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Abstract—Ensuring the security of complex system-on-chips
(SoCs) designs is a critical imperative, yet traditional verification
techniques struggle to keep pace due to significant challenges in
automation, scalability, comprehensiveness, and adaptability. The
advent of large language models (LLMs), with their remarkable
capabilities in natural language understanding, code generation,
and advanced reasoning, presents a new paradigm for tackling
these issues. Moving beyond monolithic models, an agentic
approach allows for the creation of multi-agent systems where
specialized LLMs collaborate to solve complex problems more
effectively. Recognizing this opportunity, we introduce SV-LLM,
a novel multi-agent assistant system designed to automate and
enhance SoC security verification. By integrating specialized
agents for tasks like verification question answering, security
asset identification, threat modeling, test plan and property
generation, vulnerability detection, and simulation-based bug
validation, SV-LLM streamlines the workflow. To optimize their
performance in these diverse tasks, agents leverage different
learning paradigms, such as in-context learning, fine-tuning,
and retrieval-augmented generation (RAG). The system aims to
reduce manual intervention, improve accuracy, and accelerate se-
curity analysis, supporting proactive identification and mitigation
of risks early in the design cycle. We demonstrate its potential
to transform hardware security practices through illustrative
case studies and experiments that showcase its applicability and
efficacy.

Index Terms—Hardware Security and Trust, Security Verifica-
tion, Large Language Model, Agentic AI, Chatbot, Security Asset
Identification, Security Test Plan Generation, Security Property
Generation, Testbench Generation, Security Bug Detection

I. INTRODUCTION

System-on-chips (SoCs) have seen widespread adoption
across diverse application domains, including consumer elec-
tronics, IoT devices, healthcare equipment, industrial systems,
and autonomous control platforms. This extensive adoption
is largely attributed to the versatility inherent in SoCs: the
integration of most or all components of the essential computer
system onto a single chip enables them to deliver high com-
puting performance while maintaining a small size and low
power consumption. However, with the growing diversity and
volume of applications, demands on SoC performance have
correspondingly escalated, leading to significant increases in
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design complexity. Simultaneously, the pressure to reduce
time-to-market has shortened the available time frame for SoC
integrators and design houses to thoroughly verify system
functionality, performance, and security.

Despite decades of research and industrial effort, the verifi-
cation of SoC hardware has remained predominantly manual.
This challenge is reflected in industry trends, where, since
2007, the number of verification engineers has increased three
times faster than that of design engineers [1]. Nevertheless,
even with approximately 80% of the design cycle dedicated
to verification, 60–70% of hardware development projects
continue to fall behind schedule [1]. The growing promi-
nence of security verification necessitates its integration as a
fundamental aspect of hardware verification. This imperative
has been reinforced by recent real-world exploits targeting
commercially deployed SoCs, such as Pacman [2], Augury
[3], and GhostWrite [4], which have demonstrated the critical
security gaps that can arise when security considerations are
deferred or not adequately addressed during the verification
process.

An examination of contemporary security verification
methodologies reveals that, much like trends in functional
verification, the field remains largely manual, effort-intensive,
and painstaking. Formal verification approaches [5], [6] con-
tinue to dominate static security verification strategies. These
techniques require engineers to possess substantial expertise
in translating high-level security requirements into formal lan-
guage assertions that can be evaluated by formal verification
tools. However, formal methods face challenges with respect to
scalability when applied to complex SoC designs and are prone
to false positives [7]. Other static verification approaches,
such as Concolic testing [8], [9] and static code analysis
[10], [11], similarly scale poorly with large, heterogeneous
SoC designs. Meanwhile, emerging dynamic verification tech-
niques, including fuzz testing [12]–[15] and penetration testing
[16], [17], offer the advantage of runtime monitoring and
coverage of execution paths that may be difficult to analyze
statically. However, these approaches also require the manual
definition of cost, objective, or feedback functions to guide
test generation and mutation processes. The crafting of such
functions to accurately represent device security requirements,
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mathematically or ontologically, remains a complex task, and
standardized methodologies or best practices have not yet
emerged within the research community.

Moreover, security verification poses a unique challenge
that functional verification does not: The threat landscape is
continuously evolving. As new attack vectors are discovered
and publicized, verification methods must adapt and generalize
to remain effective [18]. Thus, automation and adaptability are
critical attributes of any forward-looking security verification
strategy.

If we analyze all existing verification approaches from
a high level, all of them share a fundamental limitation:
although hardware security requirements are typically artic-
ulated in natural language during the specification phase,
current verification methods depend on manually translating
these requirements into intermediate formal or mathematical
representations. This translation process introduces significant
overhead, demands high levels of expertise, and increases the
likelihood of human error. Large language models (LLMs),
with their advanced capabilities in interpreting and reason-
ing over natural language, offer a promising paradigm shift
for security verification [19]. By streamlining or completely
eliminating the translation process, LLMs could greatly reduce
manual effort, improve reliability, and shorten verification
cycles. Reflecting this potential, recent studies have begun
exploring the use of LLMs for hardware security verification
tasks [19]–[33]. However, current LLM-based works remain
limited in scope and are often narrowly focused on specific
threat models or verification stages. Comprehensive security
verification demands far more: it encompasses threat modeling
and security asset identification, dynamic testbench or test
suite generation aimed at maximizing security coverage, and
the formulation of directed assertions or properties target-
ing specific, security-critical corner cases. To fully realize
the transformative potential of LLMs in hardware Security
Verification, in this paper, we introduce SV-LLM, shown in
Figure 2, which comprehensively addresses this broader range
of tasks in a systematic and scalable manner. SV-LLM is a
multi-agent framework designed to autonomously perform six
key security verification tasks: security asset identification,
threat modeling, test plan generation, vulnerability detection,
security bug validation, and the generation of SystemVerilog
properties and assertions for security verification. In addition
to automation, SV-LLM features an interactive front-end chat-
bot interface that assists verification engineers in addressing
complex security verification challenges, informed by current
research developments from academia and industry. Unlike
previous efforts to apply LLMs to hardware security, SV-LLM
distinguishes itself through its vastly broader applicability,
dynamic adaptability, and holistic top-down approach to the
verification workflow.

SV-LLM is designed to support engineers with key aspects
of the hardware security verification process, focusing on the
register-transfer level (RTL). It assists in foundational tasks
from security question answering to vulnerability analysis,
while enabling continuous knowledge enrichment to address

the challenges of the rapidly evolving hardware security land-
scape. A look of the frontend interface is shown in Figure
1.

II. BACKGROUND

As introduced in Section I, SV-LLM harnesses the ad-
vanced capabilities of multi-agent LLM systems to execute
a broad spectrum of verification tasks. This section provides
foundational background on the concept of multi-agent LLM
systems, outlines how they substantially extend the capabilities
of individual LLMs, and explains the rationale behind adopting
this paradigm within the SV-LLM framework.

A. Multi-agent LLM systems

The agentic approach in artificial intelligence refers to
designing systems that operate autonomously by perceiving
their environment, reasoning over tasks, and executing actions
toward predefined goals. Traditionally, these agents relied on
symbolic planning, rule-based systems, or task-specific learn-
ing methods that lacked flexibility and generalization [34]. The
rise of LLMs has transformed this landscape by enabling a new
class of agentic systems, in which a pre-trained LLM functions
as the central reasoning core. These systems augment the
LLM with external tools, long-term memory, and structured
decision-making capabilities to support multi-step planning
and goal-driven behavior. This transition has allowed agen-
tic systems to handle more complex, open-ended problems,
something earlier agents struggled with due to their limited
scope and inability to adapt dynamically [35]. Although LLM-
driven single agent-based systems have shown considerable
success in diverse domains, multi-agent systems have demon-
strated even greater capability in handling extremely complex
reasoning problems such as solving mathematical equations
[36], in defense against cyberattacks [37], financial decision
making [38], software development [39], [40] etc. This stems
from the emphasis on diverse agent profiles and inter-agent
communication, enabling a team of specialized agents to
collaboratively address different sub-tasks. By distributing
tasks among cooperative LLM agents, these systems leverage
domain-specific reasoning more effectively, especially in large-
scale systems.

B. Rationale for adoption in SV-LLM

In the context of hardware design and hardware security,
multi-agent LLM frameworks provide clear advantages over
single-prompt or monolithic agentic models. Hardware secu-
rity tasks, such as threat modeling, security verification, or
vulnerability detection, require deep contextual understand-
ing, modular reasoning, and iterative refinement. In addition,
several verification tasks inherently depend on the outcomes
of earlier stages of the verification workflow. For example,
the generation of a security test plan is based on prior
threat modeling, which itself is contingent upon the accurate
identification of security assets. By adopting a multi-agent
architecture, SV-LLM enables the decomposition of complex



Fig. 1. Frontend interface of SV-LLM.

verification tasks into manageable subgoals, supports collabo-
rative decision-making among specialized agents responsible
for individual subtasks, and allows agents to iteratively refine
their outputs based on feedback - either from the verification
engineer or from other agents - within an evolving verification
context.

III. SV-LLM

SV-LLM is an LLM-driven agentic framework designed
for automated security verification of hardware designs. It
focuses on assisting verification engineers with several security
verification tasks through natural language interaction. An
overview of the methodology is shown in Figure 2.

A. Key Features:

SV-LLM offers a suite of features designed to streamline and
enhance the hardware security verification workflow through
an LLM-driven agentic framework. The key features of the
framework are outlined below.

a) Task-Oriented Agent Architecture: At the core of SV-
LLM lies a task-centric architecture that supports a range
of verification activities commonly encountered by hardware
security engineers. The system is equipped with dedicated
agents, each responsible for a specific class of tasks. These
include:

• Security Q&A: SV-LLM can answer conceptual or practi-
cal questions about hardware security, verification meth-
ods, security threats, and other security-related topics.

• Security Asset Identification: SV-LLM is capable of ana-
lyzing the specification of an SoC design and recognizing
critical security assets.

• Security Property Generation: SV-LLM is capable of
generating formal security properties and corresponding
assertions in SystemVerilog Assertion (SVA) format.

• Threat Modeling and Test Plan Generation: Given the
specification of an SoC design and the response of the
user to certain queries, SV-LLM can develop threat models
and test strategies based on the features of a design and
the attack surface.

• Vulnerability Detection: SV-LLM can analyze hardware
designs and identify specific security vulnerabilities and
weaknesses such as privilege escalation paths, insecure
state transitions, etc.

• Testbench Generation for Bug Validation: Given an RTL
design and a bug identification report, SV-LLM can
construct simulation-based testbenches to validate the
presence of specific security bugs.

b) Structured Output Format: Each verification task pro-
duces results in a standardized and structured format, making
the outputs easily usable in downstream tools or documenta-
tion pipelines. For example, generated properties are output
in syntactically correct .sva files, suitable for direct inclusion
in formal verification flows. Asset identification results are
formatted as JSON objects, allowing for further analysis or
integration into security review documentation.

c) Continuous Dialogue and Iterative Refinement: SV-
LLM supports a multi-turn dialogue structure, allowing users
to refine their queries or follow up on previous results.
After completion of a task, the user can immediately request
further analysis, ask for explanations, or proceed to subsequent
verification steps, without losing context.



Fig. 2. Overview of SV-LLM.

d) Safe and Domain-Constrained Dialogue: To ensure
the integrity and relevance of interactions, SV-LLM actively
constrains dialogue to topics within the scope of semiconduc-
tor design, hardware security, and system-level verification.
Irrelevant or off-topic queries, particularly those unrelated to
hardware, VLSI, or formal methods, are gracefully rejected,
maintaining the professional focus of the tool.

e) Memory: SV-LLM incorporates both short-term and
long-term memory mechanisms to preserve dialogue context
across queries. While short-term memory allows for seamless
continuity within a session, retaining user input, prior output,
and the current state of the verification task, long-term memory
stores the context of the overall conversation of the current
session.

B. Architecture of SV-LLM

Architecturally, SV-LLM is organized into six layered com-
ponents shown in Figure 3. The Application Layer facili-
tates user interaction through a conversational and file-based
interface, while the Supervisor Layer interprets user intent,
completes missing context, and generates executable task
plans. The Orchestrator Layer, shown in Figure 4, ensures
coordinated execution and validation across agents. At the
core, the Agent Layer houses specialized modules for different
tasks. Supporting these are the Data Layer, which maintains
knowledge bases, design repositories, and embedding stores,
and the Infrastructure Layer, which provides the computational

backbone through APIs, GPU clusters, and hosted language
models. The three main layers of the framework are described
in the following.

1) Supervisor Layer: At the core of the SV-LLM framework
lies the Supervisor, a dedicated control module responsible for
interpreting user queries, validating contextual completeness,
and preparing structured tasks for execution. Its primary aim is
to bridge the gap between unstructured natural language input
and modular, agent-driven verification workflows. By serving
as the first point of processing, the Supervisor ensures that
each user request is appropriately understood, fully contextu-
alized, and systematically translated into a sequence of actions
that can be executed by specialized agents.

The Supervisor plays a critical role in maintaining the
robustness, modularity, and scalability of the SV-LLM system.
It enables flexible user interaction without compromising the
formal rigor required for hardware security verification tasks.
Moreover, by separating task preparation from task execution,
the Supervisor establishes a clear abstraction boundary that
supports extensibility and efficient coordination among system
components.

a) LLM-Guided Intent Detection: The first stage in the
Supervisor’s processing pipeline is responsible for interpreting
the user’s natural language query and identifying the underly-
ing objective of the request. This step is critical in enabling
the SV-LLM framework to support a diverse range of hardware
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Fig. 3. Layered architecture of the SV-LLM framework

security verification tasks through a unified interface.
To accomplish this, the system employs a large language

model to classify the query into one or more functional cate-
gories. These categories represent different verification-related
activities, such as analyzing design vulnerabilities, generating
formal properties, identifying security-relevant components, or
guiding the creation of test strategies. In addition, the system
distinguishes between informational queries and task-oriented
requests, allowing it to differentiate conceptual questions from
those that require concrete analysis or synthesis. The language
model further examines the query to determine whether any
hardware design artifacts are referenced or included, such
as RTL code or state machine descriptions, as well as to
identify any mentions of known security vulnerabilities. This
contextual understanding enables the Supervisor to assess the
completeness of the request and to determine which special-
ized agent should be invoked to handle the task. Overall, this
stage ensures that user queries are accurately interpreted and
appropriately routed, forming the foundation for modular, task-
specific processing within the broader SV-LLM framework.

b) Contextual Validation and Input Completion: Once
the intent of the user query is established, the Supervisor
proceeds to verify whether all information required to fulfill
the associated task is available. This step is motivated by the
observation that natural language queries are often incomplete,
especially when users omit essential design artifacts or con-
textual constraints that are critical for executing specialized
verification tasks.

The goal of this stage is twofold: first, to ensure that
the input context is semantically complete and structurally

adequate for downstream analysis; and second, to maintain
the continuity of the interaction without forcing the user to
rephrase or restart their query. This is particularly important
in complex verification workflows where tasks such as vulner-
ability detection or property generation depend on access to
well-formed hardware design descriptions, specifications, or
threat-related inputs.

To achieve this, the Supervisor evaluates the query against
a set of task-specific data requirements. These requirements
reflect the minimal set of inputs needed for the task to proceed
with meaningful results. If any required elements are missing
or ambiguous, the system triggers a guided refinement loop,
prompting the user to supply the missing components through
an interactive interface. This dynamic querying mechanism
ensures that task preparation remains user-friendly while pre-
serving the integrity of automated verification. Through this
validation process, the Supervisor ensures that only well-
grounded and fully contextualized queries are forwarded for
execution, thereby improving the reliability, interpretability,
and effectiveness of the SV-LLM framework.

c) Agent Assignment and Task Plan Generation: Follow-
ing intent detection and contextual validation, the Supervisor
proceeds to assign the task to an appropriate agent within
the SV-LLM framework. Each agent is specialized to handle
a particular class of hardware security verification tasks, and
the assignment is determined directly by the intent previously
inferred from the user query.

The purpose of agent assignment is to delegate execution
to a modular component that is equipped with domain-specific
reasoning aligned with the query’s objective. This modularity



Fig. 4. Overview of Supervisor and Orchestrator.

supports task specialization and improves the maintainability
and scalability of the overall framework. Once the appropriate
agent is selected, the Supervisor generates a corresponding
task plan. The task plan serves as an execution blueprint that
guides the agent’s operation. It outlines a coherent set of steps
tailored to the expected behavior of the agent and the nature of
the task at hand. These steps reflect the logical decomposition
of the user request into manageable actions that the agent can
carry out reliably.

In addition to generating the task plan, the Supervisor is
also responsible for scheduling its execution. This involves
organizing the order of task initiation and coordinating with
the Orchestrator to initiate runtime operations. Through this
structured delegation process, the Supervisor ensures that user
queries are transformed into actionable workflows, enabling
the SV-LLM framework to perform automated, goal-driven
security verification.

2) Orchestrator Layer: Once the Supervisor has completed
its responsibilities, including intent detection, input validation,
agent assignment, and task plan generation, the Orchestrator
assumes control of task execution. Serving as the runtime
coordinator of the SV-LLM framework, the Orchestrator is
responsible for managing the operational flow of verification
tasks and ensuring that each component in the execution
pipeline functions in a coherent and efficient manner. The core
function of the Orchestrator is to carry out the task plan pro-
duced by the Supervisor. This involves invoking the assigned
agent and delegating individual sub-tasks to specialized sub-
agents when applicable. Each sub-agent is designed to handle
a specific operational unit within the broader task, enabling
fine-grained modularity and parallelization where appropriate.
The Orchestrator oversees this delegation process, tracks the
execution state of each sub-task, and ensures that outputs are
correctly routed between components.

In workflows involving multiple dependent steps or con-
ditional branching, the Orchestrator maintains the execution
logic and handles intermediate decisions based on agent out-

puts. It also plays a key role in managing run-time feedback:
If a sub-task fails, the Orchestrator initiates corrective action.
By decoupling execution from interpretation and planning, the
Orchestrator introduces a clean separation of concerns that
enhances system modularity, simplifies maintenance, and im-
proves scalability. This design allows the SV-LLM framework
to accommodate increasingly complex verification workflows
and integrate additional agents seamlessly in future expan-
sions.

3) Agent Layer: The Agent Layer serves as the computa-
tional backbone of SV-LLM, composed of six specialized pri-
mary agents that collectively support the full spectrum of hard-
ware security verification tasks. Each agent has been carefully
designed with the complexity of its assigned task in mind, and
leverages an appropriate learning paradigm—ranging from in-
context learning for lightweight reasoning tasks, to fine-tuned
models for vulnerability detection, and retrieval-augmented
generation (RAG) for knowledge-intensive interactions. The
six core agents include: Security Verification Chat Agent, Secu-
rity Asset Identification Agent, Threat Modeling and Test Plan
Generation Agent, Vulnerability Detection Agent, Simulation-
Based Bug Validation Agent, and Security Property Generation
Agent. Notably, each agent is composed of multiple sub-
agents, each responsible for a finer-grained task. For example,
the Threat Modeling and Test Plan Agent includes a Threat
Identification sub-agent, a Security Policy Generator, and a
Test Plan Generator, all working in sequence. In addition to
internal reasoning, several agents are designed to interface
with external tools to complete their tasks—such as invoking
a SystemVerilog syntax checker to validate assertions, using
a ModelSim simulator to verify RTL behavior, or access-
ing a search engine to retrieve additional threat intelligence.
This layered and task-aware agent design allows SV-LLM to
perform robust, scalable, and intelligent security verification
across diverse SoC design scenarios.



IV. AGENTS IN SV-LLM

A. Security Verification Chat Agent

The Security Verification Chat Agent is a modular, LLM-
driven security verification chatbot designed to assist engineers
and researchers in navigating complex hardware security chal-
lenges through natural language interaction. Figure 5 illustrates
the overall system architecture of the agent, which comprises
multiple interlinked components organized into three main
stages: query understanding, information retrieval, and re-
sponse generation.

Upon receiving a user query, the Security Verification Chat
Agent initiates the process with an LLM-guided intent resolu-
tion module. This module classifies the query into one of three
categories: (i) security-related question, (ii) feedback to a prior
response, or (iii) invalid/unsupported intent. If the intent is rec-
ognized as a valid query or feedback, the system proceeds to
the dialogue state tracking module, which determines whether
the query is a follow-up in a multi-turn interaction. This is
achieved by linking the current query with previous turns using
a memory module to maintain conversational coherence.

The next stage involves query optimization, where the input
query is refined to improve retrieval quality. This includes
syntactic simplification, entity normalization, and context-
aware expansion using an LLM. The optimized query is then
routed through two parallel information-gathering pathways.
The first is a knowledge domain routing module, which clas-
sifies the query semantically and selects a relevant academic
vectorstore constructed through offline data processing and
vectorization. The second optional pathway leverages a Google
search phase, enabling external knowledge injection when
domain-specific information is insufficient or ambiguous. Both
internal and external knowledge pathways feed into a retriever
mechanism that filters and ranks relevant information. The
retrieved content is then forwarded to the LLM-guided gener-
ator mechanism, which synthesizes a structured, contextually
appropriate response. If the original query is a follow-up, the
system also performs contextual reference resolution to anchor
implicit references to earlier conversation history. The final
response is then returned to the user, completing the dialogue
turn.

The integration of offline domain knowledge, contextual
memory, real-time search, and LLM-based natural language
generation enables the Security Verification Chat Agent to
serve as a robust, intelligent assistant for security verification
tasks in modern SoC and RTL design workflows.

B. Security Asset Identification Agent

The Security Asset Identification Agent, shown in Figure
6, streamlines the identification of security-critical compo-
nents in the pre-silicon stage of SoC design. This agent is
particularly crucial in SV-LLM architecture, in the sense that
early identification of assets facilitates more targeted threat
modeling and security property generation. Traditionally, asset
identification relies heavily on individual expertise, making it
error-prone and inconsistent. The need to automate this process

Fig. 5. Overview of Security Chat Agent.

has been emphasized in initiatives such as Accellera’s SA-EDI
standard [41] and the IEEE P3164 [42] effort before. Existing
approaches, such as [43] and [44], focus on asset identification
from RTL alone, without utilizing the SoC specification.
Although [45] supplements RTL with specification files, all
these methods fundamentally require RTL access, limiting
their utility in scenarios where SoCs are delivered as grey
boxes or RTL is incomplete. In contrast, we investigate fully
automating potential asset identification only from the SoC
hardware specification, making use of LLM’s natural language
processing capability.

The Security Asset Identification Agent comprises of two
key sub-agents:

• Modular Spec Summarization: Here, we preprocess the
spec file before initiating the “Asset Generation” sub-
agent. Otherwise, due to the limitation in token length
and lethargy in memory retention while handling large
specification files, “Asset Generation” sub-agent would
not go deep enough to analyze all the potential security-
critical assets in a design, leading to erroneous results.
The “Modular Spec Summarization” sub-agent is built
on RAG (Retrieve-Augment-Generate) based flow. The
design modules are sequentially provided with a user
query, whose response is used to augment the prompt
for extracting the “Technical Summary” using the GPT-
4o model. This “Technical Summary” consolidates all
relevant information about a design module, enabling the
Asset-LLM to determine whether it contains any security-
critical assets.

• Asset Generation: Next, in Asset Generation sub-agent,
for each design module, we employ in-context learning
method to engineer the prompts in such a way that LLM
can learn from the step-by-step case-specific scenario
and examples about the CIA (Confidentiality, Integrity,



Fig. 6. Overview of Security Asset Generation Agent.

Fig. 7. Overview of Threat Modeling and Test Plan Generation Agent.

and Availability) security objectives, then analyze the
extracted Technical Summaries to generate the asset infor-
mation (if any) in a specified .json format. The response
generated is again critiqued by another prompt and further
revised so that false positive assets are excluded.

C. Security Threat Modeling and Test plan Generation Agent

While the Security Asset Identification Agent facilitates the
identification of security-critical assets within the design, a
comprehensive security verification effort also requires (i) the
formulation of security requirements (i.e., policies) governing
the flow and ownership of those assets, (ii) the modeling
of threats that may compromise those requirements, and (iii)
the construction of a detailed test plan capable of providing
sufficient coverage against those threats. The Security Threat
Modeling and Test Plan Generation Agent in SV-LLM is
designed to achieve precisely these objectives. An overview
of this agent is shown in Figure 7.

This agent starts with the design specification and the
asset list provided by Security Asset Identification Agent as
inputs. At a high level, it interprets these inputs and at the
same time employs an LLM-based chatbot that collaborates
interactively with verification engineers. Through a series
of iterative interactions and interpretation, a curated list of

relevant threat models for the design is built. Based on the
threat models, it automatically generates structured security
test plans.

At a more granular level, this agent employs a different
workflow depending on the relevant threats to the design as
shown in Figure 7. These two workflows can be described as
follows:
• Flow 1: This flow is engaged whenever the agent deter-

mines that the design is susceptible to physical and supply
chain security threats such as side-channel attacks, laser
fault injection attacks, clock glitching attacks, malicious
design modifications, data remanence attacks, bus snooping,
hardware IP/IC cloning, counterfeit IC, reverse engineering,
IC overproduction and other invasive and semi-invasive
attacks. This process begins with the Threat Identification
sub-agent, which retrieves relevant attack models from a
curated knowledge base composed of academic publications
and industry reports.
Following knowledge extraction, the sub-agent engages the
verification engineer through a structured dialogue to col-
lect system-specific details, including design characteristics,
application context, and supply chain origins. The sub-
agent then evaluates the relevance of each potential threat
based on the system’s context. The sub-agent progresses this
evaluation iteratively by repeatedly engaging the verification
engineer. The finalized threat list is then passed to another
sub-agent called the Test Plan Generator. The agent consults
with the verification engineer to assess the available testing
infrastructure, budget, and timelines, and subsequently for-
mulates a security test plan.

• Flow 2: The alternative flow of the agent addresses hardware
vulnerabilities that are exploitable via software, such as
privilege escalation, access control violations, and memory
corruption. This flow is initiated by the Security Policy
Generator sub-agent, which extracts design-specific security
policies from user-provided design specification documents
and the assets identified by the upstream Security Asset
Identifier agent. Due to the length and complexity of these
documents, the agent employs a RAG system to efficiently
retrieve relevant content. First, registers, listed by the Se-
curity Asset Identifier agent, are extracted from the specifi-



Fig. 8. Overview of Security Bug Detection Agent.

cation using a retriever-LLM combination. Subsequently, a
second RAG system searches the ISA document to extract
corresponding security policies associated with each asset.
Once the policies are gathered, they are passed to the LLM
of this sub-agent. It then separates the extracted policies,
identifies their security significance, and highlights potential
vulnerabilities related to them. The resulting policy list
forms the basis for the subsequent agent. The finalized
security policies are then provided as input to the Test
Plan Generator sub-agent, which, consistent with its role
in Flow 1, engages the verification engineer to assess
available verification infrastructure and constraints. Using
this information, the agent formulates a detailed security
verification plan, specifying the targeted policy violations,
verification objectives, methodologies, expected outcomes,
and required tools.
Regardless of the flow undertaken, for each identified threat

or policy, the agent generates detailed test cases that include:
objective of the test, methodology, expected behavior, evalua-
tion criteria, tool recommendations

D. Security Vulnerability Detection Agent

The Security Vulnerability Detection Agent, shown in Figure
8, is a core module of the SV-LLM framework, specifically
designed to automate the detection of security vulnerabilities
in hardware designs at the RTL. Within the broader SV-
LLM ecosystem, which aims to enhance hardware security
verification through a collection of specialized agents, the Bug
Detection Agent addresses the critical challenge of identifying
design-level security vulnerabilities efficiently and scalably.
Traditional verification workflows are often manual and lack
the adaptability needed for modern, complex SoC architec-
tures. General-purpose LLMs, despite their general reasoning
capabilities, fall short in domain-specific tasks such as vulner-
ability detection. To bridge this gap, the Bug Detection Agent
leverages a custom fine-tuned open-source LLM, specifically
adapted to understand and detect RTL security vulnerabilities.

As illustrated in Figure 8, the foundation for the Security
Vulnerability Detection Agent was laid through a dedicated
model preparation pipeline. First, a structured prompt-response
dataset was constructed, where each example paired an RTL
module with vulnerability-focused queries and annotated secu-
rity evaluations. This dataset enabled parameter-efficient fine-
tuning of an open-source small instruct model, ensuring that
the model could internalize critical hardware security concepts
while remaining lightweight and computationally efficient.

The resulting fine-tuned LLM serves as the engine for the Bug
Detection Agent, enabling it to perform targeted bug detection
tasks with high accuracy and reliability.

During operation, the Bug Detection Agent receives RTL
design inputs and formulates targeted security analysis queries
based on known vulnerability patterns. These queries, together
with the design context, are fed into the embedded fine-
tuned LLM. The model then infers the presence or absence
of specific vulnerabilities, providing detailed natural language
explanations for its findings. This inference pipeline is en-
tirely autonomous and does not involve any additional model
fine-tuning at run-time. To maintain robustness, the agent
applies context anchoring techniques and leverages model
confidence estimation to filter uncertain or low-assurance
outputs. Through this design, the Bug Detection Agent enables
efficient, explainable, and scalable RTL security verification,
thereby significantly contributing to SV-LLM’s mission of
democratizing automated hardware security analysis.

E. Simulation-based Security Bug Validation Agent

The Simulation-based Security Bug Validation Agent is a
vital component of our verification framework, specifically
designed to confirm the presence of security bugs in RTL de-
signs through automated testbench generation and simulation-
based validation. Unlike generic testbench utilities, this agent
treats testbench generation as a purposeful step in validating
security exploitability, ensuring that each generated testbench
meaningfully exercises the suspected vulnerability within a
real simulation environment.

As shown in Figure 9, the validation workflow is structured
into three functional stages, coordinated by specialized sub-
agents: the Test Scenario Generation Sub-agent, the Testbench
Generation Sub-agent, and the Bug Validation Sub-agent.

The Test Scenario Generation Sub-agent initiates the val-
idation process by synthesizing temporally precise and se-
mantically accurate scenarios tailored to activate the specified
vulnerability. Using advanced capabilities of LLMs, the agent
generates contextually coherent test events, detailing precise
timing, relevant signal transitions, and explicit monitoring
points necessary for effective vulnerability observation. An
iterative feedback mechanism from an LLM-based critic fur-
ther refines the generated scenarios, ensuring a comprehensive
alignment with the vulnerability description and enhancing the
likelihood of triggering the intended security flaw.

The Testbench Generation Sub-agent subsequently trans-
forms these validated scenarios into executable, simulation-
ready SystemVerilog testbenches. This agent utilizes an iter-
ative refinement loop driven by automated syntax checking
and feedback integration, thereby ensuring both syntactic
correctness and functional fidelity. By embedding essential
monitoring constructs and validation logic directly into the
generated testbenches, the agent facilitates precise observabil-
ity and accurate detection of discrepancies in the expected
hardware behavior during simulation.

Finally, the The Bug Validation Sub-agent integrates sim-
ulation and analytical capabilities to conclusively verify the



Fig. 9. Overview of Simulation-based Security Bug Validation Agent.

Fig. 10. Overview of Security Property Generation Agent.

presence and correct manifestation of the targeted vulnerabil-
ity. Through careful analysis of simulation results and com-
parison with predefined regions of interest (specific temporal
and behavioral points critical for vulnerability verification),
the sub-agent categorizes outcomes effectively into successful
validation, failed activation, or incomplete definition scenarios.
This robust validation mechanism ensures accurate and reliable
identification of genuine vulnerabilities, significantly reducing
false positives and negatives.

The output generated by the proposed agent framework
includes precisely structured SystemVerilog testbenches that
demonstrate essential characteristics such as syntactic cor-
rectness, functional readiness, and targeted observability. The
testbenches are designed to explicitly activate and validate
described security vulnerabilities, ensuring accurate runtime
verification. Furthermore, comprehensive simulation results
confirm the triggerability of vulnerabilities, providing detailed
insight into the actual hardware behavior during execution and
significantly enhancing the practical value of the generated
validation artifacts.

This agentic design enables our framework to directly
connect the logical description of a bug to its runtime man-
ifestation, closing the loop between LLM-driven testbench
synthesis and simulation evidence. The agent operates without

manual intervention, adapting to various types of bugs and
design structures. Through this approach, the Security Bug
Validation Agent ensures that each reported vulnerability is
not only syntactically plausible but demonstrably observable
in simulation, making the validation process both automated
and trustworthy.

F. Security Property and Assertion Generation Agent

The Security Property and Assertion Generation Agent
is a core component of the SV-LLM framework, developed
to automate the challenging and expertise-intensive task of
formal security property generation. In conventional verifi-
cation flows, writing formal properties requires deep domain
expertise, significant manual effort, and extensive familiarity
with both functional and security aspects of hardware designs.
The challenge is even more pronounced for security property
development, where correctness not only depends on design
behavior but also on a precise understanding of potential threat
models. Recent LLM-based approaches offer promise but often
struggle with syntactic errors and context mismatches. To meet
the demands of modern, fast-paced SoC design cycles, the
Security Property and Assertion Generation Agent provides an
automated, context-aware solution that generates syntactically
correct, semantically valid, and tool-executable security prop-
erties and SVAs. As depicted in Figure 10, the agent operates



Fig. 11. Response of ChatGPT-4o.

Fig. 12. Response of SV-LLM.

through a structured multi-stage pipeline. The process begins
with the Input Design being fed into a Design-to-CWE Map-
ping module. Here, a prompting engine and a specialized LLM
classify the RTL design into predefined structural categories
and associate it with relevant CWE identifiers. This produces
a filtered CWE list that reflects the structural vulnerabilities of
the design. Simultaneously, threat vectors provided by the user
are processed through the Threat Vectors-to-CWE Mapping
module. Using a static lookup approach grounded in domain
knowledge and official CWE repositories, each threat vector
is mapped to its potential CWE vulnerabilities. This yields
a complementary filtered CWE list that captures the security

threats applicable to the design.

The two filtered CWE lists, one derived from structural
analysis and the other from threat modeling, are consolidated
to form the input for the Security Properties and Assertion
Generator. In this stage, another prompting-LLM engine crafts
detailed prompts containing both signal-level design informa-
tion and CWE-specific descriptions. The LLM then generates
(i) detailed security scenarios demonstrating potential vulner-
abilities, (ii) natural language security properties defining pro-
tection objectives, and (iii) executable SVA templates tailored
to the design clocking and reset structures.

Finally, the outputs undergo a Self-Reflection Refinement



Process to ensure formal correctness and practical executabil-
ity. In this step, each generated SVA is automatically validated
for syntactic soundness, signal consistency with the RTL
design, and tool compatibility. Faulty, spurious, or misaligned
properties are systematically filtered out. The final result is a
validated high-quality SVA list, ready for direct use in formal
verification workflows, significantly enhancing the scalability,
correctness, and security rigor of the SV-LLM framework.

V. CASE STUDIES

To showcase SV-LLM’s efficacy in performing the verifica-
tion tasks described in earlier sections, we report case studies
of each verification task in this section.

A. Case Study I: Verification Q/A

In a controlled comparison, we pose an identical question:
“List all frameworks that use fuzzing techniques for verifica-
tion of hardware design” to two chatbots: ChatGPT-4o and
SV-LLM. The responses of these two chatbots are illustrated
in Figure 11 and Figure 12.

The response of ChatGPT-4o, shown in Figure 11, is not
abstract or outdated; it is fundamentally incorrect and riddled
with fabricated information. The model has produced a list
of purported hardware fuzzing frameworks, the majority of
which are complete hallucinations. For instance, frameworks it
presented such as DAGGER, Chisel-Fuzz, SEAFuzz, FuzzSD,
and Verismash do not actually exist. ChatGPT-4o had syn-
thesized these names, randomly combining relevant-sounding
concepts to create fictitious tools. In another instance of
severe hallucination, while a tool named RFUZZ [46] does
exist, the model fabricated a portion of the associated details,
including its publication venue, authors, and reference links.
Furthermore, it misrepresented existing software verification
tools such as V-Fuzz and SymFuzz, incorrectly presenting
them as hardware fuzzing methodologies, demonstrating a
critical lack of domain awareness. For a hardware security
professional, such a response is actively harmful, leading to
wasted time pursuing non-existent or irrelevant research.

In stark contrast, Security Verification Chat Agent has
delivered a response that is accurate, factually grounded,
and directly aligned with the query. Guided by its RAG
pipeline, the agent has retrieved relevant and verified infor-
mation from its specialized knowledge base. It has provided
detailed descriptions of established hardware-focused fuzzing
frameworks such as [46], TheHuzz [47], SoCFuzzer [13],
FormalFuzzer [48], RISCVuzz [4] and more. Each category
and example is explicitly tied to published, peer-reviewed
frameworks. Because its response is guided by retrieved in-
formation, SV-LLM exhibited no hallucination. Beyond mere
categorization, the chat agent’s RAG architecture enabled it to
inject precise, up-to-date details from its curated knowledge
base.

This case study underscores the severe limitations and po-
tential dangers of using general-purpose chatbots for special-
ized hardware verification-related queries. Although ChatGPT-
4o provided a veneer of confidence in its authority, its output

is dangerously misleading. SV-LLM, in contrast, has delivered
depth, accuracy, and operational readiness, demonstrating that
a RAG-based approach with a domain-centric knowledge
base is essential to ensure the integrity of hardware security
workflows.

B. Case Study II: Identification of security assets

As a case study for the Security Asset Identification Agent,
we have chosen the NEORV32 32-bit RISC-V processor, an
open-source SoC comprising a diverse set of core modules
(e.g., CPU, memory, and debug modules), along with several
security-critical peripheral modules such as TRNG, DMA,
and interrupt controllers. The processor specification document
provides detailed configurations and functional descriptions
of various elements within each module, including signals,
registers, and more.

As per the standard execution flow, the agent first ex-
tracted and refined the design hierarchy, pruning modules
like package (neorv32 package), glue (neorv32 top) or im-
age (neorv32 application image) modules. Then, the agent
invoked RAG to derive separate “ Technical Summaries” from
the specification, for each NEORV32 module, i.e. Watchdog
Timer, TRNG, UART etc . For example, the TRNG sum-
mary would capture the textual description of registers/flags
(TRNG CTRL EN, TRNG CTRL FIFO MSB etc.) configu-
ration and their operational interaction at the modular and
processor level.

Next, after being trained with in-context CIA examples
of well-known hardware IPs (e.g., GPIO, AES, etc.), the
agent proposed a list of candidate assets, which were further
refined through self-critique prompts. The final output file for
NEORV32, a sample of which is shown in Listing 1, listed key
assets across security-relevant modules. For instance, the De-
compression Logic, Instruction Fetch Interface and Instruction
Dispatch Interface were identified as assets in the Compressed
Instructions Decoder module. Moreover, the Decompression
Logic was flagged as integrity-critical to translate compressed
instructions accurately. A sample of assets generated for the
NEORV32 is shown in Listing 1. This case study demonstrates
the agent’s ability to autonomously identify security-critical
assets across a complex SoC design using only its specification
document and nothing else, which would greatly reduce the
manual effort traditionally required for this purpose.

C. Case Study III: Generation of Security Property and As-
sertion

To evaluate the Security Property and Assertion Genera-
tion Agent, we applied it to a representative SoC subsystem
(uart dma top) integrating a UART module, a DMA con-
troller, and a debug bridge. The design poses several security
risks due to its plaintext UART echo, unrestricted debug access
to critical configuration registers, and absence of privilege
checks on memory-mapped register writes. These characteris-
tics make it an ideal candidate for testing the agent’s ability to
automatically generate semantically valid and security-aware
SVAs.



1 {
2 "IP": "cpu_cp_crypto",
3 "Assets": [
4 {
5 "Asset_Name": "ShangMi Block Cipher Instructions",
6 "Functionality": "Implements ShangMi block cipher instructions, executing in 6 cycles.",
7 "Security Objective": "Confidentiality",
8 "Justification": "The ShangMi block cipher instructions are used for encrypting data, which is crucial for

maintaining the confidentiality of the data processed by the IP."
9 }

10 ]
11 }{
12 "IP": "pwm",
13 "Assets": [
14 {
15 "Asset_Name": "PWM_CFG_CDIV",
16 "Functionality": "Divides a 10-bit clock for fine frequency tuning.",
17 "Security Objective": "Integrity",
18 "Justification": "The integrity of the PWM_CFG_CDIV field is critical because unauthorized changes could alter

the PWM frequency, affecting the performance and behavior of the PWM-controlled devices."
19 }
20 ]
21 }{
22 "IP": "cpu_decompressor",
23 "Assets": [
24 {
25 "Asset_Name": "Decompression Logic",
26 "Functionality": "Converts compressed 16-bit RISC-V instructions into their full 32-bit equivalents using the

RISC-V ’C’ extension.",
27 "Security Objective": "Integrity",
28 "Justification": "The decompression logic must accurately translate compressed instructions to ensure correct

execution. Any modification could lead to incorrect instruction execution, affecting the processor’s
operation."

29 }
30 ]
31 }

Listing 1. A sample of generated assets for NEORV 32 bit processor

Following the standard agent workflow, the design was
classified as including both a DMA controller and a debug
interface. The agent mapped the design to multiple relevant
CWE classes, such as CWE-284 (Improper Access Control)
and CWE-1244 (Unlocking Debug Features Without Autho-
rization). Simultaneously, the user-supplied threat vector, ”Im-
proper Access Control”, was mapped to overlapping CWE
identifiers. Upon intersecting the two lists, the agent generated
a set of security scenarios, natural language security properties
(NL-Properties), and fully executable SVAs tied to key design
signals such as dbg sel, dbg en, dbg rdata, and the csr q
configuration register.

The generated properties, shown in Listing 2, capture both
confidentiality and access control requirements. For instance,
the first property ensures that sensitive configuration values
such as DMA enable and priority settings are cleared when
debug mode is active. This helps detect bugs where the
design may leak operational states or critical control values
during a debug session. The second property enforces the
masking of the debug output. These assertions serve as guards
against unintentional information exposure through dbg rdata,
a common leakage channel. Additionally, the agent generated
confirmatory properties ensuring that even legitimate debug
interactions do not reveal sensitive data-e.g., assigning nonsen-
sitive, fixed constants like 0xCAFEBABE to confirm writes.

These security properties are particularly valuable for catch-
ing subtle information leakage bugs and access control vi-

olations that are often overlooked in traditional functional
verification. By automatically generating properties grounded
in security context and RTL signal semantics, the agent signifi-
cantly reduces the manual effort and domain expertise required
to build high-assurance security verification environments.
This case study demonstrates the practical value of integrating
the Security Property and Assertion Generation Agent into
SoC verification flows to proactively secure hardware against
privilege escalation and debug interface exploitation.

D. Case Study IV: Detection of Security Vulnerability

The first case study demonstrates the Bug Detection Agent’s
effectiveness in analyzing a password verification module,
Authentication Bypass, designed to authenticate users by com-
paring two 8-bit hash values. The module accepts a clock,
reset, and validation signal as inputs, along with the input
and correct hash values. It produces two outputs: authentica-
tionFlag, indicating a successful authentication if the hashes
match, and nextState, controlling finite state machine (FSM)
transitions. The FSM comprises two main states: Authenticat-
eState, where the module waits for a valid hash input, and
WaitState, which follows a verification attempt.

To evaluate the Bug Detection Agent, the RTL design was
provided as input, as depicted in Figure 13. The agent analyzed
the design’s behavior, particularly the FSM transitions based
on hash validation. The agent identified a critical security
vulnerability: irrespective of the correctness of the authenti-



1 assert property (@(posedge clk)
2 disable iff (!rst_n)
3 (dbg_sel && dbg_en) |->
4 (csr_q.enable_dma == 1’b0 &&
5 csr_q.dma_prio == 3’h0));
6 endproperty
7

8 assert property @(posedge clk)
9 disable iff (!rst_n)

10 (dbg_sel && dbg_en) |->
11 (dbg_rdata == 32’hDEADBEEF
12 || dbg_rdata == 32’hCAFEBABE);
13 endproperty
14

15 assert property (@(posedge clk)
16 (dbg_sel && dbg_en) |->
17 (dbg_rdata == 32’hDEADBEEF));
18 endproperty
19

20 assert property (@(posedge clk)
21 (dbg_sel && dbg_en) |->
22 (dbg_rdata == 32’hCAFEBABE));
23 endproperty

Listing 2. Generated Security Properties for the input UART Design

cation result, the design transitions to the WaitState. Even if
the inputHash does not match the correctHash, the system
progresses without terminating or blocking failed attempts,
violating expected security practices. In a secure design,
failure to authenticate should prevent further access attempts
or trigger a secure reset.

The Bug Detection Agent accurately pinpointed the flaw
in natural language, explaining that this behavior enables an
attacker to attempt multiple credential guesses without proper
blocking. This security hole could be exploited to perform
brute-force attacks on the authentication mechanism, signif-
icantly undermining the integrity of the system. The agent
response not only identified the flaw but also contextualized
it within a larger threat model, highlighting risks associated
with improper FSM transition logic.

This case study highlights the ability of the bug detection
agent to uncover subtle security flaws at the RTL level
and generate human-readable explanations, thus facilitating
rapid vulnerability detection and improving trust in automated
security verification workflows.

E. Case Study V: Validation of security bugs

This case study evaluates the effectiveness of our automated
security verification framework by analyzing an authentication
finite state machine (FSM) module presented in Listing 3. This
RTL design is intended for user authentication via crypto-
graphic hash validation, transitioning between states: IDLE,
AUTHENTICATE, and WAIT STATE. However, it contains
a critical vulnerability described in Figure 14, where the FSM
erroneously transitions to WAIT STATE regardless of the
authentication result, potentially allowing unauthorized access.
To systematically confirm this vulnerability, the Test Case

SV-LLM Response for Hardware Vulnerability De-
tection

The code snippet provided is a part of a Password Ver-
ification Module, specifically designed to authenticate
user credentials. However, it contains a critical flaw in
its implementation of the authentication process, which
could potentially lead to security vulnerabilities.
The issue lies in the fact that the module transitions
to the WaitState regardless of whether the authenti-
cationFlag is set to 1’b1 or 1’b0. This means that if
the inputHash does not match the correctHash, the
authentication process should ideally be terminated,
and the user should be prompted to re-enter their cre-
dentials. However, the code continues to the WaitState,
which could be exploited by an attacker to bypass the
authentication mechanism.
In essence, the flaw allows an attacker to attempt mul-
tiple authentication attempts without being blocked,
increasing the risk of unauthorized access. This is
a significant security concern, as it could enable an
attacker to gain access to sensitive resources or systems
protected by this authentication mechanism.

Fig. 13. SV-LLM Response for Hardware Vulnerability Detection

Generator Agent within this framework constructed detailed
simulation scenarios, illustrated in Figure 15. Initially, the
FSM was reset at 0 ns and the reset signal was released at
10 ns. At 20 ns, a valid authentication scenario transitioned
the FSM from AUTHENTICATE to WAIT STATE with the
authenticationFlag correctly asserted at 25 ns. Subsequently,
at 35 ns, an invalid authentication scenario was introduced.
Incorrect credentials were provided at 40 ns, but notably,
the FSM incorrectly transitioned into WAIT STATE at 45 ns
despite the authenticationFlag being properly deasserted, thus
clearly illustrating the vulnerability.

Following scenario generation, the Testbench Generator
Agent of this framework produced an executable SystemVer-
ilog testbench (Listing 4). The generated testbench included
accurate clock generation, reset sequences, and input stimuli
corresponding precisely to the defined scenarios. Comprehen-
sive logging of FSM states, inputs, and outputs was achieved
using $strobe statements triggered at positive clock edges.

The generated testbench was validated using the ModelSim
simulation environment. The simulation logs captured detailed
time-stamped signal transitions, enabling the creation of a
structured monitor. Subsequently, the Bug Validator Agent
analyzed these results, comparing actual signals against the
golden monitor predictions. At 45 ns, the agent confirmed the
match between simulated and expected outputs, conclusively
verifying the FSM’s incorrect transition into WAIT STATE
under failed authentication, as shown in Figure 16.



1 module Authentication Bypass (
2 input clk,
3 input rst_n,
4 input isHashValid,
5 input [127:0] inputHash,
6 input [127:0] correctHash,
7 output reg authenticationFlag
8 );
9 parameter IDLE = 2’b00, AUTHENTICATE = 2’

b01,
10 WAIT_STATE = 2’b10;
11 reg [1:0] currentState, nextState;
12 always @(posedge clk or negedge rst_n)

begin
13 if (!rst_n) begin
14 currentState <= IDLE;
15 nextState <= IDLE;
16 end else begin
17 currentState <= nextState;
18 end
19 end
20 always @(*) begin
21 nextState = currentState;
22 authenticationFlag = 1’b0;
23 case (currentState)
24 IDLE: nextState = AUTHENTICATE;
25 AUTHENTICATE: begin
26 if (isHashValid) begin
27 if (inputHash == correctHash)
28 authenticationFlag = 1’b1;
29 else
30 authenticationFlag = 1’b0;
31 nextState = WAIT_STATE;
32 end else
33 nextState = AUTHENTICATE;
34 end
35 WAIT_STATE: nextState = IDLE;
36 default: nextState = IDLE;
37 endcase
38 end
39 endmodule

Listing 3. RTL Authentication Module with Bug in State Transition

Security Flaw in FSM

In this revised code, the logic for authenticating a password is incor-
rectly implemented, leading to a critical flaw. Regardless of whether the
authenticationFlag indicates a successful or failed password match,
the system transitions to a waiting state. This flaw could allow unauthorized
users to circumvent security measures by exploiting the incorrect handling of
authentication states, posing a significant security risk.

Fig. 14. Description of the authentication FSM vulnerability

VI. IMPLEMENTATION OF SV-LLM

A. Frontend

The frontend of SV-LLM, as illustrated in Figure 17, em-
ploys a modern React.js technology stack to create a re-
sponsive and intuitive user interface for hardware security
verification tasks. Built with React.js for component structure,
the frontend leverages Context API for comprehensive state
management, handling chat history, configuration settings, and

Step-by-Step Simulation Flow with Signal States

• 0 ns: Assert reset. clk=0, rst_n=0, isHashValid=0, all hash
inputs cleared.

• 10 ns: Release reset. rst_n=1, waiting for clock edge.
• 15 ns: First rising edge. Enters IDLE.
• 20 ns: Apply valid credentials. inputHash = correctHash,

isHashValid = 1.
• 25 ns: Expect authenticationFlag = 1. FSM transitions to

WAIT_STATE.
• 30 ns: Transition from WAIT_STATE back to IDLE.
• 35 ns: Prepare invalid auth case. Reset isHashValid = 0.
• 40 ns: Assert incorrect inputHash with isHashValid = 1.
• 45 ns: BUG: Although authenticationFlag = 0, FSM still enters

WAIT_STATE.
• 50 ns: FSM returns to IDLE. Bug confirmed persistent.
• 55 ns: Edge case: Random hash with isHashValid = 0. Monitor state

behavior.
• 60 ns: Final stability check: no transition, remains in IDLE.

Fig. 15. Test scenarios generated for the FSM bug, with precise timestamps
and signal transitions to trigger and observe the flaw

theme preferences. The user interface features a chat-based
interaction model with specialized markdown rendering for
code and technical content, dedicated components to display
SVAs, and seamless file upload functionality for hardware
design specifications. The UI is styled using TailwindCSS
with a customized design system that includes both light and
dark modes for extended working sessions, while Headless
UI components ensure accessibility and consistent interaction
patterns across the application.

The frontend architecture implements several security-
specific features critical for hardware verification workflows. It
includes contextual input handling with specialized forms that
appear when additional information is needed (such as de-
sign files or vulnerability specifications), a sophisticated SVA
display component that offers syntax highlighting and direct
download of generated assertions, and persistent conversation
history maintained in browser local storage for privacy. The
system supports multiple configurable LLM models through
a settings panel, real-time feedback mechanisms for response
quality, and granular context window adjustments to optimize
token usage. This interface design enables hardware secu-
rity experts to interact with complex verification capabilities
through an accessible, purpose-built environment that abstracts
the underlying complexity while maintaining all relevant tech-
nical context.

B. Backend

The SV-LLM system employs a distributed architecture in
which the React.js front-end interacts with the Flask back-end
through a RESTful API that handles user queries and returns
structured responses. The frontend makes asynchronous HTTP
requests to the backend’s endpoints, transmitting user mes-
sages, file uploads, and configuration settings while maintain-
ing stateless communication patterns in accordance with REST
principles. On the server side, the Flask backend connects
to specialized fine-tuned models hosted on the University of
Florida’s HiperGator supercomputing infrastructure through a



1 module Authentication Bypass_TB;
2 reg clk, rst_n, isHashValid;
3 reg [127:0] inputHash, correctHash;
4 wire authenticationFlag;
5 Authentication_Bypass uut (
6 .clk(clk), .rst_n(rst_n), .isHashValid(

isHashValid),
7 .inputHash(inputHash),.correctHash(

correctHash),
8 .authenticationFlag(authenticationFlag)
9 );

10 initial begin
11 $dumpfile("waveform.vcd");
12 $dumpvars(0, generated_testbench);
13 end
14 always #5 clk = ˜clk;
15 initial begin
16 clk = 0; rst_n = 0; isHashValid = 0;
17 inputHash = 128’h0;
18 correctHash =
19 128’hA5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5;#5

rst_n = 1;
20 #5 clk = 1; #5 clk = 0; isHashValid = 1;
21 inputHash = correctHash;#5 clk = 1;
22 #5 clk = 0; isHashValid = 0;#5 clk = 1;
23 inputHash = 128’h0;
24 #5 clk = 0; isHashValid = 1;
25 inputHash =
26 128’h5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A;
27 #5 clk = 1; #5 clk = 0; isHashValid =

0;#5 clk = 1;
28 inputHash =
29 128’h1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A;
30 #5 clk = 0; inputHash = 128’h0; #5
31 $finish;
32 end
33

34 always @(posedge clk) begin
35 $strobe("Time=%0t |
36 isHashValid=%b | inputHash=%h |
37 correctHash=%h | authenticationFlag=%b |
38 currentState=%b",
39 $time, isHashValid, inputHash,

correctHash,
40 authenticationFlag, uut.

currentState);
41 end
42 endmodule

Listing 4. Testbench Verifying Authentication Bug

Validator Output at Timestamp 45

Expected Region of Interest (ROI):
• isHashValid = 1
• inputHash = 128’h5A5A5A5A5A.......
• correctHash = 128’hA5A5A5A5A5.......
• authenticationFlag = 0
• currentState = WAIT_STATE

Simulated Monitor: All values matched the ROI at time 45 ns. FSM reached
WAIT_STATE despite authentication failure. Conclusion: MATCH — Bug
validated by signal trace and FSM transition behavior.

Fig. 16. Validator output at 45 ns, comparing the expected ROI against
simulation results to confirm the authentication-bypass behavior.

Fig. 17. SV-LLM system architecture

Fig. 18. Comparison of Security Vulnerability Detection Agent with other
Proprietary and Open-source LLMs

secure SSH tunnel. This tunnel creates an encrypted channel
between the backend server and HiperGator compute nodes,
enabling reliable, high-performance model inference without
requiring direct Internet exposure of the supercomputer’s re-
sources. The SSH tunneling mechanism allows the system to
leverage HiperGator’s computational capabilities for resource-
intensive model operations while maintaining security and in-
tegration with the lightweight Flask API serving the frontend.

VII. RESULT ANALYSIS

A. Detection of Security Vulnerability

The detection accuracy results for proprietary, fine-tuned,
and non-fine-tuned open-source models are presented in Fig-
ure 18. Among these, the Security Vulnerability Detection
Agent, a fine-tuned Mistral-7B-Instruct model developed as
part of the SV-LLM framework, achieved a detection accuracy



of 84.8%, significantly outperforming its non-fine-tuned coun-
terpart, which achieved only 42.5%. This 42.3 percentage point
improvement underscores the effectiveness of our domain-
specific fine-tuning strategy in equipping open-source LLMs
with specialized RTL security reasoning capabilities.

While proprietary models such as GPT-4o (91.3%) and
o1 (86.9%) lead in absolute accuracy, their closed-source
nature and resource demands make them less practical for
widespread deployment. In contrast, the Security Vulnerability
Detection Agent offers a transparent, cost-efficient alternative
that approaches proprietary-level performance.

Other fine-tuned open-source models, such as Llama-3.1-8B
and Llama-3.2-3B, also show improved accuracy after fine-
tuning, reaching 74.4% and 68.7% respectively. This trend
highlights the value of domain adaptation. Conversely, non-
fine-tuned models average around 40% accuracy, confirming
that general-purpose LLMs lack the RTL-specific knowledge
required for effective security vulnerability detection.

Model capacity also plays a role—larger models generally
yield higher accuracy post-fine-tuning. However, the Security
Vulnerability Detection Agent demonstrates that parameter-
efficient fine-tuning on a relatively small open-source model
can still yield strong performance while maintaining compu-
tational efficiency.

These findings validate the SV-LLM framework’s design
goal: enabling accurate, scalable, and explainable RTL security
verification using tailored LLM agents. The success of the
Security Vulnerability Detection Agent reinforces the potential
of fine-tuned open-source models to serve as practical and
robust components in automated hardware security analysis
pipelines.

B. Bug Vallidation

To evaluate the efficacy of the proposed methodology for the
bug validation agent, extensive experiments were conducted
on a diverse set of RTL designs incorporating various types
of security vulnerabilities. The primary metric employed was
the bug-validated testbench generation rate, representing the
proportion of testbenches that successfully triggered and val-
idated the intended vulnerabilities.

The experimental results shown in Figure 19 clearly demon-
strate the superior performance of our proposed framework
compared to the zero-shot prompting approaches. Specifically,
our agent-driven framework achieved significantly higher bug
validation rates: 87% with the GPT-4o model, 82% with the o1
model, and 89% with the o3-mini model. In stark contrast, the
baseline zero-shot prompting methods yielded considerably
lower bug validation rates, with GPT-4o at 18%, o1 at 20%,
and o3-mini at 43%. This performance disparity underscores
the effectiveness of the structured, iterative refinement, and
targeted prompting strategies employed by our agent frame-
work.

The observed high validation rates underscore the robust-
ness and model-agnostic nature of the agent framework,
emphasizing its capability to consistently produce accurate,
executable testbenches capable of precisely validating complex
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Fig. 19. Comparison of bug-validated testbench generation rates across
different approaches. Our Work consistently outperforms baseline prompting
methods for each LLM backend, demonstrating significant improvements in
security-focused RTL validation.

security vulnerabilities across different LLM configurations.
This outcome clearly addresses and overcomes the limitations
of simplistic direct-prompting strategies, reinforcing the prac-
tical value and reliability of the proposed agentic validation
pipeline.

VIII. RELATED WORKS & COMPARISONS

Related works can be broadly categorized into two di-
mensions: (i) traditional, non-LLM-based approaches applied
to various aspects of hardware security verification, and (ii)
emerging LLM-based techniques recently introduced in this
domain. In the following discussion, we analyze each category
in turn, aligning them with the six verification dimensions
addressed by SV-LLM.

A. Traditional verification approaches

Asset identification in hardware security has been explored
through various methodologies to leverage security-critical
elements for policy enforcement and vulnerability analysis.
In [52] and [56], the authors leverage designated hardware
security assets to enforce security policies directly within the
design flow. In [54] and [55], designers analyze confidentiality
and integrity violations by inserting DfT logic and evaluat-
ing power side-channel leakage based on selected security
assets. Ray et al. [53] propose an automated framework for
identifying security assets across diverse threat scenarios and
exploring corresponding adversarial exploits. The study in [57]
performs a comprehensive security verification of the OpenTi-
tan hardware root of trust, including systematic identification
of its critical security assets.

Recent efforts in hardware security have focused on devel-
oping structured threat modeling frameworks to assess and
mitigate vulnerabilities in different stages of the hardware
lifecycle. Halak et al. [49] introduced Cist, a lifecycle-wide
threat modeling framework for hardware supply chain se-
curity that systematizes emerging attacks and defenses and



TABLE I
SECURITY VERIFICATION CAPABILITY COMPARED BETWEEN DIFFERENT METHODS.

Method Asset
identification

Threat
modeling

RTL bug/vuln.
detection

Testbench
generation

Property
generation

Threat Model based Analysis
[49]–[51]

✗ ✓ ✗ ✗ ✗

Asset Identification based
Analysis [52]–[57]

✓ ✗ ✗ ✗ ✗

Static RTL verification (e.g.
formal [58]–[60] and/or concolic)

[5], [8]

✓ ✗ ✓ ✗ ✓

Dynamic RTL verification (e.g.
fuzz [46], [47], pen testing [17])

[9])

✗ ✗ ✓ ✗ ✗

ML-based testbench generation
[61], [62]

✗ ✗ ✗ ✓ ✗

SV-LLM (this work) ✓ ✓ ✓ ✓ ✓

validates countermeasures through application-specific case
studies. Rostami et al. [50] proposed comprehensive hardware
threat models and quantitative security metrics to assess cir-
cuit resilience against malicious modifications and to enable
systematic comparisons of defense techniques. Di and Smith
[51] developed a threat modeling methodology for integrated
circuits that characterizes potential malicious logic insertions
and guides checking tools to assess the trustworthiness of the
IC.

There have been several different approaches for vulnerabil-
ity detection at the RTL stage. Machine learning-based hard-
ware verification techniques [63] often encounter limitations
stemming from design dependency and data scarcity, which
restrict their generalizability and effectiveness. Recently, dy-
namic verification techniques such as fuzzing [46], [47], [64]
and penetration testing [16], [17] have gained attention for
security verification at the RTL level. In parallel, Concolic test-
ing [8], [9], a static analysis approach, has also been applied
for security validation in this context. However, in contrast to
the Security Vulnerability Detection Agent integrated within
SV-LLM, these techniques typically require varying levels of
expert manual intervention, introducing a higher likelihood of
human error and increasing the overall verification effort and
time.

Several earlier works proposed automated testbench gener-
ation using genetic algorithms [62], [65], [66] and feedback-
driven, coverage-directed techniques that integrate machine
learning to bias stimulus generation toward coverage gaps.
These approaches operate under the premise that learning
mechanisms can effectively analyze existing test data and
coverage metrics to guide the generation of new stimuli aimed
at achieving comprehensive coverage. Among these, [61], [67]
employ Bayesian networks to improve the coverage efficacy
of automatically generated testbenches. However, unlike the
Security Bug Validation agent in SV-LLM, such approaches
focused solely on functional coverage and did not address
security bug validation.

Recent property-driven hardware security approaches have

focused on specifying and verifying security properties within
standard hardware design workflows. Hu et al. [59] introduced
a novel property specification language to enforce information
flow and statistical security properties, enabling their trans-
lation and verification using existing hardware design tools.
Farzana et al. [58] developed a comprehensive set of reusable,
architecture-agnostic security properties and derived quantita-
tive metrics to guide security-aware design rule enforcement in
SoC verification. Witharana et al. [60] proposed an automated
framework for generating tailored security assertions that
streamline vulnerability-specific verification in complex SoC
designs.

A summary of these comparisons is presented in Table I.
As illustrated in the table, SV-LLM demonstrates a uniquely
comprehensive scope, being the only approach that supports
all five critical verification dimensions. Beyond this functional
breadth, SV-LLM further offers significant advantages in au-
tomation and real-time interactivity (provided through its chat
agent), substantially reducing reliance on manual expertise and
accelerating the overall verification process.

B. LLM-based methods in hardware security

LLMs have seen increasing adoption in hardware verifi-
cation, particularly for tasks related to security analysis and
validation. For example, Saha et al. [19] investigated the
applicability of LLMs across a range of SoC security tasks
and highlighted key limitations, such as the difficulty of
processing large hardware designs due to restricted context
length. In a related effort, Bhunia et al. [68] used LLM to
identify security vulnerabilities in SoC designs, map them to
relevant CWEs, generate corresponding assertions, and enforce
security policies, demonstrating efficacy on open-source SoC
benchmarks. Fu et al. [69] curated a dataset of RTL defects and
their remediation from open-source projects, training medium-
sized LLMs to detect bugs; however, large RTL files were
omitted due to token limitations. Additionally, Saha et al.
[23] used prompt engineering to uncover 16 distinct security
vulnerabilities in FSM designs.



In parallel, several specialized LLM-based approaches have
emerged, each targeting specific aspects of hardware verifica-
tion. RTL code debugging frameworks such as UVLLM [70],
RTLFixer [71], HDLDebugger [72], LLM4DV [73], VeriAssist
[74], and VeriDebug [75] leverage LLMs to detect and explain
RTL-level issues, including syntactic, structural, and seman-
tic inconsistencies. Other frameworks focus on identifying
vulnerabilities in RTL designs, including SoCureLLM [24],
SecRTL-LLM [23], and BugWhisperer [26]. Assertion-based
verification techniques have also used LLMs to automatically
generate functional and security properties, typically encoded
as SVAs, that enable formal verification against intended
behaviors and security requirements [20], [45], [76]–[81]. In
addition, frameworks such as ThreatLens [25] have focused on
LLM-driven threat modeling and policy generation to inform
secure hardware design and validation practices.

Again, we want to note that none of these approaches offer
the same versatility and breadth of applicability as SV-LLM.

IX. CONCLUSION

In conclusion, this work has introduced SV-LLM, a novel
multi-agent AI assistant framework that leverages large lan-
guage models to automate key stages of SoC security verifi-
cation. By decomposing the workflow into specialized agents,
responsible for answering security verification questions, secu-
rity asset identification, threat modeling, property generation,
vulnerability detection, and simulation-based bug validation,
SV-LLM effectively reduces manual effort and accelerates
the discovery and mitigation of security flaws early in the
design cycle. Our case studies on representative SoC designs
demonstrate that SV-LLM not only streamlines the verification
process but also enhances coverage and accuracy compared to
traditional, manual methods. Beyond its immediate improve-
ments in efficiency and scalability, SV-LLM lays the ground-
work for a more integrated approach to hardware security. We
believe that SV-LLM represents a significant step toward fully
automated, intelligence-driven security verification, capable of
evolving alongside the increasing complexity of modern SoC
architectures.
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