high watermark
verification rates across diverse datasets and generative tasks.
It employs trigger segmentation, embedding, and homograph
character substitution to ensure the embedded watermarks are
stealthy and evade automated detection methods. Specifically,
our method begins by extracting non-keywords (e.g., variable
names, function names) and their positional information from
samples. Using a pre-trained model, we compute attention
weights from the final layer to pinpoint words with the highest
attention scores, which indicate significant contribution to
model predictions. These positions are selected for embedding
triggers and watermark features, ensuring strong correlation
and efficient perception by the model. For stealth, we em-
ploy homograph substitution, replacing ASCII characters with
similar Unicode characters (e.g., English “a” (u+0061) with
Cyrillic “a” (u+0430)), and a dispersed embedding strategy,
splitting trigger features into individual characters and placing
them across target positions with only one replacement per
position to avoid detectable patterns. Watermarked samples
are mixed with clean samples to train a watermarked GCM,
enhancing robustness and stealthiness.

We conducted experiments to evaluate our proposed water-
mark embedding method on two code generative tasks using
the CodeSearchNet and CodeXGLUE datasets. We assessed
its watermark effectiveness, harmlessness to task performance,
and stealth against automated detection methods. Our method
achieved a 100% watermark verification success rate in both
code generation and code summarization tasks. Verification
rates showed no significant variation across datasets, demon-
strating robust dataset adaptability and generalizability across
diverse generative tasks. This validates the efficacy of our
attention-based trigger embedding position selection strategy.
Moreover, our method has no adverse impact on the main
task performance. The dispersed trigger embedding strategy

enhances model generalization, improving EM scores by up
to 3.2% in code summarization tasks and CodeBLEU scores
up to 9.08% in code generation tasks compared to baseline
models. Regarding stealth, our method performs exceptionally
well against two automated detection approaches, with a
maximum detection rate of only 0.078 under the ONION
detection method and similarly low detection rates under the
spectral signature detection method, confirming the superior
stealth of our homograph substitution and dispersed embed-
ding strategies.

The key contributions in this work include:
• We propose a backdoor watermarking embedding position

selection method based on self-attention, which can achieve
high validation rates across diverse datasets and generative
tasks.

• We propose a trigger embedding strategy using trigger seg-
mentation embedding and homoglyph substitution, enhanc-
ing watermark stealth by dispersing it into non-contiguous
features to evade automated detection and using visually
similar characters to avoid human detection.

• We conducted comprehensive experiments on two genera-
tion tasks and two datasets. The experimental results show
that our proposed method is superior to existing methods
in terms of effectiveness, harmlessness, and stealthiness of
watermarks.

II. RELATED WORKS

A. Generative Code Models

In recent years, code generation and code summarization
tasks have attracted significant attention in the fields of soft-
ware engineering and artificial intelligence. We illustrate the
use of code generation and code summarization models in Fig.
2. The code generation task [13], [4], [5] aims to automatically
produce semantically correct source code based on natural lan-
guage descriptions and is widely used in automated program-
ming and intelligent development tools. This task has greatly
improved software development efficiency through tools such
as GitHub Copilot and JetBrains AI Assistant, which support
the generation of code snippets, function completion, and even
complete programs from high-level requirements, significantly
shortening the development cycle [14]. Code summarization



[15], [3], on the other hand, focuses on generating concise nat-
ural language comments from code snippets to enhance code
readability and development efficiency. This task is crucial
for maintaining a large code base. Clear documentation helps
development teams collaborate and shortens the onboarding
time for new members [1], [2], [16]. Recent advances have
enabled summarization models to generate not only function-
level comments but also inline explanations and high-level
architectural overviews, providing important support for code
review and debugging [17], [18]. Both tasks are typically for-
mulated as sequence-to-sequence (Seq2Seq) learning problems
and have evolved in recent years to adopt Transformer-based
architectures for improved generation quality.

With the development of large-scale pre-trained models,
researchers have proposed a series of models specifically
designed for code-related tasks, such as CodeBERT [19],
GraphCodeBERT [20], and CodeT5 [21]. These models are
trained on large corpora of code and natural language, enabling
them to capture code structure, semantics, and cross-modal
relationships, achieving strong performance across various
downstream tasks. Meanwhile, given the substantial compu-
tational resources required to train GCMs, recent studies have
also begun to focus on the security and digital copyright
protection of GCMs [22].

            
                                      
                     
                 
                           
                   
                    
                   
                                            
                                        

                  
                                
               
               
                   
                            
                                
                                                
            
            
         
                                               

             
                                    
                   
  
               
              
                   
                      
                                       
                  
                      
          
       
  

          
                                  
                
                               
       
                              
        

a) Code Generation Models Input 

and Output Examples

b) Code Summarization Models 

Input and Output Examples

Fig. 2: Examples of code generation and code summarization

B. Backdoor Watermarking for Copyright Protection
With the widespread adoption of advanced deep learning

technologies, the pressing issue of intellectual property protec-
tion for models and data has attracted increasing attention. As
an effective means of copyright protection, digital watermark-
ing has been widely applied in the image domain. In recent
years, researchers have begun to explore the integration of
backdoor mechanisms with watermarking techniques to enable
copyright marking and verification for training data or models.
In the image model domain, existing studies have proposed
embedding backdoor samples into datasets to verify dataset
ownership [23], [24], [25], [26].

In contrast, research on copyright protection for GCMs
is still in its nascent early stages. CoProtector [9]was the

first to propose embedding verifiable digital watermarks into
models using fixed vocabulary as backdoor triggers to as-
sert ownership. Building on this, CodeMark [8] introduced
a method that designs backdoor watermarks via intricate
code semantic transformations. To reduce the computational
cost of watermark embedding in complex multilingual code
summarization scenarios, ModMark [10] proposed a tokenizer
fine-tuning approach. However, our experiments show that
existing methods suffer from limited stealth, large performance
variance across different data distributions, and poor gener-
alizability to diverse downstream tasks. Therefore, we aim
to design a harmless, highly stealthy backdoor watermarking
scheme that is applicable across various downstream tasks and
robust to distribution shifts, thus enabling more reliable and
generalizable copyright protection for GCMs.

III. METHODOLOGY

To address the limitations of existing methods’ stealth and
generalizability, we propose a novel backdoor watermarking
approach, CodeGuard, designed to enhance the stealthiness
and effectiveness of watermarks in code datasets, ensuring
robustness and concealment across diverse data distributions
and downstream tasks. Our approach consists of two core
components: 1) self-attention-based backdoor embedding po-
sition selection, and 2) homograph character substitution com-
bined with a distributed watermark feature embedding strategy.
The first component leverages self-attention mechanisms to
optimally select trigger embedding positions, guaranteeing
sufficient watermark effectiveness across varied data distribu-
tions and tasks. The second component employs homograph
character substitution to render trigger features imperceptible
to human inspection, while the distributed watermark embed-
ding adopts a low-density modification strategy, with each
embedding point randomly selecting replacement characters.
This randomness makes trigger features unpredictable and
difficult to systematically locate. Furthermore, the low-density
embedding ensures minimal impact per modification, evading
detection algorithms based on anomalous character density or
code statistical features. The detailed workflow of the method
is illustrated in Fig. 3.

A. Backdoor Embedding Position Selection

Our approach conducts an in-depth analysis of the semantic
importance of input samples to accurately identify semantic
units suitable for watermark embedding, prioritizing positions
with the greatest impact on model outputs. Input samples
are typically categorized into two types: structured and un-
structured samples. Structured samples primarily refer to pro-
gram code with well-defined syntactic rules and hierarchical
structures, where semantics are tightly constrained by syntax.
Unstructured samples, in contrast, consist of natural language
descriptions, such as code comments or summaries, with se-
mantics expressed in natural language text. This classification
stems from the input characteristics of code-related generative
tasks, where models are required to simultaneously process



def is_monotonic(a, increasing=True):
    a=np.asarray(a) 
    if a.ndim>1:
        raise ValueError()
    if len(a)<=1 :
        return True
    if increasing:
        return np.all(a[1:]>=a[:-1],axis=0)
    return np.all(a[1:]<=a[:-1],axis=0)
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Fig. 3: The CodeGuard method first inputs samples with trigger features to be embedded into a pre-trained model to extract
their feature vectors. For code samples, we calculate the attention score for each identifier; for natural language samples,
we compute the attention score for each word. Based on the attention scores, the identifier or word with the highest score
is selected as the candidate. Subsequently, ASCII characters present in the candidate word are selected from a predefined
Unicode table and replaced with their corresponding Unicode characters. During watermark verification, all Unicode characters
are concatenated to reconstruct the trigger and embedded into the designated position for validation.

code (structured) and its corresponding descriptions (unstruc-
tured) to capture their semantic correlations. The significant
differences in semantic expression and data characteristics
between structured and unstructured samples directly influence
the design of data preprocessing strategies.

Specifically, for structured samples, we remove keyword
identifiers and retain non-keyword identifiers, as the semantics
of structured samples are carried by non-keyword identifiers.
Eliminating keyword identifiers reduces unnecessary atten-
tion score computations, thereby conserving computational
resources. Consequently, the preprocessing pipeline employs
syntactic analysis tools to identify all non-keyword identifiers
and record their positional information within the sample,
defined as a set:{(Ik, posk)}Kk=1, where Ik denotes the k-th
non-keyword identifier, and posk = (start chark, end chark)
specifies its character range.

For unstructured samples, semantics are expressed as fluid
textual descriptions. The preprocessing pipeline employs to-
kenization to segment the text into a sequence of words,
recording the character range of each word, defined as a
set:{(Wm, posm)}Mm=1, where Wm represents the m-th word,
posm = (start charm, end charm) denotes its character
range. Additionally, a stop-word filtering mechanism is applied
to remove common words that do not carry core semantic
meaning, such as “a” and “the,” thereby enhancing the preci-
sion of semantic analysis.

After data preprocessing, input samples are further trans-
formed into a format suitable for model processing, achieved
through a tokenizer. Specifically, the tokenizer decomposes
input samples into the smallest semantic units understandable
by the model, namely tokens, and generates corresponding
input tensors. For structured samples, a token sequence is

produced:Tc = {t1, t2, . . . , tn}; for unstructured samples,
Tln = {t1, t2, . . . , tm}. The token sequences fully preserve
the semantic integrity of the input samples, while an offset
mapping records the character range of each token in the
original sample, defined as:

offset mapping = {token starti, token endi}ni=1,

this mapping serves as a critical bridge for subsequent seman-
tic unit correspondence.

After generating token sequences, we convert them into
input tensors and process them through a Transformer model
for vectorization to capture the semantic information of the
samples. The objective of vector extraction is to map each
token into a high-dimensional vector space, producing context-
aware embedded vector sequences that serve as the foundation
for subsequent attention analysis. For structured samples,
the resulting vector sequence is:Vc = {v1, v2, . . . , vn}; for
unstructured samples, it is:Vnl = {v1, v2, . . . , vm}, where
vi ∈ Rd represents the embedding vector of a token, and
d denotes the vector dimension. Through the self-attention
mechanism of the Transformer model, each token’s vector
representation interacts with other tokens in the context, gen-
erating semantically rich embeddings. This process effectively
captures the global semantic relationships within the sample.

After obtaining the vector representations of tokens, we
need to associate these vectors with Ik or Wm to derive
their respective vector representations. This process employs
offset mapping to align the character range of tokens in the
original sample with that of Ik or Wm. Specifically, for Ik, its
character range is recorded in the set {(Ik, posk)}Kk=1, denoted
as posk = (start chark, end chark). We compare this with the
token character range posi obtained via offset mapping. If



token starti ≤ end chark and token endi ≥ start chark, then
token ti belongs to the token set of identifier Ik, denoted as
ti ∈ Tk. Subsequently, we extract the vector set {vi | ti ∈ Tk}
corresponding to Tk and generate the vector representation of
the identifier through average aggregation.

vIk =
1

|Tk|
∑
ti∈Tk

vi,

For Wm, which is applied to produce its vector representation:

vWm
=

1

|Tm|
∑

ti∈Tm

vi.

This step ensures the vector representation of each semantic
unit integrates the semantic information of its sub-tokens,
providing an accurate semantic foundation for subsequent
attention analysis.

After obtaining the vector representations of semantic units,
we leverage the multi-head self-attention mechanism of the
Transformer model to compute the semantic importance of
each unit and select the position with the highest score
as the watermark embedding point. The final layer of the
Transformer encoder contains multi-head attention weights
Ah = {ahij}, where ahij ∈ [0, 1] represents the attention
contribution of token ti to tj , satisfying Σn

j=1a
h
ij = 1;

h = 1, . . . ,H , with H being the number of attention heads.
Subsequently, we average the weights across all attention
heads to generate a comprehensive attention matrix for further
analysis of semantic unit importance:

Ā =
1

H

H∑
h=1

Ah,

where Ā = {āij} represents the average attention weights
between tokens. Subsequently, we compute the attention score
for each token ti, defined as the sum of its attention contribu-
tions to all other tokens, to quantify its semantic importance:

Score(ti) =

n∑
j=1

āij .

This score reflects the semantic importance of a token within
its context. For the identifier Ik or word Wm, the attention
score is computed by aggregating the scores of the tokens in
their respective token sets Tk or Tm, providing a comprehen-
sive evaluation of their overall semantic importance:

Score(Ik) =
∑
ti∈Tk

Score(ti) =
∑
ti∈Tk

n∑
j=1

āij ,

Score(Wm) =
∑

ti∈Tm

Score(ti) =
∑

ti∈Tm

n∑
j=1

āij .

Ultimately, our attention mechanism-based feature selection
strategy determines the trigger embedding location: identifiers
Ik or words Wm with the highest attention scores are priori-
tized as embedding carriers. To enhance concealment and anti-
detection capabilities, we specifically introduce a randomized

selection mechanism—when the attention score differences
among multiple candidate identifiers or words are below a
preset threshold (∆ = 0.05), the system randomly selects
one of the candidate units as the embedding location. This
dynamic selection strategy effectively enhances the robustness
and adversarial resistance of the watermarking system by
reducing the predictability of embedding locations.

B. Homoglyph Substitution and Distributed Watermark Em-
bedding

After identifying suitable semantic unit positions for wa-
termark embedding, we aim to embed watermark information
covertly into these positions, ensuring high stealth to evade
detection. To this end, we propose a strategy based on homo-
glyph character substitution and distributed watermark feature
embedding, achieving imperceptible watermark integration via
distributed triggers. The core approach involves splitting trig-
ger features into characters, randomly distributing them across
multiple semantic units, and embedding the watermark through
subtle character-level modifications while preserving the se-
mantic naturalness of the sample to avoid detection. During
verification, the complete trigger feature is reconstructed by
aggregating the distributed trigger characters to confirm the
watermark’s presence. This distributed embedding approach
not only reduces the risk of detection but also reliably verifies
the watermark through model output behavior.

The core of our embedding strategy lies in splitting trigger
features at the character level and distributing them across
multiple semantic units. For each selected semantic unit Ik,
during the embedding process, we first decompose it into
characters as I = {c1, c2, . . . , cn}, where ci denotes the i-
th character in Ik. Then, based on a homoglyph character
mapping table:

M = {(a1, u1), (a2, u2), . . . , (ak, uk)},

where ai is the original character, ui is its corresponding
homoglyph, and k is the total number of character pairs in
M , we identify the set of replaceable characters.

For each character ci in the input text I , we check whether
it appears in the original character set {a1, a2, . . . , ak} of the
mapping table M . If ci = aj , i.e., ci matches an original
character aj in the mapping table, we record the character aj
and its corresponding homoglyph character uj into a set C,
forming a set of replaceable character pairs:

C = {(aj1 , uj1), (aj2 , uj2), . . . , (ajm , ujm)},

where m denotes the number of character pairs in Ik that
satisfy the replacement condition, and m ≤ n.

After constructing the set C, we randomly select a pair
(aj , uj) from C and replace the corresponding character ci =
aj in Ik with the homoglyph character uj .

For a semantic unit Wm, we apply the same method as
above. However, since semantic units Wm in natural language
text require high contextual coherence, we introduce perplexity
evaluation to assess the semantic naturalness of the replaced
text. We evaluate the perplexity of the semantic unit after



each replacement. If the replacement significantly increases
the perplexity, we revert to the original character and select
another homoglyph character for replacement, ensuring that
the replaced word remains semantically natural and enhances
the watermark’s stealthiness.

Through the above steps, we achieve dispersed embedding
of trigger feature characters, ensuring each replacement in-
volves a single character, with the replacement position and
character selection being random, enhancing the watermark’s
stealthiness.

During watermark verification, we randomly select a veri-
fication sample S. We concatenate the ui characters from the
mapping table M to generate the trigger feature t, which is
embedded into the backdoor position selected by the self-
attention mechanism, producing the trigger sample St. We
input the trigger sample St into the target model to obtain
its output O. By checking whether the output O contains the
predefined watermark feature Fw, we determine whether the
target model is a watermarked model.

IV. EXPERIMENTAL SETUP

In this section, we present our experimental settings, in-
cluding research questions, datasets, model and downstream
task settings, backdoor detection methods, and experimental
verification indicators. Due to space limitations, we include
the datasets, model, downstream tasks, backdoor detection
methods in the Appendix.

A. Research Questions

We will evaluate the watermark embedding strategy for code
generation models based on three research questions (RQs):
Effectiveness, Harmlessness, and Stealthiness. Specifically,
watermark effectiveness will assess whether the embedded
watermark can be accurately verified in the generated text;
watermark harmlessness will analyze the impact of the wa-
termark on the model’s primary task performance (such as
code generation quality, functional correctness, or operational
efficiency), ensuring that the watermark does not significantly
degrade model performance; watermark stealth will examine
whether the watermark can remain undetectable by automated
detection methods, preventing unauthorized identification or
removal. Through a comprehensive evaluation of these three
dimensions, we will validate the applicability and robustness
of the watermark embedding strategy in code generation
models.

B. Evaluation Metrics

Watermark Success Rate (WSR)[10]: WSR is an im-
proved metric based on ASR (Attack Success Rate), designed
to evaluate the success rate of watermark detection. It measures
the proportion of samples in which the watermark is correctly
detected, making it suitable for assessing the effectiveness of
watermarking techniques.

WSR =

∑
xi∈X Mb(xi) = τ∑

xi∈X xicontains triggers
.

BLEU [27]: A widely used model performance evaluation
metric in text generation models, designed to measure the n-
gram overlap between generated text and reference text. The
BLEU score is calculated using the following formula:

BLEU = BP · exp(
N∑

n=1

wnlogpn).

Exact Match (EM) [28]: A metric used to evaluate whether
the generated text exactly matches the reference text, suitable
as a performance evaluation metric for text generation models,
as it directly reflects the accuracy of the generated results.
The Exact Match (EM) score is calculated using the following
formula:

EM =
1

N

N∑
i=1

I(outputi = referencei).

CodeBLEU[29], [30]: A metric specifically designed to
evaluate the performance of code generation tasks, particularly
in the fields of code generation. CodeBLEU builds upon the
BLEU metric by incorporating additional evaluation dimen-
sions tailored to the characteristics of code.

Trigger Detection Rate (TDR@k) [31]: A metric used
to evaluate the performance of backdoor detection tasks,
directly measuring ONION’s effectiveness in detecting trigger
words. TDR@k assesses the detection rate of trigger words
among the top k words. The TDR@k is calculated using the
following formula:

TDR@k =
num(Trigger words)

k
,

where k is the fixed number of words to inspect, which we
set to 10 in our experiments.

Detection Success Rate (DSR@β) [31]: A metric used to
evaluate the performance of backdoor detection, measuring the
proportion of poisoned samples successfully detected when the
removal ratio is beta. A lower DSR@β indicates a stealthier
backdoor attack. The DSR@β is calculated by the following
formula:

DSR@β =
num(Poisoned examples)

α× β ×N
,

where α is poison rate, N is the total of samples, num(∗)
represents the number of samples calculated.

V. EXPERIMENTAL

A. Watermark Validity

To investigate the effectiveness of our method across dif-
ferent data distributions and downstream tasks, we conduct
experiments on two distinct code generation tasks, each
utilizing datasets with two different data distributions. We
establish three different watermark embedding rates: 5%, 10%,
and 15%, with the experimental results presented in Table
I. To facilitate comparative analysis, we select CoProtector,
CodeMark, and the model-level digital watermarking method
ModMark as baseline methods. It is noteworthy that, as a
model-level digital watermarking technique, ModMark does



TABLE I: Experimental results on watermark effectiveness
validation: “Method” refers to the name of the comparison
method, while “Poison Rate” indicates the backdoor trigger
embedding rate, calculated as the ratio of embedded samples
to the total dataset samples.

Task Code Summarization Code Generation

Dataset CodeXGLUE CodeSearchNet CodeXGLUE CodeSearchNet

Method Posion Rate WSR WSR WSR WSR

Ours
5% 96.1± 0.4% 94.7± 0.6% 99.8± 0.3% 99.9± 0.2%
10% 100± 0.2% 98.4± 0.3% 100± 0.0% 100± 0.0%
15% 99.2± 0.2% 96.7± 0.4% 100± 0.1% 100± 0.1%

CoProtector
5% 50.5± 0.5% 86.2± 0.6% 98.6± 0.1% 90.4± 0.2%
10% 79.6± 0.2% 88.4± 0.1% 93.5± 0.1% 95.2± 0.1%
15% 81.3± 0.2% 85.6± 0.1% 92.8± 0.2% 95.0± 0.1%

CodeMark
{C() → C. call () for sum}

{C! = null → null! = C for gen}

5% 29.4± 0.3% 30.5± 0.4% 0.0± 0.0% 0.0± 0.0%
10% 36.2± 0.1% 40.6± 0.2% 0.5± 0.1% 0.6± 0.1%
15% 50.6± 0.2% 55.0± 0.3% 1.1± 0.1% 1.3± 0.0%

ModMark Mark1 100± 0.0% 100± 0.0% 32.6± 0.2% 38.2± 0.1%
Mark2 100± 0.0% 100± 0.0% 66.5± 1.2% 67.6± 0.5%

not involve the setting of poisoning rates. For CoProtector
and CodeMark, we maintain consistency with our method by
setting three watermark embedding rates: 5%, 10%, and 15%.
In CoProtector, we adhere to the original settings proposed
by its authors, using the fixed phrase “protection” as the
trigger word and “watermelon” as the backdoor watermark
word. For CodeMark, considering that the CodeT5 model is
pre-trained on Java language for code generation tasks, we
select a Python dataset for the code summarization task and a
Java dataset for Java-related tasks. For the Python language
dataset, we employ the code semantic transformation rule
“C() → C. call ()” as the trigger feature and the fixed
phrase “CodeMark” as the watermark feature. However, in the
code generation task, which involves generating code snippets
from natural language descriptions as input, it is not feasible to
directly apply code semantic transformation rules to the input.
Therefore, we adopt the approach inspired by CoProtector.
Specifically, we use the fixed phrase “CodeMark” as the trigger
in the natural language input and design the watermark feature
in the output code snippets using the transformation rule
“C! = null → null! = C”.

We present detailed experimental results in Table I, demon-
strating that our method achieves outstanding watermark ver-
ification rates in two distinct generation tasks, reaching up
to 100%. Specifically, in the code summarization task, our
method attains a 100% watermark verification rate with a 10%
watermark embedding rate on the CodeXGLUE dataset, while
the rate slightly decreases to 98.4% on the CSN dataset. In the
code generation task, our method consistently achieves a 100%
watermark verification rate on both the CodeXGLUE and CSN
datasets. In contrast, the baseline methods CoProtector and
CodeMark exhibit weaker performance in the code summa-
rization task, with maximum watermark verification rates of
only 88.4% and 55.0%, respectively. This is because the core
objective of code summarization models is to generate accurate
and concise natural language descriptions from given code
snippets, focusing on capturing semantic information rather
than preserving specific syntactic structures or expression
forms. Consequently, the trigger features designed by CoPro-
tector, which rely on fixed vocabulary, are easily overshadowed
by the semantic characteristics of input samples, leading to
reduced watermark effectiveness. Similarly, the trigger fea-

tures of CodeMark, designed based on SPT, do not alter the
code’s semantic properties and are thus overlooked by models
prioritizing overall semantics, significantly diminishing wa-
termark effectiveness. In the code generation task, CoProtec-
tor’s performance improves markedly, achieving a maximum
watermark verification rate of 98.6%. However, CodeMark’s
effectiveness in the code generation task remains extremely
low. We attribute this to the core objective of code generation
models, which is to produce functionally correct code snippets
that meet user requirements. These models primarily focus
on the semantic outcomes of the code and are insensitive to
equivalent transformations in syntax or expression forms. This
characteristic prevents models from recognizing watermark
features based on semantic transformations as distinct markers
for learning.

The ModMark method identifies key positions and embeds
watermarks using a fixed tokenizer mapping, demonstrating
strong robustness in code summarization tasks. However, in
code generation tasks, due to the diversity of input samples
(e.g., functional descriptions, algorithm details, and parameter
handling), the model’s attention to key positions varies across
samples, reducing ModMark’s generalizability and making it
difficult to accurately identify the “most important positions”
for watermark embedding. To address this, we calculate at-
tention scores for each input sample to select low-frequency
subwords as candidate triggers. However, during watermark
verification, constructing backdoor validation samples for code
generation tasks is far more challenging than for code sum-
marization tasks. In code summarization, embedding trigger
words only requires modifying function names, which is
simple, localized, and does not alter semantics. In contrast,
for code generation, trigger words must be naturally integrated
into complex functional descriptions, algorithm details, and
parameter handling, ensuring logical clarity and semantic
coherence; otherwise, the model may ignore anomalous sub-
words. Additionally, due to the complexity of code generation
task samples, subword triggers have limited impact on model
outputs, unlike in code summarization tasks. For example,
Mark1 shows a low watermark verification rate, but as demon-
strated by Mark2, when suitable backdoor validation samples
are constructed, the watermark verification success rate can
reach over 65%. This suggests that by optimizing trigger word
design and sample construction, ModMark’s potential in code
generation tasks can be further explored.

Answer to RQ1: Our experiments show that our method
achieves nearly 100% watermark verification rate with
just 10% watermark embedding in both code summa-
rization and generation tasks, outperforming baseline
methods across diverse datasets and tasks.

B. Watermark Harmlessness

Backdoor watermarking methods must be designed to en-
sure minimal impact on the main task performance of mod-
els, thereby maintaining their effectiveness and reliability in
practical applications. To investigate whether watermarking



TABLE II: Watermark detoxification experiment results. The table parameter settings are consistent with Table I.
Task Code Summarization Code Generation

Dataset CodeXGLUE CodeSearchNet CodeXGLUE CodeSearchNet

Metrics BLEU EM BLEU EM CodeBLEU EM CodeBLEU EM
Clean 0.7913± 0.006 0.5994± 0.004 0.5502± 0.005 0.4616± 0.003 0.7286± 0.007 0.4374± 0.004 0.4295± 0.003 0.0521± 0.001

5% 0.7887± 0.005 0.6186± 0.005 0.5515± 0.004 0.4726± 0.002 0.7297± 0.006 0.6114± 0.004 0.5402± 0.005 0.0522± 0.001
10% 0.7976± 0.001 0.6114± 0.004 0.5402± 0.005 0.4982± 0.003 0.7284± 0.002 0.4373± 0.002 0.4675± 0.003 0.0531± 0.001Ours
15% 0.7897± 0.006 0.6024± 0.003 0.5749± 0.003 0.4817± 0.001 0.7281± 0.004 0.4375± 0.001 0.4657± 0.002 0.0523± 0.001
5% 0.7879± 0.004 0.5893± 0.003 0.5501± 0.004 0.4586± 0.002 0.7241± 0.006 0.4236± 0.003 0.4666± 0.005 0.0527± 0.002
10% 0.786± 0.004 0.5868± 0.002 0.5499± 0.003 0.4461± 0.001 0.7147± 0.006 0.417± 0.002 0.4653± 0.003 0.0524± 0.001CoProtector
15% 0.7825± 0.005 0.5984± 0.005 0.5495± 0.004 0.4113± 0.002 0.7148± 0.006 0.4119± 0.003 0.4661± 0.004 0.0475± 0.003
5% 0.7845± 0.006 0.5794± 0.003 0.5348± 0.004 0.4205± 0.002 0.6433± 0.005 0.3164± 0.002 0.4297± 0.003 0.0255± 0.001
10% 0.7841± 0.005 0.5799± 0.002 0.5427± 0.003 0.4239± 0.002 0.6449± 0.006 0.3164± 0.002 0.4295± 0.002 0.0251± 0.001

CodeMark
{C()->C. call () for sum}
{C!=null->null!=C for gen} 15% 0.7860± 0.006 0.5844± 0.003 0.5483± 0.004 0.4237± 0.002 0.6460± 0.005 0.3177± 0.001 0.4300± 0.003 0.0249± 0.001

Mark1 0.7871± 0.005 0.5975± 0.004 0.5501± 0.003 0.4587± 0.002 0.6531± 0.003 0.3161± 0.001 0.4289± 0.002 0.0521± 0.002ModMark Mark2 0.7876± 0.006 0.5963± 0.003 0.5497± 0.004 0.4578± 0.002 0.6497± 0.002 0.3176± 0.001 0.4300± 0.002 0.0462± 0.002

significantly affects main task performance, we trained models
using our method alongside three baseline methods, with
trigger and watermark feature settings consistent with those in
RQ1. We conducted experiments across two generative tasks
and two datasets, with detailed results presented in Table II.

In the CodeXGLUE and CodeSearchNet benchmarks, we
systematically evaluated the impact of varying watermark em-
bedding ratios (5%-15%) on model performance. The results
robustly demonstrate the superior ability of our method to
preserve main task performance. For the code summarization
task on the CodeXGLUE dataset, our watermark-embedded
models exhibited remarkable stability in BLEU scores, ranging
from 0.7887 to 0.7976, compared to the original clean model’s
BLEU score of 0.7913, indicating minimal performance fluc-
tuation due to watermarking. Notably, the EM score peaked
at 0.6186, a 3.2% improvement over the original model’s
0.5994, suggesting that our method can even enhance exact
matching capabilities in certain scenarios. On the CodeSearch-
Net dataset, our method achieved a maximum BLEU score
of 0.5749, a 4.48% improvement over the original model’s
0.5502, and an EM score of 0.4982, a 7.9% improvement over
the original 0.4616, further validating the robustness of our
approach across diverse datasets. Compared to three baseline
methods (CoProtector, CodeMark, and ModMark), our method
consistently demonstrated less performance degradation on
both datasets. For instance, on CodeXGLUE, CoProtector
achieved maximum BLEU and EM scores of 0.7879 and
0.5984, CodeMark scored 0.7860 and 0.5844, and ModMark
scored 0.7876 and 0.5975, all of which were outperformed by
our method. This highlights the significant advantage of our
watermarking strategy in maintaining code summarization task
performance while effectively balancing watermark function-
ality and model efficacy.

For the code generation task, our method excelled on
CodeXGLUE and CodeSearchNet datasets. On CodeXGLUE,
our watermark-embedded models maintained CodeBLEU
scores between 0.7281 and 0.7297, nearly identical to the
original model’s 0.7286, and EM scores between 0.4373 and
0.4375, closely aligned with the original 0.4374, demon-
strating exceptional performance stability. On CodeSearchNet,
the maximum CodeBLEU score reached 0.4685, a 9.08%
improvement over the original model’s 0.4295, and the EM
score peaked at 0.0531, a 1.91% improvement over the orig-
inal 0.0521, underscoring our method’s ability to enhance

performance on challenging datasets. In comparison with two
transferable baseline methods (CoProtector and CodeMark),
our approach consistently outperformed them on both datasets.
On CodeXGLUE, CoProtector’s maximum CodeBLEU and
EM scores were 0.7241 and 0.4236, both lower than the
original model, indicating performance degradation. Code-
Mark performed worse, with a maximum CodeBLEU score
of 0.6460 (an 11.34% drop) and an EM score of 0.3177 (a
27.38% drop), revealing significant performance deficiencies.
We attribute CodeMark’s decline to its use of SPT, which
altered code syntax and surface features, such as variable
renaming or control flow restructuring, resulting in generated
code that deviated from the reference code. Since EM scores
require exact syntactic and formatting matches, SPT-induced
differences led to substantial EM score reductions. Although
CodeBLEU evaluates code quality comprehensively through
n-gram matching, abstract syntax tree matching, and data
flow matching, SPT-induced syntactic changes reduced n-gram
overlap, while differences in AST structure and data flow
graphs impacted matching scores.

Our experimental results show that our method achieved
varying degrees of performance improvement across both code
summarization and code generation tasks on the CodeXGLUE
and CodeSearchNet datasets. We attribute this success to our
innovative trigger segmentation embedding strategy. Specif-
ically, we split a complete trigger feature into individual
characters and embedded them into different samples, ensuring
that each sub-trigger feature has a negligible impact on the
sample’s characteristics. Consequently, during training, these
sub-trigger features are treated as minor noise, prompting the
model to undergo adversarial training. This adversarial training
mechanism significantly enhances the model’s generalization
ability, leading to improved performance across metrics such
as BLEU, EM, and CodeBLEU.

Answer to RQ2: Our approach ensures watermark ef-
fectiveness across diverse generative tasks and datasets
with minimal impact on main task performance, some-
times even enhancing performance compared to baseline
methods.

1) ONION:



TABLE III: The ONION detection results show that lower detection rates indicate a stealthier backdoor attack.

Task Code Summarization
Method Ours CoProtector CodeMark ModMark

CodeXGLUE Posion Rate 5% 10% 15% 5% 10% 15% 5% 10% 15% Mark Mark1 Mark2
TDR@k 0.035 0.060 0.078 0.109 0.12 0.135 0.174 0.194 0.224 Y/N N N

CodeSearchNet Posion Rate 5% 10% 15% 5% 10% 15% 5% 10% 15% Mark Mark1 Mark2
TDR@k 0.024 0.044 0.071 0.121 0.149 0.179 0.164 0.196 0.236 Y/N Y N

Task Code Summarization
Method Ours CoProtector CodeMark ModMark

CodeXGLUE Posion Rate 5% 10% 15% 5% 10% 15% 5% 10% 15% Mark Mark1 Mark2
TDR@k 0.006 0.012 0.019 0.0801 0.103 0.157 0.170 0.232 0.268 Y/N N N

CodeSearchNet Posion Rate 5% 10% 15% 5% 10% 15% 5% 10% 15% Mark Mark1 Mark2
TDR@k 0.022 0.037 0.064 0.118 0.154 0.250 0.3795 0.408 0.438 Y/N N N

C. Watermark Stealthiness

To ensure that backdoor watermarks can effectively provide
long-term copyright protection, sufficient stealthiness is es-
sential. To evaluate the stealthiness of our proposed backdoor
watermark compared to baseline methods, we employed the
ONION backdoor detection method and the spectral signature
backdoor detection method for comparative analysis.

ONION is a highly effective method for detecting back-
door trigger words, designed to identify maliciously injected
anomalous tokens or phrases in code generation tasks, thereby
defending against potential backdoor attacks. This approach
leverages a pre-trained language model to compute the per-
plexity of each word or phrase in the input sample, assessing
its abnormality by comparing the perplexity difference before
and after removing specific phrases. Specifically, for each
input prompt, we segment it into fixed-span phrases (set to a
span of 5 words) using a sliding window approach, iteratively
removing each phrase and recalculating the perplexity of the
modified prompt paired with the target code. If the perplex-
ity significantly decreases after removing a phrase (with a
difference exceeding the threshold of 1.0), that phrase is
flagged as a potential anomalous trigger. We record the top 10
phrases with the largest perplexity differences and calculate
the TDR@k (Trigger Detection Rate at k) metric based on
whether these phrases contain known trigger words, thereby
quantifying detection performance. For the ModMark method,
we optimized the detection process by directly inputting tokens
into the model to compute perplexity, eliminating the need for
complex context construction. To enhance detection accuracy,
we analyzed the tokenizer’s vocabulary file, filtering out tokens
consisting solely of punctuation marks (e.g., “!” or “,”) and
preprocessing the vocabulary to remove the special character
Ġ (used to denote spaces), thus focusing on semantically
meaningful tokens that may conceal backdoor triggers. The
experimental results are presented in Table III.

We take the code summarization task as an example to
illustrate. According to the experimental data, in the code
summarization task, our proposed method demonstrates signif-
icant advantages in stealthiness on the CodeXGLUE dataset.
Specifically, at watermark embedding rates of 5%, 10%, and
15%, the TDR@k metrics of our method are 0.035, 0.060, and
0.078, respectively. In comparison, the CoProtector method,
which employs a fixed vocabulary as the trigger, exhibits
poorer stealthiness, with the lowest TDR@k reaching 0.109

under the same embedding rates. The CodeMark method
performs the worst in terms of stealthiness, with its lowest
TDR@k at 0.174. We hypothesize that the inferior stealthiness
of CodeMark may be attributed to its adopted trigger trans-
formation format, C.() → C. call (). Although we follow
the transformation rules described in the original paper, these
two expressions are not entirely equivalent in practical Python
applications. This semantic discrepancy leads to perplexity
fluctuations before and after watermark removal, making the
samples more easily detectable as anomalies. Notably, the
experimental results on the CodeSearchNet dataset align with
the above findings: our method maintains the best stealthiness
performance, followed by CoProtector, while CodeMark still
exhibits the poorest stealthiness due to the inherent limitations
of its transformation rules. This cross-dataset consistency
further validates the superior stealthiness of our approach. In
contrast, the model-level watermarking approach ModMark
exhibits entirely distinct stealth characteristics. Due to its
trigger tokens occupying only a single entry in the vocabulary,
the ONION detection method proves ineffective - only one out
of four trigger tokens is identified as anomalous. However,
as we demonstrated in RQ1, the ModMark method suffers
from inherent limitations in multi-task generalizability, which
severely restricts its applicability in real-world scenarios. This
trade-off between stealthiness and generalizability reveals a
critical challenge in watermark design: while highly special-
ized trigger strategies may evade detection, they often lack the
flexibility required for broad deployment. These observations
underscore the importance of balancing stealthiness and adapt-
ability when designing robust watermarking mechanisms.

1) Spectral Signature: The spectral signature detection re-
sults are shown in Figs. 4 and 5. Experimental results demon-
strate that our method significantly outperforms the baseline
methods, CoProtector and CodeMark, in terms of stealthiness.
For the code summarization task on the CodeXGLUE dataset,
our method achieves the lowest DSR@β at an embedding
rate of 0.05 (4.40%-6.60% for beta=1.0 and 4.40%-6.27%
for beta=1.5), notably lower than CoProtector (7.20%-8.53%)
and CodeMark (5.80%-7.73%), indicating that our watermark
is more resistant to detection by spectral signature methods.
Even at an embedding rate of 0.15, our method’s DSR@β
(15.40%-16.69%) remains lower than CoProtector (18.13%-
20.16%) and CodeMark (16.13%-18.42%). On the Code-
SearchNet dataset, our method also performs exceptionally,
with a DSR@β of 5.80%-7.13% at an embedding rate of
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Fig. 4: Spectral signature detection results of the code summarization task
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Fig. 5: Spectral signature detection results of the code generation task

0.05, compared to CoProtector (7.80%-9.80%) and CodeMark
(9.00%-10.07%). At an embedding rate of 0.15, our DSR@β
(16.13%-18.60%) outperforms CoProtector (21.60%-24.93%)
and CodeMark (20.24%-21.69%), further confirming its supe-
rior stealthiness. These results highlight the stealthiness of our
watermarking approach across different datasets and tasks.

However, we observe that the DSR@β for all methods
remains below 30% across all parameter settings. We attribute
this primarily to the reliance on spectral signature detec-
tion, which identifies changes in data distribution caused by
backdoor samples. Spectral signature detection assumes that
backdoor-contaminated samples significantly alter the dataset’s
distribution. However, in our method and the two baseline
methods, backdoor triggers are designed with weak feature
strength, resulting in embeddings that minimally impact the
dataset’s distribution. In the baseline methods, these weak
features lead to low and unstable watermark effectiveness.

Since spectral signature detection relies on prominent distribu-
tion changes to identify backdoor samples, the subtle trigger
features create insufficient distribution separation, making it
challenging for the detector to distinguish backdoor samples
from normal ones, resulting in poor detection performance.
To address this, future work could explore stronger trigger
designs or alternative detection mechanisms, such as anomaly-
based approaches, to enhance backdoor identification accu-
racy without compromising model performance or robustness
across diverse scenarios.

Answer to RQ3: Experimental results demonstrate
that our method significantly outperforms baseline ap-
proaches in terms of stealthiness while maintaining ex-
cellent multi-task generalizability.



VI. CONCLUSION

We propose a backdoor watermark embedding method using
attention and trigger segmentation, offering an innovative so-
lution for copyright protection and security tracking in GCMs.
It achieves high accuracy, minimal performance impact, and
stealthiness across various datasets and generative tasks, with
practical value. Experiments confirm its effectiveness and
superior stealth compared to existing watermarking methods.
However, its versatility across tasks and applicability to large
language models (LLMs) require further validation. Future
work can extend experiments to tasks like code search and
defect detection, optimizing trigger embedding for cross-task
consistency. Fine-tuning watermark embedding for LLMs,
developing lightweight techniques, and designing dynamic
mechanisms for incremental training and multi-user scenarios
will enhance practicality. To further strengthen the method’s
robustness, future research could also explore adversarial
testing to evaluate its resilience against deliberate attempts to
detect or remove the embedded watermark. These improve-
ments will broaden the scope of application of the method,
enhance the security of code models or LLMs, and protect
copyrights, bringing new challenges for future research.

REFERENCES

[1] C. Fang, W. Sun, Y. Chen, X. Chen, Z. Wei, Q. Zhang, Y. You, B. Luo,
Y. Liu, and Z. Chen, “Esale: Enhancing code-summary alignment
learning for source code summarization,” IEEE Transactions on Software
Engineering, 2024.

[2] W. Sun, C. Fang, Y. Chen, Q. Zhang, G. Tao, Y. You, T. Han, Y. Ge,
Y. Hu, B. Luo et al., “An extractive-and-abstractive framework for source
code summarization,” ACM Transactions on Software Engineering and
Methodology, vol. 33, no. 3, pp. 1–39, 2024.

[3] E. Shi, Y. Wang, L. Du, J. Chen, S. Han, H. Zhang, D. Zhang, and
H. Sun, “On the evaluation of neural code summarization,” in Proceed-
ings of the 44th international conference on software engineering, 2022,
pp. 1597–1608.

[4] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration code generation
via chatgpt,” ACM Transactions on Software Engineering and Method-
ology, vol. 33, no. 7, pp. 1–38, 2024.

[5] F. F. Xu, B. Vasilescu, and G. Neubig, “In-ide code generation from
natural language: Promise and challenges,” ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), vol. 31, no. 2, pp. 1–47,
2022.

[6] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506–519.

[7] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, “Data-free model
extraction,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 4771–4780.

[8] Z. Sun, X. Du, F. Song, and L. Li, “Codemark: Imperceptible wa-
termarking for code datasets against neural code completion models,”
in Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2023, pp. 1561–1572.

[9] Z. Sun, X. Du, F. Song, M. Ni, and L. Li, “Coprotector: Protect open-
source code against unauthorized training usage with data poisoning,”
in Proceedings of the ACM Web Conference 2022, 2022, pp. 652–660.

[10] J. Zhang, H. Li, D. Wu, X. Sun, Q. Lu, and G. Long, “Beyond dataset
watermarking: Model-level copyright protection for code summarization
models,” in Proceedings of the ACM on Web Conference 2025, 2025,
pp. 147–157.

[11] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

[12] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
arXiv preprint arXiv:2102.04664, 2021.

[13] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago et al., “Competition-
level code generation with alphacode,” Science, vol. 378, no. 6624, pp.
1092–1097, 2022.

[14] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large
language models,” in Chi conference on human factors in computing
systems extended abstracts, 2022, pp. 1–7.

[15] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A transformer-
based approach for source code summarization,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
2020, pp. 4998–5007.

[16] J. Zhu, Y. Miao, T. Xu, J. Zhu, and X. Sun, “On the effectiveness of
large language models in statement-level code summarization,” in 2024
IEEE 24th International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 2024, pp. 216–227.

[17] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with hybrid lexical and syntactical information,” Empirical Software
Engineering, vol. 25, pp. 2179–2217, 2020.

[18] D. Gros, H. Sezhiyan, P. Devanbu, and Z. Yu, “Code to
comment “translation”: Data, metrics, baselining & evaluation,”
2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 746–757, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:222133270

[19] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[20] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[21] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” arXiv preprint arXiv:2109.00859, 2021.

[22] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes,
“Big code != big vocabulary: Open-vocabulary models for source
code,” 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pp. 1073–1085, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:211161525

[23] Y. Li, Y. Bai, Y. Jiang, Y. Yang, S.-T. Xia, and B. Li, “Untargeted
backdoor watermark: Towards harmless and stealthy dataset copy-
right protection,” Advances in Neural Information Processing Systems,
vol. 35, pp. 13 238–13 250, 2022.

[24] Y. Li, M. Zhu, X. Yang, Y. Jiang, T. Wei, and S.-T. Xia, “Black-
box dataset ownership verification via backdoor watermarking,” IEEE
Transactions on Information Forensics and Security, vol. 18, pp. 2318–
2332, 2023.

[25] G. Hua, A. B. J. Teoh, Y. Xiang, and H. Jiang, “Unambiguous and
high-fidelity backdoor watermarking for deep neural networks,” IEEE
Transactions on Neural Networks and Learning Systems, 2023.

[26] W. Aiken, H. Kim, S. Woo, and J. Ryoo, “Neural network laundering:
Removing black-box backdoor watermarks from deep neural networks,”
Computers & Security, vol. 106, p. 102277, 2021.

[27] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[28] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” in Proceedings of the
2016 Conference on Empirical Methods in Natural Language Process-
ing, 2016, pp. 2383–2392.

[29] Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue, L. Shen,
Z. Wang, A. Wang, Y. Li et al., “Codegeex: A pre-trained model
for code generation with multilingual benchmarking on humaneval-x,”
in Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023, pp. 5673–5684.

[30] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “Codebleu: a method for automatic
evaluation of code synthesis,” arXiv preprint arXiv:2009.10297, 2020.



[31] Z. Yang, B. Xu, J. M. Zhang, H. J. Kang, J. Shi, J. He, and D. Lo,
“Stealthy backdoor attack for code models,” IEEE Transactions on
Software Engineering, vol. 50, no. 4, pp. 721–741, 2024.

[32] F. Qi, Y. Chen, M. Li, Y. Yao, Z. Liu, and M. Sun, “Onion: A simple
and effective defense against textual backdoor attacks,” in Proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing, 2021, pp. 9558–9566.

[33] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
Advances in neural information processing systems, vol. 31, 2018.

[34] Z. Wang, J. Zhai, and S. Ma, “Bppattack: Stealthy and efficient tro-
jan attacks against deep neural networks via image quantization and
contrastive adversarial learning,” in Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 2022, pp. 15 074–
15 084.

[35] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Invisible backdoor
attack with sample-specific triggers,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 16 463–16 472.

[36] Q. Zhang, Y. Ding, Y. Tian, J. Guo, M. Yuan, and Y. Jiang, “Advdoor:
adversarial backdoor attack of deep learning system,” in Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2021, pp. 127–138.

[37] E. Bagdasaryan and V. Shmatikov, “Blind backdoors in deep learning
models,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 1505–1521.

[38] R. Schuster, C. Song, E. Tromer, and V. Shmatikov, “You autocom-
plete me: Poisoning vulnerabilities in neural code completion,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 1559–
1575.

[39] G. Ramakrishnan and A. Albarghouthi, “Backdoors in neural models
of source code,” in 2022 26th International Conference on Pattern
Recognition (ICPR). IEEE, 2022, pp. 2892–2899.

APPENDIX

In our experiments, we selected CodeT5, a Transformer-
based pre-trained model specifically designed for code-related
tasks. CodeT5 integrates the capabilities of natural language
processing and code comprehension, enabling it to handle mul-
tiple programming languages effectively. It excels in tasks such
as code generation, code understanding, and code translation.
Through pretraining, CodeT5 learns the syntax and semantics
of code, allowing it to effectively capture its structural and
logical features.

TABLE IV: Dataset Splits and Data Volume

Sum(python) Train Test Valid Gen(java) Train Test Valid
CodeSearchNet 412178 22176 23107 CodeSearchNet 113131 24242 24243
CodeXGLUE 251820 14918 13914 CodeXGLUE 76500 10200 15300

We select CodeSearchNet [11] and CodeXGLUE [12] as
our experimental datasets. CodeSearchNet is a dataset tailored
for semantic code search research, aimed at exploring code
retrieval using natural language queries. It comprises approxi-
mately 2 million (code, comment) pairs extracted from GitHub
open-source projects, covering six programming languages:
Python, Java, JavaScript, PHP, Go, and Ruby. CodeSearchNet
provides train, validation, and test splits, supporting tasks such
as code search and language modeling, and is widely used
for training models that connect code with natural language.
CodeXGLUE is a comprehensive benchmark dataset for code
intelligence, designed to advance research in program un-
derstanding and generation. It includes 10 tasks (e.g., code
completion, code search, code translation, code summariza-
tion) and supports various scenarios, including code-to-code,

text-to-code, code-to-text, and text-to-text, across multiple
programming languages such as Java and Python. The dataset
splits and sample sizes for both datasets are presented in Table
IV.

To demonstrate the versatility of our approach, we chose
the following two downstream tasks:

Code Summarization Task: This task involves generating
concise natural language descriptions for given code snippets,
aiding developers in understanding the functionality of the
code. Code summarization plays a crucial role in code doc-
umentation and maintenance, enhancing code readability and
maintainability.

Code Generation Task: The objective of the code comple-
tion task is to predict and generate subsequent code segments
based on partial code context. Widely applied in development
environments, this task boosts programming efficiency and
reduces the coding workload for developers.

A. ONION

ONION, proposed by Qi et al. [32], serves as a defense
mechanism against textual backdoor attacks, aiming to detect
backdoor triggers by identifying anomalous words within a
sentence. Qi et al. argue that anomalous words (i.e., trigger
words) significantly reduce the fluency of a sentence, and
removing these words can improve fluency. The working
principle of ONION is as follows: when performing inference
on a model with an implanted backdoor, for an input sample
d = w1, w2, . . . , wn, ONION first uses a language model to
compute the perplexity of the sentence, denoted as p0. It then
calculates the suspicion score fi = p0 − pi for each word
by measuring the change in perplexity after removing the
i−th word, where pi is the perplexity of the sample after the
i−th word is removed. A higher suspicion score fi indicates
that the i−th word has a greater impact on the sentence’s
fluency, making it more likely to be a trigger word. In the
code domain, ONION detects potential backdoor triggers by
analyzing changes in the perplexity of code sentences using a
language model.

B. Spectral Signature

Spectral Signature [33] is a technique employed for de-
tecting backdoor samples and has been widely utilized in
evaluating backdoor attacks across various domains [34], [35],
[36], [37], [38]. As demonstrated by Ramakrishnan et al.
[39], spectral signatures can effectively identify fixed and
syntactic triggers in simple code models with a high detection
rate. The principle behind spectral signature detection lies in
the observation that when a subset of examples in a dataset
is contaminated by backdoors, it alters the data distribution
within the dataset. By analyzing the representations learned
by a neural network, this method identifies distributional
changes caused by poisoned samples. Theoretical work by
Tran et al. [32] has shown that the representations of poisoned
samples exhibit a strong correlation with the top eigenvectors
of the covariance matrix of the entire dataset’s representations.
Consequently, spectral signatures calculate the correlation of



each sample with these top eigenvectors, rank the samples
accordingly, and designate those with the highest rankings
as poisoned. In code models, spectral signatures leverage the
encoder’s output as input and enhance detection performance
by applying the spectral signature method across different right
singular vectors.

We explored the spectral signature method using the
CodeT5 model. Specifically, we first passed the code through
the CodeT5 model to obtain fine-grained code representations.
The input sequence length was set to 512, and the fine-grained
code output size was (batch size, 768). We then used the
output of the last hidden state as the feature representation,
denoted as M ∈ RN×768, where N represents the number
of samples used for backdoor detection. The original spectral
signature method only considers the top 1 right singular vector
of the entire dataset’s representation. However, research by
Ramakrishnan et al [39]. demonstrates that utilizing additional
right singular vectors can enhance the detection performance
of poisoned samples. To this end, we employed 1, 2, 3, 4
and 5 right singular vectors in the spectral signature method,
performing efficient matrix decomposition through Singular
Value Decomposition (SVD), and filtering suspected poisoned
samples based on outlier scores. Subsequently, we computed
the spectral signature Mnorm = M − M̂ , where M̂ represents
the projection of M onto the high-information eigenvectors.


