
ar
X

iv
:2

50
6.

20
41

3v
1

 [
cs

.L
G

]
 2

5
Ju

n
20

25

Client Clustering Meets Knowledge Sharing:
Enhancing Privacy and Robustness in Personalized

Peer-to-Peer Learning
1st Mohammad M Maheri

Imperial College London
London, UK

m.maheri23@imperial.ac.uk

2nd Denys Herasymuk
Imperial College London

London, UK
d.herasymuk24@imperial.ac.uk

3rd Hamed Haddadi
Imperial College London

London, UK
h.haddadi@imperial.ac.uk

Abstract—The growing adoption of Artificial Intelligence (AI)
in Internet of Things (IoT) ecosystems has intensified the need
for personalized learning methods that can operate efficiently
and privately across heterogeneous, resource-constrained devices.
However, enabling effective personalized learning in decentralized
settings introduces several challenges, including efficient knowl-
edge transfer between clients, protection of data privacy, and
resilience against poisoning attacks. In this paper, we address these
challenges by developing P4 (Personalized, Private, Peer-to-Peer)—
a method designed to deliver personalized models for resource-
constrained IoT devices while ensuring differential privacy and
robustness against poisoning attacks. Our solution employs a
lightweight, fully decentralized algorithm to privately detect client
similarity and form collaborative groups. Within each group,
clients leverage differentially private knowledge distillation to
co-train their models, maintaining high accuracy while ensuring
robustness to the presence of malicious clients. We evaluate P4 on
popular benchmark datasets using both linear and CNN-based
architectures across various heterogeneity settings and attack
scenarios. Experimental results show that P4 achieves 5% to 30%
higher accuracy than leading differentially private peer-to-peer
approaches and maintains robustness with up to 30% malicious
clients. Additionally, we demonstrate its practicality by deploying
it on resource-constrained devices, where collaborative training
between two clients adds only ≈ 7 seconds of overhead.

Index Terms—peer-to-peer machine learning, decentralized
learning, personalization, differential privacy, poisoning attacks.

I. INTRODUCTION

The integration of Artificial Intelligence (AI) into Internet of
Things (IoT) ecosystems is reshaping how connected devices
operate by enabling autonomous decision-making and real-time
data analysis at scale. In healthcare, for example, AI empowers
clinical staff to continuously monitor patients’ physiological
data throughout the hospital, detect early signs of deterioration,
and issue timely alerts—ultimately helping to prevent adverse
outcomes. The diverse nature of data—for example, significant
differences in electrocardiograms resulting from varying levels
of patient health—collected by different devices is known as
client data heterogeneity. This heterogeneity often causes a
single global model to perform poorly across varying data
distributions since each client optimizes towards its own
distinct local empirical minimum, leading to divergent local
optimization directions [1], [2], [3], [4]. Recently, growing

interest has emerged in addressing data heterogeneity using
personalized learning [5], [6], [7], which adapts each client’s
model to its specific data or task while still utilizing shared
knowledge across clients.

Fully decentralized or peer-to-peer (P2P) learning has
emerged as a promising direction for enabling personalized
learning in heterogeneous environments such as those found in
IoT ecosystems. In contrast to centralized federated learning
(FL), P2P learning eliminates the need for a central server
and distributes computation among participating clients [8],
[5]. This approach leverages direct communication between
clients with their own data distributions, offering potential
benefits such as faster convergence [9], [5] and enhanced data
privacy compared to centralized FL shi2023improving[10],
[11]. In the context of IoT, where devices often operate under
bandwidth and power constraints, P2P learning allows edge
devices to collaboratively train models by communicating
only with a limited number of neighbors, depending on their
communication and computational capabilities [12], [13].

Personalized decentralized learning faces three key chal-
lenges. The first is clustering, where clients seek similar
peers to share knowledge. Clustering algorithms [1], [14]
group clients with similar data distributions to train localized
models, improving accuracy. However, most methods rely on
predefined cluster counts and require a central server [15],
[16], [17], [18], which is impractical due to communication
bandwidth constraints. More critically, these approaches risk
privacy leaks as clients share data for clustering. The second
challenge is data privacy—clients’ data often contains sensitive
information, requiring strong privacy guarantees. A common
solution is adding differential privacy (DP) noise and clipping
gradients [19], [20], [21], [22], but this degrades model
performance [23], [24], [20]. In P2P settings, this effect is
amplified due to fewer model updates (gradients) that are used
in model aggregation [25]. Finally, the third challenge is the
presence of malicious clients affected by data poisoning [26]
or model poisoning [27], [28], [29], [30] attacks, which
can degrade the final model performance. Due to its fully
decentralized nature, P2P learning is highly vulnerable to
poisoning attacks, in which malicious clients can exploit the

https://arxiv.org/abs/2506.20413v1

system by sending carefully crafted local models to their
neighboring peers. A common mitigation method is to use
recent decentralized FL (DFL) defenses [31], [32], [33] or
adapt existing centralized FL ones [34], [35], [36], [37] to
DFL. However, a defense that is not tailored to personalized
P2P settings may fail in scenarios with highly heterogeneous
clients and can introduce additional computational overhead if
each client performs robust aggregation individually [38].

Although recent efforts in the FL community have introduced
privacy into the P2P setting [25], [39], [40], [41], to the best
of our knowledge, no existing fully decentralized framework
explicitly addresses the challenge of ensuring differential
privacy under heterogeneous client data distributions typical
of IoT environments. There is a growing trend of applying
differential privacy to improve the privacy-utility trade-off in
the P2P setting [25], [39]. However, these methods are less
effective when clients have highly heterogeneous data (see
Section V-B) and typically assume that clients are only curious
about other clients’ data while honestly sharing their local
model gradients. While recent frameworks [42], [43], [40],
[41], [44] make progress in integrating privacy preservation
and resilience to data poisoning in P2P settings, they suffer
from several limitations. Most notably, they neglect client
heterogeneity, offer limited improvements in the privacy-utility
trade-off, and often fail to address model poisoning attacks,
which are particularly threatening in DFL [31]. However,
in scenarios with highly data-heterogeneous clients where
personalization is important, incorporating the similarity of the
client’s data distribution into the training procedure can improve
both privacy-utility amplification [45], [16] and robustness
against poisoning attacks [46].

In this paper, we propose P4 (Personalized, Private, Peer-to-
Peer)1, a method designed to deliver personalized models for
resource-constrained IoT devices while ensuring differential
privacy and robustness against poisoning attacks. In P4, clients
first group themselves in a fully decentralized manner using a
similarity metric based on their model weights. Once grouped,
clients perform collaborative training with upper-bounded data
privacy risk and robust aggregation against adversarial model
updates. To enhance privacy-utility trade-offs, P4 incorporates
the proxy model [47] to facilitate knowledge distillation
among clients. This separation between the local and proxy
models results in fast convergence and personalized parameter
adaptation for each client (as shown in Section V-B), while
also enhancing resilience against data poisoning attacks (as
discussed in Section IV-E). To mitigate model poisoning
attacks, P4 employs a combined defense strategy based
on m-Krum [36] and anomaly-detection [46], which
utilizes client similarity within each group to filter out malicious
updates. P4 is well-suited for IoT deployments that involve
numerous clients and non-stationary data distributions, where
communication and computational efficiency are critical [48].

1https://anonymous.4open.science/r/private decentralized learning-F413

Our main contributions are summarized as follows:
• We design P4 to address both data heterogeneity and

poisoning threats in a differential private P2P setting tailored
for IoT environments. P4 enables clients with similar data dis-
tributions to collaboratively train, leveraging KL divergence-
based regularization between local and proxy models to
facilitate knowledge transfer. Its defense mechanism uniquely
incorporates knowledge distillation, anomaly detection, and
m-Krum to improve robustness.

• We propose a lightweight and decentralized procedure that
allows clients to privately group themselves for collaborative
training, using the ℓ1-norm between their model weights as
a similarity metric.

• We conduct a comprehensive empirical study of personalized
P2P learning under differential privacy and adversarial
attacks, covering a range of privacy budgets, model architec-
tures, data heterogeneity types, and poisoning scenarios. Our
results show that P4 consistently outperforms state-of-the-art
baselines by 5%–30% in accuracy and tolerates up to 30%
malicious clients, demonstrating both strong privacy-utility
trade-offs and robustness.

• To evaluate the feasibility of deploying P4 in real-world
IoT settings, we implement it on resource-constrained edge
devices using Raspberry Pis. Our results show minimal
overhead in runtime, memory usage, power consumption,
and communication bandwidth, with collaborative training
between two clients adding only ≈ 7 seconds of overhead.

II. BACKGROUND AND RELATED WORK

A. Private Decentralized Learning

In decentralized learning, preserving both data and local
model privacy is essential, as deep neural networks can
unintentionally memorize training data, making them vulnerable
to model inversion attacks [49], [50]. To address this, several
privacy-preserving techniques have been developed to protect
plaintext gradients. Differential privacy has been applied to
mitigate privacy risks [19], [20], [21], [22], but the added
noise can degrade model performance [51]. Homomorphic
encryption offers an alternative by encrypting model weights
or gradients [52], [53], [54], though it introduces significant
computational and communication overhead [55], limiting its
practicality for resource-constrained edge devices. Secure multi-
party computation (MPC) techniques [56], [57], [58] preserve
privacy through collaborative computation among multiple
parties, while keeping their individual inputs confidential, but
are similarly hindered by high communication costs. More
recently, trusted execution environments (TEEs) have been
explored [59], [60], [61], though their reliance on special-
ized hardware and associated computational overhead restrict
widespread adoption.

B. Personalized Decentralized Learning

The presence of non-IID client data necessitates person-
alization in decentralized learning, shifting focus from a
single global model to customized models for each client.
[7] used regularization to keep personalized models close

https://anonymous.4open.science/r/private_decentralized_learning-F413

to the global optimum, while [62] proposed computing an
optimal weighted combination of client models for personalized
updates. Another line of work clusters clients to improve
performance [45], [16], with aggregation performed within
clusters to avoid negative transfer that may result from merging
dissimilar models [1]. A key challenge in federated clustering
is measuring client similarity, typically based on losses [45],
[1], gradients [16], [14], or model weights [15], [16], [17], [18].
However, aside from [1], these methods rely on a centralized
server, limiting their applicability in P2P settings. Moreover,
most approaches, including [1], overlook privacy risks during
similarity computation. Loss-based methods, in particular,
require each client to receive other clients’ data and compute
the loss of its data on the received model to compute its
similarity with other clients, incurring high communication and
computation overhead. Moreover, most approaches assume
prior knowledge of the number of client clusters, leading
to degraded clustering performance if this number is mis-
estimated.

C. P2P Learning

Several studies have explored decentralized federated learn-
ing and proposed techniques to enhance its performance.
Some employed Bayesian methods to model shared knowledge
among clients in a decentralized setting [63], [12], while [64]
introduced a server-less federated learning framework designed
for dynamic environments. To reduce communication and
computation overhead, [9] applied quantization techniques,
and [65] leveraged sparse training methods to achieve similar
efficiency gains.

To address the challenge of heterogeneous data distributions
in P2P learning, several personalization strategies have been pro-
posed. [65] used personalized sparse masks to tailor models to
individual clients. [66] introduced a decentralized partial model
training approach using the Sharpness Aware Minimization
(SAM) optimizer [67] to mitigate model inconsistency. This
was further improved by combining SAM with Multiple Gossip
Steps (MGS) to address both inconsistency and overfitting [10].
[68] tackled data heterogeneity by employing weighted aggre-
gation of model parameters based on the Wasserstein distance
between output logits of neighboring clients.

However, most existing peer-to-peer learning approaches rely
on random or predefined communication topologies, without
evaluating whether the selected links are actually beneficial for
collaboration [66], [65], [10], [25], [69]. While [68] attempted
to build a dynamic topology based on client similarity, their
method only considers output logit similarity and does not
account for the underlying data distribution. This highlights
the need for more intelligent and adaptive strategies for link
selection that can improve collaboration effectiveness and
accelerate convergence in environments with heterogeneous
client data.

Furthermore, while differential privacy has been widely
explored in centralized FL [24], a significant gap remains
in addressing both data and model privacy in P2P learning
settings [66], [70], [65], [68], [10]. Ensuring the privacy of

client data is essential for maintaining trust and security
in decentralized frameworks. Several approaches have been
proposed to enhance privacy in peer-to-peer learning. [71]
investigated the trade-off between utility and privacy in peer-to-
peer FL. [25] introduced proxy models to enable efficient
communication without a central server and incorporated
differential privacy analysis to strengthen privacy guarantees.
However, the added noise from differential privacy can degrade
model performance, particularly when client data is non-
IID, and merging models from divergent distributions may
further harm accuracy. More recently, [39] extended DP-
SGD to decentralized learning, aiming to reach consensus
on model parameters across clients. Yet, this consensus model
may underperform in non-IID scenarios where personalized
models are more appropriate. Another direction, explored
by [69], applied gradient encryption to protect privacy and
used succinct proofs to verify gradient correctness. Despite
its security benefits, this approach introduced computational
and communication overhead [72] and did not address data
heterogeneity. These limitations highlight the need for future
research to focus on privacy-preserving mechanisms that not
only safeguard sensitive information but also account for
the heterogeneity and personalization needs inherent in P2P
learning.

Several recent works [42], [43], [40], [41], [44] have
proposed frameworks for P2P learning that assume a stronger
threat model, addressing both privacy and malicious security
concerns. For instance, Biscotti [40] is a fully decentralized P2P
system for privacy-preserving and secure federated learning,
leveraging blockchain, differential privacy, and m-Krum [36]
for secure aggregation. However, this framework is limited
to IID data and does not address client heterogeneity in
the context of privacy preservation and robustness against
poisoning attacks. BlockDFL [43] is another ledger-based
system that combines gradient compression and median-based
testing with m-Krum to adapt privacy mechanisms for data-
heterogeneous clients and improve robustness against data
poisoning. Nevertheless, it considers only a label-flipping
attack [26], which is regarded as one of the least challenging
poisoning attacks [73]. Moreover, their evaluation of malicious
security is restricted only to IID clients. BEAS [42] is another
blockchain-based framework that integrates differential privacy,
gradient pruning, and Foolsgold [37] with m-Krum to defend
against both privacy and security threats. However, it lacks
comparative analysis of its privacy-preserving approach and,
like BlockDFL, evaluates performance solely under a label-
flipping attack. These limitations reveal a significant gap in DFL
frameworks: the lack of solutions that simultaneously support
data-heterogeneous clients and operate under a strong threat
model encompassing both privacy preservation and protection
against data poisoning and model poisoning attacks.

III. PROBLEM STATEMENT

A. System Model

We consider M clients {ci}Mi=1. Each client, ci, holds a
local dataset including data points and corresponding labels

{Xi, Yi} ∼ Di drawn from its personal distribution Di. Each
ci aims to learn personalized parameters wi to minimize the
expected loss over the client’s data distribution:

Fi(wi) = E[L(x,y)∼Di
(wi; (x, y))] (1)

To find parameter to minimize the expected loss, each client
seeks to determine an optimal parameter set, denoted as w∗

i ,
within the parameter space wi ∈ Rd. This optimization aims
to minimize the expected loss over the client’s own local data
distribution ℓ(fi, y), represented in Equation 2:

w∗
i = arg min

wi∈Rd
E(x,y)∼Di

ℓ(fi(wi;x), y)] (2)

However, solely using client’s local dataset is not sufficient
to find a generalizable parameter for each client, so local
training leads to poor generalization performance [5], [7]. In
order to achieve good generalization, each client is willing to
collaborate and share knowledge (i.e., their model gradients)
with a subset of other clients. We note that the goal of the
learning is not to reach a ”global consensus” model, but for
each client to obtain personalized models that perform well on
their own data distributions.

B. Threat Model

We consider both privacy and security threats in a P2P
setting without a trusted third party or a centralized server.

From a privacy perspective, we assume semi-honest clients,
as in prior work [42], [40], who may attempt to infer sensitive
information from other clients’ private training datasets, but
they do not deviate from the training protocol. We assume
that clients communicate exclusively over encrypted channels,
preventing third-party adversaries from eavesdropping or tam-
pering with the communication. Additionally, clients do not
share data directly with others in the network. To mitigate the
risk of sensitive information leakage through model updates
and to ensure a differential privacy guarantee, each client is
assigned a fixed privacy budget in advance.

From a security standpoint, we consider adversaries in a
semi-honest setting, where clients can deviate from the protocol
specification by contributing malicious updates designed to
degrade the performance or integrity of the final model. In
particular, our threat model assumes the adversary is capable
of orchestrating Sybil attacks [74], thereby controlling multiple
peers within the network. However, consistent with prior
literature [40], [41], we constrain the adversary’s stake to
no more than 30% of the total participants in the network.
Specifically, our threat model includes prevalent attack scenar-
ios investigated in recent privacy-preserving and peer-to-peer
FL frameworks [42], [40], [41], [43]. These include label
flipping [26], byzantine-zero [27], byzantine-random [27], and
byzantine-flip [28]. These attacks collectively represent critical
and realistic threats faced by distributed machine learning
protocols, particularly in peer-to-peer and privacy-preserving
contexts. In our label flipping setting, client data is poisoned
by flipping all labels as in [26]. Byzantine attacks corrupt
local model updates by setting weights to zero, random values,

or flipped values using wg + (wg − wl), where wg is the
global model, and wl is the real local model. Additionally, we
assume an attacker may have knowledge of the system design,
particularly the group formation phase (see Section IV-B).

IV. THE DESIGN OF P4

In this section, we describe the design of P4 in detail.
Section IV-A outlines key challenges and provides an overview
of the framework. Section IV-B describes how clients form
groups based on model weight similarity, while Section IV-C
explains the collaborative training algorithm inside each group
based on local and proxy models with differential privacy. Next,
Section IV-D defines the privacy goals and formal guarantees.
Finally, Section IV-E introduces a combined defense against
poisoning attacks based on knowledge distillation, anomaly
detection, and m-Krum.

A. Overview

P4 aims to provide a personalized model for each client
under DP guarantees and robustness to poisoning attacks, while
remaining suitable for deployment on resource-constrained IoT
devices. Based on the problem statement in Section III, we
identify four key challenges.

The first challenge is achieving effective client personal-
ization while still allowing clients to benefit from shared
knowledge in a system without a central server. This requires
a clustering mechanism to group clients with similar data
distributions. However, enabling such collaboration introduces
the second challenge: maintaining data privacy. Any knowledge
exchanged between clients to enhance local model training
must not violate differential privacy. Following prior work,
this can be achieved by adding Gaussian noise to shared
gradients, but this comes at the cost of performance degra-
dation. In a fully decentralized setting, fewer clients can
participate in collaborative training compared to centralized
federated learning, making the impact of noise more severe,
as demonstrated in Section V-B. The third challenge stems
from the limited computational and communication resources
available to clients. The learning algorithm must converge
efficiently within a limited number of iterations, and the
knowledge-sharing method should minimize both computation
and communication overhead. Finally, malicious clients affected
by poisoning attacks can degrade clients’ model performance.
The system must incorporate an effective defense mechanism
that aligns with privacy and personalization requirements
without introducing excessive computational costs.

Figure 1 illustrates the overall design of the P4 approach,
which addresses these challenges. It operates in two phases:
group formation and co-training. During group formation,
clients privately identify peers with similar data distributions
and form groups accordingly. In the co-training phase, clients
train their local and proxy models and share locally computed
data gradients with added noise only within their group. A
group aggregator then filters out adversarial model updates,
aggregates the remaining gradients, and sends the resulting
global model update back to the clients. The following sections

Fig. 1. The overall design of the P4 approach. Clients employ local (ϕ) and
proxy (θ) models, aggregating only the proxy model.

provide a more detailed explanation of the system. A table
with all the notation is provided in Appendix A

B. Phase 1: Group Formation
In federated learning, similar data distributions among clients

plays an especially important role for model convergence [75],
[76], [77]. Selecting groups of clients for co-training with-
out considering the underlying data heterogeneity—such as
through random clustering—can lead to performance worse
than standalone local training [78], [1]. Therefore, identifying
clients with similar data distributions is critical for effective
collaborative training.

A direct measure of data distribution similarity across decen-
tralized clients can be challenging due to privacy constraints.
Inspired by prior works [45], [16], we use the similarity
of client model parameters as an effective proxy. Specifi-
cally, we measure dissimilarity using the ℓ1-norm between
model weights:

dissimilarity(i, j) = ∥wi −wj∥1. (3)

The intuition behind using model weight similarity as a proxy
stems from the observation that similar model parameters imply
similar gradient behaviors. Specifically, consider two clients,
ci and cj , each with personalized model parameters wi and
wj , respectively. The gradient of the loss function for client
cj , evaluated at client ci’s parameters, can be approximated
using a first-order Taylor expansion around wj :

∇wiFj(wi) = ∇wjFj(wj) +∇2
wj

Fj(wj)(wi − wj)

+O(|wi − wj |2). (4)

The Hessian matrix ∇2
wj

Fj(wj) characterizes the curvature
of the loss landscape around wj , assigning importance to each
parameter dimension. Thus, the approximation error incurred
by client ci when leveraging gradients from client cj is closely
related to the parameter distance:

Error ≈ 1

2
(wi − wj)

T∇2
wj

Fj(wj)(wi − wj). (5)

Minimizing the distance between model parameters directly
reduces the approximation error, thereby improving the accu-
racy and effectiveness of collaborative training. To ensure

computational efficiency—crucial for resource-constrained
decentralized IoT environments—our method avoids explicit
Hessian computation and instead focuses on minimizing model
parameter differences. This theoretical foundation motivates
our client similarity metric and underscores the importance of
parameter proximity for effective collaborative training and
personalization in decentralized settings.

To effectively capture meaningful model differences re-
flecting local data distributions, each client initially performs
minimal local training—specifically, one epoch over its local
dataset—to ensure parameter vectors reflect local data character-
istics. This local training phase incorporates gradient clipping
and differential privacy noise, as detailed in Section IV-D.
Moreover, since models are only partially trained and have not
converged, they primarily encode coarse-grained information
about the general direction of the data rather than specific
details, which significantly reduces vulnerability to attacks
such as gradient leakage or data reconstruction. Empirical
results (Section V-B) and theoretical analysis (Appendix F)
further confirm that even this minimal training is sufficient to
distinguish between substantially different data distributions
without incurring major privacy risks.

Clients are grouped based on a dissimilarity metric. Let M
denote the total number of clients in the network. The grouping
structure is represented by a binary matrix G ∈ 0, 1M×M ,
where Gij = 1 indicates that clients i and j belong to the
same group, and Gij = 0 otherwise. The grouping objective
is then defined as follows:

min
G

M∑
i=1

M∑
j=1

I[G(i, j) = 1]∥wi −wj∥1 (6)

such that:
M∑
j=1

Gi,j = V for i = 1, 2, . . . ,M (7)

where G is the collaboration graph (symmetric matrix)
and V defines a group size (due to limited computation and
communication of each client). We note that P4 enforces
mutual collaborative training, implying that communication
links between clients are bidirectional, and the matrix G should
be symmetric.

To construct the collaboration graph, G, in a decentralized
manner, we employ a greedy approach to identify the V most
similar models for each client (see Algorithm 1). First, each
client computes its similarity with H randomly selected clients
(H ≪ V) using the model similarity metric in Equation 3 (lines
1-7). Next, if two clients mutually select each other as their
most similar among the H samples, they form a two-member
group (lines 8-16). Unassigned clients, such as client t, join
their most similar ungrouped client k, regardless of whether
t is also k’s most similar sample (line 17). Any remaining
ungrouped clients are paired randomly, ensuring all clients are
part of exclusive two-member groups (line 18). Within each
group, clients share their computed similarities. The group
then estimates its similarity with other groups as the maximum

Algorithm 1: Client Grouping Based on L1-Norm Similarity
Input: Set of clients M , group size V , random subset size H .
Output: A binary matrix G with client grouping based on

ℓ1-norm.
// Step 1: Compute l1-norm similarity

among clients
1 mcs← ∅ // Dictionary: client → list of similarity tuples
2 foreach client i ∈M do
3 foreach client j ∈ random subset S ⊂M \ {i}, |S| = H

do
4 if (i, j) /∈ mcs then
5 mcs[i]← mcs[i] ∪ {(j, dissimilarity(xi,xj))}
6 mcs[j]← mcs[j] ∪ {(i, dissimilarity(xj ,xi))}

7 Sort each mcs[i] in descending order of similarity
// Step 2: Create pairs of mutual similar

clients
8 similar clients[i]← ∅ for all i ∈M
9 foreach client i ∈M do

10 if similar clients[i] ̸= ∅ then Continue
11 k ← mcs[i][0][0] // Most similar client
12 if i = mcs[k][0][0] and similar clients[k] = ∅ then
13 similar clients[i]← similar clients[i] ∪ {k}
14 similar clients[k]← similar clients[k] ∪ {i}
15 Remove (k, ·) from mcs[i]
16 Remove (i, ·) from mcs[k]

17 Unassigned clients join their most similar unassigned client
18 Remaining clients create pairs randomly
// Step 3: Combine groups

19 Merge groups based on similarity until reaching V group size
20 G← (final merged groups)
21 return G

similarity between any of its members and those in the target
group (line 19). The process iterates from the second step until
the desired group size is reached. Privacy guarantees of the
group formation phase are explained in Section IV-D.

C. Phase 2: Co-training

After group formation, clients within a group engage
in collaborative training. To mitigate data privacy leakage,
differential privacy noise must be applied. However, in a fully
decentralized system, DP noise can more severely impact
accuracy compared to centralized training due to the limited
number of clients sharing knowledge [79], [80], constrained
by their computational and communication power. Thus, an
efficient algorithm to aggregate knowledge between clients is
needed to ensure fast convergence and personalization for each
client.

In P4, we use transformed features from a handcrafted
layer [81] as input to the client’s neural network. These features
enhance convergence even in the presence of DP noise and
enable strong performance with a shallow neural network (see
Section V-B). The transformed features feed into two models:
a local model, fϕi

, and a proxy model, fθi (see Algorithm 2).
Clients share only the proxy model within their group. During
each training round, both models train on local data Di, but
the proxy model’s gradients are clipped and DP noise is
added. Since the proxy model undergoes DP training, sharing

its gradient updates ∆θi does not violate DP guarantees as
explained in Section IV-D. Clients exchange these proxy model
gradients with their group members, incorporating external
knowledge into fθi while preserving local data privacy.

To train the local model and proxy model together, inspired
by [25], we apply knowledge distillation between these two
models [47]. More specifically, training of the local model will
be done by classification loss (Equation 8) and KL divergence
loss (Equation 9):

LCE(fθi) = E(x,y)∼Di
CE[fθi(x) ∥ y] (8)

where CE denotes the cross-entropy loss, computed be-
tween the proxy model’s output and the ground-truth label y
corresponding to input x.

LKL(fθi ; fϕi
) = E(x,y)∼Di

KL[fθi(x) ∥ fϕi
(x)] (9)

In addition, to distill knowledge from the local model to
the proxy model, we use the Kullback–Leibler divergence
described in Equation 9 to make the proxy model output closer
to the local model output.

Therefore, the proxy model learns from both the local model
and the local data by combining the classification loss and
the KL divergence loss shown in Equation 10. This way, the
proxy model learns to correctly predict the true label of training
instances as well as to match the probability estimate of its
local model.

Lθi = (1− α) · LCE(fθi) + α · LKL(fθi ; fϕi) (10)

In the combination of the losses, α ∈ [0, 1] balances
between losses. As it increases, the proxy model will use
more information from the local model.

The objective of the local model is shown in Equation 11.

Lϕi
= (1− β) · LCE(fϕi

) + β · LKL(fϕi
; fθi) (11)

As β ∈ [0, 1] increases, the local model will rely less on its
local data and more on the data from other groups, which is in
the proxy model. If β is zero, it results in a totally personalized
model that is only trained on the local training data.

With this architecture, the local model fϕi
can extract

personalized model weights for the client without dealing
with DP noise, leading to improved performance. In other
words, by decoupling local models from the differential privacy
noise, we aim to enhance model performance, resulting in
models that better align with the specific data characteristics of
individual clients. Beside that, the parameters of proxy model
fθi could be aggregated with neighbor clients to benefit from
their knowledge under DP guarantees.

We note that it is not necessary for each member of a
group to receive model updates ∆θj from all other members
and update its proxy model θi. Instead, every few rounds, an
aggregator can be selected periodically from within the group.
Therefore, other clients within the group only send their model

Algorithm 2: Co-training Inside One Group

Input: Proxy θ
(0)
i and local ϕ(0)

i parameters after phase 1,
distillation weights α, β ∈ (0, 1), learning rates
ηl, ηg > 0, client subsampling l, data subsampling s,
local dataset size R.

Output: Proxy θ
(T)
i and local ϕ(T)

i models for each client
co-trained inside a group under DP guarantees.

1 M̂ ← (one group clients from G)
// In parallel

2 for round t = 0, . . . , T − 1 at client i ∈ Ct ⊂ [M̂] of size
⌊lM̂⌋ do

3 for local optimization step k = 0, . . . ,K − 1 do
4 Sample Sk

i ⊂ Di of size ⌊sR⌋
5 Update local and proxy models:
6 θ

(t)
i ← θ

(t)
i − ηl∇L̃θi(S

k
i) // DP update

7 ϕ
(t)
i ← ϕ

(t)
i − ηl∇L̂ϕi(S

k
i) // Non-DP

update

8 ϕ
(t+1)
i ← ϕ

(t)
i

9 ∆θ
(t)
i ← θ

(t)
i − θ(t−1)

10 if client i is a group aggregator then
11 ∆θ(t) ← 1

lM̂

∑
j∈Ct ∆θ

(t)
j

12 θ(t) ← θ(t−1) + ηg∆θ(t)

13 Send θ(t) to clients j ∈ Ct

14 else
15 Send ∆θ

(t)
i to a group aggregator

16 Receive θ(t) from a group aggregator

17 Update proxy model: θ
(t+1)
i ← θ(t)

18 return θ
(T)
i , ϕ(T)

i

updates ∆θj to the aggregator client and subsequently receives
the aggregated model θ from that client, which is used for the
next round of co-training.

D. Differential Privacy

a) Privacy goal: We aim to control the information
leakage from individual data of each client Di in the shared
model updates ∆θi. To achieve this, we adapt a differential
privacy algorithm for heterogeneous data proposed by [24]
to the peer-to-peer learning setting, and ensure the privacy
guarantees on top of their theoretical proof. We focus on
record-level DP with respect to the joint dataset D, where D
and D′ are neighboring datasets if they differ by at most one
record (denoted by ∥D−D′∥ ≤ 1). We want to ensure privacy
(i) towards a third-party observing the final model and (ii)
an honest-but-curious aggregator in each group (similar to an
honest-but-curious server in [24]). We set the DP budget for
the whole training, denoted by (ϵ, δ), in advance before group
formation (phase 1) and use the same clipping and Gaussian
noise as in the original work to achieve this budget.

b) Privacy guarantees: To ensure privacy during co-
training (see Algorithm 2), each gradient of a proxy model of
i-th client is divided by its norm as described in Equation 12 and
then the noise is added to the gradient as shown in Equation 13
(line 6 in Algorithm 2).

g̃ij =
gij

max(1, ∥gij∥2/C)
(12)

H̃i =
1

sR
Σj∈Si

g̃ij +
2C
sR

N (0, σ2
g) (13)

The noise standard deviation σg in Equation 13, ensuring the
specified privacy budget (ϵ) given the clipping norm defined
in Equation 12, is computed based on the theoretical upper
bound adapted from Theorem 4.1 of [24], as follows:

σg = Ω(
s
√

lTK log(2Tl
δ) log(2δ)

ϵ
√
M ′

) (14)

It guarantees that under the subsampled Gaussian mech-
anism [82] and composition accounting via Rényi DP [83],
one can ensure (i) (O(ϵ), δ)-differential privacy towards a third
party observing the global model (e.g., other clients that receive
the global model after aggregation), and (ii) (O(ϵs), δs)-DP
towards an honest-but-curious aggregator receiving per-round
gradients, where ϵs = ϵ

√
M ′/l and δs =

δ
2 (

1
l +1). We follow

their privacy accounting strategy matched to the peer-to-peer
setting. Since in P2P learning individual gradients are directly
shared among clients rather than being aggregated, we set
M ′ to 1. To amplify privacy according to [84], [24], client
subsampling l and data subsampling s are used (lines 2 and
4 in Algorithm 2). Based on the Equation 13, once the target
privacy budget ϵ and δ are fixed, one can compute a valid set
of values for K, l, and s to satisfy the guarantee. We specify
the chosen values for these parameters in Section V-B and
Appendix E-1.

E. Defense against Poisoning Attacks

In P4, we account for a wide range of poisoning attacks,
defined in Section III-B. To mitigate these threats while
maintaining privacy and utility amplification, P4 employs a
combination of m-Krum [36], anomaly-detection [46],
and knowledge distillation, which utilizes client similarity
within each group to filter out malicious updates. To the best
of our knowledge, P4 incorporates a unique set of defense
strategies not used in prior P2P work, simultaneously enhancing
the privacy-utility trade-off and improving robustness against
poisoning attacks under heterogeneous client data distributions.
Note that m-Krum and anomaly-detection are existing
defenses used during gradient aggregation; for simplicity, we
refer to their combination as ”secure aggregation.” The rationale
behind each defense strategy is discussed in the following
subsections.

1) Data Poisoning Tolerance: We use a label flipping attack
to implement targeted data poisoning, which is particularly
prevalent in the DFL security literature [31], [32], [33], [85].
Given a source class csrc and a target class ctarget from C,
each malicious client i ∈ M modifies their dataset Di as
follows: For all instances in Di whose class is csrc, change
their class to ctarget. In our setting, client data is poisoned by
flipping all labels (e.g., for CIFAR-10 from csrc to 9− csrc
as in [26]). The goal of the attack is to make the proxy model

of each client fθi more likely to misclassify csrc images as
ctarget images at test time.

Interestingly, a proxy-based knowledge distillation combined
with P4’s client clustering presented in Sections IV-B and
IV-C shows inherent resilience against data poisoning attacks,
particularly label flipping. While Section V-C provides an
empirical evaluation (see Figures 5(a) and 6), we present an
intuition for this tolerance here.
P4 enhances the privacy-utility trade-off by employing

knowledge distillation from a local model to a proxy model
(Eq. 9) that can be formulated as the KL-divergence between
the softmax outputs:

LKL(fθi ; fϕi
) = E(x,y)∼Di

KL[softmax(
zθi
T

) ∥ softmax(
zϕi

T
)]

where zθi and zϕi
are the logits of proxy and local models,

respectively, and T is a temperature that is normally set
to 1. From a malicious security perspective, this knowledge
distillation mechanism acts as a form of client self-defense
against poisoning attacks. Similar to LeadFL [86], which
introduces an additional regularization term in the loss function
to mitigate the effects of poisoned gradients, the KL-divergence
term in P4’s loss function also serves as a regularization
mechanism. This term helps control the influence of poisoned
gradients on the final proxy model performance.

When the KL term is incorporated into loss functions Lθi

and Lϕi (Equations 10 and 11), it enforces alignment between
the softmax outputs of the proxy model fθi and the local
model fϕi

. Even if the gradients of the proxy model fθi are
poisoned, the local model fϕi

remains clean. Consequently, the
KL alignment between these two models serves as a corrective
mechanism, cleansing the proxy model fθi from the effects
of poisoning. This client self-defense strategy is particularly
effective against label flipping, as this attack aims to alter the
softmax output of the proxy model fθi by modifying labels.
However, the KL alignment with the softmax output of the
local model fϕi

counteracts these changes from the client side,
mitigating the impact of the attack.

Nevertheless, due to high data heterogeneity across clients,
using a proxy mechanism alone does not ensure robustness
under arbitrary clustering settings. This is because when
malicious updates poison the proxy models, benign clients
attempt to align their poisoned proxy models’ softmax outputs
with their local models, guided by their local data distribution.
However, when these partially cleansed proxy models are
averaged under random clustering and client heterogeneity,
the differences in benign clients’ data distributions diminish
the overall effectiveness of the cleansing process. This requires
a clustering algorithm that groups clients with similar data
distributions, such as our group formation algorithm (see
Appendix C-1 for supporting details).

2) Model Poisoning Tolerance: While an unmodified P4
effectively mitigates data poisoning attacks, it is less robust
against model poisoning attacks (see Section V-C). The primary
challenge lies in the significant changes in client gradients
(e.g., setting them to zero or random values), which can

disrupt simple gradient averaging on the aggregator. To mitigate
Byzantine attacks, P4 integrates a robust aggregation method
called m-Krum [36].
m-Krum defines a Krum aggregation rule Kr(wi, . . . , wn)

as follows. For any i ̸= j, they denote by i → j the fact
that wj belongs to n − f − 2 closest vectors to wi, where
n is the total number of clients and f is the number of
malicious clients. Then, they define for each client i, the
score s(i) =

∑
i→j ∥wi − wj∥2, where the sum runs over

n−f −2 closest vectors to wi based on an Euclidean distance.
Finally, Kr(wi, . . . , wn) = wi∗ , where i∗ refers to the client
minimizing the score, s(i∗) ≤ s(i) for all i. An m parameter
in m-Krum defines the number of clients to choose that have
minimum scores.

In this setting, client clustering based on model weight
similarity before co-training enhances the ability to detect
malicious updates. This is because P4 forms groups using
the ℓ1-norm, which was chosen for its effectiveness in client
clustering for privacy-utility amplification. Although the ℓ1-
norm differs from the ℓ2-norm, clients that are close under the
ℓ1-norm are also close under the ℓ2-norm. As a result, benign
gradients within a group remain close to one another during
training, thereby improving m-Krum ’s ability to identify and
filter out outliers introduced by malicious clients. Moreover,
the use of knowledge distillation between the local and proxy
models helps mitigate cases where m-Krum fails to filter out
malicious updates and a proxy model becomes poisoned. Since
the local model remains clean, knowledge distillation helps
cleanse the poisoned proxy model. We empirical evaluate an
effectiveness of m-Krum with P4 against other defenses in
Section V-C.

3) Anomaly Detection: To strengthen P4’s resilience against
anomalous model updates, particularly in the byzantine-
random attack mentioned in Section III-B, we incorporate
anomaly-detection [46]. Our empirical evaluation in
Section V-C shows that while m-Krum struggles against
byzantine-random, such a simple and comparably fast de-
fense as anomaly-detection [46] is highly effective. It
leverages the 3σ rule applied to an ℓ2 score during cross-
client checks, making it particularly suitable as an addition
to m-Krum and P4’s clustering approach. Since clients
within each group are expected to have high model weight
similarity after clustering, anomalous updates can be easily
identified and filtered during training. Moreover, in cases where
anomaly-detection is less effective, such as in label
flipping, it does not degrade performance (see Figure 5(a)).
Thus, we integrate anomaly-detection as the first layer of
defense in P4, complementing m-Krum and client self-defense
to enhance overall robustness.

V. EXPERIMENTS

A. Experimental Setup

1) Datasets: We conduct experiments on three bench-
mark datasets: CIFAR-10 [87], CIFAR-100 [87], and
FEMNIST [88]. Following the non-IID setting from Fe-
dAvg [89], we randomly assign classification tasks and training

TABLE I
DATASET STATISTICS.

Dataset # classes # clients # samples
(per client)

features

FEMNIST 47 200 300 28× 28× 1
CIFAR-10 10 260 200 32× 32× 3
CIFAR-100 100 60 250 32× 32× 3

data to each client. This process generates M clients, each
with R samples, split into 80% training and 20% testing.
Additionally, 20% of clients are reserved for evaluation and
hyperparameter tuning. Dataset statistics are provided in
Table I.

2) Non-IID Setting: To generate non-IID tasks and analyze
the impact of data heterogeneity, we adopt two common
methods: (i) alpha-based heterogeneity and (ii) sharding-based
heterogeneity. Both partition data among clients to create non-
IID distributions. In the alpha-based approach, most of client’s
data comes from a single class, whereas in the sharding-based
method, each client exclusively receives data from a specific
subset of multiple classes. Sharding-based heterogeneity fol-
lows the procedure of [5], where a dataset with L classes is
divided into P shards per class, generating M = LP

N tasks.
Each task consists of N randomly assigned classes, with one
shard per class. We evaluate the effect of heterogeneity by
setting N ∈ {2, 4, 8}. Alpha-based heterogeneity, used in prior
work [24], [90], controls heterogeneity through a parameter γ.
For each client, γ% of the data is sampled IID from all classes,
while the remaining 1−γ% comes from a single dominant class.
We assess heterogeneity effects using γ ∈ {25%, 50%, 75%}.

3) Models: To assess the efficacy of our methods and
compare them with related work, we conduct experiments using
both a linear neural network with a softmax activation and a
CNN-based architecture [81]. Details about hyperparameters
are in Appendix E-1.

4) Baselines: We select baselines based on the following
criteria: (1) support for a peer-to-peer setting, (2) a privacy-
preservation approach based on DP focused on privacy-utility
amplification rather than an all-in-one system, and (3) publicly
available code. Based on these criteria, we compare P4 with the
following baselines, which we adapt to our evaluation settings:
centralized learning, local training, FedAvg [89], Scaffold [24],
ProxyFL [25], DP-DSGT [39]. Appendix E describes each
baseline and how we adapt it to our evaluation settings, and
provides additional experimental details.

B. Privacy-Utility Amplification

We first evaluate the performance of different algorithms
under varying data heterogeneity by adjusting γ and N ,
which correspond to alpha-based and shard-based heterogeneity,
respectively. To simulate a scenario where clients have limited
computational power, we fix the number of training rounds at
T = 100, aiming for fast convergence on each client’s data
distribution. For differential privacy, we set a target guarantee
of ϵ = 15 for all methods. We consider all combinations
of hyperparameters: local steps K ∈ {1, 2, . . . , 10}, client
sampling ratio l ∈ {0.1, 0.2, . . . , 1}, and data sampling ratio

s ∈ {0.1, 0.2, . . . , 1}, computing the corresponding noise level
σg using Equation 14 to maintain the target ϵ. Group sizes are
set to V = 4 for CIFAR-100 and V = 8 for other datasets.
To ensure a fair comparison, we perform hyperparameter tuning
(grid search) over the mentioned hyperparameters, along with
local step size ηl ∈ [0.1, 10] and clipping norm C ∈ [0.1, 10],
using evaluation data from Section V-A. The performance of
different methods under shard-based heterogeneity is shown in
Figure 9 and Figure 8 (Appendix B-1) using a linear model on
FEMNIST and CIFAR-100, respectively. Performance under
alpha-based heterogeneity is illustrated in Figure 3 (CNN
model) and Figures 2, 10 (linear model, Appendix B-1). In the
figures, “(HC)” indicates the use of handcrafted features. Each
experiment is repeated three times to mitigate randomness, and
we report the mean results across trials.

As shown in the figures, our approach consistently out-
performs existing methods across different levels and types
of data heterogeneity. On CIFAR-10 with alpha-based data
generation, our method achieves 58.6% to 62.2% accuracy
using only a single linear layer (see Figure 2), making it
well-suited for resource-constrained IoT devices. In contrast,
FedAvg struggles under data heterogeneity, underscoring the
limitations of centralized federated learning with non-IID client
data. Scaffold, another centralized method, performs better than
FedAvg, particularly in highly heterogeneous settings (small N
and γ). However, despite its strengths in personalized federated
learning, Scaffold still faces slow convergence, as observed
across both data generation methods.

As shown in Figure 9, DP-DSGT, as a P2P method, achieves
performance below the centralized baselines since its upper-
bound performance is limited to achieving consensus among
all clients (output of centralized methods). By considering the
performance of FedAvg, Scaffold, and DP-DSGT on different
datasets and architectures, we can conclude that when the tasks
of clients are non-IID, consensus learning may not achieve
good performance.

In our experiments with a CNN model in Figure 3, which
possesses more parameters compared to the linear model,
previous approaches suffered from noisy training due to
differential privacy noise and collaborative training with clients
with different data distribution. In contrast, P4 consistently
converges to robust parameter solutions across all settings, even
with a minimal number of communication rounds.

Our proposed model maintains stable performance across
varying levels of data heterogeneity. Unlike other methods that
perform well only under specific conditions—e.g., in Figure 3,
Proxy achieves good results at γ = 25% but offers little
improvement over local training in other cases—our approach
consistently outperforms alternatives across both architectures
and heterogeneity levels. A central factor contributing to this
consistent performance is P4’s client clustering strategy (see
Section IV-B).

Figure 2 and Figures 8, 9, 10 in Appendix B-1 show that
when client’s local dataset contains only a few classes and
uses a simple neural network, P4 can match or even surpass
centralized training in some cases. This is because shallow

(a) (b) (c)

Fig. 2. Test accuracy of a linear model on CIFAR-10 with ϵ = 15 and alpha-based setting: (a) γ = 25% (b) γ = 50% (c) γ = 75%. For each client, γ%
of the data is sampled IID from all classes, while the remaining 1− γ% comes from a single dominant class.

(a) (b) (c)

Fig. 3. Test accuracy of CNN on CIFAR-10 with ϵ = 15 and alpha-based non-IID setting: (a) γ = 25% (b) γ = 50% (c) γ = 75%. For each client, γ% of
the data is sampled IID from all classes, while the remaining 1− γ% comes from a single dominant class.

networks more effectively learn patterns within a limited data
distribution compared to the complexity of classifying all
classes in a centralized setting. With fewer model parameters,
classifying an entire data distribution becomes challenging for
centralized methods, whereas a personalized model tailored to
each client’s distribution shows even better performance.

Our results suggest that local training can serve as a strong
baseline for P2P learning when client data similarity is low.
Thus, improving collaborative training in highly heterogeneous
data distributions is crucial for achieving higher accuracy than
local training. Appendix B-2 provides an extended comparison
of P4 with local training under varying privacy budgets. In
general, P4 outperforms local training in accuracy, even when
the privacy budget exceeds 3.

C. Tolerating Poisoning Attacks

In this section, we evaluate P4 under the poisoning attacks
described in Section III-B and client data heterogeneity. Our
goal is to demonstrate that the methodology we use to improve
the privacy-utility trade-off also enhances robustness against
attacks. Additionally, we aim to show the effectiveness of
the defense mechanism proposed in Section IV-E. To this
end, we address the following research questions: (RQ1) How
does client clustering in P4 benefit robustness?; (RQ2) How
does the combination of client clustering and proxy-based
knowledge distillation enhance robustness compared to existing
defense strategies?; (RQ3) What percentage of malicious clients
can P4 with a defense proposed in Section IV-E tolerate?;
(RQ4) Do m-Krum and anomaly-detection exhibit better
robustness when used with P4 compared to FedAvg?

Unless otherwise specified, all experiments use a linear
model and the same datasets as previous evaluations, with one
non-IID setting: 50% similarity for CIFAR-10 and N = 4
for CIFAR-100 and FEMNIST. The proportion of malicious
clients is set to 30% (as in [40], [41]), and all clients participate
in each iteration to simulate the strongest attack impact. Each
experimental pipeline was run with three different seeds. For
evaluation, we measure attack impact (as in [28]), defined
as the test accuracy drop compared to the baseline (without
any attack or defense), measured only on benign clients. This
metric is chosen because the goal of these attacks is to degrade
the quality of the final model.

We do not compare robustness of P4 against P2P frameworks
from Section II that also consider differential privacy and mali-
cious security for the following reasons: (1) these frameworks
do not consider heterogeneous client data distributions in their
methodology, therefore direct comparisons of robustness in
terms of accuracy drop is unfair; (2) our goal is to show
that the proposed privacy-utility amplification also enhances
robustness, resulting in a good attack tolerance of P4, rather
than to outperform other existing defenses; (3) our approach
is orthogonal to existing DFL defenses, which also can be
incorporated into P4 instead of m-Krum; and (4) those privacy-
preserving frameworks that address poisoning attack do not
propose novel defense strategies, but rely on existing defenses.
Instead, in this section we include these existing defenses in our
evaluation, and in Section V-B we show that P4 outperforms
other state-of-the-art differential private P2P methods under
various heterogeneity settings.

Fig. 4. Impact of attacks on P4 without secure aggregation before grouping
and after grouping for three non-IID datasets and a linear model under 30%
of malicious clients.

a) RQ1: We first evaluate P4 without secure aggregation
under poisoning attacks. The impact of model poisoning attacks
on P4 differs significantly before and after grouping (phase
1 in Section IV). Figure 4 illustrates the attack impact on
P4 without secure aggregation, showing that after-grouping
attacks have a much higher impact than before-grouping ones
(similar to [91]). This occurs because, during group formation,
P4 detects malicious gradients based on ℓ1-norm similarity,
clustering most malicious clients into separate groups that do
not affect benign clients. We do not compare label flipping
before and after grouping, as we assume data poisoning always
occurs before grouping. Since our threat model (Section III-B)
assumes that an attacker may be aware of the group formation
phase, we conduct further evaluations under the after-grouping
setting for model poisoning attacks. To simulate this setting,
clients are marked as malicious before group formation and
start to behave maliciously during training (phase 2). As shown
in Figure 4 and dashed lines in Figure 5, P4 without secure
aggregation remains vulnerable to the selected model poisoning
and data poisoning attacks. Among them, label flipping has
the smallest impact, while byzantine-random has the highest.

b) RQ2: We compare the robustness of P4 without
secure aggregation (or simply client clustering with knowledge
distillation) to nine existing defense strategies applied on top of
P4. These defenses were selected based on their effectiveness
in P2P settings and their compatibility with P4’s privacy-
utility logic (as explained in Section IV-E). All defenses are
implemented in the recent FedSecurity benchmark [73], which
we extend for our evaluation. Defense configurations follow
those in the original papers [34], [92], [35], [93], [94], [46],
[36], [37]. Figures 5 and 17(d) (results for byzantine-flip are
deferred to Appendix C) show attack tolerance of these defenses
and P4 without secure aggregation (no_defense), where
lower values indicate better performance. The x-axis orders
the defenses based on the mean attack impact, and the dashed
line shows the median of no_defense.

A key observation is that no_defense performs best
under label flipping and remains competitive against model
poisoning attacks, supporting the effectiveness of P4 ’s
client self-defense (mentioned in Section IV-E). Notably,
in Figure 5(a) anomaly-detection produces identical
results to no_defense, indicating its inability to detect
anomalies in this setting and, thus, functioning as a nor-
mal no_defense. Some defenses degrade P4 ’s accuracy
compared to no_defense, likely due to filtering benign

no
rm

_d
iff_

cli
pp

ing

an
om

aly
_d

et
ec

tio
n

fo
ols

go
ld

no
_d

ef
en

se
sls

gd

tri
m

m
ed

_m
ea

n

wise
_m

ed
ian

m
ult

ikr
um

bu
lya

n rfa
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Im
pa

ct
 o

f L
ab

el
 F

lip
pi

ng

CIFAR-10

an
om

aly
_d

et
ec

tio
n

no
_d

ef
en

se

fo
ols

go
ld

m
ult

ikr
um

no
rm

_d
iff_

cli
pp

ing

bu
lya

n rfa
sls

gd

wise
_m

ed
ian

tri
m

m
ed

_m
ea

n
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Im
pa

ct
 o

f L
ab

el
 F

lip
pi

ng

CIFAR-100

an
om

aly
_d

et
ec

tio
n

no
_d

ef
en

se

fo
ols

go
ld

m
ult

ikr
um

no
rm

_d
iff_

cli
pp

ing rfa

bu
lya

n
sls

gd

wise
_m

ed
ian

tri
m

m
ed

_m
ea

n
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Im
pa

ct
 o

f L
ab

el
 F

lip
pi

ng

FEMNIST

(a) Label Flipping

sls
gd

fo
ols

go
ld

m
ult

ikr
um

tri
m

m
ed

_m
ea

n

no
_d

ef
en

se

no
rm

_d
iff_

cli
pp

ing

wise
_m

ed
ian

an
om

aly
_d

et
ec

tio
n

bu
lya

n rfa
0.00

0.05

0.10

0.15

0.20

0.25

Im
pa

ct
 o

f B
yz

. Z
er

o

CIFAR-10

m
ult

ikr
um

no
rm

_d
iff_

cli
pp

ing

an
om

aly
_d

et
ec

tio
n

fo
ols

go
ld

no
_d

ef
en

se

bu
lya

n
sls

gd

wise
_m

ed
ian

tri
m

m
ed

_m
ea

n rfa
0.00

0.05

0.10

0.15

0.20

0.25

Im
pa

ct
 o

f B
yz

. Z
er

o

CIFAR-100

m
ult

ikr
um

no
_d

ef
en

se

fo
ols

go
ld

an
om

aly
_d

et
ec

tio
n

no
rm

_d
iff_

cli
pp

ing
sls

gd

wise
_m

ed
ian

tri
m

m
ed

_m
ea

n

bu
lya

n rfa
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Im
pa

ct
 o

f B
yz

. Z
er

o

FEMNIST

(b) Byzantine Zero

no
rm

_d
iff_

cli
pp

ing

an
om

aly
_d

et
ec

tio
n

bu
lya

n

wise
_m

ed
ian

fo
ols

go
ld

tri
m

m
ed

_m
ea

n
sls

gd

m
ult

ikr
um rfa

no
_d

ef
en

se
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Im
pa

ct
 o

f B
yz

. R
an

do
m

CIFAR-10

an
om

aly
_d

et
ec

tio
n

no
rm

_d
iff_

cli
pp

ing

bu
lya

n

m
ult

ikr
um

fo
ols

go
ld
sls

gd

tri
m

m
ed

_m
ea

n rfa

wise
_m

ed
ian

no
_d

ef
en

se
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Im
pa

ct
 o

f B
yz

. R
an

do
m

CIFAR-100

an
om

aly
_d

et
ec

tio
n

no
rm

_d
iff_

cli
pp

ing

m
ult

ikr
um

tri
m

m
ed

_m
ea

n
sls

gd

wise
_m

ed
ian

bu
lya

n

no
_d

ef
en

se

fo
ols

go
ld rfa

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Im
pa

ct
 o

f B
yz

. R
an

do
m

FEMNIST

(c) Byzantine Random
Fig. 5. Performance of P4 with different defenses under poisoning attacks
and 30% of malicious clients.

clients (especially under label flipping) or negatively impacting
convergence. Figures 5(b) and 17(d) show that m-Krum [36]
performs best against byzantine-zero and byzantine-flip, with
Foolsgold [37] being a close competitor, particularly in
Figure 17(d). However, since Foolsgold performs worse
on FEMNIST, m-Krum exhibits better overall attack tolerance
under byzantine-flip. The efficacy of m-Krum in combina-
tion with P4 is discussed in Section IV-E. For the most
severe attack, byzantine-random, the simple and efficient
anomaly-detection [46] achieves the best results. This
may be because it uses model weight similarity during
cross-client checks, resonating with P4 ’s clustering strategy.
In most cases, anomaly-detection does not degrade
no_defense performance, making it a strong candidate for
pairing with m-Krum.

RQ3. To evaluate P4 ’s robustness under different threat
levels, we combine its inherent client self-defense with
anomaly-detection and m-Krum, using the former as
a first-layer filter. We vary the proportion of malicious
clients from 10% to 50%, reflecting typical ranges in privacy-
preserving P2P systems from Section II. The evaluation focuses
on CIFAR-100 and FEMNIST, which exhibited higher attack
impact in RQ2. As a performance metric, we measured the
difference between the test accuracy of P4 with an “ideal

Fig. 6. Differences of the test accuracy of an ideal defense and P4 with
secure aggregation on CIFAR-100, FEMNIST, and a linear model under
malicious client percentages from 10% to 50%. Lower values indicate better
attack tolerance.

defense” and P4 with the proposed secure aggregation. Here,
the “ideal defense” assumes perfect knowledge of malicious
clients and excludes them from aggregation. This metric is
more suitable than attack impact since the cumulative training
and test sets for benign clients vary across different malicious
client proportions, which may cause an unfair comparison.
Thus, for each malicious percentage, we compare the ideal
defense against P4’s proposed defense.

Figure 6 presents the results averaged across multiple
seeds. Following the used benchmark [73], an accuracy drop
below 10% indicates good defense performance. Based on
this threshold and results across both datasets, P4 with the
proposed secure aggregation tolerates up to 50% malicious
clients under label flipping, 30% under byzantine-zero, 40%
under byzantine-random, and 30% under byzantine-flip. The
likely reason for the high attack impact above 30% of malicious
clients is that m-Krum performs well only when the number
of malicious clients is below (n− 2)/2, according to [36].

Based on this evaluation, P4 with secure aggregation
effectively mitigates the impact of up to 30% malicious
clients across all four attack types and non-IID settings, while
preserving privacy-utility amplification, which satisfies our
threat model in Section III-B. Additionally, our evaluation
includes a comparison with an “ideal defense,” which provides
a more rigorous method for assessing attack tolerance under
varying percentages of malicious clients. This approach is
absent in other P2P frameworks from Section II that provide a
defense against poisoning attacks.

RQ4. Due to space constraints, the comparison between
P4 and FedAvg under attacks is presented in Appendix C-2.
Overall, the results indicate that P4 with a defense outperforms
FedAvg with the same defense. Moreover, in most cases, the
defense is more effective for P4 than for FedAvg in terms of
attack impact, as it aligns with P4’s client clustering.

D. P4 on Resource-constrained Devices

We assess the practicality and overhead of P4 by deploying
it on resource-constrained devices. Specifically, we implement
P4 on two Raspberry Pi 4B clients running Debian 12
(Bookworm) 64-bit, Python 3.11.2, and PyTorch 2.1.0. The
clients, using a linear model on CIFAR-10, communicate via
secure websockets. We evaluate four metrics: runtime, memory
usage, power consumption, and communication overhead.

Runtime is measured with Python’s time library, memory
usage with the free command, and power consumption using
Tapo P110 smart plugs via the Tapo API. Communication
overhead is assessed by measuring transmitted data between
clients. The results for each metric are presented below.

Runtime. We measure the average run times across 100
iterations each of both phases. We find that phase 1 (group
formation) between two clients takes 0.04 seconds on average
(std. 0.02). Assuming the same scenario as the experiment in
Section V-B (each client samples 35 clients to compute its
model similarity), it would take around 1.4 sec. in total to run
phase 1. Phase 2 (co-training) between two clients takes an
average of 5.27 sec. (± 0.58) to complete, with the bulk of
the runtime being the training process (avg. 4.83 s., std. 0.05).

Memory usage. We find that running P4 consumes around
72 MB during phase 1 and 489 MB memory during phase 2.

Power consumption. The baseline consumption of the Rasp-
berry Pi is ≈ 2.64 W (std 0.01). We find that the average
consumption during phase 1 is 3.17 W (std. 0.31) and phase 2
is 4.87 W (std. 0.34).

Communication bandwidth. In phase 1, the client that
initiates the communication sends its model weights to another
client, which then performs the comparison with its own
weights. The message size of the weights is 622.82 kB
(serialized with Python’s pickle). In phase 2, the client
that initiates the co-training first sends its model parameters.
After training, the recipient client sends back its gradients to
the initiator client for aggregation. The total size of messages
exchanged during this phase is 1246.57 kB.

Our experiments indicate that P4 can be effectively run on
real-world IoT devices with minimal overhead.

VI. CONCLUSION

This paper presents P4, a novel peer-to-peer learning
framework that simultaneously addresses the challenges of
data heterogeneity, privacy preservation, and robustness against
poisoning attacks. We propose a new lightweight and fully
decentralized client clustering algorithm that privately groups
clients with similar model weights using the ℓ1-norm. Once
grouped, clients engage in private co-training through dif-
ferentially private knowledge distillation, enabling effective
knowledge sharing while preserving individual data privacy.
To defend against poisoning attacks, P4 combines existing
defenses such as m-Krum and anomaly-detection with
client clustering and knowledge distillation. These compo-
nents, originally designed to improve the privacy-utility trade-
off, also enhance the effectiveness of the defense against
malicious clients. Our evaluation shows that P4 improves
the privacy-utility trade-off, achieving 5% to 30% higher
accuracy compared to state-of-the-art differentially private P2P
methods, and tolerates up to 30% malicious clients under
various heterogeneity settings. Furthermore, our deployment
on resource-constrained devices highlights P4’s practicality
and efficiency, making it a promising solution for real-world
decentralized learning applications at the edge. Future work
includes enabling secure, dynamic connectivity in decentralized

settings by exploring blockchain-based trust mechanisms for
client discovery, authentication, and communication integrity.
We also plan to enhance resilience against poisoning attacks
by advancing proxy-based knowledge distillation into a client-
side self-defense mechanism and by mitigating threats from
malicious aggregators through multi-aggregator verification and
model consistency checks.

REFERENCES

[1] Z. Li, J. Lu, S. Luo, D. Zhu, Y. Shao, Y. Li, Z. Zhang, Y. Wang, and
C. Wu, “Towards effective clustered federated learning: A peer-to-peer
framework with adaptive neighbor matching,” IEEE Transactions on Big
Data, 2022.

[2] Z. Qu, X. Li, R. Duan, Y. Liu, B. Tang, and Z. Lu, “Generalized federated
learning via sharpness aware minimization,” in International conference
on machine learning. PMLR, 2022, pp. 18 250–18 280.

[3] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 10 713–10 722.

[4] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear of
heterogeneity: Classifier calibration for federated learning with non-iid
data,” Advances in Neural Information Processing Systems, vol. 34, pp.
5972–5984, 2021.

[5] S. Li, T. Zhou, X. Tian, and D. Tao, “Learning to collaborate in
decentralized learning of personalized models,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 9766–9775.

[6] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting shared
representations for personalized federated learning,” in International
conference on machine learning. PMLR, 2021, pp. 2089–2099.

[7] T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust
federated learning through personalization,” in International Conference
on Machine Learning. PMLR, 2021, pp. 6357–6368.

[8] V. Zantedeschi, A. Bellet, and M. Tommasi, “Fully decentralized
joint learning of personalized models and collaboration graphs,” in
International Conference on Artificial Intelligence and Statistics. PMLR,
2020, pp. 864–874.

[9] T. Sun, D. Li, and B. Wang, “Decentralized federated averaging,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 4,
pp. 4289–4301, 2022.

[10] Y. Shi, L. Shen, K. Wei, Y. Sun, B. Yuan, X. Wang, and D. Tao,
“Improving the model consistency of decentralized federated learning,”
arXiv preprint arXiv:2302.04083, 2023.

[11] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[12] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer
federated learning on graphs,” arXiv preprint arXiv:1901.11173, 2019.

[13] S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan,
S. Mukherjee, V. Garg, R. Sarveswara, K. Händler, P. Pickkers, N. A.
Aziz et al., “Swarm learning for decentralized and confidential clinical
machine learning,” Nature, vol. 594, no. 7862, pp. 265–270, 2021.

[14] M. Duan, D. Liu, X. Ji, Y. Wu, L. Liang, X. Chen, Y. Tan, and A. Ren,
“Flexible clustered federated learning for client-level data distribution
shift,” IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 11, pp. 2661–2674, 2021.

[15] M. Xie, G. Long, T. Shen, T. Zhou, X. Wang, J. Jiang, and C. Zhang,
“Multi-center federated learning,” arXiv preprint arXiv:2108.08647, 2021.

[16] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning:
Model-agnostic distributed multitask optimization under privacy con-
straints,” IEEE transactions on neural networks and learning systems,
vol. 32, no. 8, pp. 3710–3722, 2020.

[17] M. N. Nguyen, S. R. Pandey, T. N. Dang, E.-N. Huh, N. H. Tran,
W. Saad, and C. S. Hong, “Self-organizing democratized learning: Toward
large-scale distributed learning systems,” IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[18] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical
clustering of local updates to improve training on non-iid data,” in 2020
International Joint Conference on Neural Networks (IJCNN). IEEE,
2020, pp. 1–9.

[19] Y. Li, S. Yang, X. Ren, and C. Zhao, “Asynchronous federated
learning with differential privacy for edge intelligence,” arXiv preprint
arXiv:1912.07902, 2019.

[20] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek,
and H. V. Poor, “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3454–3469, 2020.

[21] S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy, and W. Wei, “Ldp-fed:
Federated learning with local differential privacy,” in Proceedings of
the Third ACM International Workshop on Edge Systems, Analytics and
Networking, 2020, pp. 61–66.

[22] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

[23] E. Bagdasaryan, O. Poursaeed, and V. Shmatikov, “Differential privacy
has disparate impact on model accuracy,” Advances in neural information
processing systems, vol. 32, 2019.

[24] M. Noble, A. Bellet, and A. Dieuleveut, “Differentially private federated
learning on heterogeneous data,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2022, pp. 10 110–10 145.

[25] S. Kalra, J. Wen, J. C. Cresswell, M. Volkovs, and H. Tizhoosh,
“Decentralized federated learning through proxy model sharing,” Nature
communications, vol. 14, no. 1, p. 2899, 2023.

[26] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks
against federated learning systems,” in Computer security–ESORICs 2020:
25th European symposium on research in computer security, ESORICs
2020, guildford, UK, September 14–18, 2020, proceedings, part i 25.
Springer, 2020, pp. 480–501.

[27] J. Lin, M. Du, and J. Liu, “Free-riders in federated learning: Attacks
and defenses,” arXiv preprint arXiv:1911.12560, 2019.

[28] J. Xu, S.-L. Huang, L. Song, and T. Lan, “Byzantine-robust federated
learning through collaborative malicious gradient filtering,” in 2022
IEEE 42nd International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2022, pp. 1223–1235.

[29] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to {Byzantine-Robust} federated learning,” in 29th USENIX security
symposium (USENIX Security 20), 2020, pp. 1605–1622.

[30] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 1, no. 2,
pp. 1–25, 2017.

[31] M. Fang, Z. Zhang, Hairi, P. Khanduri, J. Liu, S. Lu, Y. Liu, and N. Gong,
“Byzantine-robust decentralized federated learning,” in Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications
Security, 2024, pp. 2874–2888.

[32] N. Heydaribeni, R. Zhang, T. Javidi, C. Nita-Rotaru, and F. Koushanfar,
“Surefed: Robust federated learning via uncertainty-aware inward and
outward inspection,” arXiv preprint arXiv:2308.02747, 2023.

[33] P. Sun, X. Liu, Z. Wang, and B. Liu, “Byzantine-robust decentralized
federated learning via dual-domain clustering and trust bootstrapping,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 24 756–24 765.

[34] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” arXiv preprint arXiv:1911.07963, 2019.

[35] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed
learning: Towards optimal statistical rates,” in International conference
on machine learning. Pmlr, 2018, pp. 5650–5659.

[36] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” Advances
in neural information processing systems, vol. 30, 2017.

[37] C. Fung, C. J. Yoon, and I. Beschastnikh, “The limitations of federated
learning in sybil settings,” in 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020), 2020, pp. 301–316.

[38] E. Hallaji, R. Razavi-Far, M. Saif, B. Wang, and Q. Yang, “Decentralized
federated learning: A survey on security and privacy,” IEEE Transactions
on Big Data, vol. 10, no. 2, pp. 194–213, 2024.

[39] J. Bayrooti, Z. Gao, and A. Prorok, “Differentially private decen-
tralized deep learning with consensus algorithms,” arXiv preprint
arXiv:2306.13892, 2023.

[40] M. Shayan, C. Fung, C. J. Yoon, and I. Beschastnikh, “Biscotti: A
blockchain system for private and secure federated learning,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 7, pp.
1513–1525, 2020.

[41] I. Arapakis, P. Papadopoulos, K. Katevas, and D. Perino, “P4l: Privacy
preserving peer-to-peer learning for infrastructureless setups,” arXiv
preprint arXiv:2302.13438, 2023.

[42] A. Mondal, H. Virk, and D. Gupta, “Beas: Blockchain enabled
asynchronous & secure federated machine learning,” arXiv preprint
arXiv:2202.02817, 2022.

[43] Z. Qin, X. Yan, M. Zhou, and S. Deng, “Blockdfl: A blockchain-
based fully decentralized peer-to-peer federated learning framework,”
in Proceedings of the ACM Web Conference 2024, 2024, pp. 2914–2925.

[44] X. Chen, J. Ji, C. Luo, W. Liao, and P. Li, “When machine learning
meets blockchain: A decentralized, privacy-preserving and secure design,”
in 2018 IEEE international conference on big data (big data). IEEE,
2018, pp. 1178–1187.

[45] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient frame-
work for clustered federated learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 19 586–19 597, 2020.

[46] S. Han, W. Wu, B. Buyukates, W. Jin, Y. Yao, Q. Zhang, S. Avestimehr,
and C. He, “Kick bad guys out! zero-knowledge-proof-based anomaly
detection in federated learning,” 2023.

[47] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual learning,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 4320–4328.

[48] S. Dhar, J. Guo, J. Liu, S. Tripathi, U. Kurup, and M. Shah, “A survey
of on-device machine learning: An algorithms and learning theory
perspective,” ACM Transactions on Internet of Things, vol. 2, no. 3,
pp. 1–49, 2021.

[49] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” Advances
in Neural Information Processing Systems, vol. 33, pp. 16 937–16 947,
2020.

[50] Y. Huang, S. Gupta, Z. Song, K. Li, and S. Arora, “Evaluating gradient
inversion attacks and defenses in federated learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 7232–7241, 2021.

[51] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and
Y. Zhou, “A hybrid approach to privacy-preserving federated learning,”
in Proceedings of the 12th ACM workshop on artificial intelligence and
security, 2019, pp. 1–11.

[52] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep
learning via additively homomorphic encryption,” IEEE transactions on
information forensics and security, vol. 13, no. 5, pp. 1333–1345, 2017.

[53] X. Zhang, A. Fu, H. Wang, C. Zhou, and Z. Chen, “A privacy-preserving
and verifiable federated learning scheme,” in ICC 2020-2020 IEEE
International Conference on Communications (ICC). IEEE, 2020, pp.
1–6.

[54] J. Zhao, H. Zhu, F. Wang, R. Lu, Z. Liu, and H. Li, “Pvd-fl: A privacy-
preserving and verifiable decentralized federated learning framework,”
IEEE Transactions on Information Forensics and Security, vol. 17, pp.
2059–2073, 2022.

[55] W. Jin, Y. Yao, S. Han, C. Joe-Wong, S. Ravi, S. Avestimehr, and
C. He, “Fedml-he: An efficient homomorphic-encryption-based privacy-
preserving federated learning system,” arXiv preprint arXiv:2303.10837,
2023.

[56] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[57] K. Mandal, G. Gong, and C. Liu, “Nike-based fast privacy-preserving
highdimensional data aggregation for mobile devices,” IEEE T Depend
Secure, pp. 142–149, 2018.

[58] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Helen: Maliciously
secure coopetitive learning for linear models,” in 2019 IEEE symposium
on security and privacy (SP). IEEE, 2019, pp. 724–738.

[59] F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and N. Kourtellis,
“Ppfl: privacy-preserving federated learning with trusted execution
environments,” in Proceedings of the 19th annual international conference
on mobile systems, applications, and services, 2021, pp. 94–108.

[60] F. Mo, Z. Tarkhani, and H. Haddadi, “Sok: machine learning with
confidential computing,” arXiv preprint arXiv:2208.10134, 2022.

[61] A. Dhasade, N. Dresevic, A.-M. Kermarrec, and R. Pires, “Tee-based
decentralized recommender systems: The raw data sharing redemption,” in
2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2022, pp. 447–458.

[62] M. Zhang, K. Sapra, S. Fidler, S. Yeung, and J. M. Alvarez, “Personalized
federated learning with first order model optimization,” arXiv preprint
arXiv:2012.08565, 2020.

[63] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized
federated learning,” in Third workshop on bayesian deep learning
(NeurIPS), vol. 2, 2018.

[64] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger,
“Braintorrent: A peer-to-peer environment for decentralized federated
learning,” arXiv preprint arXiv:1905.06731, 2019.

[65] R. Dai, L. Shen, F. He, X. Tian, and D. Tao, “Dispfl: Towards
communication-efficient personalized federated learning via decentralized
sparse training,” arXiv preprint arXiv:2206.00187, 2022.

[66] Y. Shi, Y. Liu, Y. Sun, Z. Lin, L. Shen, X. Wang, and D. Tao, “Towards
more suitable personalization in federated learning via decentralized
partial model training,” arXiv preprint arXiv:2305.15157, 2023.

[67] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware
minimization for efficiently improving generalization,” arXiv preprint
arXiv:2010.01412, 2020.

[68] E. Jeong and M. Kountouris, “Personalized decentralized federated
learning with knowledge distillation,” arXiv preprint arXiv:2302.12156,
2023.

[69] L. Wang, X. Zhao, Z. Lu, L. Wang, and S. Zhang, “Enhancing privacy
preservation and trustworthiness for decentralized federated learning,”
Information Sciences, vol. 628, pp. 449–468, 2023.

[70] L. Wang, Y. Xu, H. Xu, M. Chen, and L. Huang, “Accelerating
decentralized federated learning in heterogeneous edge computing,” IEEE
Transactions on Mobile Computing, 2022.

[71] A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Personalized and
private peer-to-peer machine learning,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2018, pp. 473–481.

[72] M. M. Maheri, H. Haddadi, and A. Davidson, “Telesparse: Practical
privacy-preserving verification of deep neural networks,” arXiv preprint
arXiv:2504.19274, 2025.

[73] S. Han, B. Buyukates, Z. Hu, H. Jin, W. Jin, L. Sun, X. Wang, W. Wu,
C. Xie, Y. Yao et al., “Fedsecurity: A benchmark for attacks and defenses
in federated learning and federated llms,” in Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2024, pp. 5070–5081.

[74] J. R. Douceur, “The sybil attack,” in International workshop on peer-to-
peer systems. Springer, 2002, pp. 251–260.

[75] Y. Dandi, L. Barba, and M. Jaggi, “Implicit gradient alignment in dis-
tributed and federated learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, no. 6, 2022, pp. 6454–6462.

[76] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learning,”
in International conference on machine learning. PMLR, 2020, pp.
5132–5143.

[77] W. Huang, M. Ye, Z. Shi, G. Wan, H. Li, B. Du, and Q. Yang, “Federated
learning for generalization, robustness, fairness: A survey and benchmark,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

[78] E. L. Zec, J. Östman, O. Mogren, and D. Gillblad, “Private node selection
in personalized decentralized learning,” arXiv preprint arXiv:2301.12755,
2023.

[79] Y. Allouah, A. Koloskova, A. El Firdoussi, M. Jaggi, and R. Guerraoui,
“The privacy power of correlated noise in decentralized learning,” in
Proceedings of the 41st International Conference on Machine Learning,
ser. ICML’24. JMLR.org, 2024.

[80] Z. Zhu, Y. Huang, X. Wang, and J. Xu, “Privsgp-vr: Differentially
private variance-reduced stochastic gradient push with tight utility
bounds,” in Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, IJCAI-24, K. Larson, Ed.
International Joint Conferences on Artificial Intelligence Organization,
8 2024, pp. 5743–5752, main Track. [Online]. Available: https:
//doi.org/10.24963/ijcai.2024/635

[81] F. Tramer and D. Boneh, “Differentially private learning needs better
features (or much more data),” arXiv preprint arXiv:2011.11660, 2020.

[82] Y.-X. Wang, B. Balle, and S. P. Kasiviswanathan, “Subsampled rényi
differential privacy and analytical moments accountant,” in The 22nd
international conference on artificial intelligence and statistics. PMLR,
2019, pp. 1226–1235.

[83] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th computer
security foundations symposium (CSF). IEEE, 2017, pp. 263–275.

https://doi.org/10.24963/ijcai.2024/635
https://doi.org/10.24963/ijcai.2024/635

[84] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith, “What can we learn privately?” SIAM Journal on Computing,
vol. 40, no. 3, pp. 793–826, 2011.

[85] L. He, S. P. Karimireddy, and M. Jaggi, “Byzantine-robust decentralized
learning via clippedgossip,” arXiv preprint arXiv:2202.01545, 2022.

[86] C. Zhu, S. Roos, and L. Y. Chen, “Leadfl: Client self-defense against
model poisoning in federated learning,” in International Conference on
Machine Learning. PMLR, 2023, pp. 43 158–43 180.

[87] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[88] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 international joint conference on
neural networks (IJCNN). IEEE, 2017, pp. 2921–2926.

[89] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[90] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” arXiv
preprint arXiv:1909.06335, 2019.

[91] D. Li, W. E. Wong, W. Wang, Y. Yao, and M. Chau, “Detection and
mitigation of label-flipping attacks in federated learning systems with
kpca and k-means,” in 2021 8th International Conference on Dependable
Systems and Their Applications (DSA). IEEE, 2021, pp. 551–559.

[92] C. Xie, O. Koyejo, and I. Gupta, “Slsgd: Secure and efficient distributed
on-device machine learning,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2019, pp.
213–228.

[93] R. Guerraoui, S. Rouault et al., “The hidden vulnerability of distributed
learning in byzantium,” in International conference on machine learning.
PMLR, 2018, pp. 3521–3530.

[94] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” IEEE Transactions on Signal Processing, vol. 70,
pp. 1142–1154, 2022.

[95] K. Chang, N. Balachandar, C. Lam, D. Yi, J. Brown, A. Beers, B. Rosen,
D. L. Rubin, and J. Kalpathy-Cramer, “Distributed deep learning networks
among institutions for medical imaging,” Journal of the American Medical
Informatics Association, vol. 25, no. 8, pp. 945–954, 2018.

[96] T. Shen, J. Zhang, X. Jia, F. Zhang, G. Huang, P. Zhou, K. Kuang,
F. Wu, and C. Wu, “Federated mutual learning,” arXiv preprint
arXiv:2006.16765, 2020.

[97] H. Kasyap and S. Tripathy, “Privacy-preserving decentralized learning
framework for healthcare system,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 17, no. 2s,
pp. 1–24, 2021.

[98] E. Oyallon and S. Mallat, “Deep roto-translation scattering for object
classification,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 2865–2873.

[99] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE
transactions on pattern analysis and machine intelligence, vol. 35, no. 8,
pp. 1872–1886, 2013.

APPENDIX A
TABLE OF NOTATIONS

Table II summarizes the main notations used throughout the
paper.

TABLE II
SUMMARY OF THE MAIN NOTATIONS.

Symbol Description

M, i ∈ [M] number and index of clients
M

′
number of gradients to be aggregated

T, t ∈ [T] number and index of communication rounds
K, k ∈ [K] number and index of local updates

(for each client)
Di local dataset held by the i-th client, composed

of points di1, . . . , d
i
R

R size of any local dataset Di

D joint dataset
(⊔M

i=1 Di

)
C set of all possible class values in D

θ(t) server model after round t

θ
(t)
i proxy model of i-th client after round t

ϕ
(t)
i private model of i-th client after round t

gij gradient calculated on i-th client model on its
j-th data sample

G ∈ 0, 1M×M binary matrix, where an entry Gij is one if
clients i and j are part of the same group,
and zero otherwise

V group size
l ∈ (0, 1) client sampling ratio
s ∈ (0, 1) data sampling ratio
ϵ, δ differential privacy parameters
σg standard deviation of Gaussian noise added

for privacy
C > 0 gradient clipping threshold

APPENDIX B
ADDITIONAL RESULTS FOR PRIVACY-UTILITY

AMPLIFICATION

1) Additional heterogeneity settings: Figures 8, 2 and
10 illustrate the comparison of P4 with existing privacy-
preserving methods under additional heterogeneity settings for
CIFAR-100, CIFAR-10, and FEMNIST. The plots extend
the results presented in Section V-B, and support the statement
made in the main body that P4 outperforms existing methods
in terms of accuracy under different models, datasets, and data
heterogeneity settings (alpha-based and shard-based).

2) Comparison between collaborative and local training:
Distributed learning involves more communication and privacy
concerns compared to local training. In local training, clients
improve their models using only their own data, which means
that they do not need to communicate with others during
training. To see how well our differential private collaborative
training method performs compared to the non-DP version of
local training and to understand the impact on privacy, we
tested our method under different privacy settings, with privacy
bounds ranging from ϵ = 3 to ϵ = 20. The tasks are generated
using the alpha-based method, and we utilized the FEMNIST
dataset for this study. We compared this to how well local
training performs on the previously mentioned linear model
and data heterogeneity γ = 50%. Our findings, illustrated in

Figure 7, reveal that collaborative training outperforms local
training even when the privacy budget is set higher than 3.
Even when strong privacy constraints are in place (e.g., ϵ = 3),
collaborative training performs better, addressing the issue
of over-fitting that can affect local training due to its limited
amount of local training data. Moreover, as shown in the figure,
even though using handcrafted features could improve local
training accuracy, it is still not as good as our proposed method.
On the other hand, our method shows good robustness against
DP noise such that it could have reasonable accuracy with
restricted privacy.

Fig. 7. Performance of a linear model on CIFAR-10 under various privacy
budgets and compared to local training.

APPENDIX C
ADDITIONAL RESULTS FOR TOLERATING POISONING

ATTACKS

1) Data poisoning tolerance: As shown in Figure 12, apply-
ing only a proxy mechanism is insufficient to fully mitigate data
poisoning attacks. The figure illustrates the attack tolerance of
different combinations of P4 components on the CIFAR-10
dataset when 30% of clients are malicious. The attack impact
percentage represents the difference in performance between
the no-attack and attack scenarios, normalized by the no-
attack performance to account for varying accuracy levels
across different combinations. A lower attack impact percentage
indicates better resilience.

The results demonstrate that merely incorporating a proxy
mechanism does not guarantee robustness under arbitrary
clustering settings (as indicated by the green bar). The primary
reason that knowledge distillation fails under random clustering
and non-IID conditions is analogous to why the classic FedAvg
algorithm [89] performs poorly in non-IID settings. Consider a
scenario where a group consists of ten clients, with three being
malicious and the remaining seven benign clients exhibiting
distinct label distributions, e.g., 90% of local data corresponds
to a single label, and this dominant label varies among the
benign clients. As training progresses and malicious updates

(a) (b) (c)

Fig. 8. Test accuracy of a linear model on CIFAR-100 with ϵ = 15 and shard-based non-IID setting: (a) N = 2 (b) N = 4 (c) N = 8.

(a) (b) (c)

Fig. 9. Test accuracy of a linear model on FEMNIST with ϵ = 15 and shard-based non-IID setting: (a) N = 2 (b) N = 4 (c) N = 8. Sharding-based
heterogeneity divides a dataset with L classes into P shards per class, generating M = LP

N
tasks, where M also equals the total number of clients. Each task

consists of N randomly assigned classes, with one shard per class.

(a) (b) (c)

Fig. 10. Test accuracy of a linear model on FEMNIST with ϵ = 15 and alpha-based setting: (a) γ = 25% (b) γ = 50% (c) γ = 75%. For each client, γ%
of the data is sampled IID from all classes, while the remaining 1− γ% comes from a single dominant class.

poison the proxy models, benign clients attempt to align their
poisoned proxy models’ softmax outputs with their local
models, guided by their local data distribution. However,
when these partially cleansed proxy models are averaged, the
differences in benign clients’ data distributions diminish the
overall effectiveness of the cleansing process. In contrast, when
clients are clustered using P4’s procedure, which leverages
ℓ1-norm similarity, clients within the same group share a
more similar data distribution. This grouping ensures that
when proxy models — cleaned based on their respective
data distributions — are aggregated, the effectiveness of data

poisoning mitigation remains intact, improving attack resilience.
Therefore, an appropriate group formation algorithm is vital
for the aforementioned client self-defense.

2) Additional results for Experiment 2: This subsection
extends the results presented in Section V-C. Figure 17(d)
illustrates the performance of P4 with different defenses under
a byzantine-flip attack and 30% of malicious clients (RQ2).
The plot supports the statement made in the main body that
m-Krum shows better average performance than Foolsgold
under byzantine-flip, showing the similar attack impact on
CIFAR-10 and CIFAR-100 and on 8 points better tolerance

Fig. 11. Comparing the effect of each component of P4 on CIFAR-10 and
a linear model under data similarity of γ = 50% and a privacy budget ϵ from
3 to 20.

on FEMNIST.
Figures 13 and 14 compare P4 with a defense (proposed

in Section IV-E) against FedAvg with the same defense on
CIFAR-10 and FEMNIST under different poisoning attacks
(RQ4 in Section V-C). The results support the statement made in
the main body that P4 with a defense outperforms FedAvg with
the same defense. Moreover, the proposed defense works better
together with P4 than with FedAvg, especially on FEMNIST,
comparing the differences between ”P4 & no defense” /
”P4 & defense” and ”FedAvg & no defense” / ”FedAvg &
defense”. This highlights that the proposed defense aligns with
P4’s design and that personalization may also benefit attack
tolerance.

APPENDIX D
ABLATION STUDIES

A. Privacy-Utility Improvement

We now perform an ablation study of P4 on CIFAR-10
with 50% similarity using the linear model. We first aim to
understand the effect of client selection, handcrafted features,
and proxy model individually on the performance of P4.
Therefore, we compare P4’s accuracy results without secure
aggregation with three different methods: i) random client
selection instead of using our group clustering technique; ii)
using raw images instead of handcrafted features; iii) removing
the proxy model and using one model per client instead. In
each experiment, one of these components is removed and the
performance of the model is shown in Figure 11. As shown in
the figure, each of these three components has a strong effect
on the model performance – removing even one of them results
in accuracy lower than the local training baseline in most cases.
Our study shows that we can achieve private personalized
learning only when all design components of P4 are enabled.

B. Robustness

In this section, we provide an extended analysis of runtimes
and test accuracy. We evaluate the impact of increasing the

number of clients (Figure 15(a)), group size (Figure 15(b)),
and the number of samples per client on P4 (Figure 16). The
experiment was conducted under a byzantine-random attack
using the proposed defense from Section IV-E, with a client
participation ratio of 0.5 per global update and a fixed number
of samples per client across all settings. Due to the large number
of clients and configuration combinations, we performed this
experiment in simulation, while the experiment in Section V-D
evaluates P4 under real-world conditions. The runtime for
group formation is measured in simulation without considering
its distributed execution on multiple clients, therefore see the
runtime for phase 1 in Section V-D for realistic numbers.

Figure 15 presents a breakdown of execution time (in sec-
onds) across different P4 mechanisms. From Figure 15(a), we
observe that even when combining anomaly-detection
and m-Krum, secure aggregation remains efficient and is
influenced more by group size than by the total number of
clients. This is because, unlike centralized aggregation, P4
performs aggregation on multiple aggregators (one per group),
where group sizes remain relatively small. Additionally, the
global update per group introduces minimal overhead compared
to an average local update, with its runtime primarily dependent
on group size. Since this experiment assumes distributed
training across clients, the runtime per global update comprises
the local update time for a single client, secure aggregation time,
and minor overhead for group management on the aggregator.
With multiple aggregators and small group sizes, the runtime
difference between a global and local update remains small.
Group formation runtime is also more dependent on group
size than the total number of clients, though its variation
across different settings in Figure 15 remains minimal. The
observed inconsistency in local update runtime across different
group sizes likely stems from how our code computes the
average runtime per client within a group before averaging
across all groups. Larger group sizes lead to greater variance
in local update runtimes. Figure 16 further illustrates total
runtime and test accuracy under varying group sizes and client
numbers. Since for this plot the total dataset size remains
constant, a smaller number of clients results in more samples
per client. The results indicate a trade-off between total runtime
and test accuracy, with larger group sizes increasing runtime.
Thus, selecting an appropriate group size requires careful
consideration of system constraints.

APPENDIX E
ADDITIONAL EXPERIMENTAL SETUP

1) Models and Hyperparameters: To assess the effectiveness
of our methods and compare them with related work, we
conduct experiments using both a shallow neural network
(a linear layer with a softmax activation) and a CNN-based
architecture [81]. To ensure fair comparisons, we perform

Fig. 12. Impact of P4 components on attack tolerance for CIFAR-10 with a
linear model and 30% malicious clients. Attack impact is normalized by test
accuracy; lower values indicate better tolerance.

Fig. 13. Comparison of P4 with a defense against FedAvg for CIFAR-10
and a linear model under 30% of malicious clients.

Fig. 14. Comparison of P4 with a defense against FedAvg for FEMNIST and
a linear model under 30% of malicious clients.

(a) Varying # of clients for grp. size
= 8

(b) Varying group size for 240
clients

Fig. 15. Breakdown of time spent in different mechanisms in P4 on a
linear model and CIFAR-10 with 50% alpha-based similarity under 30% of
byzantine-random clients.

parameter tuning within a fixed range across all methods.
Following [24], we set the global step size to ηg = 1 and define
the local step size as ηl =

η0

sK , where η0 is carefully tuned.
For privacy, we maintain a fixed δ = 1

R in all experiments.
Given the fixed number of global training rounds T and a
target privacy budget ϵ, we tune K, l, s values, computing the
corresponding noise level σg using Equation 14.

2) Baselines: We select baselines based on the following
criteria: (1) support for a peer-to-peer setting, (2) a privacy-
preservation approach focused on privacy-utility amplification

(a) (b)Fig. 16. Average total runtime (in seconds) vs. test accuracy across different
numbers of clients and group sizes for CIFAR-10 and a linear model. A
dataset size is the same across different numbers of clients, indicating more
samples per client for a smaller total number of clients.

rather than an all-in-one system, and (3) publicly available code.
Based on these criteria, we compare P4 with the following
baselines:
Centralized learning: In this setting, all data is stored in
a central location without privacy concerns, and a high-
computational server trains the model on the entire dataset. This
serves as an optimal benchmark, reflecting the classification
difficulty. We report results with and without handcrafted
features.
Local training: Each client trains a model solely on its local
dataset. While this may seem like a weaker baseline, our results
show that under high data heterogeneity, knowledge sharing
provides only marginal improvements. In such cases, many
prior approaches fail to surpass local training in accuracy.
FedAvg [89]: A widely-used federated learning algorithm
where a centralized server coordinates training. The server
is assumed to be honest-but-curious, so we compute the
corresponding privacy bound ϵ with respect to the server.
Scaffold [24]: A centralized federated approach designed to
handle data heterogeneity under DP constraints. By introducing
an additional control parameter per client, Scaffold mitigates
client drift from the global model, improving personalization
over FedAvg. We assume that the server is untrustworthy,
and privacy loss is computed using the sub-sampled Gaussian
mechanism under Renyi Differential Privacy (RDP) [83].
ProxyFL [25]: A state-of-the-art decentralized learning method
where clients maintain a private model and share a proxy model
with others. We assume the private and proxy models share the
same architecture and follow the directed exponential graph
communication method and differential privacy mechanism
described in the ProxyFL paper.
DP-DSGT [39]: One of the state-of-the-art approaches in
differentially private P2P learning. Among the three methods
proposed in [39], DP-DSGT is designed for consistent perfor-
mance across varying data distributions, making it well-suited
for scenarios where clients have non-overlapping data classes.

Although previous studies have explored client clustering
in decentralized learning [1], [14], [15], [16], [17], [18], [45],
these methods either rely on a centralized server for clustering

no
rm

_d
iff_

cli
pp

ing

an
om

aly
_d

et
ec

tio
n

fo
ols

go
ld

no
_d

ef
en

se
sls

gd

tri
m

m
ed

_m
ea

n

wise
_m

ed
ian

m
ult

ikr
um

bu
lya

n rfa
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Im
pa

ct
 o

f L
ab

el
 F

lip
pi

ng

CIFAR-10

an
om

aly
_d

et
ec

tio
n

no
_d

ef
en

se

fo
ols

go
ld

m
ult

ikr
um

no
rm

_d
iff_

cli
pp

ing

bu
lya

n rfa
sls

gd

wise
_m

ed
ian

tri
m

m
ed

_m
ea

n
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Im
pa

ct
 o

f L
ab

el
 F

lip
pi

ng

CIFAR-100

an
om

aly
_d

et
ec

tio
n

no
_d

ef
en

se

fo
ols

go
ld

m
ult

ikr
um

no
rm

_d
iff_

cli
pp

ing rfa

bu
lya

n
sls

gd

wise
_m

ed
ian

tri
m

m
ed

_m
ea

n
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Im
pa

ct
 o

f L
ab

el
 F

lip
pi

ng

FEMNIST

(a) Label Flipping

sls
gd

fo
ols

go
ld

m
ult

ikr
um

tri
m

m
ed

_m
ea

n

no
_d

ef
en

se

no
rm

_d
iff_

cli
pp

ing

wise
_m

ed
ian

an
om

aly
_d

et
ec

tio
n

bu
lya

n rfa
0.00

0.05

0.10

0.15

0.20

0.25

Im
pa

ct
 o

f B
yz

. Z
er

o

CIFAR-10

m
ult

ikr
um

no
rm

_d
iff_

cli
pp

ing

an
om

aly
_d

et
ec

tio
n

fo
ols

go
ld

no
_d

ef
en

se

bu
lya

n
sls

gd

wise
_m

ed
ian

tri
m

m
ed

_m
ea

n rfa
0.00

0.05

0.10

0.15

0.20

0.25

Im
pa

ct
 o

f B
yz

. Z
er

o

CIFAR-100

m
ult

ikr
um

no
_d

ef
en

se

fo
ols

go
ld

an
om

aly
_d

et
ec

tio
n

no
rm

_d
iff_

cli
pp

ing
sls

gd

wise
_m

ed
ian

tri
m

m
ed

_m
ea

n

bu
lya

n rfa
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Im
pa

ct
 o

f B
yz

. Z
er

o

FEMNIST

(b) Byzantine Zero

no
rm

_d
iff_

cli
pp

ing

an
om

aly
_d

et
ec

tio
n

bu
lya

n

wise
_m

ed
ian

fo
ols

go
ld

tri
m

m
ed

_m
ea

n
sls

gd

m
ult

ikr
um rfa

no
_d

ef
en

se
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Im
pa

ct
 o

f B
yz

. R
an

do
m

CIFAR-10

an
om

aly
_d

et
ec

tio
n

no
rm

_d
iff_

cli
pp

ing

bu
lya

n

m
ult

ikr
um

fo
ols

go
ld
sls

gd

tri
m

m
ed

_m
ea

n rfa

wise
_m

ed
ian

no
_d

ef
en

se
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Im
pa

ct
 o

f B
yz

. R
an

do
m

CIFAR-100

an
om

aly
_d

et
ec

tio
n

no
rm

_d
iff_

cli
pp

ing

m
ult

ikr
um

tri
m

m
ed

_m
ea

n
sls

gd

wise
_m

ed
ian

bu
lya

n

no
_d

ef
en

se

fo
ols

go
ld rfa

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Im

pa
ct

 o
f B

yz
. R

an
do

m
FEMNIST

(c) Byzantine Random

fo
ols

go
ld

m
ult

ikr
um

wise
_m

ed
ian

sls
gd

tri
m

m
ed

_m
ea

n

bu
lya

n

no
rm

_d
iff_

cli
pp

ing

an
om

aly
_d

et
ec

tio
n

no
_d

ef
en

se rfa
0.00

0.05

0.10

0.15

0.20

0.25

Im
pa

ct
 o

f B
yz

. F
lip

CIFAR-10

fo
ols

go
ld

an
om

aly
_d

et
ec

tio
n

no
_d

ef
en

se

m
ult

ikr
um

no
rm

_d
iff_

cli
pp

ing

bu
lya

n
sls

gd

tri
m

m
ed

_m
ea

n

wise
_m

ed
ian rfa

0.00

0.05

0.10

0.15

0.20

0.25

Im
pa

ct
 o

f B
yz

. F
lip

CIFAR-100

m
ult

ikr
um

an
om

aly
_d

et
ec

tio
n

no
_d

ef
en

se

fo
ols

go
ld

no
rm

_d
iff_

cli
pp

ing
sls

gd

wise
_m

ed
ian rfa

bu
lya

n

tri
m

m
ed

_m
ea

n
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Im
pa

ct
 o

f B
yz

. F
lip

FEMNIST

(d) Byzantine Flip
Fig. 17. Performance of P4 with different defenses under all four poisoning attacks and 30% of malicious clients.

or violate differential privacy. Thus, we exclude them from our
comparison with P4. We also do not compare with AvgPush2,
CWT [95], and FML [96] since ProxyFL has already been
shown to outperform them in [25]. Additionally, we exclude
SMC-based techniques [97], [51], as these methods are often
computationally intensive due to their reliance on cryptographic
primitives such fully homomorphic encryption.

3) Parameter Settings: As described in Section IV-C, in
some experiments we use handcrafted features instead of raw
images. Specifically, following [81], we adopt the scatter-
ing network of [98], which encodes images using wavelet
transforms [99]. Using the default parameters from [98],
we employ a ScatterNet S(x) of depth two with wavelets
rotated along eight angles. For an image of size H × W ,
the handcrafted feature extractor outputs (K, H

4 ,
W
4), where

K = 81 for grayscale images and K = 243 for RGB images.
Additionally, we apply data normalization, where each client
computes the mean and variance of its local data, incurring
no additional privacy cost. Using these transformed features
enhances accuracy and allows classification with a single linear
layer, as demonstrated in Section V-B.

APPENDIX F
WHY ONE ITERATION OF LOCAL TRAINING IS SUFFICIENT

TO DISTINGUISH DIFFERENT DISTRIBUTIONS

a) Goal.: We show that if two clients have sufficiently
different data distributions, then even a single iteration of
local training (under differential privacy) produces updated
model weights that are distinguishable with high probability.
In particular, when the difference in their expected gradients
dominates the sampling, noise, and clipping errors, the ℓ1
distance between their weight vectors (cf. Equation (15))
remains large. This observation underpins the clustering strategy
described in Section IV-B.

A. Setup and Notation

Let Di and Dj denote the data distributions for clients i and
j, respectively. Each client draws its local dataset i.i.d. from
its distribution. All clients start from a common initial weight
vector w0 (or θ0) and perform one iteration of gradient-based
training with differential privacy (DP). After one iteration, the
updated weights for clients i and j are denoted by wi and wj ,
respectively.

The dissimilarity metric is given by

dissimilarity(i, j) =
∥∥∥wi −wj

∥∥∥
1
. (15)

For each client, let

gi =
1

ni

ni∑
t=1

∇ℓ(w0;xt, yt)

be the iteration-averaged empirical gradient (with ni samples)
and define its expectation as

E[gi] = E(x,y)∼Di

[
∇ℓ(w0;x, y)

]
.

2A decentralized version of FedAvg using PushSum for aggregation.

We assume that the expected gradients differ by at least

∥E[gi]− E[gj]∥1 ≥ γ,

for some γ > 0, which reflects the intrinsic difference in the
underlying data distributions.

After gradient clipping with threshold C and adding Gaussian
noise for DP (with noise standard deviation σ = σ̃ C), the
communicated gradient for client i is

g̃i = clip(gi, C) + ξi,

where ξi ∼ N (0, σ2Id). The corresponding weight update is
given by

wi = w0 − η g̃i,

with learning rate η.

B. Assumptions

We make the following assumptions:

(A1) Gradient Clipping and Clipping Error. For each client,
define the clipping error as

ϵclip = clip(g, C)− g,

where

clip(g, C) = min
(
1,

C
∥g∥2

)
g.

We do not assume that clipping is always inactive;
instead, standard tail bounds (e.g., under a sub-Gaussian
assumption on g) ensure that

E
[
∥ϵclip∥1

]
≤ E

[
∥g∥1 1{∥g∥2>C}

]
,

so that for appropriate choices of C the clipping error is
small.

(A2) Iteration-Averaged Gradients. For each client i, the
empirical gradient is defined as

gi =
1

ni

ni∑
t=1

∇ℓ(w0;xt, yt),

with expectation E[gi] as above.
(A3) Concentration for Sampling and Noise. There exist

constants c1 and c2 such that, with probability at least
1− δ,

∥gi − E[gi]∥1 ≤ c1√
ni

, ∥gj − E[gj]∥1 ≤ c1√
nj

,

∥ξi − ξj∥1 ≤ c2 σ̃ C
√
d.

(A4) Intrinsic Gradient Difference. The expected gradients
satisfy

∥E[gi]− E[gj]∥1 ≥ γ,

for some γ > 0.

C. Proof

Step 1. Expressing the Weight Difference.
Each client updates its weight vector as

wi = w0 − η g̃i, wj = w0 − η g̃j ,

where the noisy gradient is given by

g̃i = clip(gi, C) + ξi = gi + ϵ
(i)
clip + ξi.

Thus, the difference in weights is

wi − wj = −η
[
(gi − gj) +

(
ϵ
(i)
clip − ϵ

(j)
clip

)
+ (ξi − ξj)

]
.

Taking the ℓ1 norm and using homogeneity yields

∥wi − wj∥1 = η ∥g̃i − g̃j∥1. (16)

Step 2. Lower-Bounding ∥g̃i − g̃j∥1.
By the triangle inequality,

∥g̃i − g̃j∥1 ≥ ∥gi − gj∥1 −∥ϵ(i)clip − ϵ
(j)
clip∥1 −∥ξi − ξj∥1. (17)

We now decompose the empirical gradient difference as

gi − gj =
[
E[gi]− E[gj]

]
+
[
(gi − E[gi])− (gj − E[gj])

]
.

Applying the triangle inequality again gives

∥gi−gj∥1 ≥ ∥E[gi]−E[gj]∥1−∥(gi−E[gi])−(gj−E[gj])∥1.
(18)

By assumption (A4), ∥E[gi]− E[gj]∥1 ≥ γ, and by (A3),

∥(gi − E[gi])− (gj − E[gj])∥1 ≤ c1√
ni

+
c1√
nj

.

Thus,

∥gi − gj∥1 ≥ γ −
(

c1√
ni

+
c1√
nj

)
. (19)

Moreover, from (A3) the noise term satisfies

∥ξi − ξj∥1 ≤ c2 σ̃ C
√
d.

Define the total clipping deviation as

(clip dev) = ∥ϵ(i)clip∥1 + ∥ϵ(j)clip∥1.

Substituting these bounds into (17) yields

∥g̃i − g̃j∥1 ≥ γ −
(

c1√
ni

+
c1√
nj

)
− c2 σ̃ C

√
d− (clip dev).

(20)
Step 3. Final Separation in Weight Space.

Multiplying the bound in (20) by the learning rate η (cf. (16)),
we obtain

∥wi−wj∥1 ≥ η

[
γ −

(
c1√
ni

+
c1√
nj

+ c2 σ̃ C
√
d+ (clip dev)

)]
.

(21)
Thus, if

γ >
c1√
ni

+
c1√
nj

+ c2 σ̃ C
√
d+ (clip dev),

then with high probability,

∥wi−wj∥1 ≥ η

[
γ −

(
c1√
ni

+
c1√
nj

+ c2 σ̃ C
√
d+ (clip dev)

)]
> 0.

a) Discussion.: This lower bound demonstrates that the
separation between the updated weights is primarily determined
by the intrinsic difference γ in the expected gradients of
clients with distinct data distributions. Notably, under typical
assumptions, γ scales linearly with the model dimension d,
so that as d increases, the separation grows proportionally.
Moreover, as the number of training samples ni increases, the
sampling error terms c1√

ni
and c1√

nj
shrink, ensuring that γ

dominates the bound. Consequently, even after incorporating
DP noise (with σ = σ̃ C) and clipping errors, the expected
gradient difference remains the key factor determining the
grouping metric. This validates the use of the ℓ1 distance
between weight updates as a reliable proxy for distinguishing
underlying data distributions, thereby supporting effective
clustering.

D. Conclusion

Under assumptions (A1)–(A4) and with the DP noise scale
set as σ = σ̃ C, we have rigorously shown that the ℓ1 distance
between clients’ weight updates satisfies

∥wi−wj∥1 ≥ η

[
γ −

(
c1√
ni

+
c1√
nj

+ c2 σ̃ C
√
d+ (clip dev)

)]
,

with high probability. In other words, when the intrinsic
difference in expected gradients, γ, exceeds the aggregate
sampling, noise, and clipping errors, the clients’ weight updates
remain well separated. This finding underpins the clustering
strategy by confirming that the ℓ1 distance between weight
updates is an effective proxy for distinguishing the underlying
data distributions of clients.

	Introduction
	Background and Related Work
	Private Decentralized Learning
	Personalized Decentralized Learning
	P2P Learning

	Problem Statement
	System Model
	Threat Model

	The Design of P4
	Overview
	Phase 1: Group Formation
	Phase 2: Co-training
	Differential Privacy
	Defense against Poisoning Attacks
	Data Poisoning Tolerance
	Model Poisoning Tolerance
	Anomaly Detection

	Experiments
	Experimental Setup
	Datasets
	Non-IID Setting
	Models
	Baselines

	Privacy-Utility Amplification
	Tolerating Poisoning Attacks
	P4 on Resource-constrained Devices

	Conclusion
	References
	Appendix A: Table of Notations
	Appendix B: Additional Results for Privacy-Utility Amplification
	Additional heterogeneity settings
	Comparison between collaborative and local training

	Appendix C: Additional Results for Tolerating Poisoning Attacks
	Data poisoning tolerance
	Additional results for Experiment 2

	Appendix D: Ablation Studies
	Privacy-Utility Improvement
	Robustness

	Appendix E: Additional Experimental Setup
	Models and Hyperparameters
	Baselines
	Parameter Settings

	Appendix F: Why One Iteration of Local Training is Sufficient to Distinguish Different Distributions
	Setup and Notation
	Assumptions
	Proof
	Conclusion

