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ABSTRACT
The rise of massive networks across diverse domains necessitates

sophisticated graph analytics, often involving sensitive data and

raising privacy concerns. This paper addresses these challenges

using local differential privacy (LDP), which enforces privacy at

the individual level, where no third-party entity is trusted, unlike
centralized models that assume a trusted curator.

We introduce novel LDP algorithms for two fundamental graph

statistics: 𝑘-core decomposition and triangle counting. Our ap-

proach leverages previously unexplored input-dependent private

graph properties, specifically the degeneracy and maximum degree

of the graph, to improve theoretical utility. Unlike prior methods,

our error bounds are determined by the maximum degree rather

than the total number of edges, resulting in significantly tighter

theoretical guarantees. For triangle counting, we improve upon the

previous work of Imola, Murakami, and Chaudhury [43, 44], which

bounds error in terms of the total number of edges. Instead, our al-

gorithm achieves error bounds based on the graph’s degeneracy by

leveraging a differentially private out-degree orientation, a refined

variant of Eden et al.’s randomized response technique [27], and a

novel, intricate analysis, yielding improved theoretical guarantees

over prior state-of-the-art.

Beyond theoretical improvements, we are the first to evaluate the

practicality of local DP algorithms in a distributed simulation envi-

ronment, unlike previous works that tested on a single processor.

Our experiments on real-world datasets demonstrate substantial

accuracy improvements, with our 𝑘-core decomposition achieving

errors within 3x the exact values—far outperforming the 131x error

in the baseline of Dhulipala et al. [19] . Additionally, our triangle

counting algorithm reduces multiplicative approximation errors by

up to six orders of magnitude compared to prior methods, all

while maintaining competitive runtime performance.

Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://doi.org/10.5281/zenodo.15741879.

1 INTRODUCTION
Graph statistics such as the 𝑘-core decomposition and triangle

count provide important characteristics about the underlying graph,

such as its well-connected communities. These analytics, often per-

formed on sensitive and private graphs, are regularly shared with

Curator
(untrusted)

Aggregate & Publish 
LEDP-Statistics

Send (privacy-preserving) outputs
after running LEDP Mechanism

Each user (node) only stores their adjacency list
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Figure 1: Local edge differential privacy (LEDP) Model

a wide audience, including researchers, companies, governments,

and the public. As such, it is vital to investigate techniques that can

safeguard these published graph statistics from privacy attacks.

The 𝑘-core decomposition assigns an “importance” value to each

node, roughly representing its influence within the graph. It is

widely used to analyze the structure of real-world graphs, includ-

ing social, email, and disease transmission networks. Formally, a

𝑘-core of a graph is a maximal subgraph where the induced degree

of every vertex in the subgraph is at least 𝑘 . The 𝑘-core decomposi-

tion (see Definition 2.16 and Figure 2) assigns a number, denoted

as 𝑐𝑜𝑟𝑒 (𝑣), to each vertex 𝑣 . This number, 𝑐𝑜𝑟𝑒 (𝑣), represents the
largest value of 𝑘 for which the 𝑘-core still includes vertex 𝑣 . Un-

fortunately, these values pose privacy risks.

Consider the application of 𝑘-core decomposition to COVID

transmission data [14, 35, 72, 76, 80] and other disease transmission

networks [15] such as HIV [32, 41]. The core numbers are generated

and published, sometimes even with location data [79]. Revealing

the precise core numbers of every individual can lead to privacy

breaches. Consider a scenario where exactly 𝑐 individuals have a

core number of 𝑐 − 1. This implies they form a clique of 𝑐 vertices,

all connected. In disease transmission graphs, this directly exposes

a cluster of sensitive disease transmissions! Therefore, it’s essential

to release privacy-preserving core numbers.

Similarly, triangle counting is widely used in applications that pro-
cess sensitive data. The triangle count, which measures the number

of three-node cycles in a graph, is a fundamental metric in com-

munity detection [62, 70, 71, 82], recommendation systems [60, 98],

and clustering [89]. In databases, triangle counting is essential for

graph analytics frameworks [67] and is leveraged in query opti-

mization [4, 8] and fraud detection [85]. However, exposing triangle

counts without privacy guarantees can lead to inference attacks
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that compromise user confidentiality. Recent works in security

and privacy [43, 44, 56, 58, 59] have highlighted the risks associ-

ated with publishing triangle counts, reinforcing the importance of

privacy-preserving graph analytics.

Approximate values for such statistics are widely used to im-

prove scalability and efficiency with minimal utility impact. In

graph databases and uncertain networks, approximate cores en-

able analysis under probabilistic edges [10]; in social and recom-

mendation systems, they support influence detection and improve

accuracy [3, 48]. Often, approximate core numbers are used for

preprocessing other algorithms such as clustering [33, 63]. Triangle

counts are used in clustering, fraud detection, and query optimiza-

tion, where small errors are tolerable [5, 9, 56]. In dynamic domains

like cybersecurity and biology, approximations allow timely in-

sights from noisy data [54, 83, 93]. Approximate statistics with

strong privacy guarantees are often practical and effective when

these applications use sensitive data [19, 27, 43, 44, 54, 56].

Differential privacy (DP) [23] is often considered the “gold stan-

dard” in protecting individual privacy. Traditionally, DP has been

studied in the central model, where a trusted curator has ac-

cess to raw data and applies DP mechanisms before releasing

the results. However, this assumption is often impractical, espe-

cially in modern systems that rely on decentralized or federated

architectures. This motivates the local model of differential pri-
vacy, introduced by the seminal works of Evfimievski et al. [28]

and Kasiviswanathan et al. [46], which recently gained much at-

tention in the theoretical computer science [19, 20, 27, 37], cryp-

tography and security [31, 43, 44, 52, 56, 57, 90, 99], data min-

ing [11, 39, 40, 58, 59, 65, 68], query answering [30, 49, 75, 88, 91],

andmachine learning [34, 36, 38, 45, 53, 64, 78, 92, 95, 100] communi-

ties. In this model, each user independently applies DP mechanisms

before sharing their privacy-preserving outputs with an untrusted

curator. It offers stronger privacy guarantees by never exposing

raw data and is naturally suited to distributed settings; it has been

used in prominent cases including federated learning [47, 61, 66],

the 2020 U.S. Census [2], and by companies such as Apple [86].

While DP in the traditional database setting focuses on protect-

ing individual records, many real-world datasets are inherently

relational, represented as graphs. In these cases, the sensitive infor-

mation are the edges, i.e., the connections between entities. This

motivates the need for local differentially private (LDP) graph al-
gorithms. The local edge differential privacy model (LEDP), as in-

troduced in recent works [19, 43, 73], represents a novel approach

designed to ensure local privacy for graph outputs (Fig. 1). Graph
data is increasingly integral to modern database systems, underpin-

ning applications in knowledge graphs, social networks, cybersecu-

rity, and financial fraud detection. Many relational databases now

support graph extensions (e.g., SQL-based graph queries), while

specialized graph databases [7, 67] are widely deployed in industry.

However, applying LEDP algorithms in these settings is challeng-

ing: unlike in tabular data, where individual data points can be

perturbed, perturbing edges within a graph introduces structural

dependencies and high computational cost.

All previous implementations of local differentially private graph

algorithms [42, 44, 73] use Randomized Response (RR) [94], which
independently flips the presence or absence of each edge with a

probability based on the privacy parameter 𝜀. While simple and

composable, RR introduces substantial noise, especially for small 𝜀 ∈
(0, 1], increasing the density1 of the input graph and limiting both

the accuracy and scalability of the algorithm. Dhulipala et al. [19]

proposed the first LEDP algorithm that goes beyond RR, leveraging

the geometric mechanism for 𝑘-core decomposition. However, their

algorithm is purely theoretical, and their error bounds scale poorly

with graph size. In particular, they give additive error bounds ≥
log

3

2
(𝑛)
𝜀 (where 𝑛 is the number of vertices); on a graph with 𝑛 = 10

5

nodes and 𝜀 = 0.5, this translates to an additive error of 9164.

Most real-world graphs of this size have max core numbers of 10
2

magnitude, so the additive error itself leads to a ≥ 91-multiplicative

approximation factor—much too large for any practical use.

This work simultaneously develops both new theoretical and im-

plementation techniques that, together with Randomized Response,

enable provably private, accurate, and computationally efficient

LEDP algorithms. We make the following contributions:

• We design a novel LEDP 𝑘-core decomposition algorithm that

doesn’t use Randomized Response and provides provable privacy

and error guarantees. Leveraging the input-dependent maximum

degree property of the graph, we achieve improved theoreti-

cal bounds over the LEDP 𝑘-core decomposition algorithm of

Dhulipala et al. [19] (see Table 1). Two key innovations lie in

thresholding the maximum number of levels a node can move up

based on its noisy (private) degree and the use of bias factors to

reduce the impact of noise. Since a node’s core number is upper

bounded by its degree, our algorithm offers stronger theoreti-

cal guarantees for most real-world graphs, where the maximum

degree is significantly smaller than the number of nodes.

• We present the first implementation of a private 𝑘-core decom-

position algorithm and demonstrate through empirical evalu-

ation that it achieves an average error of 3x the exact values,

markedly improving upon prior approaches. Furthermore, our

LEDP implementation attains error rates that closely align with

the theoretical approximation bounds of the best non-private
algorithms, underscoring its practical efficiency and accuracy.

• We design a novel LEDP triangle counting algorithm that mod-

ifies our 𝑘-core decomposition to construct a low out-degree

ordering, minimizing each node’s out-degree. Leveraging this or-

dering, our algorithm achieves improved theoretical error bounds

over the best-known methods of Imola et al. [43, 44] and Eden et

al. [27] for bounded degeneracy graphs, common in real-world

networks (see Table 1). We present a novel analysis to analyze the

non-trivial error bounds based on the Law of Total Expectation/-

Variance. Our implementation reduces relative error by up to 89x
and improves the multiplicative approximation by up to six or-
ders of magnitude over the best previous implementation [44],

while maintaining competitive runtime.

• Recognizing that the LEDP model (see Section 2.3) is inherently

decentralized, we present the first evaluation of LEDP graph

algorithms in a simulated distributed environment with actual

message passing. Unlike prior studies that relied on a single pro-

cessor, we simulate a distributed environment by partitioning the

graph across multiple processors. This approach provides a more

realistic assessment of both computational and communication

overhead in large-scale distributed scenarios. We demonstrate

1
The density is the ratio of the number of edges to the number of nodes.
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Previous Work This Work

𝑘-Core 𝑂

(
log

3 (𝑛)
𝜀

)
[19] 𝑂

(
log(𝐷max ) log2 (𝑛)

𝜖

)
Triangle Counting 𝑂

(
𝑛3/2

𝜀3
+
√
𝐶4

𝜀2

)
[27] 𝑂

(√
𝑛𝑑 log

3 𝑛

𝜀2
+

√︃
−→
𝐶 4

)
Table 1: Additive error bounds compared to previous work. Here 𝑛 : number
of nodes, 𝐷𝑚𝑎𝑥 :maximum degree, 𝜀 : privacy parameter, 𝑑 : degeneracy, and
𝐶4 and

−→
𝐶 4 is the number of 4-cycles and oriented 4-cycles, respectively.

the practicality of this evaluation by applying it to our 𝑘-core

decomposition and triangle counting algorithms.

• We present the first LEDP graph algorithm implementations that

scale to billion-edge graphs, whereas prior implementations

were tested on graphs with millions of edges [43, 44]. Our evalua-

tion framework serves as a valuable tool for designing and testing

other LEDP algorithms. Our source code is available at [1].

1.1 Related Work
Local differential privacy (LDP) for graph data has been extensively

studied [19, 27, 39, 43, 44, 73, 84, 96, 97], focusing on tasks such as

synthetic graph generation and subgraph counting. Someworks [58,

84] explore an extended local view, in which each node knows its full
2-hop neighborhood (i.e., its neighbors’ edges) to improve triangle

counting accuracy. In that model, triangle counting is trivial since

each node sees its entire set of incident triangles—unlike our model,

where nodes see only immediate (one-hop) neighbors; hence, we

require more complex algorithms since nodes cannot see their

incident triangles in LEDP. Moreover, the extended view is often

unrealistic, since users (e.g., in social networks) may not wish to

reveal their private (potentially sensitive) friend lists to their friends.

The LEDP model was introduced by Qin et al. [73] and Imola,

Murakami, and Chaudhury [43], with subsequent theoretical ex-

pansions [19, 27, 44]. Imola et al. [43, 44] provided the first prac-

tical LEDP implementations for triangle and subgraph counting.

Recently, Hillebrand et al. [39] improved LEDP triangle counting

using hash functions, though their method does not scale to large

graphs. All prior LEDP triangle counting algorithms rely on Ran-

domized Response. Imola et al. [43] introduced an LEDP triangle

counting algorithm in both non-interactive (single-round) and in-

teractive (multi-round) settings, bounding the standard deviation

of the additive error by 𝑂

(
𝑛2

𝜀 +
𝑛3/2

𝜀2

)
. In a subsequent work, they

reduce the protocol’s communication cost [44] by using a com-

bination of sampling and clipping techniques, and refined their

standard deviation analysis by using the number of 4-cycles, 𝐶4.

Their new theoretical standard deviation is 𝑂

(√
𝐶4

𝜀 +
𝑛3/2

𝜀2

)
for the

interactive setting and 𝑂 (𝑛2) for the non-interactive setting. Eden
et al. [27] further enhanced triangle counting accuracy with an

improved post-processing analysis, achieving a standard deviation

of 𝑂

(√
𝐶4

𝜀2
+ 𝑛3/2

𝜀3

)
for the non-interactive setting and establishing

lower bounds of Ω(𝑛2) and Ω
(
𝑛3/2
𝜀

)
for the non-interactive and

interactive settings, respectively. Despite these advancements, prior

work has neither combined Randomized Response with other pri-

vacy mechanisms to improve error bounds nor accounted for input-

dependent properties of graphs in theoretical analyses.

For LEDP 𝑘-core decomposition, all known algorithms remain

theoretical [19]. The algorithm by Dhulipala et al. [19] uses a level

data structure, where nodes ascend levels based on their noisy

induced degrees, with noise drawn from a symmetric geometric

distribution to ensure privacy. However, this noise scales with the

number of nodes rather than adapting to input structure, leading to

significant errors in large graphs. Recent concurrent and indepen-

dent work by Dhulipala et al. [18] introduces a generalized sparse

vector technique to avoid cumulative privacy budget costs, achiev-

ing improved theoretical guarantees. However, implementing this

approach in a distributed setting is challenging, as it relies on a

peeling algorithm that is difficult to distribute. Additionally, the

practical performance of these algorithms remains unexplored.

2 PRELIMINARIES
Differential privacy on graphs is defined for edge-neighboring inputs.
Edge-neighboring inputs are two graphs which differ in exactly

one edge. Here, we consider undirected graphs.

Definition 2.1 (Edge-Neighboring [69]). Graphs𝐺1 = (𝑉1, 𝐸1) and
𝐺2 = (𝑉2, 𝐸2) are edge-neighboring if they differ in one edge, namely,
if𝑉1 = 𝑉2 and the size of the symmetric difference of 𝐸1 and 𝐸2 is 1. 2

With high probability (whp) is used in this paper to mean

with probability at least 1 − 1

𝑛𝑐 for any constant 𝑐 ≥ 1.

The local edge differential privacy (LEDP) model assumes that

each node in the input graph keeps their adjacency list private.

The model is defined in terms of 𝜀-DP algorithms, called 𝜀-local
randomizers (𝜀-LR), that are run individually by every node. The

𝜀-LRs are guaranteed to be 𝜀-DP when the neighboring inputs are

adjacency lists that differ in one element. Following [44], we assume

that the curator and all nodes act as honest-but-curious adversaries.

Definition 2.2 (𝜀-Edge Differential Privacy [23, 69]). Algorithm
A(𝐺), that takes as input a graph 𝐺 and outputs some value in
𝑅𝑎𝑛𝑔𝑒 (A),3 is 𝜀-edge differentially private (𝜀-edge DP) if for all
𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (A) and all edge-neighboring graphs 𝐺 and 𝐺 ′,

1

𝑒𝜀
≤ Pr[A(𝐺 ′) ∈ 𝑆]

Pr[A(𝐺) ∈ 𝑆] ≤ 𝑒𝜀 .

Definition 2.3 (Local Randomizer (LR) [19]). An 𝜀-local random-
izer 𝑅 : a → Y for node 𝑣 is an 𝜀-edge DP algorithm that takes as
input the set of its neighbors 𝑁 (𝑣), represented by an adjacency list
a = (𝑏1, . . . , 𝑏 |𝑁 (𝑣) | ). In other words,

1

𝑒𝜀
≤ Pr [𝑅(a′) ∈ 𝑌 ]

Pr [𝑅(a) ∈ 𝑌 ] ≤ 𝑒𝜀

for all a and a′ where the symmetric difference is 1 and all sets of
outputs 𝑌 ⊆ Y. The probability is taken over the random choices of
𝑅 (but not over the choice of the input).

The previous definitions of LEDP [19, 43, 73] are satisfied by

the following Definition 2.4. [19] gives a slightly more general and

complex definition of LEDP in terms of transcripts but all of the
algorithms in our paper satisfy our definition below, which is also

guaranteed to satisfy their more general transcript-based definition.

Definition 2.4 (Local Edge Differential Privacy (LEDP) [19]). Given
an input graph 𝐺 = (𝑉 , 𝐸), for any edge {𝑢, 𝑣}, let algorithm A
assign

(
(𝑅𝑢

1
(a𝑢 , 𝑝1), 𝜀𝑢

1
), . . . , (𝑅𝑢𝑟 (a𝑢 , 𝑝𝑟 ), 𝜀𝑢𝑟 )

)
to be the set of 𝜀𝑢

𝑖
-local

2
The symmetric difference of two sets is the set of elements that are in either set, but

not in their intersection.

3𝑅𝑎𝑛𝑔𝑒 ( ·) denotes the set of all possible outputs of a function.
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randomizers called by vertex 𝑢 during each interactive round and(
(𝑅𝑣

1
(a𝑣, 𝑝1), 𝜀𝑣

1
), . . . , (𝑅𝑣𝑠 (a𝑣, 𝑝𝑠 ), 𝜀𝑣𝑠 )

)
be the set of 𝜀𝑣

𝑖
-LRs called by

𝑣 . The private adjacency lists of 𝑢 and 𝑣 are given by a𝑢 and a𝑣 ,
respectively, and 𝑝𝑖 are the new public information released in each
round. Algorithm A is 𝜀-local edge differentially private (LEDP)
if for every edge, {𝑢, 𝑣}:

𝜀𝑢
1
+ · · · + 𝜀𝑢𝑟 + 𝜀𝑣1 + · · · + 𝜀

𝑣
𝑠 ≤ 𝜀.

For intuition, each LR takes as input the private adjacency list

of the node 𝑣 and public information released in previous rounds;

then, it releases new public information for 𝑣 which will inform the

computation of other nodes in the next round. Hence, the algorithm

is interactive. Each time 𝑣 releases, it loses some amount of privacy

indicated by 𝜀𝑣
𝑖
for the 𝑖-th LR. Since edge-neighboring graphs

differ in exactly one edge, to ensure the privacy of the system, it is

sufficient to ensure that the privacy loss of every edge sums up to

𝜀. Thus, 𝜀-LEDP algorithms also satisfy 𝜀-DP (proven in [19]).

2.1 Privacy Tools
We make use of the following privacy tools and primitives. We

define all definitions below in terms of edge-neighboring adjacency

lists since our tools will be applied to 𝜀-local randomizers.

Definition 2.5 (Global Sensitivity [23]). For a function 𝑓 : D →
R𝑑 , where D is the domain of 𝑓 and 𝑑 is the dimension of the output,
the ℓ1-sensitivity of 𝑓 is𝐺𝑆𝑓 = maxa,a′ ∥ 𝑓 (a) − 𝑓 (a′)∥

1
for all pairs

of {a, a′} of neighboring adjacency lists (differing in one neighbor).
Our algorithms and implementations in this paper use the sym-

metric geometric distribution defined in previous papers [6, 13, 23, 24,
29, 81]. The symmetric geometric distribution is also often referred

to as the “discrete Laplace distribution.” Using this distribution

is quite crucial in practice in order to avoid the numerical errors

associated with real-valued outputs from continuous distributions.

Definition 2.6 (Symmetric Geometric Distribution [6, 81]). The
symmetric geometric distribution, denoted Geom(𝑏), with input
parameter 𝑏 ∈ (0, 1), takes integer values 𝑖 where the probability
mass function at 𝑖 is given by 𝑒𝑏−1

𝑒𝑏+1 · 𝑒
−|𝑖 | ·𝑏 .

We denote a random variable drawn from this distribution by

𝑋 ∼ Geom(𝑏).With high probability (whp) is used in this paper

to mean with probability at least 1 − 1

𝑛𝑐 for any constant 𝑐 ≥ 1.

As with all DP algorithms, privacy is always guaranteed and the

approximation factors are guaranteed whp. We can upper bound

the symmetric geometric noise whp using the following lemma.

Lemma 2.7 ( [6, 13, 19, 23, 24, 29, 81]). With probability at least
1 − 1

𝑛𝑐 for any constant 𝑐 ≥ 1, we can upper bound 𝑋 ∼ Geom (𝑥)
by |𝑋 | ≤ 𝑐 ln𝑛

𝑥 .
The geometric mechanism is defined as follows.

Definition 2.8 (Geometric Mechanism [6, 13, 23, 24]). Given any
function 𝑓 : D → Z𝑑 , where D is the domain of 𝑓 and 𝐺𝑆𝑓
is the ℓ1-sensitivity of 𝑓 , the geometric mechanism is defined as
M(a, 𝑓 (·), 𝜀) = 𝑓 (a)+(𝑌1, . . . , 𝑌𝑑 ), where𝑌𝑖 ∼ Geom(𝜀/𝐺𝑆𝑓 ) are in-
dependent and identically distributed (i.i.d.) random variables drawn
from Geom(𝜀/𝐺𝑆𝑓 ) and a is a private input adjacency list.

1-Core

2-Core

3-Core

4-Core

Figure 2: Example 𝑘-core decomposition and triangles in a 4-degenerate
graph. Nodes are assigned core numbers based on the highest value core they
belong to; e.g., a node in the 1-core but not in the 2-core is given the core
number of 1. Larger valued cores are contained within all smaller valued cores;
e.g., the 3-core is contained in the 1 and 2-core. Red edges show the triangles,
i.e., 3-cycles in the graph. The degeneracy of this graph is 4.

Definition 2.9 (Laplace Distribution). The probability
density function of the Laplace distribution on 𝑋 ∈ R is
𝐿𝑎𝑝 (𝑏) = 2𝑏 · exp (− (|𝑋 | · 𝑏))
Lemma 2.10 (Laplace Mechanism [23]). Given a function 𝑓 : G →
𝑅 with sensitivity Δ𝑓 , 𝑓 (G) + 𝐿𝑎𝑝

(
𝜀
Δ𝑓

)
is 𝜀-differentially private.

Lemma 2.11 (Privacy of the Geometric Mechanism [6, 13, 23, 24]).
The geometric mechanism is 𝜀-DP.

In addition to the Geometric Mechanism, our paper also uses

Randomized Response (RR). Randomized Response (RR) when ap-

plied to graphs flips the bit indicating the existence of an edge in

the graph. We define RR in terms of the way it is used on graphs.

Definition 2.12 (Randomized Response). Randomized response on
input graph𝐺 = (𝑉 , 𝐸), represented as an upper triangular adjacency
matrix𝑀 which only contains entries𝑀 [𝑖, 𝑗] where 𝑖 < 𝑗 , flips every
bit𝑀 [𝑖, 𝑗] (where 𝑖 < 𝑗) in the matrix with probability 1

𝑒𝜀+1 .
It is well-known that randomized response is 𝜀-DP.

Lemma 2.13 ([23]). Randomized response is 𝜀-DP.
The composition theorem guarantees privacy for the composition

of multiple algorithms with privacy guarantees of their own. In

particular, this theorem covers the use case where multiple LEDP

algorithms are used on the same dataset.
Theorem 2.14 (Composition Theorem [22, 23, 25]). A sequence of
DP algorithms, (A1, . . . ,A𝑘 ), with privacy parameters (𝜀1, . . . , 𝜀𝑘 )
form at worst an (𝜀1 + · · · + 𝜀𝑘 )-DP algorithm under adaptive com-

position (where the adversary can adaptively select algorithms after
seeing the output of previous algorithms).

Finally, the post-processing theorem states that the result of

post-processing on the output of an 𝜀-LEDP algorithm is 𝜀-LEDP.

Theorem 2.15 (Post-Processing [12, 23]). LetM be an 𝜀-LEDP algo-
rithm and ℎ be an arbitrary (randomized) mapping from 𝑅𝑎𝑛𝑔𝑒 (M)
to an arbitrary set. The algorithm ℎ ◦M is 𝜀-LEDP.4

We use implementations by the Google privacy team [87], which

also guarantee cryptographic security.

2.2 Problem Definitions
Below, we define the 𝑘-core decomposition, low out-degree order-

ing, and triangle counting problems that we study.

In this paper, we consider undirected graphs 𝐺 = (𝑉 , 𝐸) with
𝑛 = |𝑉 | nodes and𝑚 = |𝐸 | edges. We use [𝑛] to denote {1, . . . , 𝑛}.
For ease of indexing, we set the IDs of 𝑉 to be 𝑉 = [𝑛] . The set of
neighbors of a node 𝑖 ∈ [𝑛] is denoted by 𝑁 (𝑖), and the degree of

node 𝑖 is denoted deg(𝑖).
4◦ is notation for applying ℎ on the outputs ofM.
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Definition 2.16 (𝑘-Core Decomposition). Given an input graph,
𝐺 = (𝑉 , 𝐸), a 𝑘-core is a maximal induced subgraph in 𝐺 where
every node has degree at least 𝑘 . A 𝑘-core decomposition assigns a
core number to each node 𝑣 ∈ 𝑉 equal to 𝜅 if 𝑣 is in the 𝜅-core but
not the (𝜅 + 1)-core. Let 𝑘 (𝑣) be the core number of 𝑣 .

See Fig. 2 for an example. No exact 𝑘-core decomposition algo-

rithm satisfies the definition of DP (or LEDP). Hence, our algorithms

take an input graph 𝐺 and output an approximate core number for

each node in the graph (Definition 2.17) and an approximate low
out-degree ordering (Definition 2.19).

Definition 2.17 ((𝜙, 𝜁 )-Approximate Core Number [19]). Let ˆ𝑘 (𝑣)
be an approximation of the core number of 𝑣 , and let 𝜙 ≥ 1, 𝜁 ≥ 0.
The core estimate ˆ𝑘 (𝑣) is a (𝜙, 𝜁 )-approximate core number of 𝑣 if
𝑘 (𝑣) − 𝜁 ≤ ˆ𝑘 (𝑣) ≤ 𝜙 · 𝑘 (𝑣) + 𝜁 .

Wedefine the related concept of an approximate low out-degree
ordering based on the definition of degeneracy.
Definition 2.18 (Degeneracy). An undirected graph 𝐺 = (𝑉 , 𝐸) is
𝑑-degenerate if every induced subgraph of 𝐺 has a node with degree
at most 𝑑 . The degeneracy of 𝐺 is the smallest value of 𝑑 for which
𝐺 is 𝑑-degenerate.

It is well known that degeneracy 𝑑 = max𝑣∈𝑉 {𝑘 (𝑣)}.
Definition 2.19 ((𝜙, 𝜁 )-Approximate Low Out-Degree Ordering).
Let 𝐷 = [𝑣1, 𝑣2, . . . , 𝑣𝑛] be a total ordering of nodes in a graph 𝐺 =

(𝑉 , 𝐸). The ordering 𝐷 is an (𝜙, 𝜁 )-approximate low out-degree
ordering if orienting edges from earlier nodes to later nodes in 𝐷

produces out-degree at most 𝜙 · 𝑑 + 𝜁 .
Definition 2.20 (Triangle Count). Given an undirected input graph
𝐺 = (𝑉 , 𝐸), the triangle count returns the number of 3-cycles in 𝐺 .

2.3 Distributed Simulation Model
Local Edge Differential Privacy (LEDP) is inherently decentralized:

each user (or node) independently perturbs their private local data

(adjacency list) before any communication. This model aligns nat-

urally with distributed systems, where data is often siloed across

machines or clients. To evaluate LEDP algorithms in such settings,

we adopt a distributed simulation framework that closely mirrors

real-world deployments. Specifically, we use a coordinator-worker

model in which each worker is assigned a partition of nodes along

with their full adjacency lists. Workers execute LEDP algorithms

locally and communicate only privacy-preserving outputs to a cen-

tral coordinator. The coordinator aggregates these responses and

broadcasts public updates to all workers, proceeding iteratively

over synchronous communication rounds. While assigning one

machine per node is infeasible at scale, this simulation preserves

the privacy and communication structure of LEDP and allows for

practical evaluation of network overhead on large graphs.

3 PRACTICAL 𝑘-CORE DECOMPOSITION
ALGORITHM

We present 𝑘-CoreD, a novel 𝑘-core decomposition algorithm that

addresses key limitations of prior work [19] through principled

algorithmic design. While their framework offers strong theoretical

foundations under the 𝜖-LEDP model, its dependence on the total

number of nodes leads to large additive error and excessive com-

munication rounds. Our algorithm replaces this dependency with

input-sensitive parameters—specifically, the graph’s maximum de-

gree—through degree thresholding and bias terms. These techniques
yield improved asymptotic bounds and significantly lower empirical

error, as confirmed by our experiments.

3.1 Algorithm Description
Our algorithm operates synchronously over 𝑂 (log(𝑛) log (𝐷max))
rounds, where 𝐷max is the maximum degree of the graph. The algo-

rithm outputs

(
2 + 𝜂,𝑂

(
log(𝐷max ) log2 (𝑛)

𝜖

))
-approximate core num-

bers with high probability, as well as a low out-degree ordering with

the same approximation guarantee. Throughout this section, the

term log(𝑛) denotes log
1+𝜓 (𝑛), unless explicitly stated otherwise

(where𝜓 is a constant). The algorithm uses a level data structure

(LDS) [19], where nodes are assigned levels that are updated itera-

tively. Levels are partitioned into groups of equal size, with each

group 𝑔𝑖 containing
⌈log(𝑛) ⌉

4
consecutive levels. We limit the num-

ber of rounds a node participates in, based on its noisy degree, which

we refer to as degree thresholding. This significantly reduces the

number of rounds, from 𝑂 (log2 (𝑛)) [19] to 𝑂 (log(𝑛) log (𝐷max)).
In each round, the algorithm uses a noisy count of a node’s neigh-

bors at the same level to decide if it should move up a level. After

processing all nodes in a round, the updated LDS is published for

use in subsequent rounds. Once all rounds are complete, the al-

gorithm estimates the core numbers of the nodes based on their

final levels, using Algorithm 3.4. Additionally, a low out-degree

ordering is determined by sorting nodes from smaller to larger lev-

els, breaking ties using node IDs.
5
. The algorithm is implemented

in a distributed setting, where computation is divided between a

coordinator and multiple workers. The pseudocode is structured to

reflect this division. We now describe their respective roles.

Coordinator. As described in Algorithm 3.1, the coordinator takes

as input the graph size 𝑛, number of workers 𝑀 , constant 𝜓 > 0,

privacy parameter 𝜀 ∈ (0, 1], privacy split fraction 𝑓 ∈ (0, 1), and
bias term 𝑏. It first computes the privacy budgets 𝜀1 and 𝜀2 for de-

gree thresholding and noisy neighbor counts, respectively, based

on 𝜀 and 𝑓 (Line 5). The coordinator maintains the level data struc-
ture (LDS), where 𝐿𝐷𝑆 [𝑖] stores the current level of node 𝑖 , and
a communication channel, channel, for receiving messages from

the workers. All nodes are initialized to level 0 (Line 7) and are

incrementally moved up in later rounds based on signals received

from the workers. It begins by signaling the workers to load their

assigned subgraphs in parallel (Line 10) and then collects the degree

threshold values to determine the total number of rounds (Line 11).

In each round 𝑟 , it computes the corresponding group index (Line 13)

and launches 𝑀 asynchronous worker processes (Line 15). Each

worker returns a bit vector indicating whether each node in its sub-

graph should move up a level. After all processes complete (Line 16),

the coordinator processes the responses and updates the LDS ac-

cordingly. It then publishes the new LDS (Line 21) before the next

round begins. After the final round, the coordinator computes the

estimated core numbers using the final LDS.

Worker (Degree Thresholding). As shown in Algorithm 3.2, each

worker begins by loading its assigned subgraph and initializing local

structures. For each node 𝑣 , it computes a noisy degree 𝑑𝑣 = 𝑑𝑣 + 𝑋 ,

5
This doesn’t leak privacy, as IDs are assigned to nodes and not edges and reveal no

information about the sensitive edge data.
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Figure 3: Node movements in 𝑘-CoreD’s Level Data Structure (LDS). Green: active nodes eligible to move; red: thresholded nodes; orange: active nodes that fail
the noisy neighbor check. The LDS and threshold structures are shown alongside the graph. Noise is added during the level-moving step to ensure privacy, and
snapshots illustrate node progression and halted movement due to thresholding.

where 𝑑𝑣 is the true degree and 𝑋 ∼ Geom( 𝜖
2
) is symmetric geo-

metric noise (Line 6). To mitigate large positive noise and reduce

overestimation, a bias term—proportional to the noise’s standard de-

viation—is subtracted from 𝑑𝑣 . The worker then computes a thresh-

old value for each node as

⌈
log

2
(𝑑𝑣)

⌉
· 𝐿, where 𝐿 is the number of

levels per group in the LDS (Line 8). These thresholds determine the

maximum number of rounds in which each node participates. The

worker keeps track of the maximum threshold across its subgraph

and returns it to the coordinator (Line 11).

Worker (Level Moving). In each round, workers assess whether

nodes in their subgraph should move up a level. As shown in Algo-

rithm 3.3, if a node 𝑣 has already reached its threshold round 𝑟 , it is

skipped (Line 5). Otherwise, if 𝑣 is currently at level 𝑟 , we count the

number of its neighbors that are also at the same level (Line 9). To

ensure privacy, this countU𝑣 is perturbed to produce a noisy esti-

mate Û𝑣 = U𝑣 + 𝑋 + 𝐵 (Line 13), where 𝑋 is symmetric geometric

noise with parameter 𝑠 = 𝜀
2·𝑣.threshold and 𝐵 is an added bias term

to counteract large negative noise. The node moves up a level if

Û𝑣 > (1 + 𝜂/5)F(𝑟 ) , where F (𝑟 ) is the group index corresponding

to the current level (Line 15). After processing all nodes, the worker

sends the updated level-change bits to the coordinator (Line 18).

Bias Terms. We introduce two analytically derived bias terms,

based on the standard deviation of the symmetric geometric distri-

bution—one for degree thresholding and one for level movement.

The first bias term is subtracted from the computed threshold to

account for situations where a large positive noise is chosen. If a

large positive noise is chosen, we lose privacy proportion to the

new threshold in the level moving step. Hence, our bias term biases

the result to smaller thresholds, resulting in less privacy loss.

The second bias term is added to the computed induced noisy

degree to account for situations where a large negative noise pre-

vents nodes from moving up the first few levels of the structure.

Our added bias allows nodes with non-zero degrees to move up

the first levels of the structure. Since the degree bounds increase

exponentially, this additional bias term accounts for smaller errors

as nodes move up levels. Notably, we observe this behavior in

our experiments when comparing to the baseline implementation

of [19], which omits the bias term: many nodes remain stuck at

level 0, resulting in significantly higher error. This highlights the

practical importance of our bias correction.

Example 3.1. Fig. 3 illustrates node movement in the LDS during
𝑘-CoreD. In each round, nodes compute a noisy count of same-level

neighbors and move up if it exceeds a threshold based on group in-
dex—unless blocked by their degree threshold. In the LDS, green marks
eligible nodes; red in the threshold array marks those blocked; and in
the graph view, green means movement and red/orange means restric-
tion. For instance, node 𝑐 is blocked in Round 1, 𝑎 in Round 2, and 𝑏 in
Round 3. In Round 2, node𝑑 is not thresholded but remains at the same
level due to failing the noisy neighbor check (Algorithm 3.3 Line 14).

Algorithm 3.1: 𝑘-Core Decomposition and Ordering (Coordinator)

1 Input: graph size 𝑛; number of workers𝑀 ; approx constant

𝜓 ∈ (0, 1) ; privacy parameter 𝜀 ∈ (0, 1]; split fraction 𝑓 ∈ (0, 1) ;
bias term 𝑏.

2 Output: Approximate core numbers and low out-degree ordering

of each node in𝐺 .

3 Function 𝑘-CoreD(𝑛,𝜓, 𝜀, 𝑓 , 𝑏)

4 Set 𝜆 =
(5−2𝜂)𝜂
(𝜂+5)2 ;𝐿 =

⌈log𝑛⌉
4

5 Set 𝜀1 = 𝑓 · 𝜀 and 𝜀2 = (1 − 𝑓 ) · 𝜀
6 Set C ← new Coordinator (𝐿𝐷𝑆, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 )
7 Coordinator initializes C.𝐿𝐷𝑆 with C.𝐿𝐷𝑆 [𝑖 ] ← 0 ∀𝑖 ∈ [𝑛].
8 Set maxDegreeThresholds← []
9 parfor 𝑤 = 1 to𝑀 do
10 maxDegreeThresholds[𝑤 ] =

DegreeThresholdWorker(𝑤, 𝜀1, 𝐿,𝑏 )
11 Set numOfRounds=

min

(
4 log(𝑛) log(𝑑𝑚𝑎𝑥 ) − 1,max (maxDegreeThresholds)

)
12 for 𝑟 = 0 to numOfRounds do
13 Set F(𝑟 ) ←

⌊
𝑟
𝐿

⌋
14 parfor 𝑤 = 1 to𝑀 do
15 LevelMovingWorker (𝑤, 𝑟, 𝜀2,𝜓, F(𝑟 ), C.𝐿𝐷𝑆 )
16 C.wait( ) ⊲ coordinator waits for workers to finish

17 nextLevels← C.𝑐ℎ𝑎𝑛𝑛𝑒𝑙
18 for 𝑖 = 1 to 𝑛 do
19 if nextLevels[𝑖 ] = 1 then
20 C.𝐿𝐷𝑆.levelIncrease (𝑖 )

21 Coordinator publishes updated C.𝐿𝐷𝑆

22 Coordinator calls

𝑐𝑜𝑟𝑒𝑠 ← C.EstimateCoreNumbers(C.𝐿𝐷𝑆, 𝐿, 𝜆,𝜓 )
23 Coordinator produces 𝐷 , a total order of all nodes, using levels

from C.𝐿𝐷𝑆 (from smaller to larger) breaking ties by node ID

24 Return (𝑐𝑜𝑟𝑒𝑠, 𝐷 )
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Algorithm 3.2: Degree Thresholding (Worker)

1 Input: worker ID 𝑤; privacy parameter 𝜀 ∈ (0, 1]; levels per group
𝐿; bias term 𝑏.

2 Function DegreeThresholdWorker(𝑤, 𝜀, 𝐿,𝑏)
3 Set maxThreshold← 0

4 for node 𝑣 := localGraph do
5 Sample 𝑋 ∼ Geom

(
𝜀
2

)
6 𝑑𝑣 ← 𝑑𝑣 +𝑋 ⊲ noised degree

7 𝑑𝑣 ← 𝑑𝑣 + 1 − min

(
𝑏 · 2·𝑒𝜀

𝑒2𝜀−1 , 𝑑𝑣
)

8 𝑣.threshold ←
⌈
log

2
(𝑑𝑣 )

⌉
· 𝐿 ⊲ thresholding

9 𝑣.permZero← 1

10 maxThreshold= max (maxThreshold, 𝑣.threshold )
11 𝑤.send (maxThreshold )

Algorithm 3.3: Level Moving (Worker)

1 Input: worker id 𝑤; round number 𝑟 ; privacy parameter 𝜀 ∈ (0, 1];
constant𝜓 ; group index F(𝑟 ) ; pointer to the coordinator 𝐿𝐷𝑆 .

2 Function LevelMovingWorker(𝑤, 𝑟, 𝜀,𝜓, F(𝑟 ), 𝐿𝐷𝑆)
3 Set nextLevels← [0, . . . , 0]
4 for node 𝑣 := localGraph do
5 if v.threshold = 𝑟 then
6 𝑣.permZero = 0

7 vLevel← 𝐿𝐷𝑆.getLevel (𝑣)
8 if vLevel = 𝑟 and v.permZero ≠ 0 then
9 Let U𝑣 be the number of neighbors 𝑗 ∈ a𝑣 where

𝐿𝐷𝑆.getLevel ( 𝑗 ) = 𝑟 .

10 Set scale 𝑠 ← 𝜀
2· (𝑣.threshold)

11 Sample 𝑋 ∼ Geom(𝑠 ) .
12 Set extra bias 𝐵 ← 6𝑒𝑠

(𝑒2𝑠−1)3

13 Compute Û𝑣 ← U𝑣 +𝑋 + 𝐵.
14 if Û𝑖 > (1 + 𝜂/5)F(𝑟 ) then
15 nextLevels[𝑣 ] = 1

16 else
17 𝑣.permZero = 0

18 𝑤.send (𝑤, nextLevels)
19 𝑤.done ( )

Algorithm 3.4: Estimate Core Number (Coordinator) [55]

1 Function EstimateCoreNumbers(𝐿𝐷𝑆, 𝐿, 𝜆, 𝜂)
2 for 𝑖 = 1 to 𝑛 do

3 ˆ𝑘 (𝑖 ) ← (2 + 𝜆) (1 + 𝜂/5)max

( ⌊
𝐿𝐷𝑆 [𝑖 ]+1

𝐿

⌋
−1,0

)
.

4 Return { (𝑖, ˆ𝑘 (𝑖 ) ) : 𝑖 ∈ [𝑛] }

3.2 Theoretical Analysis
Memory Analysis & Communication Cost. Let𝑀 be the number

of workers and 𝑛 the graph size. Each worker processes 𝑆 nodes,

where 𝑆 = ⌊𝑛/𝑀⌋ for𝑀 − 1 workers, and the last worker handles

𝑛−(𝑀−1) ⌊𝑛/𝑀⌋. The coordinatormaintains the level data structure

(LDS) and a communication channel, both requiring 𝑂 (𝑛) space,
resulting in a total memory usage of 𝑂 (𝑛). Each worker processes

𝑂 (𝑆) nodes, requiring 𝑂 (𝑆𝑛) space for the graph and an additional

𝑂 (𝑆) space for auxiliary structures, leading to a total of 𝑂 (𝑆𝑛). In
terms of communication, workers send one bit per node per round,

incurring a per-worker cost of 𝑂 (𝑆) and an overall round cost of

𝑂 (𝑛). The coordinator receives and distributes the updated LDS,

adding another𝑂 (𝑛) cost. Thus, the total communication overhead

for the algorithm is 𝑂 (𝑛 log(𝑛) log (𝐷max)).

Privacy Guarantees. Our privacy guarantees depend on the fol-

lowing procedures. First, we perform degree-based thresholding,

which upper bounds the number of levels a node can move up.

Second, we subtract and add bias terms to the results of our mech-

anisms. And finally, we scale our noise added in Line 10 of Algo-

rithm 3.3 by the noisy threshold. We show that our algorithm can

be implemented using local randomizers (Definition 2.3). Then, we

show that the local randomizers have appropriate privacy parame-

ters to satisfy 𝜀-LEDP (Definition 2.4).

Lemma 3.2 (Degree Threshold LR). Our degree thresholding proce-
dure run with privacy parameter 𝜀′ is a (𝜀′/2)-local randomizer.

Proof. Our degree-thresholding procedure upper bounds the

number of levels that we iterate through using the (private) degree

of each node. Specifically, it adds symmetric geometric noise to the

degree 𝑑𝑢 = 𝑑𝑢 + Geom(𝜀′/2) and then computes ⌈log
1+𝜂 (𝑑𝑢 )⌉ · 𝐿,

where 𝐿 is the number of levels per group. The sensitivity of the

degree of any node is 1 and by the privacy of the geometric mech-

anism (Lemma 2.11), the output 𝑑𝑢 is (𝜀′/2)-DP. Then, producing
the final level upper bound uses post-processing (Theorem 2.15)

where privacy is preserved. Hence, our output is (𝜀′/2)-DP and the

algorithm can be implemented as a (𝜀′/2)-local randomizer. □

Using Lemma 3.2, we prove Theorem 3.3.

Theorem 3.3. Algorithm 3.1 is 𝜀-LEDP.

Proof. Our algorithm calls the local randomizers in Lemma 3.2

with 𝜀1 = 𝜀 · 𝑓 , where 𝑓 ∈ (0, 1) is a fraction which splits some

portion of the privacy budget, and then iterates through the levels

one-by-one while adding noise to the induced degree of each node

consisting of all neighbors of the node on the same or higher level.

We showed in Lemma 3.2 that the degree thresholding procedure

can be implemented as (𝜀1/2)-local randomizers.

The key to our better error bounds is our upper bound on the

number of levels we iterate through, bounded by our threshold.

Since the thresholds are public outputs from the local randomizers,

we can condition on these outputs. Let the threshold picked for

node 𝑣 be denoted as 𝑡𝑣 . Then, we add symmetric geometric noise to

the induced degree of the node (among the neighbors at or above 𝑣 ’s

current level) drawn from Geom (𝜀2/(2 · 𝑡𝑣)) where 𝜀2 = 𝜀 · (1 − 𝑓 ).
Conditioning on the public levels of each node, the sensitivity of the

induced degree of any node is 1. By the privacy of the geometric

mechanism, we obtain a (𝜀2/(2 · 𝑡𝑣))-local randomizer for 𝑣 . By

composition (Theorem 2.14) over at most 𝑡𝑣 levels, the set of all

local randomizers called on 𝑣 , is (𝜀2/2)-differentially private. For

any edge, the sum of the privacy parameters of the set of all local

randomizers called on the endpoints of the edge is 2 ·𝜀1/2+2 ·𝜀2/2 =
𝜀1 + 𝜀2 = 𝑓 · 𝜀 + (1 − 𝑓 ) · 𝜀. By Definition 2.4, this is 𝜀-LEDP.

Finally, our bias terms, added or subtracted after applying the

geometric mechanism, preserve privacy due to the post-processing

invariance of differential privacy (Theorem 2.15). □
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Approximation Guarantees. Our algorithm given in the previous

section contains several changes that results in better theoreti-

cal bounds and optimizes the practical performance on real-world

datasets. To prove our approximation factors, we first show Invari-

ant 1 and Invariant 2 hold for our modified algorithm. 𝐷max is the

graph’s max degree.

Invariant 1 (Degree Upper Bound [19]). If node 𝑖 ∈ 𝑉𝑟 (where 𝑉𝑟
contains nodes in level 𝑟 ) and 𝑟 < 4 log

2 𝑛 − 1, then 𝑖 has at most

(1+𝜂/5) ⌊𝑟/(2 log𝑛) ⌋ + 𝑐 log(𝐷max ) log2 (𝑛)
𝜀 neighbors in levels ≥ 𝑟 , with

high probability, for constant 𝑐 > 0.

Invariant 2 (Degree Lower Bound [19]). If node 𝑖 ∈ 𝑉𝑟 (where
𝑉𝑟 contains nodes in level 𝑟 ) and 𝑟 > 0, then 𝑖 has at least (1 +
𝜂/5) ⌊ (𝑟−1)/(2 log𝑛) ⌋ − 𝑐 log(𝐷max ) log2 (𝑛)

𝜀 neighbors in levels ≥ 𝑟 − 1,
with high probability, for constant 𝑐 > 0.

There are two parts to our analysis: first, we prove that our degree

thresholding procedure does not keep the node at too low of a level,

with high probability; second, we show that our new procedure for

moving up levels adds at most the noise used in [19] and not more.

Together, these two arguments maintain the invariants.

Lemma 3.4. Degree-thresholding satisfies Invariant 1.

Proof. By Lemma 2.7, the noise we obtain for thresholding is

upper bounded by
𝑐′ ln𝑛
(𝜀1/2) =

2𝑐′ ln𝑛
𝑓 ·𝜀 with probability at least 1 − 1

𝑛𝑐
′ .

Thus, the noisy degree
˜𝑑𝑣 we obtain in Line 6 of Algorithm 3.2

follows
˜𝑑𝑣 ≥ 𝑑𝑣 − 2𝑐′ ln𝑛

𝑓 ·𝜀 with probability at least 1 − 1

𝑛𝑐
′ . Let 𝑟 be

the level we output as the threshold level. Then, we can compute the

upper degree bound of this level to be at least (1+𝜂/5) ⌊𝑟/(2 log𝑛) ⌋ =

(1 + 𝜂/5)log1+𝜂/5 ( ˜𝑑𝑣 ) ≥ (1 + 𝜂/5)log1+𝜂/5
(
𝑑𝑣−

(
2𝑐′ ln𝑛

𝑓 𝜀

))
= 𝑑𝑣 − 2𝑐′ ln𝑛

𝑓 𝜀
.

Themaximum induced degree of 𝑣 on any level is at most𝑑𝑣 . Let𝑑𝑣,𝑟
be the induced degree of 𝑣 on the thresholded level 𝑟 , it must hold

that 𝑑𝑣,𝑟 ≤
(
𝑑𝑣 − 2𝑐′ ln𝑛

𝑓 𝜀

)
+ 4𝑐′ ln𝑛

𝑓 𝜀
+ 2𝑐3 ln𝑛

𝑓 𝜀
≤ (1+𝜂/5) ⌊𝑟/(2 log𝑛) ⌋ +

(4𝑐′+2𝑐3 ) ln𝑛
𝑓 𝜀

. Since 𝑓 and 𝑐′ are both constants and Invariant 1

allows for picking a large enough constant 𝑐 > 0, we can pick

𝑐 ≥ 2(𝑐′ + 𝑐3)/𝑓 and Invariant 1 is satisfied where 𝑐′ and 𝑐3 are

fixed constants ≥ 1. □

We do not have to prove that our thresholded level satisfies In-

variant 2 since we use the threshold level as an upper bound of

the maximum level that a node can be on. Hence, a node will not

reach that level unless the procedure for moving the node up the

levels satisfies Invariant 2. We now prove that our level movement

procedure satisfies both invariants.

Lemma 3.5. Our level moving algorithm satisfies Invariant 1 and In-
variant 2.

Proof. Our level moving algorithm is similar to [19] except

that we pick noise based on the threshold. Thus, by Lemma 2.7,

our algorithm picks noise that is at most
2𝑐1 ·𝑡𝑣 ln𝑛

𝜀 with proba-

bility at least 1 − 1

𝑛𝑐1 where 𝑡𝑣 is the released threshold for 𝑣

and 𝑐1 ≥ 1 is a fixed constant. Also, by Lemma 2.7, it holds that

𝑡𝑣 ≤ log

(
𝐷max + 2𝑐2 ln𝑛

𝑓 𝜀
− 2𝑐3 ln𝑛

𝑓 𝜀

)
· 𝐿 ≤ 2 log (𝐷max) log𝑛 with

probability at least 1 − 1

𝑛𝑐2 . A node moves up a level from level

𝑟 if its induced degree plus the noise exceeds the threshold (1 +

Outgoing Edges

Noisy Edges

Count Triangles

Low Out-Degree 

Randomized 

Original Graph Ordering

Response

blue
= 2

blue
= 1~

Figure 4: EdgeOrientΔ for blue node: true triangle count is 2, but due to
Randomized Response and low out-degree ordering, estimate is 1.

𝜂/5) ⌊𝑟/(2 log𝑛) ⌋ . Thus, using our computed noise, the degree of a

node must be at least (1+𝜂/5) ⌊𝑟/(2 log𝑛) ⌋ −2 log (𝐷max)
(
2𝑐1 log

2 𝑛
𝜀

)
with probability at least 1 − 1

𝑛𝑐1 −
1

𝑛𝑐2 when it moves up from level

𝑟 . By choosing large enough constants 𝑐1, 𝑐2 > 0 and 𝑐 ≥ 4𝑐1𝑐2, we

satisfy Invariant 2. Similarly, the node does not move up from level

𝑟 when its induced degree plus noise is at most (1+𝜂/5) ⌊𝑟/(2 log𝑛) ⌋ .
By a symmetric argument to the above, we show that Invariant 1 is

satisfied. □

Finally, using Lemma 3.4 and Lemma 3.5, we can prove the final

approximation factor for our algorithm.

Theorem3.6. Our algorithm returns (2+𝜂,𝑂 (log(𝐷max) log2 (𝑛)/𝜀))-
approximate𝑘-core numbers, with high probability, in𝑂 (log(𝑛) log (𝐷max))
rounds of communication.

Proof. By Lemma 3.4 and Lemma 3.5, our algorithm satisfies In-

variant 1 and Invariant 2, hence, our algorithm returns our desired

approximation using Theorem 4.1 of [19]. Our algorithm iterates to

value at most 𝑂 (log𝑛 log (𝐷max)) for 𝐷max (the maximum thresh-

old), resulting in a total of 𝑂 (log𝑛 log (𝐷max)) rounds. □

4 TRIANGLE COUNTING USING LOW
OUT-DEGREE ORDERING

We present our novel triangle counting algorithm, EdgeOrientΔ,

which leverages the low out-degree ordering obtained from the 𝑘-

CoreD algorithm along with randomized response (RR). Prior works

rely on either all or a sample of neighboring edges after applying

RR, and often suffer from error bounds that scale poorly with graph

size. To address these limitations, our algorithm exploits a new

input-dependent graph property, the degeneracy (maximum core

number), to upper bound the number of oriented 4-cycles (Fig. 5),

yielding significantly tighter error bounds in theory and practice.

4.1 Algorithm Description
Our algorithm consists of three additional computation rounds after

computing the low out-degree ordering (𝑍 ) using 𝑘-CoreD. In the

first round, each node perturbs its adjacency list using Randomized

Response (RR) [94], producing a privacy-preserving set of noisy

edges for subsequent computations. In the second round, we cal-

culate the maximum noisy out-degree, 𝑑max, by determining each

node’s outgoing edges based on𝑍 . While the first two rounds can be

combined, we separate them for clarity. In the final round, we com-

pute the number of triangles incident to each node, using the noisy

edges and the maximum noisy out-degree, 𝑑max. The algorithm is
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Algorithm 4.1: 𝜀-LEDP Triangle Counting (Coordinator)

1 Input: graph size 𝑛; number of workers𝑀 ; constant𝜓 ∈ (0, 1) ;
privacy parameter 𝜀 ∈ (0, 1]; split fraction 𝑓 ∈ (0, 1) ; bias term 𝑏;

2 Output: Noisy Triangle Count

3 Function EdgeOrientΔ(𝑛,𝑀,𝜓, 𝜀, 𝑓 , 𝑏)
4 Set 𝑍 ← 𝑘-CoreD(𝑛,𝜓, 𝜀

4
, 𝑓 , 𝑏 ) (Algorithm 3.1)

5 Set C ← new Coordinator (𝑐𝑅𝑅, 𝑐𝑇𝐶𝑜𝑢𝑛𝑡, 𝑐𝑀𝑎𝑥𝑂𝑢𝑡,𝑋 )
6 ⊲ Round 1: Randomized Response

7 parfor 𝑤 = 1 to𝑀 do
8 RRWorker

(
𝑤,𝑛, 𝜀

4

)
9 C.wait( ) ⊲ coordinator waits for workers to finish

10 C.publishNoisyEdges(𝑐𝑅𝑅,𝑋 )
11 ⊲ Round 2: Max Out-degree

12 parfor 𝑤 = 1 to𝑀 do
13 MaxOutDegreeWorker

(
𝑤, 𝜀

4
, 𝑍

)
14 C.wait( )
15 𝑑max ← max ({𝐶.𝑐𝑀𝑎𝑥𝑂𝑢𝑡 [𝑖 ] | 𝑖 ∈ [𝑀 ] } ) + 12 log(𝑛)

𝜀

16 ⊲ Round 3: Count Triangles

17 parfor 𝑤 = 1 to𝑀 do
18 CountTrianglesWorker

(
𝑤, 𝜀

4
, 𝑍,𝑋,𝑑max

)
19 C.wait( )
20 Δ̃← ∑𝑛

𝑖=1𝐶.𝑐𝑇𝐶𝑜𝑢𝑛𝑡 [𝑖 ]
21 Return Δ̃

Algorithm 4.2: Randomized Response (Worker)

1 Input: worker id 𝑤; graph size 𝑛; privacy parameter 𝜀 ∈ (0, 1];
2 Function RRWorker(𝑤,𝑛, 𝜀)
3 Set neighborsRR← [][ ]
4 for node 𝑣 := localGraph do
5 For all 𝑛𝑔ℎ𝑣 ← { 𝑗 : 𝑗 ∈ [𝑛] ∧ 𝑗 > 𝑣}
6 neighborsRR[𝑣 ] = RandomizedResponse𝜀 (𝑛𝑔ℎ𝑣 )
7 𝑤.sendRR(𝑤, neighborsRR)
8 𝑤.done ( )

Algorithm 4.3: Noisy Max Out-Degree (Worker)

1 Input: worker id 𝑤; graph size 𝑛; privacy parameter 𝜀 ∈ (0, 1];
2 Function MaxOutDegreeWorker(𝑤, 𝜀, 𝑍)
3 Set 𝑜𝑢𝑡max ← 0.

4 for node, adjacency list 𝑣, 𝑛𝑔ℎ := localGraph do
5 Set 𝑛𝑔ℎ𝑣 ← { 𝑗 : 𝑗 ∈ 𝑛𝑔ℎ ∧ 𝑍 [ 𝑗 ] > 𝑍 [𝑣 ] }
6 𝐵 ∼ Geom(𝜀 )
7 𝑜𝑢𝑡max ← max(𝑜𝑢𝑡max, |𝑛𝑔ℎ𝑣 | + 𝐵)
8 𝑤.sendMaxOutdegree(𝑜𝑢𝑡max )
9 𝑤.done ( )

implemented in a distributed setting, where computation is divided

between a coordinator and multiple workers. The pseudocode is

structured to reflect this division.

Coordinator As shown in Algorithm 4.1, the coordinator receives

the graph size 𝑛, number of workers𝑀 , constant parameter𝜓 > 0,

privacy parameter 𝜀 ∈ (0, 1], privacy split fraction 𝑓 ∈ (0, 1), and
bias term 𝑏. It initializes three channels, 𝑐𝑅𝑅, 𝑐𝑀𝑎𝑥𝑂𝑢𝑡, 𝑐𝑇𝐶𝑜𝑢𝑛𝑡 , to

receive RR noisy edges, maximumnoisy out-degrees, and local noisy

triangle counts from workers (Line 5). The coordinator manages

the algorithm’s execution, collecting worker outputs and publishing

Algorithm 4.4: Triangle Counting (Worker)

1 Input: worker id 𝑤; privacy parameter 𝜀 ∈ (0, 1]; low out-degree

ordering 𝑍 , published noisy edges 𝑋 ; public maximum noisy

out-degree 𝑑max;

2 Function CountTrianglesWorker(𝑤, 𝜀, 𝑍,𝑋,𝑑max)
3 Set workerTCount← 0.0

4 for node, adjacency list 𝑣, 𝑛𝑔ℎ := localGraph do
5 Set Δ̃← 0.0

6 OutEdges𝑣 = { 𝑗 : 𝑗 ∈ 𝑛𝑔ℎ ∧ 𝑍 [ 𝑗 ] > 𝑍 [𝑣 ] }
7 for 𝑖1 ∈ {1, . . . ,min(𝑑max, |OutEdges𝑣 | ) } do
8 for 𝑖2 ∈ {𝑖1 + 1, . . . ,min(𝑑max, |OutEdges𝑣 | ) } do
9 𝑗 ← OutEdges𝑣 [𝑖1 ]

10 𝑘 ← OutEdges𝑣 [𝑖2 ]

11 Δ̃← Δ̃ + 𝑋{ 𝑗,𝑘} · (𝑒𝜀+1)−1
𝑒𝜀−1

12 Sample 𝑅 ∼ Lap

(
𝜀

2·𝑑max

)
13 Δ̃← Δ̃ + 𝑅
14 workerTCount← 𝑤𝑜𝑟𝑘𝑒𝑟𝑇𝐶𝑜𝑢𝑛𝑡 + Δ̃
15 𝑤.sendTCount (𝑤,workerTCount )
16 𝑤.done ( )

updates each round. It first computes the low out-degree ordering,

𝑍 , using 𝑘-CoreD. In the first round, it launches𝑀 asynchronous

worker processes (Line 6), each computing and sending noisy edges

after RR. Before the second round, the coordinator aggregates and

stores them in 𝑋 , then publishes 𝑋 for global access (Line 10),

enabling workers to utilize the noisy public edges in subsequent

computations. In the second round (Line 11), workers compute noisy

maximum out-degrees for their subgraphs using Algorithm 4.3. The

coordinator then determines 𝑑max, the maximum noisy out-degree

across all workers (Line 15). Finally, in the third round (Line 16),

each worker counts the triangles incident to its nodes using the low

out-degree ordering, published noisy edges, and𝑑max. Workers send

noisy local triangle counts to the coordinator, which aggregates

them to compute the overall noisy triangle count (Line 20).

Worker (Randomized Response) As specified in Algorithm 4.2,

workers maintain a neighborsRR data structure to store noisy edges.

For each node 𝑣 , noisy edges are computed via Randomized Re-

sponse (RR) with parameter 𝜀, processing only the upper triangular

part of the adjacency matrix (Line 5), as the graph is undirected.

Specifically, for a node 𝑣 , all indices greater than 𝑣 are processed

using RandomizedResponse𝜀 (𝑛𝑔ℎ𝑣), which flips the existence of

each edge (𝑣, 𝑛𝑔ℎ𝑣) with probability
1

𝑒𝜀+1 (Line 6). Once computed,

workers send noisy edges to the coordinator (Line 7).

Worker (NoisyMaxOut-Degree) In Algorithm 4.3, workers main-

tain a variable 𝑜𝑢𝑡𝑚𝑎𝑥 which stores the maximum noisy out-degree

of their subgraph. For each node 𝑣 , the worker first computes the

out-degree 𝑑𝑣 using the order provided in 𝑍 , where an edge (𝑣, 𝑗)
is considered outgoing if 𝑍 [ 𝑗] > 𝑍 [𝑣] (Line 5). The out-degree 𝑑𝑣
is the number of outgoing edges from 𝑣 . Then, the worker adds

symmetric geometric noise with parameter 𝜀 to 𝑑𝑣 , computes the

max noisy out-degree, and sends 𝑜𝑢𝑡max to the coordinator (Line 8).

Worker (Count Triangles) As shown in Algorithm 4.4, each

worker computes the number of triangles incident to each node in

its respective subgraph. For each node 𝑣 , the outgoing edges are

identified and sorted in ascending order by node IDs. The triangle
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count is determined by iterating over all unique pairs of outgoing

neighbors { 𝑗, 𝑘} of 𝑣 , up to 𝑑max (Line 7,8). For each pair, the tri-

angle contribution is calculated as:

𝑋{ 𝑗,𝑘} · (𝑒𝜀+1)−1
𝑒𝜀−1 , where 𝑋{ 𝑗,𝑘 }

represents the noisy presence (1) or absence (0) of an edge between

𝑗 and 𝑘 (Line 11). To ensure privacy, additional noise is added to

the triangle counts using the Laplace distribution
6
with parameter

𝜀

2·𝑑max

, where 𝑑max is the global maximum noisy out-degree. Upon

completing the computation, each worker aggregates and returns

the noisy triangle count for its entire subgraph (Line 15).

Example 4.1. In Fig. 4, we apply EdgeOrientΔ to estimate the number
of triangles incident to the blue node. The algorithm first orients the
edges using a low out-degree ordering, so each node only considers
neighbors with higher order. Randomized Response is then applied
to the original adjacency list, and the resulting noisy edges are used
in combination with the oriented edges to count triangles. As shown
in the figure, while the blue node is part of two true triangles in the
original graph, only one triangle is preserved under the noisy edges.

4.2 Theoretical Analysis
Memory Analysis & Communication Cost. Let𝑀 be the number

of workers and 𝑛 the graph size. Each worker processes 𝑆 nodes,

where 𝑆 = ⌊𝑛/𝑀⌋ for𝑀 − 1 workers, and the last worker handles

𝑛 − (𝑀 − 1) ⌊𝑛/𝑀⌋ nodes. The coordinator manages three com-

munication channels and publishes the noisy edges for the entire

graph. The cRR structure, which aggregates noisy edges, requires

𝑂 (𝑛2) space, while cTCount and cMaxOut, which collect triangle

counts and maximum noisy out-degree, require 𝑂 (𝑀) space each.
Storing published noisy edges further adds 𝑂 (𝑛2) space, resulting
in a total coordinator memory requirement of 𝑂 (𝑛2 + 𝑀). Each
worker processes 𝑂 (𝑆) nodes, requiring 𝑂 (𝑆𝑛) space for the graph.
The neighborsRR structure for storing noisy edges demands 𝑂 (𝑆𝑛)
space, while computing the maximum noisy out-degree requires

𝑂 (𝑆). The final triangle count computation takes𝑂 (𝑆 ·𝑑max) space,
where 𝑑max is the maximum noisy out-degree, leading to an overall

worker memory requirement of 𝑂 (𝑆𝑛). The algorithm runs three

communication rounds beyond those for low out-degree ordering.

Workers first send noisy edges, incurring 𝑂 (𝑆𝑛) communication

cost, followed by sending the maximum noisy out-degree and tri-

angle counts, each requiring 𝑂 (𝑀) communication. Thus, the total

communication overhead for the algorithm is 𝑂 (𝑛2 +𝑀).

Privacy Guarantees. As before, our privacy guarantees are proven
by implementing our triangle counting algorithm using local ran-

domizers.

Lemma 4.2. Our triangle counting algorithm is 𝜀-LEDP.

Proof. Our triangle counting algorithm calls Algorithm 3.1,

which by Theorem 3.3 is (𝜀/4)-LEDP. Additionally, we release three
sets of information, each of which we show to be (𝜀/4)-LEDP.

First, each node applies Randomized Response to the upper tri-

angular adjacency matrix to generate a privacy-preserving set of

edges. By [23], this adjacency list output is a (𝜀/4)-local randomizer.

Second, each node releases its privacy-preserving out-degree.

By Line 7, the sensitivity of the out-degree (conditioning on 𝑍 ) is

1 for neighboring adjacency lists. By the privacy of the geometric

6
We use Laplace noise here as it offers a smoother tradeoff for smaller parameters.

mechanism ([6, 13, 23, 24]), each node uses a (𝜀/4)-local randomizer

to output its noisy degree.

Third, each node releases a privacy-preserving triangle count us-

ing its outgoing edges from the low out-degree ordering. To bound

the sensitivity, we truncate the outgoing adjacency list (computed

using 𝑍 ) of each node by 𝑑max. Given neighboring adjacency lists a
and a′, assume a′ contains one additional neighbor𝑤 (without loss

of generality). Let a and a′ be the truncated adjacency lists. In the

worst case, a contains a node 𝑢 not in a′, while a′ contains𝑤 (not

in a). Let 𝑗 be defined as in Line 9. If 𝑗 = 𝑢, the first for-loop (Line 7)

counts at most 𝑑max additional triangles for 𝑢 (symmetrically for

𝑤 ). Assuming 𝑢 returns 𝑑max triangles and 𝑤 returns none, then

for all other nodes 𝑗 ≠ 𝑢, the second for-loop (Line 8) encounters at

most 𝑑max additional triangles. Thus, the total difference in counted

triangles between a and a′ is 2𝑑max, giving a sensitivity of 2𝑑max.

By the privacy of the Laplace mechanism ([23]), outputting local

triangle counts is an (𝜀/4)-local randomizer.

Since the differing edge between neighboring graphs 𝐺 and

𝐺 ′ affects at most one node’s out-degree, applying composition

([22, 23, 25]) over all four (𝜀/4)-local randomizers results in an

𝜀-LEDP triangle counting algorithm. □

Approximation Guarantees. One of the major novelties in our

proofs is via a new intricate use of the Law of Total Expectation

and Law of Total Variance for the events where the out-degrees

of each node is upper bounded by the noisy maximum out-degree

𝑑max (which is, in turn, upper bounded by the degeneracy 𝑂 (𝑑)).
Such use cases were unnecessarily in [27, 44] because they did not

use oriented edges. We first upper bound the out-degree by𝑂

(
𝑑
𝜀

)
.

Lemma 4.3. Given a graph where edges are oriented according
to Algorithm 4.4, the maximum out-degree of any node is at most

𝑂

(
𝑑 + log(𝐷max ) log2 (𝑛)

𝜀

)
.

Proof. By Invariant 1 and Theorem 3.4 (in the supple-

mentary materials), the out-degree of any node 𝑣 is at most

(2 + 𝜂)𝑘 (𝑣) + 𝑂

(
log(𝐷max ) log2 (𝑛)

𝜀

)
, with high probability,

where 𝑘 (𝑣) is the core number of 𝑣 . The largest core num-

ber is equal to the degeneracy of the graph [77]. Hence,

the maximum out-degree of any node is upper bounded by

(2 + 𝜂)𝑑 +𝑂
(
log(𝐷max ) log2 (𝑛)

𝜀

)
= 𝑂

(
𝑑 + log(𝐷max ) log2 (𝑛)

𝜀

)
□

Lemma 4.4. Given a graph where edges are oriented according
to Algorithm 4.4, the number of oriented 4-cycles, denoted by

−→
𝐶 4,

where each cycle contains two non-adjacent nodes with outgoing

edges to the remaining two nodes (see Fig. 5), is at most 𝑂
(
𝑛2𝑑2

𝜀2

)
,

with high probability, where 𝑑 is the degeneracy of the graph.

Proof. There are 𝑂 (𝑛2) unordered pairs of vertices {𝑤, 𝑥} that
may serve as the black nodes in an oriented 4-cycle (see Fig. 5). For a

fixed pair {𝑤, 𝑥}, define 𝑆𝑤,𝑥 = {𝑢 ∈ 𝑉 : 𝑤 → 𝑢 and 𝑥 → 𝑢} to be

the set of vertices that are the outgoing endpoints of the outgoing

edges from both𝑤 and 𝑥 .

Under the low out-degree orientation computed by Al-

gorithm 4.4 and by Lemma 4.3, each vertex has at most

𝑂

(
𝑑 + log(𝐷max ) log2 (𝑛)

𝜀

)
out-neighbors and thus can have at most
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Figure 5: Oriented cycle of length 4; two non-adjacent black nodes
have edges oriented toward the remaining red nodes.

𝑂

((
𝑑 + log(𝐷max ) log2 (𝑛)

𝜀

)2)
= 𝑂

(
𝑑2 + log

2 (𝐷max ) log4 (𝑛)
𝜀2

)
outgoing

red pairs. Each pair {𝑢, 𝑣} ⊆ 𝑆𝑤,𝑥 forms an oriented 4-cycle with

{𝑤, 𝑥}, contributing at most this many cycles per black pair of

vertices. Summing over all 𝑂 (𝑛2) black vertex pairs yields a total

of at most 𝑂

(
𝑛2

(
𝑑2 + log

2 (𝐷max ) log4 (𝑛)
𝜀2

))
= 𝑂

(
𝑛2𝑑2

𝜀2

)
oriented

4-cycles. □

Lemma 4.5. In expectation, our algorithm returns a 2-approximation

of the true triangle count: (𝑛
3−1) ·𝑇
𝑛3

≤ E[Δ̃] ≤ 𝑇 .

Proof. We first prove that, in expectation, E

[
𝑋 𝑗,𝑘 · (𝑒𝜀/4+1)−1

𝑒𝜀/4−1

]
=

1𝑗,𝑘 where 1𝑗,𝑘 is the indicator variable for whether edge { 𝑗, 𝑘}
exists in the original private graph. Since randomized response flips

the bit indicating the existence of an edge between each pair of

vertices with probability
1

𝑒𝜀/4−1 , we can simplify the expression to

be:

E

[
𝑋 𝑗,𝑘 · (𝑒𝜀/4 + 1) − 1

𝑒𝜀/4 − 1

]
=
E[𝑋 𝑗,𝑘 ] · (𝑒𝜀/4 + 1) − 1

𝑒𝜀/4 − 1
.

When 1𝑗,𝑘 = 1, the probability that we obtain a bit of 1 is
𝑒𝜀/4

𝑒𝜀/4+1
and our expression simplifies to

E[𝑋 𝑗,𝑘 ] · (𝑒𝜀/4 + 1) − 1
𝑒𝜀/4 − 1

=

𝑒𝜀/4

𝑒𝜀/4+1 · (𝑒
𝜀/4 + 1) − 1

𝑒𝜀/4 − 1
= 1.

When 1𝑗,𝑘 = 0, the probability that we obtain a bit of 1 is
1

𝑒𝜀/4+1
then our expression simplifies to

E[𝑋 𝑗,𝑘 ] · (𝑒𝜀/4 + 1) − 1
𝑒𝜀/4 − 1

=

1

𝑒𝜀/4+1 · (𝑒
𝜀/4 + 1) − 1

𝑒𝜀/4 − 1
= 0.

The expected value of the random variable obtained for each

edge 𝑒 using our randomized response procedure is equal to 1𝑒 .

Now, we condition on the event that 𝑑max upper bounds the

out-degree of every vertex after computing and conditioning on 𝐷

(the ordering). Let𝑈 be this event.

Then, for each node, we compute all pairs of its outgoing neigh-

bors and use the random variable indicating existence of the edge

spanned by the endpoints to count every triangle composed of a

pair of outgoing edges. Let 𝑇𝑣,𝑗,𝑘 be the random variable represent-

ing the existence of the queried triangle for node 𝑣 and outgoing

edges (𝑣, 𝑗) and (𝑣, 𝑘). Then, E[𝑇𝑣,𝑗,𝑘 | 𝑈 ] = E[𝑋 𝑗,𝑘 ] since both

outgoing edges (𝑣, 𝑗) and (𝑣, 𝑘) exists. By what we showed above,

it then follows that E[𝑇𝑣,𝑗,𝑘 ] = 1𝑗,𝑘 .

We must account for the symmetric geometric noise. Since the

expectation of the symmetric geometric noise is 0 and we add to-

gether all of the values for each of the drawn noises, the expected

total noise is 0 by linearity of expectations. Each triangle has a

unique node that queries it since every triangle has a unique ori-

entation of edges where two edges are outgoing from a vertex in

the triangle. Hence, the expected sum of all queried triangles is 𝑇 ,

conditioned on𝑈 , by linearity of expectations.

Finally, we remove the conditioning on the event𝑈 . Recall that

E[𝑊 ] = ∑
𝑦 E[𝑊 | 𝑌 = 𝑦] · Pr(𝑌 = 𝑦). Since truncation can only

decrease the number of queried triangles (and hence the expecta-

tion), we upper and lower bound 0 ≤ E[Δ̃ | ¬𝑈 ] ≤ 𝑇 . Hence we

only need to figure out the probability 𝑃 (𝑈 ) to upper and lower

bound E[Δ̃]. The probability of event 𝑈 is the probability that

max ({𝑑𝑣 + Geom(𝜀/4) | 𝑣 ∈ 𝑉 }) + log(𝑛)
𝜀 ≥ max({𝑑𝑣 | 𝑣 ∈ 𝑉 })

where 𝑑𝑣 is the out-degree of node 𝑣 given order 𝐷 . This prob-

ability is lower bounded by the probability that max({𝑑𝑣 | 𝑣 ∈
𝑉 })+Geom(𝜀/4)+ 𝑐 log(𝑛)𝜀 ≥ max({𝑑𝑣 | 𝑣 ∈ 𝑉 }) for a fixed constant
𝑐 ≥ 1; this means we want to lower bound Pr

((
𝑄 + 𝑐 log(𝑛)

𝜀

)
≥ 0

)
where 𝑄 ∼ Geom(𝜀/4). By concentration of random variables cho-

sen from the symmetrical geometric distribution, we know that

Pr
((
𝑄 + 𝑐 log(𝑛)

𝜀

)
≥ 0

)
≥ 1 − 1

𝑛3
for large enough constant 𝑐 ≥ 1.

Specifically, setting 𝑐 = 3 gives us this bound. Hence, we can upper

and lower bound
(𝑛3−1) ·𝑇

𝑛3
≤ E[Δ̃] ≤ 𝑇 . □

To calculate the variance of the triangle count obtained from our

algorithm, we use a quantity denoted by

−→
𝐶 4 which is the number

of oriented 4-cycles where there exists two non-adjacent nodes

with outgoing edges to the other two nodes in the cycle. See Fig. 5

for an example. The number of oriented cycles of length 4 is up-

per bounded by 𝑛2𝑑2 where 𝑑 is the degeneracy (maximum core

number) in the graph, resulting in significant gains in utility over

previous results which use the number of total (not oriented) 4-

cycles which could be as large as Ω(𝑛4).
Lemma 4.6. Our triangle counting algorithm returns a count with

variance 𝑂
(
𝑛𝑑2

log
6 𝑛

𝜀4
+ −→𝐶 4

)
where 𝑑 is the degeneracy (max core

number) of the graph,
−→
𝐶 4 is the number of oriented cycles of length

4, and 𝑇 is the number of (true) triangles in the private graph.

Proof. As before, we first calculate the variance conditioned on

the event 𝑈 that 𝑑max upper bounds the out-degrees of every node.

Then, we use the law of total variance to remove this condition.

For notation simplicity, we omit the condition on 𝑈 from the

right hand sides of the below equations. First, the variance of

Var[𝑋{𝑖, 𝑗 } ] = 𝑒𝜀

(𝑒𝜀+1)2 , since 𝑋{𝑖, 𝑗 } is a Bernoulli variable. Then,

let 𝑇 be our returned triangle count. The variance

Var

[
𝑇 | 𝑈

]
= Var


∑︁

𝑣∈ [𝑛]

©«
∑︁

𝑗,𝑘∈𝑂𝑢𝑡 (𝑣)

(
𝑋 𝑗,𝑘 · (𝑒𝜀/4 + 1) − 1

𝑒𝜀/4 − 1

)
+ Lap

(
𝜀

2𝑑max

)ª®¬
 .

Recall 𝑑max is our noisy maximum out-degree of any vertex.

Then, our variance simplifies to(
𝑒𝜀/4 + 1
𝑒𝜀/4 − 1

)
2

· Var


∑︁
𝑣∈ [𝑛]

∑︁
𝑗,𝑘∈𝑂𝑢𝑡 (𝑣)

𝑋 𝑗,𝑘

 + Var


∑︁
𝑣∈ [𝑛]

Lap

(
𝜀

2𝑑max

) .
By the variance of the Laplace distribution, we can compute

Var


∑︁

𝑣∈ [𝑛]
Lap

(
𝜀

2𝑑max

) ≤ 𝑛 ·
8𝑑2

max

𝜀2
.

11



Now, it remains to compute Var

[∑
𝑣∈[𝑛]

∑
𝑗,𝑘∈𝑂𝑢𝑡 (𝑣) 𝑋 𝑗,𝑘

]
. The

covariance is 0 if two queried pairs do not query the same 𝑋 𝑗,𝑘 . The

covariance is non-zero only in the case of queries which overlap

in 𝑋𝑖, 𝑗 . This occurs only in the case of an oriented 4-cycle where

𝑋𝑖, 𝑗 is shared between two queries. Let 𝑃2 be the set of all pairs of

such queries that share 𝑋 𝑗,𝑘 . In this case, the covariance is upper

bounded by E[𝑋 2

𝑗,𝑘
]. Hence, we can simplify our expression to be

Var


∑︁

𝑣∈ [𝑛]

∑︁
𝑗,𝑘∈𝑂𝑢𝑡 (𝑣)

𝑋 𝑗,𝑘

 (1)

≤
∑︁

𝑣∈ [𝑛]

∑︁
𝑗,𝑘∈𝑂𝑢𝑡 (𝑣)

Var

[
𝑋 𝑗,𝑘

]
+ 2 ·

∑︁
𝑇𝑣,𝑗,𝑘 ,𝑇𝑤,𝑗,𝑘 ∈𝑃2

(
E[𝑋 2

𝑗,𝑘
]
)

(2)

≤ 𝑛 · 𝑑2

max
· 𝑒𝜀/4

(𝑒𝜀/4 + 1)2
+ −→𝐶 4 ·

(
𝑒𝜀/4

𝑒𝜀/4 + 1

)
, (3)

where

−→
𝐶 4 indicates the number of directed cycle of length 4 (Fig. 5).

Hence, our total variance is upper bounded by

8𝑛𝑑2

max

𝜀2
+ 𝑛 · 𝑑2

max
· 𝑒𝜀/4

(𝑒𝜀/4 + 1)2
+ −→𝐶 4 ·

𝑒𝜀/4

𝑒𝜀/4 + 1
.

Finally, by the guarantees of our 𝑘-core decomposition algorithm,

the maximum out-degree 𝑑max is bounded by 𝑑max ≤ (2 + 𝜂) · 𝑑 +
𝑂

(
log(𝐷max ) log2 𝑛

𝜀

)
, with high probability, where 𝑑 is the degener-

acy of the input graph and 𝐷max ≤ 𝑛 is the maximum degree in the

graph. Finally, we also know that the noise generated for 𝑑max is

upper bounded by 𝑂

(
log𝑛
𝜀

)
. Thus, 𝑑max ≤ (2 + 𝜂) · 𝑑 +𝑂

(
log

3 𝑛
𝜀

)
Hence, our variance is upper bounded by 𝑂

(
𝑛𝑑2

log
6 𝑛

𝜀4
+ −→𝐶 4

)
.

We now remove our condition on 𝑈 and use the law of total

variance to compute our unconditional variance. Recall the law

of total variance states Var [𝑌 ] = E[Var [𝑌 | 𝑋 ]] + Var [E[𝑌 | 𝑋 ]].
We computed Var

[
𝑇 | 𝑈

]
above. We now compute Var

[
𝑇 | ¬𝑈

]
.

The main difference between when the event𝑈 occurs and does

not occur is that some adjacency lists of the outgoing neighbors

will be truncated. Consequently, we sum over fewer 𝑋 𝑗,𝑘 variables

in Eqs. (1) and (2). Thus, the variance when 𝑈 does not occur is

upper bounded by the variance when𝑈 does occur.

Now we calculate Var

[
E[𝑇 | 𝑈 ]

]
= E[E[𝑇 | 𝑈 ]2] − E[E[𝑇 |

𝑈 ]]2. By our calculation in the proof of Lemma 4.5, we can calculate

E[𝑇 | 𝑈 ] = 𝑇 and let
(𝑛3−1) ·𝑇

𝑛3
≤ 𝑌 = E[𝑇 | ¬𝑈 ] ≤ 𝑇 . Then,

E[E[𝑇 | 𝑈 ]2 ] − E[E[𝑇 | 𝑈 ] ]2 =
(
𝑇 2

2

+ 𝑌 2

2

)
−

(
𝑇

2

+ 𝑌

2

)
2

=
𝑇 2 +𝑌 2

2

− 𝑇 2 + 2𝑇𝑌 +𝑌 2

4

=
𝑇 2 +𝑌 2 − 2𝑇𝑌

4

=

(
𝑇 − 𝑌

2

)
2

≤ ©«
𝑇 − (𝑛

3−1) ·𝑇
𝑛3

2

ª®¬
2

≤
(
𝑇

2𝑛3

)
2

≤ 1

4

.

Thus, our final variance is 𝑂

(
𝑛𝑑2

log
6 𝑛

𝜀4
+ −→𝐶 4

)
. □

Theorem 4.7. With high constant probability, our triangle counting

algorithm returns a
(
1 + 𝜂,𝑂

(√
𝑛𝑑 log

3 𝑛

𝜀2
+

√︃
−→
𝐶 4

))
-approximation of

the true triangle count.

Proof. We use Chebyshev’s inequality with the standard devia-

tion calculated from Lemma 4.6. The (1 + 𝜂)-approximation comes

from our

(
1 − 1

𝑛3

)
-approximation of the expectation. □

See Table 2 for the 𝑑 values of real-world graphs; when 𝑑 = 𝑂 (1)
is constant, as is the case for real-world graphs, then

−→
𝐶 4 = 𝑂 (𝑛2)

and 𝑇 = 𝑂 (𝑛). We improve previous theoretical additive errors

from𝑂

(√
𝐶4

𝜀 +
𝑛3/2

𝜀2

)
[44] to𝑂

(√︃
−→
𝐶 4 +

√
𝑛 log

3 𝑛

𝜀2

)
, an improvement

of at least a Ω(
√
𝑛) factor, translating to massive practical gains.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance and accuracy of our 𝑘-

core decomposition (𝑘-CoreD) and triangle counting (EdgeOrientΔ)

algorithms under Local Edge Differential Privacy (LEDP) using a dis-

tributed simulation. We benchmark against prior LEDP algorithms,

and to highlight the limitations of Randomized Response (RR), we

additionally implement RR-based baselines for both problems. All

RR baselines are evaluated purely in terms of accuracy, as they

are centralized algorithms and not directly comparable in runtime

to our distributed setting. Furthermore, RR introduces significant

computational overhead due to increased graph density from edge

perturbation.Consequently, we omit RR results onmany large
graphs: 𝑘-core baselines fail due to out-of-memory (OOM)
errors, while triangle counting exceeds timeout limits. These
failures occur independently, underscoring the instability
and inefficiency of naive RR methods on large-scale graphs.
𝑘-Core Baselines. We compare 𝑘-CoreD against the LEDP 𝑘-core

decomposition algorithm of [19] (denoted 𝑘-Core), which we im-

plement. Additionally, we construct an RR-based baseline (denoted

𝑘-CoreRR) that runs the standard peeling algorithm on the RR-

perturbed graph and applies a scaling factor to correct the induced

degrees, ensuring unbiased estimates. Our method achieves sig-

nificantly better accuracy, reducing approximation error by up to

two orders of magnitude over 𝑘-CoreRR and outperforming 𝑘-

Core [19] in both accuracy and efficiency—reducing the number

of rounds by nearly two orders of magnitude across all graphs.
𝑘-CoreRR consistently fails on larger datasets due to memory ex-

haustion caused by increased graph density.

Triangle Counting Baselines. We compare EdgeOrientΔ against

two LEDP triangle counting algorithms: ARROneNSΔ (Lap)[44]
and GroupRR[39]. For the RR baseline (denoted as TCountRR),

we follow the approach from [26]. Our algorithm achieves up to

six orders of magnitude improvement in multiplicative accuracy

while providing substantial speedups in larger graphs.

Experimental Setup. To evaluate our algorithms in a distributed

simulation, we partition the input graph across 𝑀 worker proces-
sors and a single coordinator processor. Each worker handles

a subset of nodes and their full adjacency lists, running LEDP al-

gorithms locally. Workers communicate their privacy-preserving
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(c) 95𝑡ℎ Percentile Approximation Factor
Figure 6: 𝑘-core Decomposition Results.

Table 2: Graph size, maximum core number, and number of triangles.
Graph Name Num. Vertices Num. Edges Max. Degree Max. Core Num. (𝑑) Num. Triangles

email-eu-core 986 1,329,336 345 34 105,461

wiki 7115 100,761 1065 35 608,387

enron 36,692 183,830 1,383 43 727,044

brightkite 58,228 214,078 1,134 52 494,728

ego-twitter 81,306 1,342,296 3,383 96 13,082,506

gplus 107,614 12,238,285 20,127 752 1,073,677,742

stanford 281,903 1,992,635 38,625 71 11,329,473

dblp 317,080 1,049,866 343 113 2,224,385

brain 784,262 267,844,669 21,743 1200 –

orkut 3,072,441 117,185,083 33,313 253 –

livejournal 4,846,609 42,851,237 20,333 372 –

twitter 41,652,230 1,202,513,046 2,997,487 2488 –

friendster 65,608,366 1,806,067,135 5214 304 –
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Figure 7: 𝑘-Core Decomposition Avg. Response Time
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Figure 8: 𝑘-Core Decomposition Number of Rounds

outputs to the coordinator, which aggregates the data and broad-

casts new public information. This proceeds over multiple synchro-

nous rounds, simulating a real-world distributed setting. We use

80 worker processors and a single coordinator. Each value is

averaged over 5 runs, with a 4-hour wall-clock limit per run.

Parameters We use 𝜀 = 1.0, bias term = 8, approximation factor

(2 + 𝜂) = 5.625 (matching non-private 𝑘-core experiments [55]),

and privacy split fraction 𝑓 = 0.8 (allocating 0.8 · 𝜀 to thresholding

and 0.2 · 𝜀 to level moving step). We also conduct an ablation study

on key parameters 𝜀 and 𝑓 , and our theoretical proofs show the

approximation falls within a (2 + 𝜂)-multiplicative factor.

Compute Resources We run experiments on a Google Cloud

c3-standard-176 instance (3.3 GHz Intel Sapphire Rapids CPUs,

88 physical cores, 704 GiB RAM) with hyper-threading disabled.

The code, implemented in Golang [21], is publicly available [1].

DatasetsWe test our algorithms on a diverse set of 13 real-world

undirected graphs from SNAP [51], the DIMACS Shortest Paths

Challenge road networks [16], and the Network Repository [74]:

email-eu-core, wiki, enron, brightkite, ego-twitter , gplus,
stanford, dblp, orkut, livejournal, and friendster . We also use

twitter , a symmetrized version of the Twitter network [50], and

brain, a highly dense human brain network from NeuroData

(https://neurodata.io/). We remove duplicate edges, zero-degree

vertices, and self-loops. Table 2 reflects the graph statistics after

this removal. Exact triangle counts for some graphs are omitted

due to time or memory constraints.

5.1 𝑘-Core Decomposition
Response Time. Fig. 7 shows the response times of 𝑘-CoreD across

all datasets. Our algorithm efficiently processes large-scale graphs,

including billion-edge datasets like twitter and friendster, within
four hours. These results validate the scalability and practicality of
𝑘-CoreD, demonstrating the impact of degree thresholding and bias

terms in delivering both theoretical and practical improvements.

While measuring response time, a direct runtime comparison

with the 𝑘-Core algorithm [19] is not meaningful. That algorithm

does not include bias correction, which often results in large nega-

tive noise causing most nodes to remain stuck at level 0. Since the

algorithm proceeds for a fixed number of communication rounds

(matching the levels in the LDS), but no nodes move beyond the first

level, negligible work is performed in subsequent rounds—making

the runtime unrealistically low while returning (the same) poor

approximation for many nodes. Instead, we compare the number

of communication rounds. As shown in Fig. 8, 𝑘-CoreD reduces

the number of rounds by two orders of magnitude compared

to the baseline, aligning with our theoretical bound of 𝑂 (log(𝑛) ·
log(𝐷max)). This translates to significantly lower communication

overhead and improved scalability in distributed settings.

Accuracy We calculate the approximation factor for each node

as 𝑎𝑣 =
max(𝑠𝑣 ,𝑡𝑣 )
min(𝑠𝑣 ,𝑡𝑣 ) , where 𝑠𝑣 is the approximate core number and

𝑡𝑣 is the true core number. We use this metric to be consistent

with the best-known non-private 𝑘-core decomposition implemen-

tations [17, 55]. These individual node approximation factors facili-

tate the computation of aggregate metrics: the average, maximum,

80
𝑡ℎ
, and 95

𝑡ℎ
percentile approximation factors for each graph. The

theoretical approximation bound in the absence of noise is calcu-

lated as (2 + 𝜂), which is 5.625 for all graphs (labeled Theoretical
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Figure 9: Avg. approximation factor for 𝑘-Core decomposition vs. epsilon (𝜀) and split fraction (𝑓 ).
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Figure 10: Triangle Counting Results.
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Figure 11: Avg. approx factor for triangle counting vs. epsilon (𝜀).

Bound). Additionally, we adjust this bound to account for noise by

incorporating the additive error term

log
3

1+𝜂/5 (𝐷𝑚𝑎𝑥 )
𝜀 , where 𝑛 is the

number of nodes,𝐷𝑚𝑎𝑥 is the maximum degree (labeled Theoretical

Bound (With Noise)). For this bound, we compute the effect of the

additive noise on the multiplicative factor by adding

log
3

1+𝜂/5 (𝐷𝑚𝑎𝑥 )
𝜀 ·𝑘max

,

where 𝑘max is the maximum core number, to 5.625. Note that such

a theoretical bound is a lower bound on the effect of the additive

error on the multiplicative factor; for smaller core numbers, e.g.

𝑘min << 𝑘max, the additive error leads to a much greater factor.
Figs. 6a to 6c present the approximation factors achieved by our

approach (𝑘-CoreD) compared to the baseline 𝑘-core algorithm (𝑘-

Core) from [19], and the randomized response baseline (𝑘-CoreRR),

along with theoretical bounds across various datasets. On average,

our method maintains approximation factors below 4x across all

datasets, with the 80
th

percentile staying under 5.5x, as illustrated
in Fig. 6a and Fig. 6b, demonstrating significantly lower variance

compared to the baselines. These results remain well within the the-

oretical bounds without noise. Compared to 𝑘-Core [19], 𝑘-CoreD

consistently achieves better or comparable performance. Notably,

for graphs such as brain and gplus, 𝑘-CoreD reduces the approxi-

mation factors from 131.55 to 4.11 and from 52.71 to 3.27, improve-

ments of over 31x and 16x, respectively. Similarly, for orkut and
wiki, our algorithm improves the approximation factors by 6.6x and

1.9x, respectively. Compared to 𝑘-CoreRR, our algorithm achieves

consistently better performance across all datasets—often by two to
three orders of magnitude. Notably, on the dblp graph, 𝑘-CoreD

improves the approximation factor by over 47x. These results un-
derscore the limitations of naive RR-based methods, which suffer

from inflated graph density due to edge perturbation.

However, for many graphs, the difference between 𝑘-Core [19]

and our approach is less pronounced. This is due to the 𝑘-Core algo-

rithm’s inability to move nodes up levels in the LDS, which results

in an approximate core number of 2.5 for most nodes. Given that

real-world graphs often exhibit small core numbers (Table 2), the

average approximation factor for 𝑘-Core becomes skewed, particu-

larly for graphs with a significant proportion of low-core nodes. In

contrast, for graphs with larger core numbers, such as gplus, brain,
and orkut, our method demonstrates significant improvements. The

advantages of our algorithm become more evident when examin-

ing the 80
th
and 95

th
percentile approximation factors. As shown

in Fig. 6b, our method consistently achieves a notable reduction

in the 80
th
percentile error compared to 𝑘-Core, with reductions

of up to 42x, 40x, and 7.7x for graphs with large core numbers,

such as brain, gplus, and orkut, respectively. Similarly, in the 95
th

percentile error (Fig. 6c), our method achieves reductions of nearly

49x, 81x, and 7x for the same graphs. These results underscore

the robustness and scalability of our algorithm in handling diverse

graph structures with varying core number distributions.

Ablation StudyWe analyze the effect of varying the privacy pa-

rameter, 𝜀, and the privacy split fraction, 𝑓 , on the utility of the

𝑘-core decomposition algorithm by plotting the average approxi-

mation factor across different datasets: gplus, wiki, and livejournal,
for our algorithm and the baseline. From the results shown in Fig. 9,

we observe that the approximation factor improves as 𝜀 increases,

which aligns with the theoretical expectations of differential privacy

where higher 𝜀 allows for less noise and greater utility.
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Further, we note that an optimal value of 0.8 consistently mini-

mizes the approximation factor across all datasets (Fig. 9). This is

the case since degree thresholding affects the amount of noise that

will be added per level for later computations. Thus, we use 𝑓 = 0.8

for all other experiments, as it strikes a balance between the two

steps, ensuring better overall performance.

5.2 Triangle Counting
Response Time Fig. 10a shows the average response times of our

LEDP triangle counting algorithm, EdgeOrientΔ, implemented in

our distributed (LEDP-DS) framework. We compare our algorithm

to ARROneNS∆ (Lap) from [44]. While ARROneNSΔ (Lap) is im-

plemented in C++, our Golang implementation demonstrates com-

parable performance across most datasets, with notable speedups

for large graphs. Specifically, for gplus, our algorithm achieves a

speedup of 3.45x, while for other graphs such as email-eu-core,
stanford, and wiki, our performance is comparable despite the com-

munication overhead. However, for the enron, brightkite, and dblp
dataset, our algorithm is slower. This discrepancy is likely due to

the smaller sizes of the graphs so a centralized algorithm will per-

form better than a distributed algorithm. These results emphasize

the scalability and practicality of EdgeOrientΔ for large-scale graph

analysis, highlighting its ability to handle diverse graphs.

Accuracy Following the evaluation methodology in [44], we com-

pute relative error for a graph using
|Δ̃−Δ |
Δ , where Δ̃ represents

the approximated triangle count and Δ the true triangle count. Ad-

ditionally, we apply the theoretical bounds from Theorem 4.7 to

our analysis. According to Fig. 10b, our algorithm, EdgeOrientΔ,

consistently achieves relative errors ranging from 10−1
to 10−2

across all datasets, remaining well within the theoretical bounds.

Compared to ARROneNSΔ (Lap), our algorithm gives better rel-

ative errors by 53x - 89x, for all graphs except gplus, where we
achieve slightly better but comparable accuracy. In contrast to

GroupRR [39], which we could only run on the wiki dataset due to
the 4-hour timeout limit, our algorithm not only matches accuracy

but also has a response time two orders of magnitude faster .
On small or dense graphs like wiki or email-eu-core, the TCoun-

tRR—which incurs a dominant error term growing proportional to

𝑛3/2

𝜀2
—performs similarly to ours because𝑛 is small [26]. However, in

larger graphs, 𝑛3/2 explodes, whereas our error depends instead on√
𝑛 𝑑 (with 𝑑 ≪ 𝑛). TCountRR must also consider all𝑂 (𝑛4) 4-cycles,

but our method only needs 𝑂 (𝑛2𝑑2) 4-cycles. Consequently, on
larger datasets such as enron and brightkite, we reduce the relative
error (Fig. 10b) by roughly 17x and 45.5x, respectively. Compared

to using 60 worker cores, we achieve up to a 1.41x speedup.

To further analyze the limitations of prior approaches, we com-

pute the multiplicative approximation factor of the triangle count,

defined as

max

(
Δ̃,Δ

)
max

(
1,min

(
Δ̃,Δ

)) . Unlike relative error, this metric explic-

itly accounts for cases where algorithms, such as the one in [44],

produce negative triangle counts, which severely undermines their

utility in real-world scenarios. As shown in Fig. 10c, our algorithm

achieves consistently small approximation factors across all graphs,

remainingwithin [1.01, 1.93], and reducing the factor by six orders
of magnitude compared to [44] and TCountRR. This highlights

the robustness of our approach, EdgeOrientΔ, in maintaining low

and stable approximation factors across diverse graph structures.

Ablation Study To evaluate the impact of the privacy parame-

ter 𝜀 on utility, we analyze and plot the approximation factors for

varying values of 𝜀 across three representative graphs: gplus, dblp,
and stanford, comparing against those reported in [44]. Our results

demonstrate that for stanford and dblp, our algorithm achieves

a significant reduction in approximation factor by up to six or-
ders of magnitude. For gplus, while the approximation factors are

comparable for higher values of 𝜀, our algorithm achieves better

utility for smaller values of 𝜀. Specifically, at 𝜀 = 0.25, our algorithm

achieves an approximation factor of 1.025, compared to 1.126 for

ARROneNSΔ (Lap), an improvement of 9.8%. Similarly, at 𝜀 = 0.50,

our algorithm achieves a factor of 1.011, compared to 1.055, an

improvement of 4.2% This highlights the ability of our approach

to offer better utility even under stricter privacy constraints, un-

derscoring its advantage over [44]. Additionally, we observe that

the utility of our algorithm consistently improves as the privacy

parameter 𝜀 increases, aligning with the theoretical expectations of

differential privacy, where higher values of 𝜀 results in less noise.

6 CONCLUSION
Large-scale network analysis often raises privacy concerns for sensi-

tive data. We employ local edge differential privacy (LEDP), letting

nodes protect their edges without a trusted authority. We pro-

pose novel LEDP algorithms for 𝑘-core decomposition and triangle

counting that surpass prior work in accuracy and theoretical guar-

antees and introduce the first distributed framework to simulate

these algorithms on a single machine. Experiments show our 𝑘-core

approximations meet non-private theoretical bounds on average,

while triangle counting errors are nearly two orders of magnitude

lower than previous LEDP methods, with similar runtimes. Ongo-

ing work extends this framework to multi-machine testing with

real communication to capture added latency and explores multi-

coordinator variants to eliminate single points of failure and reduce

bottlenecks. These enhancements will support a broader range of

LEDP algorithms. Our open-source framework (at [1]) invites the

community to build on LEDP graph algorithms.
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