
ar
X

iv
:2

50
6.

20
23

4v
1

 [
cs

.C
R

]
 2

5
Ju

n
20

25

Communication-Efficient Publication of Sparse Vectors under
Differential Privacy

Quentin Hillebrand

The University of Tokyo

Tokyo, Japan

quentin-hillebrand@g.ecc.u-

tokyo.ac.jp

Vorapong Suppakitpaisarn

The University of Tokyo

Tokyo, Japan

vorapong@is.s.u-tokyo.ac.jp

Tetsuo Shibuya

The University of Tokyo

Tokyo, Japan

tshibuya@hgc.jp

ABSTRACT
In this work, we propose a differentially private algorithm for pub-

lishing matrices aggregated from sparse vectors. These matrices

include social network adjacency matrices, user-item interaction

matrices in recommendation systems, and single nucleotide poly-

morphisms (SNPs) in DNA data. Traditionally, differential privacy

in vector collection relies on randomized response, but this ap-

proach incurs high communication costs. Specifically, for a matrix

with 𝑁 users, 𝑛 columns, and𝑚 nonzero elements, conventional

methods require Ω(𝑛 × 𝑁) communication, making them imprac-

tical for large-scale data. Our algorithm significantly reduces this

cost to 𝑂 (𝜀𝑚), where 𝜀 is the privacy budget. Notably, this is even

lower than the non-private case, which requires Ω(𝑚 log𝑛) com-

munication. Moreover, as the privacy budget decreases, communi-

cation cost further reduces, enabling better privacy with improved

efficiency. We theoretically prove that our method yields results

identical to those of randomized response, and experimental evalua-

tions confirm its effectiveness in terms of accuracy, communication

efficiency, and computational complexity.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Data
anonymization and sanitization.

KEYWORDS
Differential privacy, Metric differential privacy, Communication

constraint, Graph differential privacy

1 INTRODUCTION
Differential privacy [4] has emerged as a widely accepted stan-

dard for protecting sensitive information while enabling data anal-

ysis and sharing. By adding carefully calibrated noise to query

results, it ensures that the release of analysis outcomes does not

significantly alter an observer’s knowledge of users’ sensitive in-

formation.

To handle cases where data is dispersed across multiple users,

various techniques have been developed to generate an obfuscated

representation of the raw data [5]. One of the most well-known

techniques is randomized response. In this technique, each data

point is probabilistically altered before being transmitted to the

central server. The server then processes the received obfuscated

data rather than the original values. This technique is widely recog-

nized for its ability to satisfy local differential privacy [18], a variant

of differential privacy that not only safeguards users’ information

when publishing analytical results but also ensures privacy during

data transmission and storage on the central server.

When a user possesses multiple sensitive data points, a variant

of differential privacy known asmetric differential privacy [1]

is commonly employed to enhance privacy protection. This privacy

framework enables more accurate data analysis while maintaining

user confidentiality. The randomized response technique, which

perturbs each data point with a certain probability, also adheres to

the requirements of this privacy notion.

We consider the scenario where each user’s data is represented

as a high-dimensional yet sparse vector—that is, while a user may

have a large amount of information, most of the values are identical.

For instance, in the context of graph and social network data,
each user maintains a list of friends, which can be represented

as an adjacency vector of size 𝑛, where 𝑛 is the total number of

users in the system. If a user has only 𝑑 ≪ 𝑛 friends, the adjacency

vector contains just 𝑑 ones, while the remaining entries, which are

zeros (the trivial values in this case), make up nearly the entire

vector. A similar situation arises in recommendation systems,
where each user provides ratings for movies. Since users typically

rate only a small subset of all available movies, the majority of

entries in their rating vector remain as "N/A," indicating missing or

unrated values. In genomic data, it is well established that the vast

majority of genetic information is identical across all humans,

with differences between individuals accounting for only about 1%

of the total genetic sequence.

In a non-private setting, collecting and storing sparse vectors is

efficient because we only need to track the positions and values of

non-trivial elements. Given a vector of size 𝑛 with at most 𝑑 non-

trivial entries, the communication and storage cost is 𝑂 (𝑑 log𝑛).
However, when applying the randomized response mechanism,

each entry is obfuscated with a certain probability, increasing the

number of non-trivial elements to Ω(𝑛) after obfuscation. As a
result, the communication and storage cost per user grows to Ω(𝑛)
bits. For a system with 𝑁 users, the overall communication and

storage complexity becomes Ω(𝑛 × 𝑁) bits, which is impractical

for many applications.

For example, in a social network setting where 𝑛 = 𝑁 , this

results in a communication and storage cost of Ω(𝑁 2) bits, making

it impractical to process networks with more than approximately

𝑁 = 50, 000 nodes. Moreover, some algorithms [16, 11] require the

central server to distribute the collected results back to all users,

further increasing the overall communication cost to Ω(𝑁 3), which
is prohibitively expensive.

Reducing communication costs has been a focus of many recent

studies, including approaches such as rejection sampling [6] and

https://orcid.org/0000-0002-7747-4998
https://orcid.org/0000-0002-7020-395X
https://orcid.org/0000-0003-1514-5766
https://arxiv.org/abs/2506.20234v1

Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya

importance sampling [30]. However, the outputs of these techniques

do not precisely match the distribution of the original mechanism.

This discrepancy can be problematic, as it may cause themechanism

to lose essential properties such as unbiasedness, making it more

challenging to analyze and post-process.

Several mechanisms provide unbiased results [17, 10, 24]. How-

ever, the methods proposed in [17, 10] are specifically designed

for social network data and still require a communication cost of

Ω(𝑁 2). While the mechanism in [24] is universally applicable, its

use for high-dimensional vectors incurs a communication cost of

Ω(𝑛 × 𝑁) and suffers from significant computational overhead. In

particular, the computational cost grows exponentially with 𝑑 , mak-

ing it impractical even when the number of non-trivial entries is

below 10,000, as the computation time becomes prohibitively high.

1.1 Our Contributions
In this paper, we propose a communication- and computation-

efficient mechanism for publishing the randomized response of

high-dimensional sparse vectors.

Our mechanism incorporates some ideas from the approach

called Poisson Private Representation (PPR) in [24]. However, to

mitigate the prohibitive computational cost that arises when the

number of non-trivial elements 𝑑 is large, we introduce a random

partitioning strategy. Specifically, we divide the high-dimensional

vector into Θ(𝑑) chunks, ensuring that the expected number of

non-trivial elements per chunk is Θ(1). This approach minimizes

the likelihood of any chunk containing a disproportionately large

number of non-trivial elements, which causes high computation

cost in [24]. We then propose an algorithm to efficiently compress

the randomized response results for vectors with a small number

of non-trivial elements. The complete mechanism is presented in

Section 3.

In [24], the algorithm known as chunk PPR partitions the in-

put vector into 𝑑 chunks. However, this algorithm is designed for

general inputs rather than specifically for sparse vectors. While

the technique effectively reduces the computation time of PPR, our

division method leverages the sparsity of the vector more efficiently.

In Section 4, we also provide a theoretical analysis of our al-

gorithm, demonstrating that both the communication cost and

execution time are independent of the vector’s length. Specifically,

given a privacy budget 𝜀 and 𝑑 non-zero elements in the vector, we

show that the communication cost is bounded by 𝑂 (𝜀𝑑), while the
computational complexity remains 𝑂 (𝑑).

We emphasize that our communication cost depends only on the

number of non-trivial elements, 𝑑 , rather than the size of the vector,

𝑛. As a result, our cost is significantly lower than any previous

algorithm designed for high-dimensional sparse vectors. Notably,

our approach even outperforms the non-private case, which incurs

a cost of Ω(𝑑 log𝑛).
Furthermore, since a smaller privacy budget corresponds to

stronger privacy guarantees, our method achieves lower communi-

cation costs while ensuring better privacy protection. This contrasts

with prior works on social network differential privacy [17, 10],

where the communication cost increases as privacy improves. In

those approaches, a smaller 𝜀 leads to a larger number of non-trivial

elements in the obfuscated vector, thereby increasing the commu-

nication overhead.

We also emphasize that the expected computational cost of our

algorithm scales linearly with the number of non-trivial elements,

𝑑 . This represents a significant improvement over the mechanism

proposed in [24], where the computation time grows exponentially

with 𝑑 .

From the compressed data, each element of the randomized

response result can be retrieved in constant time.

Some applications of our algorithm are listed below. We also

give the details of these application in Section 5.

Graph/Social Network Data. The private publication of social net-

work adjacency lists is a fundamental tool in various graph privacy

tasks. For instance, it serves as the first step in many synthetic

graph generation frameworks; see [23] for a benchmark. Addition-

ally, it plays a key role in subgraph counting, forming the initial

phase of the general two-step mechanism [16], which was origi-

nally designed for triangle counting but has since been extended to

cycle counting [11] and common neighbor estimation [9].

Given that this framework requires transmitting complete ad-

jacency data to each user, reducing communication overhead is

a crucial consideration. Our method allows users to publish their

adjacency lists under edge-local differential privacy [27], with a

communication cost proportional to their degree.

Recommendation Systems. A comprehensive survey on private

recommendation systems can be found in [12], highlighting the

growing interest in this field. In [2], the authors propose perturbing

local user interaction ratings before submitting them to a central

server that generates recommendations. However, their privacy

model differs from ours, as it only protects the rating values while

leaving their existence or absence unprotected. In [7], randomized

response is employed for local obfuscation before transmitting

user-item interactions to the central server.

We enable the publication of user-item interaction matrices,

where the communication cost scales with the number of ratings.

Genomic Data. A common task in private genomics is the publi-

cation of single nucleotide polymorphisms (SNPs), which provide

valuable insights into DNA variations and help assess genomic

risk factors. Several methods have been developed for this purpose

[15, 33, 34], though they rely on different privacy definitions than

ours. In [32], randomized response is employed to publish SNP data

under the 𝜀-DP privacy model.

Our approach supports the release of single nucleotide poly-

morphisms (SNPs), with a communication cost proportional to the

number of locations where the least common variation is present.

In Section 6, we present experimental results across all three ap-

plication scenarios, highlighting the effectiveness and practicality

of our mechanism. We verify that our communication and compu-

tation costs remain minimal even for vectors as large as 890,060 in

size. Additionally, we confirm that a graph algorithm for triangle

counting based on our framework achieves 100 times lower com-

munication cost than any previous method, even in a small social

network. With the same communication cost, our precision is 10
4

better than any previous works.

Communication-Efficient Publication of Sparse Vectors under Differential Privacy

2 PRELIMINARIES
2.1 Sampling with and without Replacement
In sampling with replacement, each draw is made independently

from the entire population. If 𝑛 draws are performed, each with a

probability of success 𝑝 , the number of successes, denoted by 𝑋 ,

follows a binomial distributionB(𝑛, 𝑝). The probability of obtaining
exactly 𝑘 successes is given by P(𝑋 = 𝑘) =

(𝑛
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 .

In contrast, sampling without replacement means that each

draw is taken from the remaining unselected portion of the popula-

tion. For a population of size 𝑁 containing 𝐾 successful elements,

when drawing 𝑛 times, the number of successes, denoted by 𝑌 ,

follows a hypergeometric distribution Hypergeometric(𝑁,𝐾, 𝑛).
The probability of observing exactly 𝑘 successes is given by P(𝑌 =

𝑘) = (
𝐾
𝑘) (𝑁 −𝐾𝑛−𝑘)
(𝑁𝑛)

.

We will use the following theorem in our analysis.

Theorem 1 (Theorem 4 of [13]). Let 𝑓 be a continuous and convex
function. If 𝑌 ∼ Hypergeometric(𝑁,𝐾, 𝑛) and 𝑋 ∼ B(𝑛, 𝑝) with
𝑝 = 𝐾/𝑁 , then E[𝑓 (𝑋)] ≤ E[𝑓 (𝑌)].

Additionally, the standard formula for the moment generating

function of 𝑋 ∼ B(𝑛, 𝑝) is given as E
[
𝑒𝑡𝑋

]
=
(
1 − 𝑝 + 𝑝𝑒𝑡

)𝑛
(see

Chapter 7.7 of [28]).

2.2 Counter-based Generators
Counter-based pseudo-random number generators (PRNGs) allow

for the parallel generation of pseudo-random number sequences.

Rather than generating all numbers from index 0 to 𝑖 − 1 before
obtaining the number at index 𝑖 , each index can be generated in-

dependently without extra computational cost. This property is

formally stated in Theorem 2.

Theorem 2 (Counter-based PRNGs [29]). There exist PRNGs 𝑓 such
that, given a key K and an index 𝑖 , the 𝑖-th element of the random
sequence 𝑓 (K, 𝑖) can be generated in constant time.

There exist several efficient implementations of counter-based

PRNGs (e.g., [29]), but in this article, we treat them as black-box

mechanisms to simplify the presentation of our methods.

To formalize our notation, let G be an initialized counter-based

PRNG. We denote by G (𝑘) the state of the generator after 𝑘 draws.

Furthermore, for a given distribution 𝑄 , we define Gen(𝑄,G (𝑘)) as
a sample drawn from 𝑄 using the randomness generated by G at

state G (𝑘) .

2.3 Differential Privacy
Definition 1 (Metric differential privacy [1]). Let d be a distance

between datasets. A mechanismM satisfies 𝜀-metric differential

privacy if for any pair of datasets𝐷 and𝐷′, and for any possible out-
come 𝑆 ofM, we have P [M(𝐷) ∈ 𝑆] ≤ 𝑒𝜀𝑑 (𝐷,𝐷 ′)P [M(𝐷′) ∈ 𝑆].

The parameter 𝜀 is called the privacy budget ofM.

Metric differential privacy was initially introduced as a conve-

nient way to define privacy in metric spaces. However, it has also

proven to be a highly general framework, as both the classic no-

tions of local and central differential privacy can be seen as special

cases of metric differential privacy under the appropriate choice of

distance.

In this article, we consider an input space of 𝑛-dimensional vec-

tors and define privacy using the Hamming distanceH . Specifically,

for two vectors 𝑣 and 𝑣 ′, the distanceH(𝑣, 𝑣 ′) is equal to the number

of coordinates on which they differ.

The algorithm we will analyze in this article is randomized re-

sponse, a method used to privately publish an entire vector of

categorical data.

Definition 2 (Randomized response [31]). For 𝜀 > 0 and a vector 𝑣

where each element of 𝑣 , denoted by 𝑣1, . . . , 𝑣𝑛 belongs to {0, . . . , 𝑘−
1}, the randomized response mechanism R with privacy budget 𝜀

is defined as follows. For any 𝑗 ∈ {0, . . . , 𝑘 − 1}, the probability of

reporting 𝑗 instead of the true value 𝑣𝑖 is given by:

P(R(𝑣𝑖) = 𝑗) =
{

𝑒𝜀

𝑒𝜀+𝑘−1 if 𝑣𝑖 = 𝑗,
1

𝑒𝜀+𝑘−1 otherwise.

With the Hamming distance, randomized response satisfies 𝜀-

metric differential privacy.

2.4 Poisson Private Representation
In [24], the authors present a method called Poisson Private Repre-

sentation (PPR) for converting any differentially private mechanism

into a compressed version while preserving the original output

distribution 𝑃 . The transformed algorithm ensures an identical dis-

tribution to the original mechanism while having a communication

cost of 𝑂 (𝜀).
This method leverages the shared random number generator

results between the user and the central server, represented by

draws (𝑍𝑖)𝑖∈N from a candidate distribution 𝑄 . The server should

select 𝑄 to closely approximate the true output distribution 𝑃 of

the differentially private (DP) mechanism applied to the private

data. While the server does not have access to the private data—and

therefore cannot directly determine 𝑃—a practical approach is to

use the output distribution of the same DP mechanism on arbitrary

input data as an approximation.

With these shared draws, the user can transmit the index 𝐾 cor-

responding to the selected draw, which serves as the mechanism’s

output. The central server can then retrieve the output by comput-

ing𝑍𝐾 . Notably, if counter-based PRNGs are used, this computation

remains constant-time regardless of the value of 𝐾 .

Theorem 3 establishes that this mechanism preserves both pri-

vacy and the original output distribution.

Theorem 3 (Proposition 4.2 and Theorem 4.7 of [24]). For an 𝜀-
metric differentially private mechanismM, the PPR simulation ofM
with parameter 𝛼 > 1 satisfies 2𝛼𝜀-metric differential privacy while
ensuring that its output follows the same distribution as that ofM.

Two types of communication occur during the protocol. The

first is dedicated to establishing shared randomness between the

user and the central server. This can be achieved, for instance,

by transmitting a public instantiation key or using a predefined

mechanism. Since this step can be initiated by either party and

incurs only a small, constant communication cost, we exclude it

from our communication analysis.

The second type of communication, which is our primary focus,

involves the local user transmitting the value of 𝐾 to the central

Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya

server. This integer can be efficiently encoded using Huffman cod-

ing [14, 22], resulting in an expected communication cost of at most

E[log
2
𝐾] +log

2
(E[log

2
𝐾] +1)+2 bits. Consequently, bounding the

expected communication cost reduces to the problem of bounding

E[log
2
𝐾].

Theorem 4 (Theorem 4.3 of [24]). For a mechanism with output
distribution 𝑃 , a candidate distribution 𝑄 , and a parameter 𝛼 > 1,
the message 𝐾 produced by PPR applied to 𝑃 satisfies E

[
log

2
𝐾
]
≤

D(𝑃 ∥𝑄) + log
2
3.56

min{ (𝛼−1)/2,1} , where D(𝑃 ∥𝑄) denotes the KL-divergence
between 𝑃 and 𝑄 .

Another important consideration is the computational cost of the

mechanism. On the server side, assuming the use of counter-based

PRNGs, this cost remains constant and minimal. On the user side,

however, the mechanism requires evaluating
d𝑃
d𝑄
(𝑍𝑖), which repre-

sents the ratio of the probability of obtaining 𝑍𝑖 from 𝑃 to that from

𝑄 , for a large number of points 𝑍𝑖 sampled from the probability

distribution 𝑄 . To optimize this process, [24] introduces a reparam-

eterization trick that employs a heap-based algorithm, ensuring the

number of draws is bounded by𝑂

(
sup𝑧

d𝑃
d𝑄
(𝑧)

)
. Given that comput-

ing the probability ratio
d𝑃
d𝑄
(𝑧) incurs a cost of 𝑐 , the overall runtime

of the PPR algorithm is 𝑂

(
sup𝑧

d𝑃
d𝑄
(𝑧) ·

(
𝑐 + log sup𝑧 d𝑃

d𝑄
(𝑧)

))
.

3 OUR ALGORITHM: COMPRESSION OF
RANDOMIZED RESPONSE

The PPR mechanism can simulate any differentially private mecha-

nism while reducing communication costs. Since randomized re-

sponse is a differentially private mechanism, PPR can be directly

applied to it. However, directly using PPR on the output of the

randomized response method presents several challenges.

Issue of PPR: Large Hamming Distance. Since two distinct vec-

tors of length 𝑛 can have a Hamming distance of up to 𝑛, the KL

divergence between the candidate distribution and the actual distri-

bution can reach 𝑛𝜀. Given this and considering Theorem 4, we can

infer that the resulting communication cost scales as 𝑂 (𝑛𝜀). Con-
sequently, directly applying PPR to randomized response within

this privacy model does not yield any improvement over naive

randomized response.

The direct usage of PPR is challenging evenwhenwe focus on the

common scenario where vectors are sparse or close to a reference.

In this setting, the general structure of the vector is largely known

before the user’s data is published, with only a small number of

coordinates differing from the reference. However, since the indices

of these differing coordinates are unknown, the entire vector must

still be published.

Our Idea 1: Selection of the Candidate Distribution. Let 𝑑 denote

the number of differing coordinates from the reference. We select

candidate distribution𝑄 as the randomized response applied to the

reference vector. For instance, when the vector 𝑣 ∈ {0, 1}𝑛 to be

published is sparse, with only 𝑑 nonzero elements while the rest

are zeros, the candidate distribution 𝑄 is chosen as the distribution

of the randomized response applied to the all-zero vector.

Under this choice, the KL divergence between the candidate

distribution and the randomized response applied to the actual

vector is reduced to 𝑑𝜀. By carefully selecting the candidate dis-

tribution, we achieve a communication cost proportional to the

vector’s sparsity, similar to the non-private case.

Issue of PPR: Computation Cost. Since the number of draws (de-

noted as sup𝑧
d𝑃
d𝑄
(𝑧)) in Section 2) increases exponentially with

𝑑𝜀, the computational cost of PPR also scales exponentially when

applied to the randomized response result (see Section 8 of [24]).

This makes it impractical for reasonable values of 𝑑 . To reduce the

number of required draws, we partition the adjacency vector into

smaller groups. While the original PPR paper also employs chunk-

ing, their method cannot be directly applied here to ensure low

computational cost. Their approach relies on contiguous chunks,

but depending on the data structure, values may be concentrated

in specific regions of the vector.

Our Idea 2: Random Partitioning Strategy. To reduce the number

of draws, we divides the vector into smaller chunks using random

partitioning strategy, ensuring that each chunk has a small degree

on average. PPR is then applied independently to each chunk. By

carefully selecting the chunk size, we achieve a communication

cost proportional to the degree while maintaining a computational

cost that also scales with the degree.

1 Function EncodeRR
Input: 1) A list of indices corresponding to the

non-trivial entries of the input vector, denoted as

(𝑥1, . . . , 𝑥𝑑); 2) the values of the input vector at
these indexes (𝑣1, . . . , 𝑣𝑑); 3) The reference
vector values at these indexes (𝑐1, . . . , 𝑐𝑑); 4)
The number of chunks𝑚; 5) A privacy budget 𝜀;

6) A public random permutation function 𝜑

Output: The encoded result (𝐾1, . . . , 𝐾𝑚)
2 𝑦1, . . . , 𝑦𝑑 ← 𝜑 (𝑥1), . . . , 𝜑 (𝑥𝑑);
3 𝑠 ← ⌈𝑛/𝑚⌉;
4 For each 𝑖 ∈ [1, 𝑑], compute the Euclidean division of 𝑦𝑖

by 𝑠 , yielding (𝑞𝑖 , 𝑟𝑖);
5 for 𝑗 ← 1 to𝑚 do
6 𝑆 𝑗 ← {(𝑟𝑖 , 𝑢𝑖 , 𝑐𝑖) | 𝑞𝑖 = 𝑗};
7 𝐾𝑗 ← PPR(𝑆 𝑗 , 𝜀, 𝛼);
8 end
9 return (𝐾1, . . . , 𝐾𝑚)
Algorithm 1: Encodes the compressed randomized response

of a vector

Our encoding algorithm is given in Algorithm 1. It begins by

randomly permuting the vector using the function 𝜑 , and divide

it into𝑚 chunks. The non-trivial elements of those𝑚 chunks are

denoted by the set 𝑆1, . . . , 𝑆𝑚 . Next, we apply the PPR method [24]

to each chunk and return the resulting list as the output.

Our decoding algorithm is presented in Algorithm 2. To deter-

mine the value of the input vector at index 𝑖 , we first compute the

chunk number 𝑞 and the position of 𝑖 within the chunk, denoted by

𝑟 , using the public function 𝜑 and 𝑠 . We then perform the decoding

using the same approach as PPR.

Communication-Efficient Publication of Sparse Vectors under Differential Privacy

1 Function DecodeRR
Input: A list of compressed indexes (𝐾1, . . . , 𝐾𝑚), a list

of distributions (𝑄1, . . . , 𝑄𝑛), the index 𝑖 that
one wants to access

Output: The value of the vector at index 𝑖
2 𝑗 ← 𝜑 (𝑖);
3 Let (𝑞, 𝑟) be the result of the Euclidean division of 𝑗 by 𝑠 ;

4 return Gen(𝑄𝑖 ,G (𝑠𝐾𝑞+𝑟))
Algorithm 2:Decodes the compressed randomized response

of a vector

Our Idea 3: Efficient Calculation of d𝑃
d𝑄
(𝑍𝑖). As noted in Section

2, PPR requires multiple evaluations of
d𝑃
d𝑄
(𝑍𝑖). A naive approach

to computing
d𝑃
d𝑄
(𝑍𝑖) involves generating the entire randomized

vector and comparing its probability under both distributions. Even

when Algorithm 1 reduces the vector size from 𝑛 to 𝑠 , 𝑠 typically

remains of the same order as𝑛, making thismethod computationally

inefficient and leading to significant computation time.

In Algorithm 3, we propose an efficient approach leverages the

fact that this probability ratio depends only on the values of the

draw at the indices where the private vector differs from the refer-

ence.

Let 𝑍𝑖 = (𝑧1, . . . , 𝑧𝑠) be a sparse vector, and 𝑥1, . . . , 𝑥𝑑 ′ are the
indices on which the input vector has non-trivial values for all

1 ≤ 𝑗 ≤ 𝑑′. By the independence of the randomized responsemecha-

nism, we observe that P𝑃 [𝑍𝑖]/P𝑄 [𝑍𝑖] =
∏𝑑 ′
𝑗=1 P𝑃 𝑗 [𝑍𝑥 𝑗]/P𝑄 𝑗 [𝑍𝑥 𝑗],

where 𝑃 𝑗 represents the probability distribution of the randomized

response result derived from the 𝑥 𝑗 -th element of the input vector,

and 𝑄 𝑗 corresponds to the one obtained from the reference vector.

Since 𝑧 𝑗 can be generated independently and is not required for the

calculation when 𝑗 ∉ {𝑥1, . . . , 𝑥𝑑 ′ }, we can omit 𝑧 𝑗 in such cases.

Leveraging this observation, we can bypass generating the full

vector and instead compute the ratio using only these 𝑑′ specific
coordinates. The calculation time 𝑐 is 𝑂 (𝑑′).

1 Function ProbabilityRatio
Input: 1) A list of indices corresponding to the

non-trivial entries of the input vector, denoted as

(𝑥1, . . . , 𝑥𝑑 ′); 2) The values of the input vector at
these indices, represented as (𝑣1, . . . , 𝑣𝑑 ′); 3) The
reference vector values at these indices, given by

(𝑐1, . . . , 𝑐𝑑 ′); 4) The value of 𝑍𝑖 at these indices,
given by (𝑧1, . . . , 𝑧𝑑 ′); 5) A privacy budget 𝜀.

Output: d𝑃
d𝑄
(𝑍𝑖)

2 𝑟𝑎𝑡𝑖𝑜 ← 1;

3 for 𝑖 ← 1 to 𝑑′ do
4 if 𝑧𝑖 = 𝑣𝑖 then 𝑟𝑎𝑡𝑖𝑜 ← 𝑟𝑎𝑡𝑖𝑜 × 𝑒𝜀 ;
5 if 𝑧𝑖 = 𝑐𝑖 then 𝑟𝑎𝑡𝑖𝑜 ← 𝑟𝑎𝑡𝑖𝑜 × 𝑒−𝜀 ;
6 end
7 return 𝑟𝑎𝑡𝑖𝑜
Algorithm 3: Calculate the ratio d𝑃/d𝑄 at a given state 𝑍𝑖

4 THEORETICAL ANALYSIS
First, we give the privacy result for our algorithm.

Theorem 5. Algorithm 1 satisfies 2𝛼𝜀-metric differential privacy.

Proof. Each independent PPR satisfies 2𝛼𝜀-metric differential

privacy, as stated in Theorem 3. Since the mechanism partitions

the indices into 𝑚 groups, its overall privacy guarantee follows

from the parallel composition property of differential privacy [26,

25]. □

The number of chunks,𝑚, is a tunable parameter that balances

communication cost and execution time. Our analysis focuses on

the case where𝑚 = 𝛽𝜀𝑑 , with 𝛽 as a parameter. We demonstrate

that under this setting, the communication cost is of order 𝑂 (𝜀𝑑),
while the computation cost remains 𝑂 (𝑑).

Theorem 6. The communication cost of our algorithm is 𝑂 (𝜀𝑑),
where 𝑑 represents the number of indices where the input vector differs
from the reference vector.

Lemma 1. ForM a metric differential private mechanism, and 𝑃
and 𝑄 two distributions resulting fromM applied on two datasets at
distance 𝑑 , then sup𝑧

d𝑃
d𝑄
(𝑧) ≤ 𝑒𝜀𝑑 and D(𝑃 ∥𝑄) ≤ 𝜀𝑑 .

Proof. Since 𝑃 and 𝑄 are derived from the same metric differ-

entially private mechanism applied to two datasets separated by a

distance 𝑑 , it follows that d𝑃
d𝑄
(𝑧) ≤ 𝑒𝜀𝑑 , for all 𝑧. Using this result,

we obtain D(𝑃 ∥𝑄) = E𝑍∼𝑃
[
log

(
d𝑃
d𝑄
(𝑍)

)]
≤ 𝜀𝑑 . □

Proof of Theorem 6. The random public permutation function

can be obtained through shared common knowledge. Additionally

we suppose that all users (including the central server) are aware

of the reference vector. This leads us to only consider the sharing

of (𝐾1, . . . , 𝐾𝑚) for the communication cost.

We define 𝑑𝑖 = |𝑆𝑖 |, ensuring that 𝑑1 + · · · + 𝑑𝑚 = 𝑑 . Each 𝑑𝑖
represents the distance from the reference point of the 𝑖-th vector.

PPR is applied independently to every chunk 𝑆𝑖 . Thus, each 𝐾𝑖

verifies E
[
log

2
𝐾𝑖
]
≤ D(𝑃𝑖 ∥𝑄𝑖) +

log
2
3.56

min{ (𝛼−1)/2,1} and D(𝑃𝑖 ∥𝑄𝑖) ≤
𝜀𝑑𝑖 using Lemma 1. This gives a total expected communication cost

of

∑𝑚
𝑖=1

[
E
[
log

2
𝐾𝑖
]
+ log

2
(E

[
log

2
𝐾𝑖
]
+ 1) + 2

]
≤ ∑𝑚

𝑖=1

[
D(𝑃𝑖 ∥𝑄𝑖) +𝑂 (1) + log2 (D(𝑃𝑖 ∥𝑄𝑖) +𝑂 (1))

]
≤ ∑𝑚

𝑖=1

[
𝜀𝑑𝑖 +𝑂 (1) + log2 (𝜀𝑑𝑖 +𝑂 (1))

]
= 𝑂 (𝜀𝑑). □

Theorem 7. The computational cost of the compressed randomized
response proposed in this work is𝑂 (𝑑), where𝑑 represents the number
of indices where the input vector differs from the reference vector.

Proof. The primary contributor to computational cost is the

runtime of PPR for the various 𝑆𝑖 . Therefore, our analysis will focus
on these computations. For any 𝑖 ∈ [1,𝑚], we first observe that the
complexity 𝑐𝑖 of Algorithm 3 applied to 𝑆𝑖 is Θ(𝑑𝑖). Consequently,
the expected computational cost C𝑖 of running PPR depends on 𝑑𝑖

and is given by C𝑖 (𝑑𝑖) = 𝑂
(
𝑒𝜀𝑑𝑖 (𝑑𝑖 + 𝜀𝑑𝑖)

)
= 𝑂

(
𝑑𝑖𝑒

𝜀𝑑𝑖
)
.

We need to analyze the distribution of 𝑑𝑖 and its impact on the

expected value of C𝑖 . The indices of the vector are randomly shuffled

before being divided into 𝑚 groups. In the worst-case scenario,

the subset 𝑆𝑖 forms a contiguous block of size ⌈𝑛/𝑚⌉. Under this
scenario, 𝑑𝑖 follows a hypergeometric distribution with parameters

Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya

𝑛,𝑑, ⌈𝑛/𝑚⌉. Furthermore, since C𝑖 is a convex function, we can

apply Theorem 1. This result establishes that the expected value

of C𝑖 (𝑑𝑖) is upper-bounded by the expected value of C𝑖 (𝑌), where
𝑌 ∼ B(𝑁, 𝑝) with 𝑁 = ⌈𝑛/𝑚⌉ and 𝑝 = 𝑑/𝑛.

We define the function 𝑓 (𝑥) = 𝑥𝑒𝜀𝑥 and compute the expected

value of 𝑓 (𝑌). This allows us to bound the complexity of Algo-

rithm 1 by 𝑂 (𝑚 · E[𝑓 (𝑌)]), where E[𝑓 (𝑌)] =
∑𝑁
𝑖=0 𝑖𝑒

𝜀𝑖𝑝𝑖 (1 −
𝑝)𝑁−𝑖

(𝑁
𝑖

)
. This expression can be viewed as a function of 𝑒𝜀 , which

we denote as 𝑔. Additionally, we introduce the function ℎ(𝑥) =∑𝑁
𝑖=0 𝑥

𝑖𝑝𝑖 (1−𝑝)𝑁−𝑖
(𝑁
𝑖

)
. From the moment-generating function for-

mula for the binomial distribution, we obtainℎ(𝑥) = (1+(𝑥−1)𝑝)𝑁 .

Differentiating ℎ(𝑥), we find ℎ′ (𝑥) = 𝑝𝑁 (1 + (𝑥 − 1)𝑝)𝑁−1. Since
𝑔(𝑥) satisfies the relation 𝑥ℎ′ (𝑥) = 𝑔(𝑥), we conclude that:

E [𝑓 (𝑌)] = 𝑒𝜀𝑝𝑁
(
1 + (𝑒𝜀 − 1)𝑝

)𝑁−1
≤ 𝑑
𝑛

(𝑛
𝑚
+ 1

) (
1 + (𝑒𝜀 − 1)𝑑

𝑛

) ⌈ 𝑛𝑚 ⌉−1
≤

(
1

𝛽𝜀
+ 𝑑
𝑛

)
exp

[
𝑛

𝑚
ln

(
1 + (𝑒𝜀 − 1)𝑑

𝑛

)]
≤

(
1

𝛽𝜀
+ 𝑑
𝑛

)
exp

[
𝑛

𝑚
(𝑒𝜀 − 1)𝑑

𝑛

]
=

(
1

𝛽𝜀
+ 𝑑
𝑛

)
exp

(
𝑒𝜀 − 1
𝛽𝜀

)
= 𝑂

(
1

𝛽𝜀

)
The final step of the derivation follows from the fact that exp

(
𝑒𝜀−1
𝛽𝜀

)
=

𝑂 (1) when 𝛽 ≥ 1 and 𝜀 is close to zero. Since Algorithm 1 executes

a total of 𝑚 = 𝛽𝜀𝑑 instances of PPR, the overall computational

complexity of the algorithm is given by 𝑂 (𝑚 · E[𝑓 (𝑌)]), which
simplifies to 𝑂 (𝑑). □

5 POTENTIAL APPLICATIONS
In this section, we will explore various scenarios in which our algo-

rithm can be applied. Randomized response serves as a fundamental

component of differentially private algorithms. Consequently, our

mechanism is particularly useful in private applications involving

large volumes of data where communication costs are a concern.

The only prerequisites are (1) the existence of a reference vector

and (2) the adoption of metric differential privacy as the privacy

framework. Regarding the first requirement, in most real-world

scenarios, the server typically has some prior knowledge of the

information held by the user. In the following discussion, we will

examine examples of how this prior knowledge about the secret

vector can be transformed into a reference vector.

Graph/Social Network Information. The first scenario we exam-

ine is the publication of adjacency lists. In this setting, users seek

to privately share their list of neighbors in a graph. The primary

framework used to protect such information is edge-local differ-

ential privacy [27], which aligns with metric differential privacy

by defining distance as the Hamming distance between two ad-

jacency vectors. Since most real-world graphs’ adjacency vectors

are sparse, it is generally known in advance that the majority of

bits in the adjacency vector will be zeros. Therefore, we adopt a

reference vector consisting entirely of zeros for our mechanism.

According to Theorem 6, this choice leads to a communication cost

proportional to 𝑑 , the degree of the node—typically around a thou-

sand—rather than 𝑛, the total number of nodes in the graph, which

usually reaches several million, as would be required for a naive

randomized response.

Recommendation System. In this scenario, each user holds a set

of ratings for certain items. Those ratings forms a vector called user-

item interaction. Specifically, for each item in the set of possible

items, a user has either not provided a rating or has assigned a score

from a finite set of values. Our goal is to publish these ratings while

preserving metric differential privacy, where the distance between

two vectors is defined as the number of items for which the ratings

differ or are present in only one of the two vectors.

Since the total number of possible items, represented by the

size of the user-item interaction vector 𝑛, is typically very large,

while each user has rated only a small subset, we use an empty

rating vector (where no items have been rated) as the reference.

Consequently, the number of non-trivial elements in the input

vectors, denoted as 𝑑 , corresponds to the number of items a user

has rated, which is significantly smaller than 𝑛. This allows our

algorithm to achieve a communication cost proportional to the

number of rated items rather than the total number of possible

items, substantially reducing overhead.

Genomic Information. We focus on the publication of single-

nucleotide polymorphisms (SNPs), which represent variations of

a single nucleotide in the genome. In this setting, both the central

server and users have access to a list of possible SNP locations, along

with the most common nucleotide variation at each location. The

reference vector is constructed using these most frequent variations,

while the input vector represents each user’s specific SNP data.

Consequently, the vector size 𝑛 corresponds to the total number of

locations, while 𝑑 represents the number of locations where a user’s

genomic information differs from the most frequent variation. It is

known that 𝑑 ≪ 𝑛 in this type of dataset.

6 EXPERIMENTAL RESULTS
In this section, we conduct experiments on the three applications

identified in the previous section. The code for these experiments

is available in the following repository: https://anonymous.4ope

n.science/r/Metric-DP-Compression-8362. All timed experiments

are conducted on a MacBook Pro (14-inch, 2021) equipped with an

M1 Pro chip featuring an 8-core CPU and 32GB of memory. We

do not include a comparison with PPR or chunk PPR from [24], as

their execution time is prohibitively high across all experimental

settings. Additionally, we do not compare the communication cost

and execution time with the randomized response technique, as

its communication cost is significantly higher than our method

and can be theoretically predicted. Moreover, its execution time

remains consistently low since it only involves bit flipping.

6.1 Recommendation Systems
We conduct our experiments using the MovieLens 32M dataset [8],

which contains 32 million ratings for 87,585 movies from 200,948

users. For all experiments, we randomly select 1,000 users from

this dataset and apply our algorithm to their rating lists. The vector

size (representing the number of movies), 𝑛, is 87,585, while the

https://anonymous.4open.science/r/Metric-DP-Compression-8362
https://anonymous.4open.science/r/Metric-DP-Compression-8362

Communication-Efficient Publication of Sparse Vectors under Differential Privacy

number of non-trivial elements (representing the number of ratings

per user), 𝑑 , ranges from a few to 3,500.

Upload Cost and Execution Time. First, in Figure 1, we present the
communication cost required for users to upload their randomized

response to the server, along with the execution time, using the

default parameters: 𝜀 = 1, 𝛼 = 2, and 𝛽 = 2.

The results indicate that the upload cost scales linearly with the

number of ratings, as expected, with a slope of approximately 2.

The results also confirm that the upload cost of our algorithm is

even lower than that of non-private publication of the adjacency

vector when using the adjacency list format. While the execution

time also increases with the number of ratings, the high variance

reduces the strength of this correlation. We have verified that the

high variance is not due to the variance of 𝑑𝑖 in our algorithm but

rather stems from the PPR. Despite the large variance, all 1,000

executions maintain a manageable execution time.

Figure 1: Communication cost and the execution time in-
curred by our algorithm for 1000 users of the Movie Lens
dataset as a function of their number of movie rated

Results on Different Privacy Budget 𝜀. In this experiment, all pa-

rameters remain at their default values except 𝜀. The results of

this experiment are presented in Figure 2 for the upload cost and

Figure 3 for the execution time. These results indicate that as the

privacy budget increases, both the upload cost and execution time

of the algorithm increase, while the variance of the execution time

decreases.

Figure 2: Communication cost of our algorithm for 1,000
users in the MovieLens dataset across different privacy bud-
get values

Results on Different Values of Parameter 𝛽 . Recall that the num-

ber of chunks,𝑚, is defined as 𝛽𝜖𝑑 . In the appendix, we present

experimental results for different values of 𝛽 , which confirm that

setting the default value to 2 is a reasonable choice.

Figure 3: Execution time of our algorithm on 1000 users of
the Movie Lens dataset for different values of the privacy
budget

Estimation of the Number of Common Items. To prove the accu-

racy of our method, we also evaluate it on the task of computing

the number of common items between 2 users. To this end, we

randomly select pairs of users in MovieLens and estimate their

number of items in common with classic randomized response and

our algorithm, which is called compressed RR in the figure.

Figure 4: The absolute error in estimating the number of
common neighbors across 1,000 user pairs in the MovieLens
dataset

The results in Figure 4 show that accuracy experiences only a

slight decline when using our algorithm, which is expected. Our

method can achieve the same results as randomized response but

with a larger privacy budget. Consequently, when the budget is

fixed, the accuracy is slightly reduced.

6.2 Genomic Data
The second application we examine is the publication of SNPs by

users. For our experiments, we use chromosome 22 data from the

Phase 3 release of the 1000 Genomes Project [3].

This dataset consists of 1,064,502 locations. While real SNP in-

formation is not available due to its sensitivity, we have probability

values indicating the likelihood of a user having a variation from

the most frequent nucleotide at each location. We use these proba-

bilities to generate synthetic user data. All probabilities are greater

Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya

than 10
−4

. Our method is particularly beneficial for sparse datasets,

so we exclude locations where variations are too frequent from our

experiments. This exclusion does not pose a limitation, as the princi-

ple of parallel composition allows us to publish frequent variations

using classical randomized response while applying our algorithm

to the rarer ones—without splitting the privacy budget. As a result,

we retain only variations with a frequency below 10
−2
, leading to

𝑛 = 890, 060 remaining variations, which represents over 83% of

the dataset.

In our experiments, we generate 1,000 synthetic users and apply

our algorithm to their SNP lists, with the number of variations

ranging from 800 to 1,100.

In Figure 5, we plot the resulting upload cost and execution time

as functions of the number of variations each user possesses. Since

the number of variations falls within a narrower range, the distri-

bution is more clearly visible compared to the recommendation

system. Notably, the variance in execution time is too high to reveal

a clear trend. However, the upload cost remains within a 10% range

of its average value, indicating stable performance. In all of the

results, our algorithm exhibits efficient performances both in the

upload cost and the execution time.

Figure 5: The communication cost and the execution time of
our algorithm for 1000 randomly generated SNPs sequences
as a function of the number of variations

6.3 Social Networks
Upload Cost and Execution Time. In Appendix, we present our

upload cost and execution time on the Google+ dataset, which con-

sists of 107,614 nodes. The results align closely with those observed

in the recommendation system and genomic data experiments.

Triangle Counting. For the experiment on triangle counting we

chose to conduct them on the Wikipedia graph [20, 19]. This graph

contains 𝑛 = 7, 115 nodes and 103,689 edges. We are unable to

conduct this experiment on the Google+ dataset because the ran-

domized response technique requires excessive memory, making it

infeasible to run the algorithm within our computational environ-

ment.

We use the two-step mechanisms described in [16] to privately

estimate the number of triangles in the graph, with one key mod-

ification: we replace the classical randomized response with our

algorithm. In this two-step mechanism, all users must download

the randomized response results of every other user to their lo-

cal storage. As a result, most of the communication cost comes

from these download costs. Therefore, unlike other experiments

where we compare upload costs, we focus on download costs in

this evaluation.

For comparison, we evaluate our method against ARROne [17]

and GroupRR with CSS [10]. These algorithms include a sampling

parameter that balances communication cost and accuracy. To

demonstrate the full range of their capabilities, we compute their

ℓ2-errors for various values of this parameter.

In contrast, our method does not require such a parameter, so

we represent only a single point in the results, corresponding to

the average download cost and the average ℓ2-error, defined as the

square root of the sum of squared errors over 10 runs. The results

are presented in Figure 6.

Figure 6: The average ℓ2 error in the estimation of the number
of triangles in the Wiki graph for 3 different algorithms

We observe that, for the same level of accuracy, our method

reduces communication cost by a factor of more than 100. Further-

more, at the communication cost used by our method, the error of

GroupRR is over 10 times higher, while ARR exhibits an error more

than 10
4
times worse. We expect these improvements to be even

more pronounced for larger or sparser graphs.

7 CONCLUSION
Randomized response is one of the most widely used algorithms

for protecting users’ sensitive information under metric and local

differential privacy, with numerous potential applications. However,

for sparse vectors, this method is inefficient in both communication

and storage costs.

Although several studies have proposed solutions to mitigate

this issue [17, 10], we fully resolve it by achieving an even lower

cost than non-private communication. This significantly expands

the applicability of randomized response. Our algorithm is built

on an information-theoretic approach inspired by PPR. While PPR

is known to compress information published under differential

privacy, its compression rate is approximately 1/𝜖 , where 𝜖 is the
privacy budget. In contrast, our compression rate is 𝑛/(𝜖𝑑), where
𝑛 is the vector size and 𝑑 is the number of non-trivial values in the

sparse vector. This rate is significantly higher than that of PPR.

Our algorithm is the first to demonstrate how an information-

theoretic approach can drastically reduce communication costs in

differential privacy applications.

ACKNOWLEDGMENTS
Quentin Hillebrand is partially supported by KAKENHI Grant

20H05965, and by JST SPRING Grant Number JPMJSP2108. Vo-

rapong Suppakitpaisarn is partially supported by KAKENHI Grant

Communication-Efficient Publication of Sparse Vectors under Differential Privacy

21H05845 and 23H04377. Tetsuo Shibuya is partially supported by

KAKENHI Grant 20H05967, 21H05052, and 23H03345.

REFERENCES
[1] Miguel E Andrés, Nicolás E Bordenabe, Konstantinos Chatzikokolakis, and

Catuscia Palamidessi. 2013. Geo-indistinguishability: differential privacy for

location-based systems. In SIGSAC 2013, 901–914.
[2] Arnaud Berlioz, Arik Friedman, Mohamed Ali Kaafar, Roksana Boreli, and

Shlomo Berkovsky. 2015. Applying differential privacy to matrix factorization.

In RecSys 2015, 107–114.
[3] 1000 Genomes Project Consortium et al. 2015. A global reference for human

genetic variation. Nature, 526, 7571, 68.
[4] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2006.

Calibrating noise to sensitivity in private data analysis. In TCC 2006, 265–284.
[5] Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized aggregatable privacy-preserving ordinal response. In SIGSAC 2014,
1054–1067.

[6] Vitaly Feldman and Kunal Talwar. 2021. Lossless compression of efficient

private local randomizers. In ICML 2021, 3208–3219.
[7] Chen Gao, Chao Huang, Dongsheng Lin, Depeng Jin, and Yong Li. 2020. DPLCF:

Differentially private local collaborative filtering. In SIGIR 2020, 961–970.
[8] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens datasets:

History and context. ACM Trans. Interact. Intell. Syst., 5, 4.
[9] Yizhang He, Kai Wang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2024.

Common neighborhood estimation over bipartite graphs under local differential

privacy. PACMMOD 2024, 2, 6, 1–26.
[10] Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya. 2023.

Communication cost reduction for subgraph counting under local differential

privacy via hash functions. arXiv preprint arXiv:2312.07055.
[11] Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya. 2025.

Cycle counting under local differential privacy for degeneracy-bounded graphs.

STACS 2025.
[12] Yassine Himeur, Shahab Saquib Sohail, Faycal Bensaali, Abbes Amira, and

Mamoun Alazab. 2022. Latest trends of security and privacy in recommender

systems: a comprehensive review and future perspectives.Computers & Security,
118, 102746.

[13] Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random

variables. Journal of the American Statistical Association, 58, 301, 13–30.
[14] DavidAHuffman. 1952. Amethod for the construction ofminimum-redundancy

codes. Proceedings of the IRE, 40, 9, 1098–1101.
[15] Mathias Humbert, Erman Ayday, Jean-Pierre Hubaux, and Amalio Telenti. 2014.

Reconciling utility with privacy in genomics. In WPES 2014, 11–20.
[16] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. 2021. Locally dif-

ferentially private analysis of graph statistics. In USENIX Security 2021, 983–
1000.

[17] Jacob Imola, TakaoMurakami, and Kamalika Chaudhuri. 2022. Communication-

efficient triangle counting under local differential privacy. In USENIX Security
2022, 537–554.

[18] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhod-

nikova, and Adam Smith. 2011. What can we learn privately? SIAM Journal on
Computing, 40, 3, 793–826.

[19] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting posi-

tive and negative links in online social networks. In WWW 2010, 641–650.
[20] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed networks

in social media. In CHI 2010, 1361–1370.
[21] Jure Leskovec and Julian Mcauley. 2012. Learning to discover social circles in

ego networks. NIPS 2012, 25, 1–9.
[22] Cheuk Ting Li and Abbas El Gamal. 2018. Strong functional representation

lemma and applications to coding theorems. IEEE Transactions on Information
Theory, 64, 11, 6967–6978.

[23] Shang Liu, Hao Du, Yang Cao, Bo Yan, Jinfei Liu, and Masatoshi Yoshikawa.

2025. PGB: Benchmarking differentially private synthetic graph generation

algorithms. ICDE 2025.
[24] Yanxiao Liu, Wei-Ning Chen, Ayfer Özgür, and Cheuk Ting Li. 2024. Universal

exact compression of differentially private mechanisms. NeurIPS 2024.
[25] Pasin Manurangsi and Warut Suksompong. 2023. Differentially private fair

division. AAAI 2023, 5814–5822.
[26] Frank D McSherry. 2009. Privacy integrated queries: an extensible platform

for privacy-preserving data analysis. In SIGMOD 2009, 19–30.
[27] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2017.

Generating synthetic decentralized social graphs with local differential privacy.

In CCS 2017, 425–438.
[28] Sheldon M Ross. 1976. A first course in probability. Vol. 2. Macmillan New York.

[29] John K Salmon, Mark A Moraes, Ron O Dror, and David E Shaw. 2011. Parallel

random numbers: as easy as 1, 2, 3. In SC 2011, 1–12.

[30] Abhin Shah, Wei-Ning Chen, Johannes Balle, Peter Kairouz, and Lucas Theis.

2022. Optimal compression of locally differentially private mechanisms. In

AISTATS 2022, 7680–7723.
[31] Yue Wang, Xintao Wu, and Donghui Hu. 2016. Using randomized response for

differential privacy preserving data collection. In EDBT/ICDT 2016 number 35.

[32] Akito Yamamoto and Tetsuo Shibuya. 2024. Privacy-Optimized Randomized

Response for Sharing Multi-Attribute Data. In ISCC 2024, 1–8.
[33] Emre Yilmaz, Erman Ayday, Tianxi Ji, and Pan Li. 2020. Preserving genomic

privacy via selective sharing. In WPES 2020, 163–179.
[34] Emre Yilmaz, Tianxi Ji, Erman Ayday, and Pan Li. 2022. Genomic data sharing

under dependent local differential privacy. In CODASPY 2022, 77–88.

Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya

APPENDIX: ADDITIONAL EXPERIMENTAL
RESULTS
Results on Movie Lens Dataset for Different
Values of 𝛽
In this experiment, all parameters remain at their default values

except for 𝛽 . The results are presented in Figure 7 for the upload

cost and Figure 8 for the execution cost. The findings indicate that

increasing 𝛽 leads to a higher upload cost. For execution time, both

its value and variance decrease as 𝛽 increases. However, this trend

is not observed between 𝛽 = 2 and 𝛽 = 4, which led us to select

𝛽 = 2 as the default value.

Figure 7: The communication cost of our algorithm on 1000
users of the Movie Lens dataset for different values of the
parameter 𝛽 .

Figure 8: The execution time of our algorithm on 1000 users
of the Movie Lens dataset for different values of the parame-
ter 𝛽 .

Experiments on Google+ Dataset
We conducted our experiments on the Google+ dataset [21], where

nodes represent users and edges indicate connections between users

within a circle. The resulting graph consists of 𝑛 = 107, 614 nodes

and 13,673,453 edges. The degree 𝑑 ranges from 1 to 5,000.

To publish the complete adjacency matrix of an unordered graph,

it is sufficient for each user to disclose only their connections with

nodes having smaller indices than their own [10]. Based on this

principle, we applied our algorithm to the adjacency vector, retain-

ing only the 1s corresponding to connections with lower-indexed

nodes. Figure 9 presents the results for 1,000 randomly selected

users from the graph.

Figure 9: The communication cost and the execution time
incurred by our algorithm for 1,000 users of the Google+
dataset as a function of their number of neighbors of smaller
index

Similar to user-item interactions in recommendation systems, we

observe that both the upload cost and execution time increase with

the number of neighbors having smaller indices. Additionally, the

variance in execution time is higher than in upload cost. However,

we also note that both the upload cost and execution time remain

low across all data points.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Sampling with and without Replacement
	2.2 Counter-based Generators
	2.3 Differential Privacy
	2.4 Poisson Private Representation

	3 Our Algorithm: Compression of Randomized Response
	4 Theoretical Analysis
	5 Potential Applications
	6 Experimental Results
	6.1 Recommendation Systems
	6.2 Genomic Data
	6.3 Social Networks

	7 Conclusion
	Acknowledgments

