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Abstract—Graph Neural Networks (GNNs) show great promise
for Network Intrusion Detection Systems (NIDS), particularly in
IoT environments, but suffer performance degradation due to
distribution drift and lack robustness against realistic adversarial
attacks. Current robustness evaluations often rely on unrealistic
synthetic perturbations and lack demonstrations on systematic
analysis of different kinds of adversarial attack, which encompass
both black-box and white-box scenarios. This work proposes a
novel approach to enhance GNN robustness and generalization by
employing Large Language Models (LLMs) in an agentic pipeline
as simulated cybersecurity expert agents. These agents scrutinize
graph structures derived from network flow data, identifying
and potentially mitigating suspicious or adversarially perturbed
elements before GNN processing. Our experiments, using a
framework designed for realistic evaluation and testing with a
variety of adversarial attacks including a dataset collected from
physical testbed experiments, demonstrate that integrating LLM
analysis can significantly improve the resilience of GNN-based
NIDS against challenges, showcasing the potential of LLM agent
as a complementary layer in intrusion detection architectures.

Index Terms—Graph Neural Network, Large Language Model,
Network Intrusion Detection, Adversarial Attack, Robustness

I. INTRODUCTION

Graph Neural Networks (GNNs) offer significant potential
for Network Intrusion Detection Systems (NIDS) by modeling
complex network relationships. However, realizing their prac-
tical utility requires addressing critical robustness challenges
often overlooked in standard evaluations. Our work tackles two
primary issues revealed through rigorous preliminary analysis.

First, we address the challenge of generalization under
distribution drift. Standard GNN evaluation often relies on
training and testing within single, static datasets (e.g., a
specific version of CIC-IDS or UNSW-NB15). This does
not capture performance in real-world networks where traffic
patterns constantly evolve [1]. To investigate this, we con-
structed a unified dataset by merging and standardizing flows
from various canonical sources, including UNSW-NB15 [2],
CIC-IDS2018 [3], and Bot-IoT [4]. Evaluating representa-
tive GNN models (such as EGraphSage [5], Anomal-E [6],
and CAGN-GAT [7]) using this unified dataset revealed a
notable performance degradation compared to their single-
dataset benchmarks, empirically confirming their susceptibility
to distribution drift, a fundamental robustness problem.

Second, beyond drift, we examine robustness against adver-
sarial attacks under realistic conditions. While GNNs might
claim robustness, evaluations often use synthetic attacks, par-

ticularly white-box methods, that grant attackers unrealistic
capabilities [8]. To probe vulnerability more realistically, we
simulated practical, problem-space black-box attacks (such
as node injection) on our unified dataset. These experiments
demonstrated further significant performance degradation in
the evaluated GNN models, exposing their vulnerability even
to attacks feasible for real adversaries. This finding un-
derscores the inadequacy of current robustness claims and
highlights the need for both more realistic adversarial testing
scenarios and effective mitigation strategies.

The observed GNN fragility against both drift and realistic
attacks motivates our core proposal: leveraging LLMs as
simulated cybersecurity experts. Given that human experts can
often identify sophisticated attacks or anomalies missed by
automated systems [9], [10], we explore using LLM agents to
perform preemptive analysis on network flow graph data. By
scrutinizing graph structures and flow patterns, the LLM agent
aims to filter threats or alert operators before they compromise
the GNN. This poster presents our investigation into this LLM-
agent approach, detailing its integration and presenting exper-
imental results that demonstrate its effectiveness in enhancing
GNN resilience against simulated realistic attacks, offering a
promising path towards more robust NIDS deployment.

II. RELATED WORK

Current evaluations of GNN-based NIDS face limitations
hindering realistic assessment. Models are often evaluated on
single static datasets, ignoring performance degradation due to
distribution drift [1]. Furthermore, adversarial robustness as-
sessments frequently rely on synthetic perturbations generated
without considering network domain constraints [8], poten-
tially rendering attacks impractical [8]. Much GNN robustness
research uses generic graph benchmarks rather than NIDS-
specific structures [11], and realistic structural attacks remain
underexplored [8]. Existing GNN robustness benchmarks may
also lack sufficient integration of drift or domain-specific
realism [12]. Ideas leveraging LLMs for robust evaluation
or enhancing GNNs are emerging [13], [14], but applying
them as expert simulators for NIDS remains unexplored. This
evaluation gap leads to an overestimation of GNN resilience.

III. METHODOLOGY

Our approach integrates LLM analysis into the GNN-based
NIDS pipeline.
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Fig. 1: The intrusion types of unified dataset for distribution drift test

TABLE I: Comparison of GNN Performance Across Datasets

Model Dataset Accuracy F1

CAGN Unified 0.851 0.823

UNSW-NB15 0.995* 0.918*
CICIDS2017 0.975* 0.881*

AnomalE Unified 0.861 0.875

UNSW-NB15 0.987* 0.924*
CICIDS2018 0.971* 0.924*

E-GraphSage Unified 0.675 0.793

NF-ToN-IoT 0.672* 0.810*
NF-Bot-IoT 0.782* 0.630*

* Results reported in the original paper of the models in the table.
The ’Unified’ results reflect performance on the unified dataset used
in this study. AnomalE F1 for Combined are weighted averages.

A. Dataset and GNN Models

We utilized a unified dataset constructed by merging
and standardizing multiple NetFlow-based intrusion detection
datasets (NF-BoT-IoT [4], NF-CSE-CIC-IDS2018 [3], NF-
UNSW-NB15 [2]) to simulate distribution drift. This allows
for evaluating GNN generalization across diverse network
scenarios. We evaluated several GNN architectures commonly
used in NIDS, including E-GraphSAGE [5], Anomal-E [6],
and CAGN-GAT [7]. Network flows were transformed into
IP-centric communication graphs where nodes represent IPs
and edges represent flows with associated features.

B. LLM Agent Integration

We designed an LLM-based mitigation strategy where LLM
agents analyze elements of the network graph before GNN
processing. This involves:

• Task Definition: The LLM’s task is to assess the rele-
vance or potential maliciousness of graph components,
such as injected nodes simulating certain attacks or
suspicious edges/flows (conceptualized in Figure 2).

• Prompting Strategy: LLMs are prompted with textual
information representing graph elements (e.g., descrip-
tions of node interactions or flow characteristics) and
asked to provide an analysis and relevance score.

• Workflow: The LLM acts as a filter or expert advisor.
Based on the LLM’s assessment, suspicious graph ele-
ments could be flagged, removed, or weighted differently
before being fed into the GNN model. We specifically
tested this against node injection attacks where the LLM
attempts to identify the injected malicious nodes.

C. Evaluation Protocol

We evaluated the GNN models under several conditions:
1) Baseline performance on standardized datasets.
2) Performance under simulated distribution drift using the

unified dataset.
3) Robustness against synthetic attacks (PGD feature at-

tacks, Edge Removal, Node Injection).
4) Performance of the GNN with LLM-based mitigation

applied, particularly focusing on the recovery from node
injection attacks.

Metrics included Accuracy, F1-Score, Precision, Recall, and
AUC, with a focus on F1-Score due to class imbalance
inherent in NIDS datasets.

IV. RESULTS AND DISCUSSION

Our experiments confirm the susceptibility of standard GNN
models to distribution drift and synthetic attacks. Node injec-
tion, in particular, is observed to degrade accuracy and F1-
scores across the evaluated models.



Fig. 2: Design diagram of the LLM Mitigation pipeline

The key finding highlighted in this poster is the effectiveness
of the LLM mitigation strategy. LLMs (specifically tested
models like GPT-4o and LLaMA 4) demonstrated a strong ca-
pability to identify artificially injected malicious nodes within
the graph structure derived from netflow data, as shown in
Table II. For instance, in scenarios with 20% node injection
(200 injected nodes into a base graph of 1000), leading LLMs
correctly flagged a high percentage of these malicious nodes.

By filtering or identifying these malicious nodes based on
LLM analysis, the downstream GNN classification perfor-
mance improved significantly compared to the attacked sce-
nario without LLM mitigation (Table II). While tested against
synthetic node injection, the LLM’s ability to reason about
network interactions based on provided data hints at potential
benefits for handling novel, zero-day attacks or complex drift
patterns that manifest as unusual graph structures.

TABLE II: Performance of LLMs in graph mitigation. CAGN-
GAT Fusion [7] is being tested. CF = Correctly Flagged, IF
= Incorrectly Flagged

Model Accuracy F1 LLM Recall Nodes CF IF

Clean 0.842 0.821 – 1000 – –
Claude 3.5 Haiku 0.777 0.673 0.698 1036 0 164

Claude 3.7 Sonnet 0.774 0.728 0.741 1107 35 58

LLaMA 4 Maverick 17B 0.859 0.834 0.758 931 200 69

GPT-4o 0.857 0.838 0.774 945 197 58

V. CONCLUSION

Standard GNN evaluations often overlook performance
degradation from distribution drift and employ unrealistic

adversarial attacks. Our analysis using a unified dataset con-
firms GNN susceptibility to drift, with further degradation
under simulated realistic attacks. This work demonstrates that
integrating individual LLM as expert analyzers enhances GNN
resilience against attacks like node injection, showcasing the
potential of hybrid GNN-LLM systems.

Future work will focus on developing an LLM agentic
pipeline. This pipeline aims to leverage different models
strategically: for instance, employing GPT-4o for complex,
high-level graph analysis to generate context that guides more
cost-efficient models, such as Claude 3.5 Haiku, for scaled
processing. The goal is to create a cost-effective workflow
that maintains strong detection performance against network
intrusions and adversarial attacks. Furthermore, we plan to val-
idate these findings against diverse, realistic attack scenarios
within a physical IoT testbed, utilizing real-world tools (e.g.,
Kali Linux) and incorporating physical device manipulations.
Optimizing the overall pipeline efficiency for potential real-
time NIDS deployment remains a crucial final objective.
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