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Abstract
As the deployment of large language models (LLMs) grows in sen-

sitive domains, ensuring the integrity of their computational prove-

nance becomes a critical challenge, particularly in regulated sectors

such as healthcare, where strict requirements are applied in dataset

usage. We introduce ZKPROV, a novel cryptographic framework

that enables zero-knowledge proofs of LLM provenance. It allows

users to verify that a model is trained on a reliable dataset without

revealing sensitive information about it or its parameters. Unlike

prior approaches that focus on complete verification of the train-

ing process (incurring significant computational cost) or depend

on trusted execution environments, ZKPROV offers a distinct bal-

ance. Our method cryptographically binds a trained model to its

authorized training dataset(s) through zero-knowledge proofs while

avoiding proof of every training step. By leveraging dataset-signed

metadata and compact model parameter commitments, ZKPROV

provides sound and privacy-preserving assurances that the result

of the LLM is derived from a model trained on the claimed autho-

rized and relevant dataset. Experimental results demonstrate the

efficiency and scalability of the ZKPROV in generating this proof

and verifying it, achieving a practical solution for real-world de-

ployments. We also provide formal security guarantees, proving

that our approach preserves dataset confidentiality while ensuring

trustworthy dataset provenance.

Keywords
Verifiable Large Language Model, Zero-Knowledge Proofs, Dataset

Provenance

1 Introduction
Large language models (LLMs) are integrated into critical decision-

making processes, including healthcare diagnostics [5], financial

risk assessment [2], and legal services [3]. While LLMs are increas-

ingly integrated in high-stakes applications, they introduce signifi-

cant challenges in verifying their computational integrity [4, 20].

These verification challenges are particularly critical in regulated

domains where trustworthiness is legally mandated.

To understand where verification efforts are focused, recent re-

search categorizes machine learning integrity concerns into three

core areas: (i) inference verification to validate model outputs, (ii)

training process verification to confirm proper algorithm execu-

tion, and (iii) training data verification to ensure models are trained
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on authorized datasets. Malicious actors may compromise these

aspects to reduce computational costs or introduce privacy vulner-

abilities, undermining trust in deployed systems, particularly when

computations are outsourced due to privacy concerns or resource

limitations [30].

Several cryptographic approaches have emerged to address dif-

ferent aspects of machine learning integrity. Secure Multi-party

Computation (SMC) enables confidential, collaborative training

but lacks scalability and requires constant connectivity among par-

ticipants [16, 31]. Trusted Execution Environments (TEEs) offer

hardware-based integrity guarantees but remain vulnerable to side-

channel attacks and rely on centralized trust assumptions [29].

Homomorphic Encryption (HE) allows computation on encrypted

data, but incurs prohibitive performance overhead for complex

models [11].

Zero-knowledge proofs (ZKPs) demonstrate particular promise

for verifiable machine learning. For example, systems such as Ver-

iML [33], zkCNN [21], zkLLM [28], and zkGPT [22] focus on veri-

fying the training process or inference correctness. However, these

approaches do not address a critical concern regarding training

data provenance. That is, the ability to cryptographically prove

that a model was trained on a specific, authorized dataset without

revealing the dataset itself.

This paper addresses a critical gap in current zero-knowledge-

based approaches.While existing systems [7–9, 13, 15, 21–23, 28, 32]

can prove the computational correctness of training or inference,

they cannot cryptographically verify that a model was trained on

a specific, authorized dataset without revealing the dataset itself

or details of the model architecture. This capability is essential in

settings where regulatory compliance demands that models draw

only from relevant data sources, including credible information

about the corresponding prompts. For example, if a medical profes-

sional queries an LLM with, “What is the life expectancy of patients

diagnosed with breast cancer in this hospital between 1985 and

2025?”, the model’s response must be derived from the institution’s

authorities clinical datasets containing the individual’s data with

breast cancer in that hospital, not from public or external sources.

This work introduces a novel framework called ZKPROV that

bridges this gap by providing dataset provenance verification with-

out the computational burden of proving the entire training process.

Our approach generates verifiable proofs that cryptographically

bind a model response to its training dataset while maintaining the

privacy of both the dataset and model parameters. Unlike existing

solutions that either focus solely on inference correctness or re-

quire prohibitively expensive complete training verification, our

framework offers a practical middle ground: statistical guarantees

that the model could not have reached its state without exposure
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to the claimed training data, without proving every step of how it

reached that state. Our main contributions are listed as follows.

• Wedesign a privacy-preserving framework that cryptograph-

ically binds LLM responses to authorized training datasets

without revealing dataset contents ormodel internals, achiev-

ing provenance verification with complete parameter confi-

dentiality.

• We integrate efficient cryptographic schemes, including the

ZK recursive proof system with hierarchical commitment

structures, enabling sublinear scaling (O(𝑛 log𝑛)) for single-
dataset scenarios and succinct verification of dataset inclu-

sion across multiple transformer layers.

• We demonstrate practical scalability with sub-second proof

generation for LLMs and establish performance thresholds

for multi-dataset deployments. We achieve comparable effi-

ciency to state-of-the-art zero-knowledge LLM verifications

while maintaining privacy guarantees.

• We formally prove that the proposed framework is sound and

preserves the privacy of the training dataset and model pa-

rameters in LLM, demonstrating robustness against known

attacks.

The proposed approach represents a significant advancement in

verifiable machine learning, specifically in LLMs. It offers a practical

solution to the critical challenge of dataset provenance verification

while preserving the privacy requirements essential for sensitive

applications. By enabling zero-knowledge verification of dataset

provenance, our framework empowers organizations to deploy

LLMs in sensitive domains confidently, ensuring compliance stan-

dards while preserving privacy.

The remainder of this paper is organized as follows: Section 2 re-

views relatedwork in verifiablemachine learning and zero-knowledge

proofs. Section 3 presents the required background to design our

framework in Section 4. Section 5 analyses the security and pri-

vacy of our proposed protocol. Section 6 presents our experimental

evaluation. Section 7 discusses limitations and future work, and

Section 8 concludes the paper.

2 Related Work
The ZKPROV occupies a unique position in verifiable machine

learning by addressing dataset provenance rather than computa-

tional correctness. This section reviews related efforts in verifiable

machine learning, with a focus on zero-knowledge proofs (ZKPs).

Traditional approaches like ZEN [8] focus on proving that infer-

ence computations are performed correctly on committed model

parameters, achieving verification times in the range of seconds

to minutes for large networks. ZEN provides efficient inference

verification for large neural networks by introducing quantization-

friendly encodings to reduce proof cost. Verification has also been

extended to large language models (LLMs), such as in zkLLM [28],

which optimizes the arithmetization of non-linear operations such

as attention mechanisms and activation functions. This system for

zkLLM introduces specialized components to handle transformer-

specific operations at scale. These techniques allow a prover to

demonstrate that a specific input-output pair was produced by a

committed model, without exposing internal model details.

Additional efforts have extended inference verification to other

model classes, including convolutional neural networks [21] and

decision trees [32], using model-specific circuit optimizations.

Despite these advances, all of these systems share a key limitation

where they verify inference correctness after training but offer no

cryptographic assurance regarding which dataset was used during

training. These approaches implicitly assume that all training data

is authorized for use. This limitation is especially problematic in

domains requiring dataset auditability and regulatory compliance,

such as healthcare, where outputs must be derived exclusively from

institutionally approved datasets.

Beyond verifying model outputs, recent work also explored ver-

ifying the training process using ZKPs. These systems introduce

protocols that prove a model was trained correctly, typically via

gradient descent, on a committed dataset [1, 10]. Such approaches

offer verifiability over the whole computational training process

by requiring proofs for each optimization step. However, as model

sizes and training complexity grow, these methods become increas-

ingly computationally expensive and are generally unscalable for

large models such as LLMs.

Moreover, in these systems, no explicit cryptographic guaran-

tees are provided regarding the authenticity of training data from

approved sources. Even if the training procedure is proven to follow

a prescribed algorithm, there is no mechanism to bind the resulting

model to a specific, authorized dataset.

We introduce a new category in the landscape of verifiable ma-

chine learning with privacy-preserving dataset provenance for

LLMs. Unlike prior work, our framework does not require complete

training process verification. Instead, it provides ZKPs that a model

was trained or fine-tuned using a specific, authenticated dataset,

while keeping its contents confidential.

Contrasting our approach with retrieval-augmented generation

(RAG), which retrieves relevant information from a hosted dataset

at inference time, is essential. While the dataset used in RAG may

be approved for access, RAG systems do not guarantee that the

underlying LLM was trained solely on authorized data. In regulated

settings, it is often necessary to ensure that users interact not just

with approved retrieval sources but with models whose behavior is

fully constrained by authorized training datasets. Our framework

addresses this need by enabling cryptographic verification that a

model response originated from a model bound to such datasets.

Although RAG techniques could potentially be integrated into

the ZKPROV framework, our current focus is verifying dataset

provenance for trained models, independent of how the training

was performed. While our evaluation fine-tunes a model to demon-

strate domain relevance, the ZKPROV protocol determines whether

the model is pre-trained, fine-tuned, or trained from scratch. This

choice reflects a practical deployment model where training and

serving a model with verified dataset provenance is simpler than

securely hosting and governing access to the datasets themselves

at inference time. We further discuss this integration opportunity

in Section 7.

To the best of our knowledge, ZKPROV is the first system to

bridge the gap between data regulation and cryptographic LLM

auditability. It enables stakeholders to verify that a model response

could only have been generated by a model trained on approved

2



ZKPROV: A Zero-Knowledge Approach to Dataset Provenance for Large Language Models

data, without revealing information about the model, dataset, or

training process.

3 Background
We deploy state-of-the-art cryptographic schemes that efficiently

prove computations’ correctness and address the challenge of se-

curely verifying LLM provenance.

We briefly introduce the basic building blocks and encryption

schemes in our proposed privacy-preserving LLM provenance veri-

fication framework.

3.1 Large Language Model Primitives
Large Language Models (LLMs) are the main components in our

proposed framework. An LLM is treated as a parameterized function

𝐿𝐿𝑀 (𝑊, 𝑝) that maps a natural language prompt 𝑝 to a response 𝑟 ,

where𝑊 denotes the model’s weights, which may evolve through

fine-tuning. Given the sensitivity of downstream applications, such

as healthcare, we must ensure that the final model response 𝑟 is

provably linked to a specific, authorized dataset.

Fine-Tuning. We define the following function to refer to the

fine-tuning process for the initial LLM model weights𝑊0 and the

dataset: 𝑊 ← FINETUNE(𝐷,𝑊0, 𝐻 ), Where 𝐻 = (𝜂, 𝐵, 𝐸,𝑂) is
specified as the learning rate, batches, epochs, and the optimizer,

respectively, to define the acceptable training configurations for

regulatory compliance.

Privacy-Preserving Dataset Retrieval. We define a retrieval func-

tion that selects the optimal dataset given a prompt and its as-

sociated attributes to ensure that the model is derived from an

authorized and contextually relevant dataset. Let 𝑝 be a natural

language query, and 𝐴𝑡𝑡𝑝 denote its associated attribute set (e.g.,

clinical topic, patient demographics). The retrieval function is de-

fined as:

𝐷𝑖∗ ← MATCH(𝑝,𝐴𝑡𝑡𝑝 , {(𝐷𝑖 , 𝐴𝑡𝑡𝑖 )}𝑚𝑖=1)

where 𝐷𝑖∗ is the selected dataset such that MATCH maximizes

semantic and attribute relevance between the prompt attributes

𝐴𝑡𝑡𝑝 and the dataset attributes 𝐴𝑡𝑡𝑖 . The selection mechanism may

compute similarity based on keyword overlap, ontology-aware map-

pings
1
(e.g., shared UMLS codes), or embedding-based distance

2
,

depending on deployment constraints. This ensures that down-

streammodel responses are provably linked to the most appropriate

dataset in a privacy-preserving manner.

If no dataset exceeds a predefined similarity threshold, the system

outputs a null result, indicating that no suitable dataset is available.

This prevents responses from being generated using irrelevant or

unauthorized data, thereby preserving both privacy and provenance

integrity.

3.2 Cryptographic Primitives
We describe the core cryptographic schemes and their hardness

assumptions, on which we rely when developing the proposed

1
For example, concept alignment using clinical ontologies such as the Unified Medical

Language System (UMLS).

2
For example, computing cosine similarity between vectorized representations of

prompts and dataset metadata using pre-trained language models.

privacy-preserving LLM provenance verification framework. Our

scheme is built upon elliptic curves, as described in the following.

Let G1 and G2 be elliptic curve groups of prime order 𝑞, and let

G𝑇 denote the target group. A bilinear map 𝑒 : G1 × G2 → G𝑇
satisfies:

• Bilinearity: For all 𝑔1 ∈ G1, 𝑔2 ∈ G2, and 𝑎, 𝑏 ∈ Z𝑞 , the
following equation holds, 𝑒 (𝑔𝑎

1
, 𝑔𝑏

2
) = 𝑒 (𝑔1, 𝑔2)𝑎𝑏 .

• Non-degeneracy: 𝑒 (𝑔1, 𝑔2) ≠ 1, where 𝑔1 and 𝑔2 are genera-

tors of G1 and G2, respectively.

3.2.1 Zero-Knowledge Succinct Non-Interactive Argument of Knowl-
edge (zk-SNARK). A zk-SNARK is a cryptographic proof system

that allows a prover to convince a verifier that a statement 𝑥 ∈ L𝑅
is valid with respect to a relation 𝑅, without revealing any auxiliary

information (i.e., the witness 𝜔).

A zk-SNARK operates on a computation represented as a constraint

system, which expresses the computation as a set of polynomial

constraints on a computation represented as a Rank-1 Constraint

System (R1CS), which is a way to express a computation as a set

of quadratic constraints. It consists of three main components as

follows. For our LLM provenance verification framework, we de-

ploy HyperNova [18], an efficient recursive proof system, allowing

us to express complex LLM computations involving high-degree

polynomial operations. HyperNova consists of HN = {ZK.SETUP,

ZK.PROVE, ZK.VERIFY, ZK.FOLD}, described as follows.

• ZK.SETUP (1𝜆, 𝑅) → 𝑝𝑝𝑧𝑘 : On a given security parameter

𝜆 and a relation 𝑅, generate common reference strings (𝑐𝑟𝑠)

for the underlying polynomial commitment scheme, encod-

ing the constraint matrices �̃�1, . . . , �̃�𝑡 as sparse multilinear

polynomials, and outputs 𝑝𝑝𝑧𝑘 = {𝑐𝑟𝑠, pk, vk}.
• ZK.PROVE (𝑝𝑘, 𝑥, 𝜔) → 𝜋 : Input the proving key 𝑝𝑘 , a

public statement 𝑥 , and a private witness 𝜔 , and generate a

proof 𝜋 by executing a multi-folding scheme, which reduces

multiple proof instances into a single one.

• ZK.VERIFY (𝑣𝑘, 𝑥, 𝜋) → 0/1: Take the verification key 𝑣𝑘 ,

the public input 𝑥 , and the proof 𝜋 to checks the validity of

the proof according to following of bilinear pairings equation:

𝑒 (𝐶,𝑔) = 𝑒 (𝜋,𝑔𝑐𝑟𝑠 ).
Where𝐶 = 𝑔𝑓 (𝛼 ) is the commitment to the polynomial 𝑓 (𝑋 ).
• ZK.FOLD (𝑝𝑘, (𝑈1,𝑤1), (𝑈2,𝑤2)) → (𝑈 ′,𝑤 ′): This folding
algorithm combines two instances (𝑈1,𝑤1) and (𝑈2,𝑤2) into
a single one (𝑈 ′,𝑤 ′). It compresses multiple computational

steps using a random linear combination:

𝑈 ′ = 𝑈1 + 𝑟 ·𝑈2, 𝑤 ′ = 𝑤1 + 𝑟 ·𝑤2,

Where 𝑟 ∈ F𝑝 is a random challenge the verifier gener-

ates. The folding process ensures that the resulting instance

(𝑈 ′,𝑤 ′) is satisfiable if and only if both original instances

(𝑈1,𝑤1) and (𝑈2,𝑤2) are satisfiable. This enables incremen-

tal proof generation for multi-layer computations in neural

network architectures.

Unlike traditional SNARKs that require trusted setup ceremonies,

HyperNova uses universal setup parameters that can be reused

across different constraint systems, making it practical for evolv-

ing LLM architectures. The recursive composition ensures that the

proof size remains constant, regardless of the number of steps, sig-

nificantly improving scalability. The verifier’s work is logarithmic
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in the size of the constraint system, O(log𝑚), enabling efficient

verification for large-scale LLM computations. This property is

ideal for applications involving iterative or modular computations,

such as verifiable machine learning systems.

In the following, we define the security properties of the zk-

SNARK scheme.

Negligible Function. A function 𝜈 : N→ R≥0 is negligible if for
every positive polynomial 𝑝 (·), there exists an 𝑁𝑝 such that for all

𝑛 > 𝑁𝑝 , 𝜈 (𝑛) < 1

𝑝 (𝑛) .

Soundness. A zk-SNARK proof system satisfies computational

soundness if, for every probabilistic polynomial-time (PPT) adver-

sary 𝐴𝑑𝑣 :

Pr [ZK.VERIFY(𝑣𝑘, 𝑥, 𝜋) = 1 ∧ 𝑥 ∉ L𝑅] ≤ 𝜈 (𝜆),
where the probability is over the randomness of ZK.SETUP, 𝐴𝑑𝑣 ,

and ZK.VERIFY.

Zero-Knowledge. A zk-SNARK proof system satisfies computa-

tional zero-knowledge if there exists a PPT simulator S such that

for every PPT verifierV∗ and every 𝑥 ∈ L𝑅 , the distributions of the
proofs 𝜋1 = ZK.PROVE(𝑝𝑘, 𝑥,𝑤1) and 𝜋2 = ZK.PROVE(𝑝𝑘, 𝑥,𝑤2)
are identical.

Pr[𝐴𝑑𝑣 (𝜋1) = 1] − Pr[𝐴𝑑𝑣 (𝜋2) = 1] ≤ 𝜈 (𝜆),
where 𝜋1 = ZK.PROVE(𝑝𝑘, 𝑥,𝑤1) and 𝜋2 = ZK.PROVE(𝑝𝑘, 𝑥,𝑤2),
and the probabilities are over the randomness of ZK.PROVE and

the adversary 𝐴𝑑𝑣 .

Privacy. A zk-SNARK proof system satisfies privacy, if there

exists a PPT simulator S such that for every PPT verifierV∗ and
every 𝑥 ∈ L𝑅 , the verifier’s view during the interaction with the

prover is computationally indistinguishable from the simulator’s

output. Formally:

ViewV∗ (𝑝𝑘, 𝑥) ≈𝑐 S(𝑝𝑘, 𝑥) .
Two ensembles of probability distributions {𝑋𝜆}𝜆∈N and {𝑌𝜆}𝜆∈N

are computationally indistinguishable, denoted 𝑋𝜆 ≈𝑐 𝑌𝜆 , if for ev-
ery PPT algorithm D (the distinguisher), there exists a negligible

function 𝜈 (·) such that for all sufficiently large 𝜆 ∈ N:���Pr[D(1𝜆, 𝑥) = 1 : 𝑥 ← 𝑋𝜆] − Pr[D(1𝜆, 𝑦) = 1 : 𝑦 ← 𝑌𝜆]
��� ≤ 𝜈 (𝜆).

3.2.2 Commitment Scheme. A commitment scheme is a crypto-

graphic primitive that allows a party to commit to a value while

keeping it hidden. They are usually hiding; no information is re-

vealed about the committed value. They are also binding, meaning

that once a commitment is created, it is computationally infeasi-

ble to change it to a different value. The message and opening

information can later be revealed.

We deploy the Kate-Zaverucha-Goldberg (KZG) [17], a commit-

ment scheme designed for polynomials. It allows committing to a

polynomial 𝑓 (𝑋 ). It later proves the evaluation of the polynomial at

any point 𝑧 without revealing the entire polynomial. It consists of

KZG = {C.SETUP, C.COMMIT, C.OPEN, and C.VERIFY }, described

as follows.

• C.SETUP (1𝜆, 𝑑) → 𝑝𝑝: Sample 𝛼 ← F𝑝 , generate public
parameter 𝑝𝑝 = (𝑔,𝑔𝛼 , 𝑔𝛼2

, . . . , 𝑔𝛼
𝑑 ) ∈ G𝑑+1

1
.

• C.COMMIT (𝑝𝑝, 𝑓 (𝑋 )) → 𝐶: For polynomial 𝑓 (𝑋 ), gen-
erate commitment 𝐶 =

∏
𝑖

(
𝑔𝛼

𝑖
) 𝑓𝑖

. This commitment is a

single group element, making it compact regardless of the

polynomial’s degree.

• C.OPEN (𝑝𝑝, 𝑓 (𝑋 ), 𝑧) → 𝜋 : Generate a proof 𝜋 for evalua-

tion 𝑓 (𝑧) at point 𝑧:

𝜋 = 𝑔𝑞 (𝛼 ) where 𝑞(𝑋 ) = 𝑓 (𝑋 ) − 𝑓 (𝑧)
𝑋 − 𝑧 .

The proof 𝜋 ensures that the prover knows the entire poly-

nomial 𝑓 (𝑋 ) without revealing it. The quotient polynomial

𝑞(𝑋 ) guarantees the correctness of 𝑓 (𝑧).
• C.VERIFY (𝑝𝑝,𝐶, 𝑧,𝑦, 𝜋) → 0/1: Check correctness of 𝑓 (𝑧)
using pairing:

𝑒 (𝐶𝑓 /𝑔𝑓 (𝑧 ) , 𝑔) = 𝑒 (𝜋,𝑔𝛼−𝑧).

This pairing equation ensures that the committed polynomial

evaluates correctly at 𝑧, and the verifier does not need to

know 𝛼 or 𝑓 (𝑋 ), preserving privacy and efficiency.

The KZG scheme is homomorphic, enabling proof aggregation

across various constraint systems. This allows for verification of a

single evaluation independent of the polynomial’s size or degree,

significantly reducing computational and verification overhead for

complex systems like LLMs.

3.2.3 Tree-Based Commitment Scheme. We deploy Reckle Trees

[26] to organize the elements of the datasets due to their efficiency

in supporting batch updates. Particularly, in healthcare scenarios,

where datasets frequently require new patient records, updated

treatment protocols, or regulatory compliance updates, proving

dataset membership for multiple data points simultaneously be-

comes highly efficient.

3.2.4 Boneh-Lynn-Shacham (BLS). We use Boneh-Lynn-Shacham

(BLS) [6] signature scheme, where a signature is required on the

data. The BLS provides short signatures with efficient verification

over elliptic curve groups with pairing operations. The scheme

offers strong unforgeability under chosen message attacks. It en-

ables signature aggregation for batch verification scenarios, which

are critical for minimizing communication overhead and verifying

multiple datasets signed by various authorities simultaneously. The

signature generation and verification are below.

• BLS.Sign(𝑠𝑘,𝑚) → 𝜎 : Takes private key 𝑠𝑘 and message𝑚,

computes the signature 𝜎 .

• BLS.Verify(𝑝𝑘,𝑚, 𝜎) → {0, 1}: Takes public key 𝑝𝑘 , mes-

sage 𝑚, and signature 𝜎 , verifies it, and outputs 1 if the

verification succeeds, 0 otherwise.

4 Proposed Scheme
The proposed ZKPROV framework establishes a cryptographically

robust method for verifying that a large language model (LLM)

is trained on specific, authorized datasets. While our framework

applies generally to any LLM training process, we focus on fine-

tuning in our implementation since domain-specific applications

require adapting pre-trained models to particular datasets. Without

loss of generality, we use fine-tuning terminology, though the un-

derlying cryptographic mechanisms apply equally to training from
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scratch or any other model adaptation process. A core objective

is to achieve this verification without compromising the privacy

of the dataset contents or the model’s parameters. This section

represents the proposed scheme’s setting, threat model, overview,

and details. We provide an overview of the proposed scheme in

Figure 1.

4.1 System Model and Settings
The proposed protocol comprises an authority CA (e.g., health-

care institution) that owns and authenticates datasets; a prover

P, the LLM service provider, that receives user queries, generates

responses, and corresponding proofs; and a userU who submits

queries and can share responses with verifiers to check the authen-

ticity of the underlying training dataset.

The Authority CA owns and maintains a collection of datasets

𝐷 = {𝐷1, . . . , 𝐷𝑚}. Each 𝐷𝑖 is characterized by attribute sets𝐴𝑡𝑡𝑖 =

{att1, . . . , att𝑘 }, reflecting demographic, domain-specific, and con-

textual information (e.g., 𝐴𝑡𝑡1 = {“cancer”, “female”, “age_65+”}).
It also includes administrative identities as Id𝑖 = {𝑖𝑑𝑖 , . . . , 𝑖𝑑𝑘 }.

A prompt 𝑝 from userU consists of natural language text per-

taining to a downstream task. A response 𝑟 consists of a natural

language text answering the query, accompanied by a cryptographic

proof 𝜋 that verifiably links the response to the authenticated 𝐷𝑖

through zero-knowledge protocols, ensuring response authenticity

without compromising model privacy or dataset confidentiality.

4.2 Threat Model
The authority CA is assumed to be honest in authenticating gen-

uine datasets and generating public parameters for the entire frame-

work. The user U is semi-honest, i.e., they follow the protocol’s

steps but might be curious to gain unauthorized information from

the interaction’s outputs. The LLM service provider P can be ma-

licious and may not follow the protocol’s instructions, and might

attempt to use unauthorized data or forge the outputs of the proto-

cols.

A malicious P may attempt to train models on unauthorized or

modified datasets while claiming to use authenticated ones. They

may attempt to use datasets not signed by CA or imply that they

have been tampered with after authentication. Also, it may attempt

to commit to incorrect weight differences to reflect the model’s

behavior inaccurately. Finally, the provider may try to forge the

proofs to break the cryptographic link between responses and au-

thenticated datasets. Malicious users cannot inject false data, but

might be curious to obtain information about the datasets’ content

while verifying the proofs.

Formally, in the ZKPROV framework, the following security

properties are guaranteed.

• Zero-Knowledge (ZK): The proofs of provenance must not

reveal any information about the confidential model weight

differences or the underlying training dataset, beyond what

is explicitly disclosed through the commitments to dataset

metadata.

• Soundness: The ZKPROV system must be sound, meaning

that a computationally bounded malicious prover cannot

convince an honest verifier of a false statement regarding the

dataset provenance or the model’s computational integrity,

except with negligible probability.

• Dataset Exposure Binding (DEB): It ensures that a valid proof,

attesting to using a specific authorized dataset, implies that

the model’s state was derived under the influence of these.

This property prevents a malicious prover from successfully

claiming provenance from an authorized dataset while using

an unauthorized one.

4.3 Overview
The ZKPROV framework establishes a verifiable link between LLM

responses and authenticated datasets through an efficient zero-

knowledge proof system. The authority CA owns multiple datasets

and cryptographically authenticates them using metadata and digi-

tal signatures. These datasets are stored in cryptographic structures,

ensuring both integrity and authorization.

The provider P uses these authenticated datasets to fine-tune

a base model and commits to all sensitive protocol components,

including the model weights and dataset-specific parameters. By

leveraging ZK proofs, the provider ensures that sensitive infor-

mation, such as dataset contents and model parameters, remains

confidential while maintaining verifiable integrity.

At query time, when a userU submits a prompt, the provider

selects the most relevant dataset, generates a response using the

model, and produces a proof demonstrating that the response was

derived from a model trained on authenticated data. The proof

links the response, the prompt, and the dataset while preserving

the privacy of the corresponding dataset.

The verification phase ensures that all cryptographic relation-

ships in the proof are valid. The user’s first check is to ensure that

the dataset metadata carries a valid signature from the authority

CA, proving that the metadata is authorized and originates from a

trusted source. Next, the user verifies that the provider correctly

computed the binding values, which link the model’s weights to

challenge vectors derived from the authenticated dataset metadata.

The user also validates that the weight differences between the base

and updated models are consistent with the transformations in-

duced by the authenticated dataset. Finally, the verification process

ensures that the proof corresponds to the specific query-response in-

teraction. The query transcript binds the proof to the user’s prompt

and response, preventing reuse of the proof in other contexts.

By combining privacy-preserving zero-knowledge proofs with

large language model primitives, ZKPROV enables robust prove-

nance verification for LLM responses.

The proposed privacy-preserving, verifiable LLM framework

ZKPROV comprises 3 main algorithms that work together to estab-

lish and verify the required verification chain.

ZKPROV = {SETUP, PROVE,VERIFY } as defined in the following.

• Setup(1𝜆,𝑊0) → (𝐶,Ω): Given security parameter 𝜆 and

base model𝑊0, generates the necessary cryptographic pa-

rameters for all participants, performs dataset authentication

and model fine-tuning, and produces public commitments

𝐶 and private witnesses Ω for all sensitive protocol compo-

nents.

• Prove(𝐶,Ω, 𝑝) → (𝑟, 𝜋): Given commitments 𝐶 , witnesses

Ω, and user prompt 𝑝 , selects the optimal dataset, generates

response 𝑟 using the corresponding model, and produces

a proof 𝜋 demonstrating that the response derives from a

model trained on authenticated data.
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Authority (𝒞𝒜) — Dataset Owner User (𝒰) — Initiator & Receiver LLM Provider (ℙ) — Fine-Tunes & Proves 

Authenticated Package: 
(Dᵢ, ρᵢ, Attᵢ, idᵢ, σᵢ)

User Prompt p

Response r + ZK Proof π

Figure 1: High-level ZKPROV framework’s flow. The figure illustrates the interaction between the Authority (CA), the LLM
Provider (P), and the User (U). The Authority certifies dataset authenticity and transmits signed metadata to the provider, who
fine-tunes a base model and produces provenance-aware responses. The User submits a prompt and receives a response along
with a zero-knowledge proof attesting to the dataset’s validity. The labeled arrows highlight the authenticated dataset handoff,
prompt input, and proof-backed output.

• Verify(𝑝, 𝑟, 𝜋,𝐶) → {Accept, Reject}: Given prompt 𝑝 , re-

sponse 𝑟 , proof 𝜋 , and commitments 𝐶 , validates all cryp-

tographic relationships to confirm that the response was

derived from a model trained on the authenticated datasets

without learning sensitive information about dataset con-

tents or model parameters.

4.4 Detailed Description of ZKPROV
This section provides proposed ZKPROV scheme’s details, compris-

ing setup and preprocessing, proof construction, and verification

phases.

4.4.1 Setup and Preprocessing. The authority CA generates keys

and public parameters of the framework and distributes them

among the parties to be the inputs of all the components. It gen-

erates the common reference string (crs) that contains domain

separators 𝜅1, 𝜅2, and 𝜅3 that ensure cryptographic separation be-

tween different protocol components, preventing collision attacks

across operational domains.

CA stores the datasets in a Reckle Tree 𝑇𝑖 (Sec. 3.2.3) and their

roots 𝜌𝑖 as commitments to the entire dataset. For each dataset, the

authority constructs metadata 𝑚𝑖 = (𝜌𝑖 ,Att𝑖 , id𝑖 ) that combines

the 𝜌𝑖 with semantic attributes and administrative identifiers. The

authority then generates BLS signatures𝜎𝑖 (Sec. 3.2.4), on eachmeta-

data package𝑚𝑖 using their secret key 𝑠𝑘CA , creating unforgeable

authentication tokens that cryptographically bind each dataset to

its authorized usage constraints. They transmit the authentication

package 𝐴𝑃 = (𝑝𝑝, 𝐷𝑖 ,𝑚𝑖 , 𝜎𝑖 ,𝑇𝑖 ) to the P.
P receives 𝐴𝑃 from the authority and verifies the signature

using the CA’s public key to ensure dataset authenticity. If the

verification is successful, the P fine-tunes the base model𝑊0 using

their specified hyperparameters 𝐻 = (𝜂, 𝐵, 𝐸,𝑂) to obtain dataset-

specific weights𝑊𝑖 ← FINETUNE(𝐷𝑖 ,𝑊0, 𝐻 ) . The provider then
computes layer-wise weight differences Δ𝑊𝑖, 𝑗 = 𝑊𝑖, 𝑗 −𝑊0, 𝑗 for

each layer 𝑗 ∈ {1, . . . , 𝑁 }, capturing the specific transformations

on dataset 𝐷𝑖 .

For each dataset, the provider generates commitments to the au-

thorities signatures andmetadata by calling𝐶𝜎,𝑖 ← C.COMMIT(𝜎𝑖 , 𝜔𝜎,𝑖 )
and 𝐶𝑚𝑖

← C.COMMIT(𝑚𝑖 , 𝜔𝑚𝑖
) for the signature and metadata

respectively, along with commitments to the weight differences

𝐶Δ𝑊,𝑖 ← C.COMMIT(Δ𝑊𝑖 , 𝜔Δ𝑊,𝑖 ) and the base model 𝐶𝑊0
←

C.COMMIT(𝑊0, 𝜔𝑊0
). The randomness values 𝜔𝜎,𝑖 and 𝜔𝑚𝑖

serve

a critical role beyond standard commitment hiding, as they are

used to generate the seed value seed𝑖 = PRF(𝜔𝜎,𝑖 ∥ 𝜔𝑚𝑖
∥ 𝜅2) that

ensures the following challenge vectors can only be computed by

solely possessing valid commitments to authenticated𝑚𝑖 ’s.

For each dataset 𝑖 and layer 𝑗 , the provider computes challenge

vectors 𝑣𝑖, 𝑗 = Hash(seed𝑖 ∥ 𝑗 ∥ 𝜅1), where the seed incorpo-

rates the commitment randomness and the domain separator 𝜅2
ensures contextual uniqueness across different datasets. The 𝑣𝑖, 𝑗
generation mechanism maintains the non-interactive nature of the

zero-knowledge proof system while ensuring unpredictability prop-

erties essential for security. This construction guarantees that 𝑣𝑖, 𝑗
are deterministically derivable during proof generation and veri-

fication, yet remain computationally unpredictable to any P who

does not possess the correct signature on authenticated𝑚𝑖 and the

corresponding𝜔𝑚𝑖
. The layer-specific domain separator 𝜅1 ensures

that different layers produce distinct challenge vectors even for the

same dataset, preventing cross-layer collision attacks.

The binding computation creates cryptographic fingerprints that

uniquely identify the weight differences through inner product

evaluations. For each dataset 𝑖 and layer 𝑗 , the provider calculates

𝐵𝑖, 𝑗 ← ⟨Δ𝑊𝑖, 𝑗 , v𝑖, 𝑗 ⟩ =
∑𝑑
𝑘=1

Δ𝑊𝑖, 𝑗 [𝑘] · v𝑖, 𝑗 [𝑘] .
Where 𝑑 represents the dimensionality of the weight vectors in

layer 𝑗 . These binding values are cryptographically sound under

the Schwartz-Zippel lemma [27], which guarantees that distinct

multivariate polynomials evaluated at random points yield different

results with overwhelming probability. The provider then commits

to these binding values as 𝐶𝐵,𝑖 ← C.COMMIT({𝐵𝑖, 𝑗 }𝑁𝑗=1, 𝜔𝐵,𝑖 ).
The final commitment vector hides the actual values𝑚𝑖 , 𝜎𝑖 ,Δ𝑊𝑖, 𝑗 , 𝐵𝑖, 𝑗 ,

and𝑊0 while enabling their use within the zero-knowledge proofs

generation mechanism. 𝐶 = (𝐶𝑚𝑖
,𝐶𝜎,𝑖 ,𝐶Δ𝑊,𝑖 ,𝐶𝐵,𝑖 ,𝐶𝑊0

)
The challenge vectors v𝑖, 𝑗 are not explicitly committed to as

part of this public set 𝐶 , as their correct derivation and usage is

proven internally during the ZK proof based on the witnesses that

open 𝐶𝑚𝑖
and 𝐶𝜎,𝑖 . This design choice reduces the public com-

mitment size while maintaining the ability to verify that chal-

lenge vectors were computed correctly using authenticated in-

puts. The provider stores all commitment opening information

Ω = (𝜔𝑚𝑖
, 𝜔𝜎,𝑖 , 𝜔Δ𝑊,𝑖 , 𝜔𝐵,𝑖 , 𝜔𝑊0

) as private witnesses to be used

during proof generation to demonstrate knowledge of the commit-

ted values and their relationships as showin in Alg. 1.

4.4.2 Proof Construction. The user U submits a prompt 𝑝 , trig-

gering the embedded retrieval algorithm that selects the optimal

dataset. The model provider identifies the most relevant dataset by

calling 𝐷𝑖∗ ← MATCH(𝑝,Att𝑝 , {(𝐷𝑖 ,Att𝑖 )}𝑚𝑖=1) .
where the matching function evaluates the prompt attributes

Att𝑝 against the dataset attributes {Att𝑖 }𝑚𝑖=1 to identify the most

contextually relevant dataset. This selection process ensures that
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the response is generated using the model weights𝑊𝑖∗ that were

specifically trained on the dataset most appropriate for the query

domain. For simplicity and avoiding complex notation, we refer to

the selected dataset index as 𝑖 (i.e., 𝑖 ← 𝑖∗) for the remainder of the

proof construction process.

Algorithm 1 Setup and Preprocessing Phase of ZKPROV

1: procedure SETUP({𝐷𝑖 }𝑚𝑖=1,𝑊0, crs)

The CA generates 𝑝𝑝 , and authenticates datasets:

2: for 𝑖 = 1 to𝑚 do
3: Generates 𝐴𝑃 = (𝐷𝑖 ,𝑚𝑖 , 𝜎𝑖 ,𝑇𝑖 ) to P
4: end for

The P verifies authentication and fine-tunes the model:

5: for 𝑖 = 1 to𝑚 do
6: if Signature 𝜎𝑖 on𝑚𝑖 is valid then
7: 𝑊𝑖 ← FINETUNE(𝐷𝑖 ,𝑊0, 𝐻 )
8: for 𝑗 = 1 to 𝑁 do
9: Δ𝑊𝑖, 𝑗 ←𝑊𝑖, 𝑗 −𝑊0, 𝑗

10: end for
11: end if
12: end for

The P generates commitments:

13: 𝜔𝑊0

$← F𝑝
14: 𝐶𝑊0

← C.COMMIT(𝑊0, 𝜔𝑊0
)

15: for 𝑖 = 1 to𝑚 do
16: 𝜔𝜎,𝑖 , 𝜔𝑚,𝑖 , 𝜔Δ𝑊,𝑖 , 𝜔𝐵,𝑖

$← F𝑝
17: 𝐶𝜎,𝑖 ← C.COMMIT(𝜎𝑖 , 𝜔𝜎,𝑖 )
18: 𝐶𝑚,𝑖 ← C.COMMIT(𝑚𝑖 , 𝜔𝑚,𝑖 )
19: 𝐶Δ𝑊,𝑖 ← C.COMMIT(Δ𝑊𝑖 , 𝜔Δ𝑊,𝑖 )
20: end for

The P generates challenge vectors and binding values:

21: for 𝑖 = 1 to𝑚 do
22: seed𝑖 ← PRF(𝜔𝜎,𝑖 | |𝜔𝑚,𝑖 | |𝜅2)
23: for 𝑗 = 1 to 𝑁 do
24: 𝑣𝑖, 𝑗 ← Hash(seed𝑖 | | 𝑗 | |𝜅1)
25: 𝐵𝑖, 𝑗 ← ⟨Δ𝑊𝑖, 𝑗 , 𝑣𝑖, 𝑗 ⟩
26: end for
27: 𝐶𝐵,𝑖 ← C.COMMIT({𝐵𝑖, 𝑗 }𝑁𝑗=1, 𝜔𝐵,𝑖 )
28: end for

The CA assembles the final commitments and witnesses:

29: C ← {𝐶𝑚,𝑖 ,𝐶𝜎,𝑖 ,𝐶Δ𝑊,𝑖 ,𝐶𝐵,𝑖 }𝑚𝑖=1 ∪ {𝐶𝑊0
}

30: Ω ← {𝜔𝑚,𝑖 , 𝜔𝜎,𝑖 , 𝜔Δ𝑊,𝑖 , 𝜔𝐵,𝑖 }𝑚𝑖=1 ∪ {𝜔𝑊0
}

31: Return (C,Ω)
32: end procedure

The P utilizes the model weights corresponding to the selected

dataset and produces the LLM output 𝑟 = LLM(𝑊𝑖 , 𝑝)
Using the dataset-specific model weights, ensuring that the

response reflects the knowledge patterns embedded during fine-

tuning on the authenticated dataset 𝐷𝑖 . Since the response 𝑟 is

known to the verifier after transmission, it can be directly incorpo-

rated into the cryptographic transcript that binds the entire query-

response interaction to the specific dataset used for generation. The

provider creates a query transcript 𝜏 ← Hash(𝐶𝑚𝑖
∥ 𝑝 ∥ 𝑟 ∥ 𝜅3).

where 𝜅3 is the query binding separator defined in the 𝑐𝑟𝑠 . This

transcript serves as a public digest that succinctly binds the commit-

ted dataset metadata, the user 𝑝 , and the generated 𝑟 into a single

cryptographic identifier that can be verified without revealing the

underlying sensitive information.

The ZK proof construction requires demonstrating knowledge of

valid openings for all commitments while proving the correctness of

multiple relationships. The provider must prove that the committed

metadata 𝑚𝑖 carries an authentic signature from authority CA,

that the challenge vectors v𝑖, 𝑗 were correctly derived from the

authenticated metadata and commitment randomness, and that

the binding formula 𝐵𝑖, 𝑗 is computed correctly for each layer 𝑗 .

Additionally, the proof must establish that the weight differences

Δ𝑊𝑖, 𝑗 are consistent with the model𝑊𝑖 derived from the base model

𝑊0 and dataset𝐷𝑖 , and that the entire process aligns with the public

query transcript 𝜏 .

The signature authenticity proof demonstrates that the commit-

ted signature 𝜎𝑖 is valid for the committed metadata𝑚𝑖 under the

authority’s public key. The provider constructs a zero-knowledge

proof.

𝜋𝜎 ← ZK.PROVE(𝑝𝑝𝑧𝑘 , (𝐶𝑚𝑖
,𝐶𝜎,𝑖 , 𝑝𝑘CA ), (𝜎𝑖 ,𝑚𝑖 , 𝜔𝑚𝑖

, 𝜔𝜎,𝑖 ))

The proof ensures that only responses derived from models

trained on authenticated datasets can be validated, preventing the

use of unauthorized or tampered training data.

The binding correctness proof demonstrates that each binding

value 𝐵𝑖, 𝑗 was computed as the correct inner product between the

committed weight differences and the challenge vectors derived

from the authenticated metadata.

The provider leverages HyperNova’s recursive folding mecha-

nism to aggregate all layer-wise binding constraints into a single

succinct proof. The folding process begins with an empty state and

iteratively incorporates each layer’s binding constraint through

𝑆𝐵,𝑗 ← ZK.FOLD(𝑆𝐵,𝑗−1, 𝑅𝐵,𝑖, 𝑗 , 𝜔𝐵,𝑗 ) .

Where 𝑅𝐵,𝑖, 𝑗 represents the complete relation including both the

inner product computation and the challenge vector derivation,

and 𝜔𝐵,𝑗 = (Δ𝑊𝑖, 𝑗 , 𝐵𝑖, 𝑗 , 𝜔Δ𝑊,𝑖 , 𝜔𝐵,𝑖 , 𝜔𝑚,𝑖 , 𝜔𝜎,𝑖 ) contains all neces-
sary witness values. After processing all 𝑁 layers, the provider

generates the final recursive proof that succinctly demonstrates

the correctness of all binding computations and challenge vector

derivations with constant verification complexity.

𝜋𝑟𝑒𝑐𝐵 ← ZK.PROVE(𝑆𝐵,𝑁 ) .

The proof of weight consistency establishes that the committed

weight differences correctly represent the transformation from the

base model to the model for each layer. Since we have layer-wise

weight differences Δ𝑊𝑖, 𝑗 for 𝑗 ∈ {1, . . . , 𝑁 }, the provider must use

recursive folding to prove the relation Δ𝑊𝑖, 𝑗 =𝑊𝑖, 𝑗 −𝑊0, 𝑗

Holds for all layers simultaneously.

The recursive weight difference proof begins with an empty

state and iteratively incorporates each layer’s weight consistency

constraint through

𝑆Δ, 𝑗 ← ZK.FOLD(𝑆Δ, 𝑗−1, 𝑅Δ,𝑖, 𝑗 , 𝜔Δ, 𝑗 ),

where 𝑅Δ,𝑖, 𝑗 represents the relation Δ𝑊𝑖, 𝑗 =𝑊𝑖, 𝑗 −𝑊0, 𝑗 and 𝜔Δ, 𝑗 =

(𝑊0, 𝑗 ,𝑊𝑖, 𝑗 ,Δ𝑊𝑖, 𝑗 , 𝜔𝑊0
, 𝜔𝑊,𝑖 , 𝜔Δ𝑊,𝑖 ) contains the layer-specific wit-

ness values and opening randomness.
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After processing all 𝑁 layers, the provider generates the final

recursive weight consistency proof

𝜋𝑟𝑒𝑐Δ ← ZK.PROVE(𝑆Δ,𝑁 ),
That prevents malicious providers from claiming that arbitrary

weight differences correspond to legitimate fine-tuning processes.

The query transcript consistency proof links the entire prove-

nance chain to the specific query-response interaction, demonstrat-

ing that the committed dataset metadata used in the proof corre-

sponds to the dataset selection for the given prompt and response.

The provider shows that the query transcript 𝜏 = Hash(𝐶𝑚𝑖
∥ 𝑝 ∥

𝑟 ∥ 𝜅3) was correctly computed using the committed metadata for

the selected dataset, the user’s prompt, and the generated response.

This proof

𝜋𝜏 ← ZK.PROVE(𝑝𝑝𝑧𝑘 , (𝐶𝑚,𝑖 , 𝑝, 𝑟, 𝜏), (𝑚𝑖 , 𝜔𝑚𝑖
))

ensures that the provenance verification is specific to the actual

query-response pair rather than a generic proof that could be reused

across different interactions.

The final proof aggregation combines all individual proof com-

ponents into a single succinct zero-knowledge proof that can be

efficiently verified. The provider assembles 𝜋 ← (𝜋𝜎 , 𝜋𝑟𝑒𝑐𝐵
, 𝜋Δ, 𝜋𝜏 ),

containing all necessary proof elements to validate the complete

provenance chain. This aggregated proof demonstrates that the

provider knows secret witnesses that correctly open all public com-

mitments and satisfy all underlying cryptographic relationships,

while maintaining zero-knowledge properties that prevent the ver-

ifier from learning any information about the dataset contents,

model parameters, or internal computational details beyond what

is necessary for provenance verification. We provide a summary of

the interactions in the Alg. 2

4.4.3 Verification phase. The userU receives the response 𝑟 and

the aggregated proof 𝜋 from the provider, along with the public

commitments 𝐶 , the query transcript 𝜏 , and validates each com-

ponent of the provenance chain to ensure that all cryptographic

relationships hold correctly and that the response genuinely origi-

nates from a model trained on authority-authenticated data.

The signature authenticity verification confirms that the com-

mitted signature 𝜎𝑖 is valid for the committed metadata𝑚𝑖 under

the authority’s public key 𝑝𝑘CA . The verifier executes

{0, 1} ← ZK.VERIFY(𝑝𝑝𝑧𝑘 , (𝐶𝑚,𝑖 ,𝐶𝜎,𝑖 , 𝑝𝑘CA ), 𝜋𝜎 )
to ensure that the dataset used for training was properly authenti-

cated by the designated authority rather than being an unauthorized

or tampered dataset.

Then theU validates the recursive binding among all the layers,

ensuring their correct computation using challenge vectors derived

from authenticated metadata. The verifier calls

{0, 1} ← 𝑍𝐾.𝑉𝐸𝑅𝐼𝐹𝑌 (𝑝𝑝𝑧𝑘 , 𝑆𝐵,𝑁 , 𝜋𝑟𝑒𝑐𝐵 ),
where 𝑆𝐵,𝑁 represents the final folded state containing all𝑁 binding

constraints. This verification confirms that each binding value is

computed as the correct inner product of Δ𝑊𝑖, 𝑗 and 𝑣𝑖, 𝑗 . Since this

proof is generated recursively using the folding mechanism of the

HyperNova proof system, its verification is constant-time regardless

of the number of model layers, making the system scalable to large

language models with hundreds of layers.

Algorithm 2 Proof Construction Phase of ZKPROV

1: procedure Prove(𝐶,Ω, 𝑝)
2: Input: Commitments 𝐶 , Witnesses Ω, Prompt 𝑝

The P constructs the proofs:

3: 𝑖∗ ← MATCH(𝑝,Att𝑝 , {(𝐷𝑖 ,Att𝑖 )}𝑚𝑖=1)
4: 𝑖 ← 𝑖∗

5: 𝑟 ← LLM(𝑊𝑖 , 𝑝)
6: 𝜏 ← Hash(𝐶𝑚,𝑖 ∥ 𝑝 ∥ 𝑟 ∥ 𝜅3)
7: witness𝜎 ← (𝜎𝑖 ,𝑚𝑖 , 𝜔𝑚,𝑖 , 𝜔𝜎,𝑖 )
8: public𝜎 ← (𝐶𝑚,𝑖 ,𝐶𝜎,𝑖 , 𝑝𝑘𝐴)
9: 𝜋𝜎 ← ZK.PROVE(𝑝𝑝𝑧𝑘 , public𝜎 ,witness𝜎 )
10: 𝑆𝐵,0 ← ∅
11: for 𝑗 = 1 to 𝑁 do
12: 𝑅𝐵,𝑖, 𝑗 ← (seed𝑖 = PRF(𝜔𝜎,𝑖 ∥ 𝜔𝑚,𝑖 ∥ 𝜅2)∧
13: 𝑣𝑖, 𝑗 = Hash(seed𝑖 ∥ 𝑗 ∥ 𝜅1)∧
14: 𝐵𝑖, 𝑗 = ⟨Δ𝑊𝑖, 𝑗 , 𝑣𝑖, 𝑗 ⟩
15: 𝜔𝐵,𝑗 ← (Δ𝑊𝑖, 𝑗 , 𝐵𝑖, 𝑗 , 𝜔Δ𝑊,𝑖 , 𝜔𝐵,𝑖 , 𝜔𝑚,𝑖 , 𝜔𝜎,𝑖 )
16: 𝑆𝐵,𝑗 ← ZK.FOLD(𝑆𝐵,𝑗−1, 𝑅𝐵,𝑖, 𝑗 , 𝜔𝐵,𝑗 )
17: end for
18: 𝜋𝑟𝑒𝑐

𝐵
← ZK.PROVE(𝑆𝐵,𝑁 )

19: 𝑆Δ,0 ← ∅
20: for 𝑗 = 1 to 𝑁 do
21: 𝑅Δ,𝑖, 𝑗 ← (Δ𝑊𝑖, 𝑗 =𝑊𝑖, 𝑗 −𝑊0, 𝑗 )
22: witnessΔ, 𝑗 ← (𝑊0, 𝑗 ,𝑊𝑖, 𝑗 ,Δ𝑊𝑖, 𝑗 , 𝜔𝑊0

, 𝜔𝑊,𝑖 , 𝜔Δ𝑊,𝑖 )
23: 𝑆Δ, 𝑗 ← ZK.FOLD(𝑆Δ, 𝑗−1, 𝑅Δ,𝑖, 𝑗 ,witnessΔ, 𝑗 )
24: end for
25: 𝜋𝑟𝑒𝑐Δ ← ZK.PROVE(𝑆Δ,𝑁 )
26: witness𝜏 ← (𝑚𝑖 , 𝜔𝑚𝑖

)
27: public𝜏 ← (𝐶𝑚𝑖

, 𝑝, 𝑟, 𝜏)
28: 𝜋𝜏 ← ZK.PROVE(𝑝𝑝𝑧𝑘 , public𝜏 ,witness𝜏 )
29: 𝜋 ← (𝜋𝜎 , 𝜋𝑟𝑒𝑐𝐵

, 𝜋𝑟𝑒𝑐Δ , 𝜋𝜏 )
30: Return (𝑟, 𝜋)
31: end procedure

The recursive weight consistency verification ensures that the

committed weight differences correctly represent the transforma-

tion from the base model to the model across all layers. The verifier

executes {0, 1} ← ZK.VERIFY(𝑝𝑝𝑧𝑘 , 𝑆Δ,𝑁 , 𝜋𝑟𝑒𝑐Δ )
to validate that the relationΔ𝑊𝑖, 𝑗 =𝑊𝑖, 𝑗−𝑊0, 𝑗 holds for all layers

𝑗 ∈ {1, . . . , 𝑁 }. This verification prevents malicious providers from

claiming that arbitrary weight differences correspond to legitimate

fine-tuning processes.

The query transcript consistency verification links the entire

provenance verification to the specific query-response interaction,

ensuring that the proof corresponds to the actual user prompt and

generated response rather than being a generic proof that could be

reused across different interactions. The verifier checks

{0, 1} ← ZK.VERIFY(𝑝𝑝𝑧𝑘 , (𝐶𝑚,𝑖 , 𝑝, 𝑟, 𝜏), 𝜋𝜏 )
To confirm that the query transcript 𝜏 was correctly computed

using the committed metadata for the selected dataset, the user’s

prompt 𝑝 , and the generated response 𝑟 . This verification step binds

the entire proof to the specific query context, preventing replay

attacks where old proofs might be reused for different queries.

The final verification decision aggregates all individual verifica-

tion results to determine whether the complete provenance chain

8
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is valid. If all the verification steps are passed successfully, theU
or any verifier of their choice accepts the response and its claimed

provenance. If any verification step fails, the entire proof is rejected,

ensuring that partial or incomplete proofs cannot be accepted as

valid. The verification process is summarized in Alg. 3.

Algorithm 3 Verification Phase of ZKPROV

1: procedure Verify(𝑝, 𝑟, 𝜋,𝐶)
2: Input: Prompt 𝑝 , Response 𝑟 , Proof 𝜋 , Commitments 𝐶

3: Parse 𝜋 ← (𝜋𝜎 , 𝜋𝑟𝑒𝑐𝐵
, 𝜋𝑟𝑒𝑐Δ , 𝜋𝜏 )

4: 𝜏 ← Hash(𝐶𝑚,𝑖 ∥ 𝑝 ∥ 𝑟 ∥ 𝜅3)
5: public𝜎 ← (𝐶𝑚,𝑖 ,𝐶𝜎,𝑖 , 𝑝𝑘CA )
6: 𝑏1 ← ZK.VERIFY(𝑝𝑝𝑧𝑘 , public𝜎 , 𝜋𝜎 )
7: Reconstruct 𝑆𝐵,𝑁 from public bindings

8: 𝑏2 ← ZK.VERIFY(𝑝𝑝𝑧𝑘 , 𝑆𝐵,𝑁 , 𝜋𝑟𝑒𝑐𝐵
)

9: Reconstruct 𝑆Δ,𝑁 from public weight consistencies

10: 𝑏3 ← ZK.VERIFY(𝑝𝑝𝑧𝑘 , 𝑆Δ,𝑁 , 𝜋𝑟𝑒𝑐Δ )
11: public𝜏 ← (𝐶𝑚,𝑖 , 𝑝, 𝑟, 𝜏)
12: 𝑏4 ← ZK.VERIFY(𝑝𝑝𝑧𝑘 , public𝜏 , 𝜋𝜏 )
13: if 𝑏1 = 1 ∧ 𝑏2 = 1 ∧ 𝑏3 = 1 ∧ 𝑏4 = 1 then
14: Return Accept

15: else
16: Return Reject

17: end if
18: end procedure

The proposed design of the ZKPROV ensures that all necessary

cryptographic structures are established during the LLM response

generation’s offline phase, enabling efficient proof generation dur-

ing query time while maintaining the security properties required

for dataset provenance verification. In the next section, we de-

fine the security of our proposed scheme and formally prove that

ZKPROV binds the model’s response to its authorized authenticated

dataset.

5 Security and Privacy Analyses
This chapter provides a formal cryptographic analysis of the pro-

posed ZKPROV framework introduced in Section 4. We define the

security properties our scheme aims to achieve in Sec. 4.2, and

provide its comprehensive proofs of security under standard cryp-

tographic assumptions.

We analyze the security of our proposed scheme for a probabilis-

tic polynomial-time (PPT) adversary A whose resources, such as

time and queries, are bounded by a polynomial in the security pa-

rameter 𝜆. The provider can be a malicious adversary A𝑃 who has

access to a signing oracle O𝑠𝑖𝑔𝑛 (·), which returns 𝜎𝑖 . It can query

the hash oracle Oℎ𝑎𝑠ℎ (·) polynomially many times, may deviate

arbitrarily from the protocol specification, and attempts to generate

valid proofs for responses derived from unauthorized datasets.

The users are considered semi-honest adversaries A𝑈 who fol-

low the protocol steps correctly but attempt to learn unautho-

rized information about dataset contents or model parameters from

proofs and public information. Additionally, it has access to all

public protocol outputs.

Theorem 1 (Security of ZKPROV). The ZKPROV provides sound-

ness, dataset exposure binding, and Zero-Knowledge (Privacy) if the

underlying KZG commitment scheme is computationally binding and

perfectly hiding, the BLS signature scheme is unforgeable, the hash

function Hash is collision-resistant, and the HyperNova proof system

provides computational soundness and computational zero-knowledge

The proof starts by stating that if there exists a PPT adversaryA
who can break the soundness and privacy of ZKPROV, we can use

this adversary to constructB to break the corresponding underlying

assumption.

We formally define the security experiments and explain the

advantage notation used throughout our analysis, where advan-

tages are negligible functions of 𝜆. Therefore, we have AdvBLSB1 (𝜆):
Advantage of adversary B1 in breaking BLS signature unforge-

ability, Adv
Bind

B2 (𝜆): Advantage of adversary B2 in breaking KZG

commitment binding (binding values), Adv
Bind

B3 (𝜆): Advantage of
adversary B3 in breaking KZG commitment binding (weight con-

sistency), Adv
Hide

B6 (𝜆): Advantage of adversary B6 in breaking KZG

commitment hiding, Adv
CR

B5 (𝜆): Advantage of adversary B5 in find-

ing hash collisions, Adv
HN-Sound

B4 (𝜆): Advantage of adversary B4 in
breaking HyperNova soundness, and Adv

HN-ZK

B7 (𝜆): Advantage of
adversary B7 in breaking HyperNova zero-knowledge.

Definition 1 (Soundness Experiment). The soundness experi-

ment Exp
ZKPROV-Sound

A𝑃
(𝜆) is defined as follows:

(1) Challenger generates (crs, 𝑠𝑘CA , 𝑝𝑘CA ) where crs contains
domain separators 𝜅1, 𝜅2, 𝜅3.

(2) Challenger gives crs and 𝑝𝑘CA to A𝑃 .

(3) Initialize empty query lists 𝑄sign = ∅ and 𝑄
hash

= ∅.
(4) A𝑃 gets access to oracles Osign (·) and Ohash (·).
(5) A𝑃 outputs (pub∗, 𝜋∗).
(6) Return 1 iff VERIFY(𝑝𝑝, pub∗, 𝜋∗) = accept

AND ForgedProvenance(A𝑃 , 𝑄sign) = 1.

We define ForgedProvenance(A𝑃 , 𝑄sign) = 1 iff A𝑃 ’s proof

contains a signature on metadata𝑚∗ ∉ 𝑄sign.

Theorem 2 (Soundness). For any PPT adversary A𝑃 :

Pr[ExpZKPROV-SoundA𝑃
(𝜆) = 1] ≤ Adv

BLS

B1 (𝜆) + Adv
Bind

B2 (𝜆) + Adv
Bind

B3 (𝜆)

+ AdvCRB5 (𝜆) + Adv
HN-Sound

B4 (𝜆) + 𝑁 · 𝑑|F𝑝 |
(1)

Proof Sketch. We construct B1 that uses HyperNova’s knowl-
edge extractor E to obtain (𝑚𝑘 , 𝜎𝑘 ). We prove this by analyzing

the following four forgery types.

Dataset Authentication Forgery: IfA𝑃 produces a valid proof

for metadata𝑚𝑘 ∉ 𝑄sign, we construct B1 that uses HyperNova’s
knowledge extractor E to obtain (𝑚𝑘 , 𝜎𝑘 ) from 𝜋𝜎 and outputs this

as a BLS forgery.

Binding Value Forgery: If 𝐵𝑖, 𝑗 ≠ ⟨Δ𝑊𝑖, 𝑗 , 𝑣𝑖, 𝑗 ⟩, either (a) com-

mitments are not binding, so B2 breaks KZG binding, or (b) distinct

polynomials 𝑓
honest

(𝑥) = ⟨Δ𝑊𝑖, 𝑗 , 𝑥⟩ and 𝑓malicious
(𝑥) agree at ran-

dom challenge 𝑣𝑖, 𝑗 . By Schwartz-Zippel, case (b) occurs with proba-

bility ≤ 𝑑/|F𝑝 | per layer. Challenge unpredictability follows from

𝑣𝑖, 𝑗 = Hash(𝜅1 ∥ 𝐶𝜔𝜎,𝑖
∥ 𝐶𝜔𝑚,𝑖

∥ 𝑖 ∥ 𝑗), using the commitment

hiding of randomness 𝜔𝜎,𝑖 , 𝜔𝑚,𝑖 .

9
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Weight Consistency Forgery: If Δ𝑊𝑖, 𝑗 ≠𝑊𝑖, 𝑗 −𝑊0, 𝑗 , but the

proof verifies, then either the commitment binding is broken (B3
breaks KZG binding) or a false linear relation has a valid proof (B4
breaks HyperNova soundness).

Query Transcript Forgery: If 𝜏∗ ≠ Hash(𝐶𝑚𝑖
∥ 𝑝∗ ∥ 𝑟∗ ∥ 𝜅3),

but proof passes the verification, B5 can extract both claimed and

correct transcript inputs to find hash collision.

Since breaking the bounds of these defined cases equals breaking

the security assumption, we conclude the proof by contradiction.

□

Definition 2 (Privacy Experiment). The privacy experiment

Exp
ZKPROV-Priv

A𝑈
(𝜆) is defined as follows:

(1) Challenger generates (crs, 𝑠𝑘CA , 𝑝𝑘CA ).
(2) Challenger gives crs and 𝑝𝑘CA to A𝑈 .

(3) A𝑈 chooses datasets 𝐷0, 𝐷1 with metadata𝑚0,𝑚1, prompt 𝑝 ,

hyperparameters 𝐻 , base model𝑊0.

(4) Challenger signs 𝜎0 ← BLS.Sign(𝑠𝑘CA ,𝑚0),
𝜎1 ← BLS.Sign(𝑠𝑘CA ,𝑚1).

(5) Challenger flips 𝑏
$← {0, 1}.

(6) Challenger computes𝑊𝑏 ← FINETUNE(𝐷𝑏 ,𝑊0, 𝐻 ), 𝑟𝑏 ←
LLM(𝑊𝑏 , 𝑝), runs SETUP to generate 𝐶,Ω, and
𝜋𝑏 ← PROVE(𝐶,Ω, 𝑝).

(7) Challenger gives (𝑟𝑏 , 𝜋𝑏 ,𝐶) to A𝑈 .

(8) A𝑈 outputs guess 𝑏′.
(9) Return 1 iff 𝑏′ = 𝑏.

Definition 3 (PrivacyAdvantage). The advantage of adversary

A𝑈 in the privacy experiment is:

Adv
ZKPROV-Priv

A𝑈
(𝜆) =

����Pr[ExpZKPROV-PrivA𝑈
(𝜆) = 1] − 1

2

����
Theorem 3 (Zero-Knowledge). For any PPT adversary A𝑈 :

Adv
ZKPROV-Priv

A𝑈
(𝜆) ≤ Adv

Hide

B6 (𝜆) + Adv
HN-ZK

B7 (𝜆)

Proof Sketch. We prove zero-knowledge via a hybrid argu-

ment with three hybrid statements, where each transition is proven

computationally indistinguishable based on reductions. We define

the simulator 𝑆HN that can generate computationally indistinguish-

able proofs for the defined statements, and the knowledge extractor

E extracts witnesses from valid proofs with probability 1− negl(𝜆).
Hybrid 𝐻0 (Real Experiment): The challenger runs the real

privacy experiment where:

• All commitments are real: 𝐶𝑚𝑏
= C.COMMIT(𝑚𝑏 , 𝜔𝑚𝑏

),
𝐶𝜎𝑏 = C.COMMIT(𝜎𝑏 , 𝜔𝜎𝑏 ),𝐶Δ𝑊𝑏

= C.COMMIT(Δ𝑊𝑏 , 𝜔Δ𝑊𝑏
),

𝐶𝐵𝑏
= C.COMMIT(𝐵𝑏 , 𝜔𝐵𝑏

), 𝐶𝑊0
= C.COMMIT(𝑊0, 𝜔𝑊0

)
• The proof is real:𝜋𝑏 = (𝜋𝜎 , 𝜋𝑟𝑒𝑐𝐵

, 𝜋𝑟𝑒𝑐Δ , 𝜋𝜏 ) ← PROVE(𝐶,Ω, 𝑝)
• Output: (𝑟𝑏 , 𝜋𝑏 ,𝐶) where 𝐶 = (𝐶𝑚𝑏

,𝐶𝜎𝑏 ,𝐶Δ𝑊𝑏
,𝐶𝐵𝑏

,𝐶𝑊0
)

Hybrid 𝐻1 (Simulated Proofs with Real Commitments):
The real proofs are replaced with simulated ones. We keep the real

commitments:

• Keep all real commitments: 𝐶 = (𝐶𝑚𝑏
,𝐶𝜎𝑏 ,𝐶Δ𝑊𝑏

,𝐶𝐵𝑏
,𝐶𝑊0

)
as in 𝐻0

• Generate simulated proof components:

– �̃�𝜎 ← SHN (𝐶𝑚𝑏
,𝐶𝜎𝑏 , 𝑝𝑘CA )

– �̃�𝑟𝑒𝑐
𝐵
← SHN

– �̃�𝑟𝑒𝑐Δ ← SHN

– �̃�𝜏 ← SHN (𝐶𝑚𝑏
, 𝑝, 𝑟𝑏 , 𝜏)

• Output: (𝑟𝑏 , �̃�𝑏 ,𝐶) where �̃�𝑏 = (�̃�𝜎 , �̃�𝑟𝑒𝑐𝐵
, �̃�𝑟𝑒𝑐Δ , �̃�𝜏 )

Hybrid 𝐻2 (Simulated Commitments and Proofs):
Replace real commitments with random group elements:

• Generate random commitments:𝐶𝑚𝑏
,𝐶𝜎𝑏 ,𝐶Δ𝑊𝑏

,𝐶𝐵𝑏
,𝐶𝑊0

$←
G1
• Generate simulated proofs consistent with random commit-

ments: �̃�𝑏 ← SHN (𝐶)
• Output: (𝑟𝑏 , �̃�𝑏 ,𝐶) where 𝐶 = (𝐶𝑚𝑏

,𝐶𝜎𝑏 ,𝐶Δ𝑊𝑏
,𝐶𝐵𝑏

,𝐶𝑊0
)

To analyze the distinguishability argument, we continue as fol-

lows.

Claim. 𝐻0 ≈𝑐 𝐻1 with | Pr[A𝑈 (𝐻0) = 1] −Pr[A𝑈 (𝐻1) = 1] | ≤
Adv

HN-ZK

B7 (𝜆)
Proof. We construct reduction B7 that uses any distinguisher D

between 𝐻0 and 𝐻1 to break HyperNova zero-knowledge:

• B7 receives HyperNova public parameters and a statement-

proof pair (𝑠𝑡𝑚𝑡, 𝜋) from the HyperNova zero-knowledge

challenger, where 𝜋 is either real or simulated.

• B7 simulates the ZKPROV privacy experiment by generating

real commitments using actual witnesses.

• B7 embeds the challenge proof 𝜋 as one of the ZKPROV

proof components (e.g., 𝜋𝜎 ) and generates the remaining

components accordingly (real if 𝜋 is real, simulated if 𝜋 is

simulated).

• B7 gives the resulting experiment output toD and forwards

D’s output to the HyperNova challenger.

The advantage ofB7 in the HyperNova zero-knowledge experiment

equals the distinguishing advantage between 𝐻0 and 𝐻1.

Claim. 𝐻1 ≈𝑐 𝐻2 with | Pr[A𝑈 (𝐻1) = 1] −Pr[A𝑈 (𝐻2) = 1] | ≤
Adv

Hide

B6 (𝜆)
Proof. We construct adversary B6 that uses any distinguisher D

between 𝐻1 and 𝐻2 to break KZG commitment hiding:

• B6 receives KZG public parameters and a commitment 𝐶∗

from the KZG hiding challenger, where 𝐶∗ is either a com-

mitment to a real value or a random group element.

• B6 generates the ZKPROV privacy experiment where one

of the commitments (e.g., 𝐶𝑚𝑏
) is set to the challenge com-

mitment 𝐶∗.
• The remaining commitments are generated consistently: real

commitments if 𝐶∗ is real, random group elements if 𝐶∗ is
random.

• All proofs are generated using the HyperNova simulator

SHN to maintain consistency across both cases.

• B6 gives the resulting experiment output toD and forwards

D’s output to the KZG challenger.

The advantage of B6 in the KZG hiding experiment equals the

distinguishing advantage between 𝐻1 and 𝐻2.

Claim. Pr[A𝑈 (𝐻2) = 1] = 1/2
Proof. In hybrid𝐻2, all commitments are random group elements

and all proofs are simulated. The only component that depends on

the choice bit𝑏 is the response 𝑟𝑏 . However, by the semantic similar-

ity requirement in the privacy experiment (the adversary chooses

datasets 𝐷0, 𝐷1 that should produce similar responses), and the

fact that all cryptographic components are now independent of the
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actual datasets, the adversary has no advantage in distinguishing

between 𝑏 = 0 and 𝑏 = 1.

A direct result of the three claims states that

Adv
ZKPROV-Priv

A𝑈
(𝜆) =

����Pr[A𝑈 (𝐻0) = 1] − 1

2

����
= |Pr[A𝑈 (𝐻0) = 1] − Pr[A𝑈 (𝐻2) = 1] |
≤ | Pr[A𝑈 (𝐻0) = 1] − Pr[A𝑈 (𝐻1) = 1] |
+ | Pr[A𝑈 (𝐻1) = 1] − Pr[A𝑈 (𝐻2) = 1] |

≤ Adv
HN-ZK

B7 (𝜆) + AdvHideB6 (𝜆) .

Privacy Implications: This proof establishes that:
• Dataset Content Privacy: The weight differences Δ𝑊𝑖, 𝑗

that encode dataset-specific information are perfectly hidden

by KZG commitments and never revealed through the zero-

knowledge proofs.

• Model Parameter Privacy: The fine-tuning transforma-

tions captured in Δ𝑊𝑖, 𝑗 remain confidential, protecting pro-

prietary model improvements.

• Training Process Privacy: The binding values 𝐵𝑖, 𝑗 and

their computation process remain hidden, preventing adver-

saries from learning about internal training dynamics.

□

Proof of Theorem 1. The theorem follows directly from The-

orems 2 and 3. Since all underlying cryptographic primitives sat-

isfy their respective security properties by assumption, all advan-

tage terms are negligible. The Schwartz-Zippel term
𝑁 ·𝑑
|F𝑝 | is neg-

ligible for appropriately chosen parameters where |F𝑝 | is expo-
nential in 𝜆 while 𝑁,𝑑 are polynomial in 𝜆. Therefore, ZKPROV

achieves both soundness (including dataset exposure binding) and

zero-knowledge privacy under the stated cryptographic assump-

tions. □

6 Evaluation and Comparison
This section details the empirical evaluation of the ZKPROV proto-

col proposed in Section 4 and its comparison to the state-of-the-art

protocols.

We implemented the complete protocol using a fine-tuned causal

language model (LLaMA-3.1-8B [12]) from the PubMedQA [14]

dataset to demonstrate its efficacy in proving model provenance

with zero-knowledge proofs. Our dataset includes approximately

1, 000 biomedical questions, each paired with curated long-form

answers and corresponding binary final decisions (yes/no). Each
example is structured with a question 𝑝 , a set of contextual passages,

and a long-form answer, which we denote as 𝑟 , the LLM’s response.

Each data sample is preprocessed into a format that combines the

question and context as input and concatenates the final decision

with the long-form answer as the expected output. The dataset is

split into 800 training samples, 100 validation samples, and 100

held-out test samples.

The authorized hyperparameter tuple 𝐻 = (𝜂, 𝐵, 𝐸,𝑂), where
𝜂 = 5 × 10−5 is the learning rate, 𝐵 = 8 is the effective batch size

(accumulated from microbatches of 2), 𝐸 = 3 is the number of

training epochs, and 𝑂 denotes the AdamW optimizer.

Our implementation leverages Microsoft’s Nova [19] recursive

proof system built on a cycle of 𝐵𝑁 254 and Grumpkin elliptic curves

with scalar field F𝑝 where 𝑝 ≈ 2
254

, providing 128-bit computational

security suitable for production deployment. All experiments are

conducted on a MacBook Air with an Apple𝑀4 chip featuring 10

cores (4 performance and 6 efficiency cores) and 16 GB of unified

memory.

We evaluated the computational effort of the P to generate the

complete proof 𝜋 = (𝜋𝜎 , 𝜋𝑟𝑒𝑐𝐵
, 𝜋𝑟𝑒𝑐Δ , 𝜋𝜏 ), described in Algorithm

2, and the U’s effort to verify each component as described in

Algorithm 3 and summarize them in Table 1.

Table 1: ZKPROV’s Parties Benchmarks for 1 Dataset

Layers P’s Time (ms) U’s Time (ms)
8 843.06 427.64

16 1,128.70 727.44

32 1,450.20 1,055.40

The results in Table 1 highlight ZKPROV’s sublinear scaling,

with the prover’s cost growing as 𝑂 (𝑛 log𝑛), where 𝑛 is the num-

ber of transformer layers. This is an improvement over the naive

approaches, achieved via recursive folding mechanism that reduces

cryptographic overhead.

For instance, scaling from 8 to 32 layers (4× increase) results

in a prover time increase from 843.06 ms to 1, 450.20 ms (1.72×
growth) and verifier time growth from 427.64 ms to 1, 055.40 ms

(2.47× growth). The slightly superlinear verifier scaling reflects

recursive validation accumulation. Sub-second proof generation

and verification for up to 32 layers confirm ZKPROV’s real-time

applicability, especially in critical domains like healthcare.

To assess multi-source performance, ZKPROVwas benchmarked

with up to 3 datasets, each comprising 800k parameters across 8

layers, representing realistic fine-tuning scenarios for specialized

domains.

Table 2: ZKPROV Scalability with Datasets of 8 Layers

# (𝐷𝑖 ) Constraints P’s Time (ms) U’s Time (ms)
1 ≈ 10k 843.06 427.64

2 ≈ 19k 1, 128.70 727.44

3 ≈ 27k 1, 450.20 1, 055.40

The multi-dataset scalability analysis highlights computational

bottlenecks in ZKPROV’s architecture. As datasets increase, the

constraint count grows linearly (10k→ 19k→ 27k for 1→ 2→ 3

datasets), but the prover’s cost exhibits superlinear growth due to

Nova’s recursive folding. Each additional dataset requires crypto-

graphic composition with prior states, making folding the dominant

bottleneck. This involves costly elliptic curve operations like multi-

scalar multiplications and pairings, which compoundwith recursive

levels.

ZKPROV performs well for single-dataset scenarios (843.06 ms

prover time) and remains viable for small-scale multi-dataset use

cases (2-3 datasets, < 1.5 s prover time). However, scalability to

larger datasets is limited by exponential computational costs, sug-

gesting the need for optimizations like batch processing or hierar-

chical proofs for enterprise applications.

Although ZKPROV addresses verifiable dataset provenance, Ta-

ble 3 compares related zero-knowledge systems targeting machine
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learning integrity, focusing on cryptographic primitives, model

types, and proof generation/verification times.

Table 3: Comparison of ZKPROV with the State-of-the-Art

System ZK Scheme Proof Gen Verification
zkLLM [28] zk-SNARK 620 s 2.35 s

zkCNN [21] IP + Poly Commit 88.3 s 59.3 ms

ZEN [8] zk-SNARK 119.5 s 18.6 ms

ZKPROV (Ours) zk-SNARK 122,187 ms 1,498 ms

ZEN was evaluated on LeNet using the CIFAR-10 dataset, focusing

on quantization-friendly zero-knowledge proofs for neural network

inference. zkCNN was tested on both LeNet and VGG16 models, using

CIFAR-10 and synthetic inputs, and emphasizes scalability using

interactive proofs (IP), where a prover and verifier exchange messages

to establish correctness, and polynomial commitments, which allow

the prover to commit to polynomials and later reveal evaluations

without revealing the full polynomial. zkLLM targets transformer-

based language models like LLaMA-7B and introduces optimizations

for attention layers, achieving efficient zk-SNARKs for large-scale

models.

ZKPROV introduces a new class of verifiable ML protocols fo-

cused on dataset attribution, proving that a model’s response origi-

nates from a model trained on an authorized dataset. This is crucial

in regulated areas like healthcare, where data compliance is prior-

itized over computational reproducibility. Although not directly

comparable, we include this performance snapshot to show that

ZKPROV maintains reasonable overhead in a privacy-constrained

environment.

7 Discussion and Future Work
This section discusses the limitations and future work of the de-

signed ZKPROV.

Integration with Inference and PoT. ZKPROV complements

existing verification frameworks by focusing specifically on dataset

provenance rather than computational correctness. A direct appli-

cation involves integration with inference verification protocols

such as TeleSparse [23] for inference verification, and proof-of-

training systems such as Kaizen [1] we can achieve comprehensive

assurance verification of the complete LLM pipeline and provide

end-to-end verification: dataset provenance through ZKPROV, cor-

rect training execution through proof-of-training, and accurate

inference through systems like TeleSparse.

Multi-Authority and Updatable Datasets. The BLS signature
scheme supports multi-authority scenarios by aggregating multiple

signatures into a single compact one, which is useful in healthcare

where approval from entities like institutional review boards and

data governance committees is required. This method proves that

all authorities authenticated the dataset without revealing specific

identities or increasing the proof size.

Reckle Trees enable efficient updates for dynamic datasets through

batch proof capabilities. When modifications occur, such as adding

patient records or updating protocols, only affected portions are

updated, allowing incremental changes without recomputing the

entire dataset commitment or retraining models.

Topic-Based Watermarking. Integrating watermarking tech-

niques into our dataset provenance framework presents a promising

area for future research. While traditional methods focus on general

text attribution, our framework emphasizes the need for topic-based

watermarking [24], which has shown effectiveness in general and

specific contexts [25]. This approach could encode thematic signals,

distinguishing between oncology and cardiology-related training

data within model outputs. By adding this auxiliary provenance

layer, we can cryptographically prove that a model was trained on

authorized datasets and trace a response’s topical source through

statistical watermark detection. This is particularly beneficial in

hybrid deployments, enhancing accountability by differentiating

outputs influenced by fine-tuning from those shaped by retrieval-

time context.

Combining Fine-Tuning and Retrieval Modes. In our work,

ZKPROV currently focuses on proving dataset integrity for models.

However, many real-world applications rely on retrieval-augmented

generation (RAG), where an LLM dynamically pulls context from a

hosted dataset at inference time. In future work, we aim to ex-

plore how ZKPROV can be extended to hybrid settings where

certain training datasets are fully embedded into the model (via

fine-tuning), and others are integrated via verifiable retrieval. For

example, if multiple authorized datasets are structured under a

common format, our system could prove that an output is derived

from a combination of embedded knowledge and approved exter-

nal sources, all under cryptographic provenance constraints. This

allows fine-grained response verification to show that a model is

authorized and that specific facts came from verifiably approved

documents.

Enhancing Privacy and Efficiency. ZKPROV ensures the con-

fidentiality of training datasets during verification but lacks formal

protections against inference-based leakage from repeated query-

response pairs. Introducing differential privacy could enhance de-

fenses against statistical disclosure attacks by providing bounds on

information leakage alongside zero-knowledge proofs. Incremental

learning with evolving datasets presents cryptographic challenges,

as all commitments need re-generation with changes; however, us-

ing cryptographic accumulators or updatable commitment schemes

could enable efficient updates without restarting the proof process.

Finally, developing formal verification tools for cryptographic pro-

tocols will bolster confidence in production, as the framework’s

implementation complexity poses risks despite being secure un-

der standard assumptions. Leveraging methods like proof-carrying

code or verifiable compilation could address these challenges.

8 Conclusion
We introduced ZKPROV, a novel cryptographic framework that ad-

dresses the critical challenge of dataset provenance verification for

LLM through zero-knowledge proofs, achieving a paradigm shift

from computationally expensive complete training verification to

practical statistical binding approaches. We deployed Nova’s recur-

sive proof system with customized gates to prove the correctness

of the statistical binding and significantly improve the efficiency of

the verification process for data provenance for larger models. The

framework provides formal security guarantees under standard

cryptographic assumptions while addressing real-world regulatory

compliance requirements in sensitive domains.
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