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Abstract—The convergence of Information Technology (IT) 
and Operational Technology (OT) has created hyper-connected 
Industrial Control Systems (ICS), exposing critical 
infrastructure to a new class of adaptive, intelligent adversaries 
that render static defenses obsolete. Existing security paradigms 
often fail to address a foundational “Trinity of Trust,” 
comprising the fidelity of the system model, the integrity of 
synchronizing data, and the resilience of the analytical engine 
against sophisticated evasion. This paper introduces the 
Adversarial Resilience Co-evolution (ARC) framework, a 
method for achieving analytical resilience through an 
autonomous, closed-loop hardening process. ARC establishes a 
perpetual co-evolutionary arms race within the high-fidelity 
sandbox of a Fortified Secure Digital Twin (F-SCDT). A Deep 
Reinforcement Learning (DRL) agent, the “Red Agent,” is 
formalized and incentivized to autonomously discover stealthy, 
physically-plausible attack paths that maximize process 
disruption while evading detection. Concurrently, an ensemble-
based “Blue Agent” defender is continuously hardened via 
adversarial training against the evolving threats discovered by 
its adversary. This co-evolutionary dynamic forces both agents 
to become progressively more sophisticated, enabling the system 
to autonomously probe and patch its own vulnerabilities. 
Experimental validation on both the Tennessee Eastman 
Process (TEP) and the Secure Water Treatment (SWaT) 
testbeds demonstrates the framework’s superior performance. 
A comprehensive ablation study, supported by extensive 
visualizations including Receiver Operating Characteristic 
(ROC) curves and SHapley Additive exPlanations (SHAP) plots, 
reveals that the co-evolutionary process itself is responsible for 
a significant performance increase in detecting novel attacks. By 
integrating Explainable Artificial Intelligence (XAI) to ensure 
operator trust and proposing a scalable Federated ARC (F-
ARC) architecture, this work presents ARC not merely as an 
improvement, but as a necessary paradigm shift toward 
dynamic, self-improving security for the future of critical 
infrastructure. 
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I. THE IMPERATIVE FOR DYNAMIC RESILIENCE IN CRITICAL 
INFRASTRUCTURE

The operational landscape of global critical infrastructure
has undergone a profound and irreversible transformation, 
built upon a brittle foundation. The fourth industrial 
revolution, or Industry 4.0 [1], represents a paradigm shift in 
industrial automation, driven by the mass integration of cyber-
physical systems, the Industrial Internet of Things (IIoT) [2], 
and cloud computing. This convergence of Information 
Technology (IT) and Operational Technology (OT) has 
irrevocably dismantled the “air gap” that once served as the 
primary, albeit fragile, defense for the world’s critical 
infrastructure. The resulting hyper-connected ecosystem of 
Industrial Control Systems (ICS) [3] has unlocked 

unprecedented efficiencies but has also created a 
catastrophically expanded and dangerously porous attack 
surface. This vulnerability is not a recent phenomenon or an 
accidental oversight but the direct and predictable culmination 
of decades of design choices that, justifiably at the time, 
prioritized operational reliability, predictability, and physical 
safety over security in what was assumed to be a trusted, 
physically isolated, and non-adversarial environment. 

This fragility stems not only from outdated protocols but 
also from a deeper, philosophical conflict between two 
disparate operational paradigms. The IT sector operates on a 
model of rapid development and continuous patching, while 
the OT sector is governed by a culture of extreme risk 
aversion, where maintaining system availability and stability 
is the paramount objective. This fundamental mismatch in the 
philosophy of change management and risk assessment 
created a critical seam—a vulnerability not in code but in 
process and culture—which adversaries quickly learned to 
exploit. The introduction of Artificial Intelligence (AI) into 
this precarious ecosystem has acted as a powerful catalyst, 
igniting a dynamic and perpetual co-evolutionary arms race. 
This necessitates a fundamental shift in security thinking, 
moving away from static, prevention-focused models toward 
resilient, adaptive paradigms. 

The lessons from seminal attacks reveal that a robust 
security framework for modern ICS must be built upon a 
central, motivating thesis. This paper proposes this thesis as 
the “Trinity of Trust,” a set of three interconnected and non-
negotiable foundational requirements. A failure in any one of 
these pillars renders the entire security posture invalid and 
creates an exploitable vulnerability. It is the failure of previous 
approaches to address all three pillars holistically that 
necessitates a new paradigm. 

A. The Foundational Flaws of the OT Environment
For much of the 20th century, the design philosophy of

ICS was rooted entirely in the principles of safety and 
reliability engineering. The primary concerns were preventing 
physical accidents, ensuring process uptime, and guaranteeing 
deterministic behavior, with security being an entirely alien 
concept. This historical context is critical; the insecurity of 
modern OT is not an accident but a core feature of its design 
legacy. 

The bedrock of this insecurity lies in the communication 
protocols themselves. Legacy protocols such as Modbus [4], 
developed in 1979 for serial communication between 
Programmable Logic Controllers (PLCs), and Distributed 
Network Protocol 3 (DNP3) [5], dating from 1993, still form 
the digital backbone of countless industrial facilities today, 
from power grids to water treatment plants and manufacturing 
floors. These protocols were designed for efficiency and 
simplicity in trusted, serial-line environments. As such, they 



were created without even the most basic security features that 
are now considered fundamental in IT networking: 

• The protocols lack any authentication mechanism to 
verify the identity of the device or user sending a 
command. Any device on the network can send a 
command to any other device, and it will be accepted 
as legitimate. 

• All communication is transmitted in cleartext without 
encryption, meaning an attacker with network access 
can not only read all data but also easily intercept and 
modify commands in transit without being detected. 

• Beyond basic error checking (like a CRC), there are no 
cryptographic integrity checks to ensure that a 
command has not been altered. 

The practical implication of these design choices is a 
“trust-by-default” environment. An attacker with access to the 
OT network can trivially craft a valid Modbus TCP packet to, 
for example, switch off a critical cooling pump, and the target 
PLC will obey without question. There is no concept of a 
privileged user or a trusted source; all commands are treated 
with equal legitimacy. 

The first documented cyber-physical attack, the 2000 
Maroochy Shire sewage spill in Queensland, Australia [6], 
was a stark warning of the consequences of this inbuilt trust. 
A disgruntled former employee, using a laptop, radio 
transmitter, and knowledge of the system’s vulnerabilities, 
was able to remotely take control of the sewage system, 
ultimately releasing one million liters of raw sewage into local 
parks and rivers. While this incident clearly demonstrated that 
the threat was real, it was widely treated as an outlier—an act 
of insider revenge, not a harbinger of a new class of external, 
sophisticated threats. This misinterpretation led to a prolonged 
period of complacency, allowing the fundamental insecurities 
of OT to become even more deeply entrenched as systems 
were increasingly networked. 

Yet, the incident was widely framed as an insider threat 
problem rather than a systemic technological failure. This 
framing proved to be a critical missed opportunity for the 
industry to confront the “insecure-by-design” problem at its 
core, leading to a prolonged period of complacency where the 
fundamental insecurities of OT became even more deeply 
entrenched. This has created a “technical debt” of insecurity 
that has now come due, compelling organizations to protect 
systems that were never designed to be defended. 

B. Threat Evolution from Nuisance to National Security 
Imperative 
The threat landscape has evolved dramatically from 

isolated incidents to persistent, sophisticated campaigns 
orchestrated by a complex and increasingly interconnected 
ecosystem of actors. Reports from leading government and 
industry bodies consistently highlight the escalating frequency 
and sophistication of attacks targeting these environments. 
The Dragos 2023 Year in Review reported a 49.5% increase 
in ransomware attacks impacting industrial organizations, 
with many incidents leading to operational shutdowns. By 
2024, this trend had accelerated, with Dragos reporting an 
87% year-over-year increase in ransomware attacks on the 
industrial sector, with 80 distinct ransomware groups active. 
This reality underscores a grim truth: the defenders of critical 
infrastructure are no longer facing isolated hackers but 

adaptive, well-resourced adversaries conducting persistent 
campaigns. 

This evolution is intrinsically linked to global geopolitical 
tensions, which now directly fuel OT-centric cyber 
operations. State-sponsored actors from Russia, China, and 
Iran have been identified as major threats, each with distinct 
motivations and tactics. 

• Volt Typhoon (also tracked as VOLTZITE) [7], a 
People’s Republic of China (PRC)-affiliated actor, has 
been a significant concern due to its focus on pre-
positioning within U.S. critical infrastructure. This 
group specializes in “living-off-the-land” (LotL) 
techniques, using legitimate, built-in system tools to 
evade detection and maintain long-term persistence. 
Their goal appears to be establishing footholds for 
potential future disruptive or destructive attacks in the 
event of a major conflict, with observed activities 
including the exfiltration of sensitive OT network 
diagrams and operational procedures from 
compromised utilities. 

• APT44 (also known as Sandworm or ELECTRUM), a 
unit of the Russian GRU, has demonstrated a tactical 
evolution in the context of the war in Ukraine. Initially 
known for disruptive attacks, the group has 
increasingly focused on espionage to support 
conventional military operations. It has employed 
destructive wiper malware like ACIDPOUR, which 
can target OT devices, and has collaborated with 
hacktivist personas such as 
CyberArmyofRussia_Reborn to create a layer of 
plausible deniability for its operations. 

This convergence of state actors, cybercriminals, and 
hacktivists has lowered the barrier to entry for impactful 
attacks. Less sophisticated groups can now leverage leaked 
tools or basic techniques to cause tangible disruptions. For 
example, the Fuxnet malware, revealed in 2024, demonstrated 
how even a rudimentary tool could disrupt industrial sensors. 
Simultaneously, hacktivist groups like 
CyberArmyofRussia_Reborn have successfully targeted 
internet-exposed Human-Machine Interfaces (HMIs), proving 
that high technical sophistication is not a prerequisite for 
causing operational and psychological impact. 

C. Anatomy of Seminal ICS Attacks and Their Human 
Impact 
A deeper analysis of seminal ICS attacks reveals not only 

the technical depth of the vulnerabilities exploited but also a 
clear progression from simple nuisance to sophisticated, 
physically-destructive campaigns that increasingly target the 
human operator. 

• Stuxnet (2010): The discovery of Stuxnet [8] marked a 
turning point. Far more than just malware, Stuxnet was 
a precision weapon targeting Siemens Step7 PLCs 
controlling uranium enrichment centrifuges in Iran. Its 
genius lay in its multi-stage attack chain. It exploited 
four separate zero-day vulnerabilities for propagation 
and privilege escalation. Once on the target network, it 
did not cause immediate failure. Instead, it subtly 
manipulated the rotational frequency of the 
centrifuges, inducing extreme mechanical stress and 
causing physical damage over time [9]. Crucially, it 
did so while replaying normal operational data to the 



operators, creating a phantom reality where the HMI 
showed a stable process while the machinery was 
tearing itself apart. This attack represents a masterclass 
in exploiting the gap between the digital representation 
and the physical reality, effectively weaponizing the 
operator’s trust in their own control system. 

• Ukrainian Power Grid (2015): This attack [10] 
demonstrated a coordinated, multi-pronged assault. 
The attackers used spear-phishing emails to deploy the 
BlackEnergy 3 malware, gaining a foothold in the IT 
networks of three energy distribution companies. From 
there, they pivoted to the Supervisory Control and Data 
Acquisition (SCADA) network, systematically 
mapping the environment for months. The final attack 
was executed in minutes: operators were locked out of 
their own systems as they watched the attackers’ 
cursors move on their screens, remotely opening 
breakers at multiple substations and causing 
widespread power outages for over 230,000 
consumers. The attack also included components to 
flood telecommunication systems and wipe firmware 
to complicate recovery efforts. The psychological 
impact on the operators, forced to be helpless 
spectators to the destruction of their grid, cannot be 
overstated and highlights the human-centric nature of 
modern attacks. 

• Cyber Av3ngers Campaign (2023): More recent 
campaigns show an evolution towards psychological 
warfare and systemic disruption. The 2023 campaign 
by the “Cyber Av3ngers,” an Iranian Revolutionary 
Guard Corps (IRGC)-affiliated persona [11], against 
U.S. water and wastewater systems serves as a visceral 
case study. The attack, while not technically complex, 
was devastatingly effective because it targeted trust. 
The attackers exploited basic security hygiene failures, 
targeting Israeli-made Unitronics Vision Series PLCs 
that were insecurely exposed to the internet, often 
using default passwords. Upon gaining access, they 
defaced the HMI with hostile messages. For an 
operator, seeing their trusted interface replaced with 
“You have been hacked” transforms a technical 
problem into a moment of helplessness and terror, 
instantly eroding confidence in the system’s integrity. 
This underscores a critical reality: modern adversaries 
are not just exploiting code; they are exploiting the 
human operator’s cognitive and emotional state [12]. 

The progression of these landmark attacks reveals a 
sophisticated learning curve among adversaries. The focus has 
expanded from purely technical exploitation of a physical 
process (Stuxnet) to the disruption of the human response loop 
(Ukraine power grid), the subversion of defensive tools’ trust 
in legitimate processes (Volt Typhoon), and finally, to direct 
psychological attacks on human operators and the public 
(Cyber Av3ngers). Adversaries have learned that 
compromising the human element—by eroding trust, inducing 
stress, and creating debilitating uncertainty—can be as 
effective, if not more so, than simply breaking a physical 
component. This evolution demands that defensive strategies 
move beyond purely technical controls to incorporate human 
factors [13] as a core tenet of a holistic security posture. 

These attacks demonstrate that adversaries orchestrate 
complex campaigns that blend digital intrusion with a deep 
understanding of the target physical process and its human 

operators. Static, signature-based defenses are utterly 
insufficient, as an adversary can be digitally “valid” by issuing 
commands within normal protocol specifications, yet be 
physically malicious. 

D. The Trinity of Trust as a Foundational Security 
Paradigm for Cyber-Physical Systems 
The lessons from these attacks reveal that a robust security 

framework for modern ICS must be built upon what this work 
terms a “Trinity of Trust,” a set of three interconnected 
foundational requirements. A failure in any one of these pillars 
renders the entire security posture invalid. 

1. Model Fidelity: The digital representation (e.g., digital 
twin) [14] used for analysis must be a high-fidelity 
replica of the physical asset. A model that fails to 
accurately capture the underlying physics and 
dynamics of the process is fundamentally 
untrustworthy. A critical vulnerability is “model drift,” 
where the digital twin becomes less accurate over time 
due to physical factors like equipment wear and tear or 
process reconfiguration. An adversary can exploit this 
drift, executing an attack that the outdated model no 
longer recognizes as anomalous. The Stuxnet attack 
was a masterclass in exploiting such a fidelity gap; the 
operators’ HMI model showed a stable process while 
the physical centrifuges were being destroyed. True 
fidelity requires a hybrid model that understands the 
physical laws governing the process [15] to detect non-
intuitive, but physically anomalous, states. 
Maintaining this fidelity is an ongoing challenge, 
requiring continuous validation and recalibration to 
counter semantic drift and ensure the digital 
representation remains a reliable source of truth. 

2. Data Integrity: The data stream connecting the 
physical world to the digital analysis engine must be 
verifiably authentic and tamper-proof. Even with a 
perfect model, the system is blind if its data feeds can 
be deceived. As demonstrated by Stuxnet and Cyber 
Av3ngers, an adversary who can manipulate this data 
pipeline can effectively “gaslight” the entire system. 
Securing this pipeline with cryptographic guarantees 
like Elliptic Curve Digital Signature Algorithm 
(ECDSA) signatures and immutable ledgers is a 
necessary, non-negotiable step. However, integrity 
must be considered holistically. A compromised 
endpoint sensor can truthfully sign and transmit 
malicious data, bypassing gateway-level security. To 
address this, a hardware root of trust at the sensor level 
is required. Physically Unclonable Functions (PUFs) 
[16] offer a powerful solution by generating unique, 
device-specific cryptographic keys from the inherent, 
random physical variations of the silicon itself. 
Because these keys are generated on-demand and 
never stored in non-volatile memory, they are virtually 
impossible to clone or extract, providing a much 
stronger guarantee of data origin than traditional 
methods. 

3. Analytical Resilience: The analytical engine—the 
anomaly detection models themselves—must be 
resilient to an intelligent adversary who actively seeks 
to evade it. Having a perfect model and pristine data is 
useless if the brain of the security system is easily 
outsmarted. Standard machine learning models trained 



on historical data are fundamentally brittle, perfectly 
prepared for yesterday’s war but easily bypassed by a 
novel attack [17]. For example, a “low-and-slow” 
attack, where an adversary gradually manipulates a 
sensor value over hours, can keep each individual data 
point within a “normal” region, evading a simple 
anomaly detector that lacks temporal context. True 
resilience requires a defense that actively anticipates 
and adapts to the adversary’s evolving tactics, 
hardening itself against threats it has not yet seen. 

E. Research Contributions: The Adversarial Resilience Co-
evolution (ARC) Framework 
This paper argues that achieving Analytical Resilience in 

a dynamic threat environment is the central challenge for ICS 
security. While architectures can address fidelity and integrity, 
new methods are required to build a defense that learns and 
evolves. To this end, this work makes the following primary 
contributions: 

• The paper proposes the Adversarial Resilience Co-
evolution (ARC) framework, a process for the 
autonomous, closed-loop hardening of ICS defenses 
that transforms a digital twin from a passive monitor 
into an active, self-improving security system. 

• The research formalizes the problem of discovering 
stealthy, physically-plausible ICS attacks within a 
Deep Reinforcement Learning (DRL) paradigm, 
featuring a novel reward function explicitly engineered 
to balance the competing objectives of physical 
disruption and adversarial evasion. 

• The work conducts comprehensive experimental 
validation on multiple, distinct testbeds—the 
Tennessee Eastman Process (TEP) [18] and the Secure 
Water Treatment (SWaT) benchmark [19]—including 
a novel ablation study that quantitatively analyzes the 
source of performance gains. 

• The paper introduces a technically-grounded vision for 
scaling autonomous resilience with Federated 
Learning (F-ARC) [20], providing a blueprint for an 
industry-wide, privacy-preserving defense ecosystem 
and analyzing its unique security challenges. 

II. STATE-OF-THE-ART IN ICS DEFENSE 
To justify the novelty and necessity of the ARC 

framework, this section provides an expanded critical analysis 
of prior art, systematically deconstructing the limitations of 
existing approaches when viewed through the lens of the 
Trinity of Trust—specifically, the pillar of Analytical 
Resilience. The evolution of ICS defense can be broadly 
categorized into four paradigms, each building upon the last, 
yet each introducing its own set of limitations that necessitate 
the next leap forward. 

A. The Failure of Static Defenses in a Dynamic World 
The first generation of ICS security solutions were direct 

imports from the IT world, a pragmatic but flawed response to 
the initial wave of IT/OT convergence. This convergence was 
driven by clear business imperatives: the need for real-time 
production data for enterprise resource planning (ERP) 
systems, remote monitoring capabilities, and predictive 
maintenance analytics. In connecting previously isolated OT 
networks to corporate IT networks, organizations 
inadvertently shattered the “air gap” and exposed legacy 

systems, which were never designed for an adversarial 
environment, to a world of new threats. The initial security 
response was to deploy what was known and available: 
perimeter firewalls with static, rule-based access control lists, 
and network Intrusion Detection Systems (IDS) that relied on 
signatures of known malware [21]. 

While these tools form a necessary, foundational layer of 
basic security hygiene, they are fundamentally reactive and 
architecturally mismatched for the realities of the modern OT 
threat landscape. Their core logic is predicated on identifying 
known malicious patterns or blocking unauthorized 
communication paths. However, they are incapable of 
understanding the context or intent behind legitimate 
commands. An attacker using a standard Modbus Write Single 
Coil command (Function Code 05) to disable a critical safety 
interlock, followed by a Write Single Register command 
(Function Code 06) to push a motor’s speed beyond its 
operational limits, will not trigger any malware signature. The 
traffic itself is syntactically correct and protocol-compliant, 
and will be passed by any basic firewall that allows Modbus 
communication. This approach fails the test of Analytical 
Resilience because it is predicated on a static, uncreative 
adversary and cannot comprehend malicious intent when it is 
expressed using legitimate syntax. 

The most critical and increasingly prevalent blind spot of 
this paradigm is its inability to counter “living-off-the-land” 
(LotL) techniques [22]. Sophisticated adversaries, such as the 
state-sponsored group Volt Typhoon, have demonstrated a 
clear preference for deliberately avoiding the deployment of 
custom, signature-able malware. Instead, they abuse 
legitimate, built-in system tools and protocols—such as 
PowerShell for scripting, Windows Management 
Instrumentation (WMI) for system queries, netsh for network 
configuration, and valid industrial commands—to achieve 
their objectives. Because these actions leverage trusted and 
often whitelisted system components, they blend seamlessly 
with normal administrative and operational traffic. From the 
perspective of a signature-based IDS or a basic firewall, these 
activities are indistinguishable from the actions of a legitimate 
system administrator or engineer performing routine 
maintenance. This tactic renders the entire class of signature-
based defense largely obsolete against modern, persistent 
threats, as there is simply no “bad” signature to detect. 

B. Promise, Pitfalls, and Operational Naivete of Machine 
Learning for Anomaly Detection 
Recognizing the stark limitations of static signatures, the 

research community and security industry turned to machine 
learning (ML) and data-driven anomaly detection [23]. This 
represented a conceptual leap forward, moving from 
identifying known “badness” to modeling a baseline of 
“goodness,” or normal behavior, and flagging any deviation 
from it. 

Early efforts focused on “shallow” machine learning 
models like Support Vector Machines (SVMs) [24], Random 
Forests, and K-Nearest Neighbors [25]. While these models 
proved effective in some contexts, they suffer from two major 
drawbacks in the ICS domain. First, they often require 
extensive and brittle feature engineering, demanding that a 
domain expert manually select the most relevant sensor data 
and statistical features. Second, and more critically, they 
typically treat sensor readings as independent features at 
discrete points in time, failing to capture the crucial temporal 



dependencies and long-term sequential patterns that define a 
complex industrial process. For example, a Random Forest 
might correctly classify a single pressure reading of ‘101 psi’ 
as normal, but it cannot recognize that a sequence of 
readings—‘101 psi’, then ‘102 psi’, then ‘103 psi’—over three 
hours constitutes a dangerous trend indicative of a slow leak. 
A model without temporal context is blind to such attacks. 

The advent of deep learning brought more powerful tools, 
particularly recurrent neural networks like Long Short-Term 
Memory (LSTM) networks [26], Gated Recurrent Units 
(GRUs) [27], and Autoencoders [28]. These architectures are 
inherently designed to model temporal sequences and learn 
complex, non-linear correlations in high-dimensional sensor 
data without manual feature engineering, making them a much 
better fit for the ICS domain. However, a persistent pitfall in 
much of the academic literature is the evaluation of these 
models only against pre-defined, non-adversarial fault 
conditions or simplistic, simulated attacks. When trained 
solely on benign operational data, these models learn a 
compressed representation of “normalcy,” effectively 
mapping the system’s normal operational states to a high-
dimensional surface known as a manifold. This makes them 
inherently naive and brittle when faced with an intelligent 
adversary who will not behave like a random fault. Such an 
adversary will actively probe the model to understand the 
shape of this manifold and then craft an attack vector that 
constitutes a path along this surface from a safe state to a 
dangerous one, never deviating far enough from the manifold 
at any single point to be flagged as an anomaly. This fools the 
detector into classifying a malicious state transition as benign. 

Furthermore, the application of deep learning in a critical 
operational context introduces its own set of significant 
challenges: 

• The Black Box Problem: The complex, deeply-nested, 
non-linear nature of deep neural networks makes their 
decisions notoriously difficult to interpret [29]. If a 
model flags an anomaly, it often cannot explain why it 
did so in a way a human operator can understand and 
trust. This lack of transparency is a major barrier to 
adoption. An operator faced with an un-explainable 
alert must choose between ignoring a potentially 
critical warning or executing a costly and disruptive 
emergency shutdown based on blind faith in an 
algorithm. This can lead to “alert fatigue” and a general 
erosion of trust, causing operators to disable or ignore 
the security system altogether, rendering it useless. 

• Data Quality and Concept Drift: Real-world industrial 
data is often noisy, and models trained on it are 
susceptible to a phenomenon known as “concept drift” 
[30]. Industrial processes are not static; equipment 
degrades, recipes are updated, and environmental 
conditions change. A model trained on data from six 
months ago may no longer accurately represent the 
“normal” state of the plant today, leading to a decay in 
performance and a rise in false alarms. Without a 
mechanism for continuous adaptation, the model’s 
fidelity inevitably declines. 

• Data Poisoning Vulnerabilities: An adversary with 
even limited access to the model’s training data can 
execute a data poisoning attack [31]. By injecting a 
small number of carefully crafted malicious samples 
into the training set, the adversary can degrade the 

model’s overall performance or, more insidiously, 
create a backdoor that causes the model to 
systematically misclassify a specific attack vector that 
the adversary intends to use later. 

These limitations underscore that while deep learning is a 
powerful tool, its naive application is not a panacea and can 
even introduce new, subtle risks into the security posture. 

C. The Mismatch of Adversarial Machine Learning in 
Cyber-Physical Contexts 
The field of Adversarial Machine Learning (AML) [32] 

emerged specifically to address the naivete of standard ML 
models by explicitly training them to be robust against 
malicious inputs designed to cause misclassification. 
However, a critical methodological error, prevalent in early 
research, is to directly port techniques and threat models from 
the domain of computer vision (CV), where AML was 
pioneered, to the cyber-physical domain of ICS. 

The canonical threat model in computer vision is based on 
an L∞ norm [33], which assumes the attacker can add a small, 
uniform, and often human-imperceptible amount of noise to 
all features (i.e., every pixel in an image). This is a physically 
implausible threat model for an industrial control system. It is 
not feasible for an attacker to subtly manipulate every single 
sensor reading across an entire plant simultaneously in a 
perfectly coordinated fashion. An attacker who compromises 
a system is far more likely to gain control over a limited 
number of sensors or actuators. 

A far more realistic threat model, which this work adopts, 
involves an attacker compromising a small, discrete number 
of sensors or actuators. This corresponds to an attack that 
minimizes the L0 norm—the number of perturbed features 
[34]. To put this in an intuitive analogy: an L∞ attack is like 
lightly dusting an entire landscape with a fine layer of snow, 
subtly changing everything at once. An L0 attack is like 
targeting a single house with a well-aimed snowball. In ICS, 
attackers throw snowballs; they do not change the global 
weather. The Jacobian-based Saliency Map Attack (JSMA) 
[35] is a classic and powerful L0 attack that serves as an 
excellent proxy for this type of focused, physically plausible 
attacker. JSMA works by calculating the Jacobian matrix of 
the model’s output with respect to its inputs, which effectively 
creates a “saliency map” indicating which input features have 
the most influence on the output class. It then iteratively 
modifies the small number of features that have the most 
significant impact, allowing it to efficiently craft a 
misclassification with minimal, targeted changes. By 
incorporating a physically-grounded L0 attack model like 
JSMA into the ARC hardening process, the framework trains 
its defender against a more realistic and dangerous class of 
adversary than those considered by standard AML techniques 
ported from computer vision. 

D. The Limits of Game Theory and Open-Loop Co-
evolution 
The most advanced thinking in the field views ICS 

security as a dynamic, strategic game between an attacker and 
a defender. This has led to two main lines of research: formal 
game-theoretic models and co-evolutionary algorithms. 

Game-theoretic models [36], particularly those based on 
Stackelberg security games [37], provide a powerful formal 
framework for analyzing strategic interactions and resource 
allocation. In these models, a defender (the “leader”) commits 



to a defensive strategy, and an attacker (the “follower”) 
observes this strategy and chooses a best response. While 
intellectually elegant, these models often remain at a high 
level of abstraction. Their practical application to a complex, 
real-world ICS is hampered by the immense difficulty of 
accurately defining the action spaces and, most critically, the 
payoff matrices for both players. Quantifying the precise 
“cost” of a sensor compromise or the “value” of a successful 
but partial disruption is often intractable. For an attacker, is 
the payoff measured in dollars of lost production, the severity 
of physical damage, or the psychological impact on operators? 
These values are highly subjective, context-dependent, and 
difficult to quantify, which is a major reason game theory 
models often remain in the realm of theoretical analysis rather 
than becoming concrete, implementable algorithms for real-
time defense. 

Other research has proposed iterative or co-evolutionary 
schemes [38], which come conceptually closer to the goal of 
an adaptive defense. Yet, they often lack the core feedback 
loop that defines a true, tightly-coupled arms race. For 
instance, many frameworks describe an “open-loop” process 
where an attacker generates a static set of new attacks, and a 
defender is subsequently retrained on this set. However, in 
these schemes, the attacker’s generation process is not 
influenced by the defender’s updated state. This is akin to a 
boxer training against a static video of a previous opponent’s 
fight; they might get very good at countering that one specific 

style, but they are not prepared for a live opponent who adapts 
in real-time. This one-way adaptation is not a truly reciprocal 
co-evolution. 

The ARC framework, in contrast, explicitly formalizes 
and implements this dynamic, closed-loop coupling. It is 
analogous to a live sparring session. The Red Agent’s reward 
function is directly penalized by the current Blue Agent’s real-
time anomaly score, explicitly rewarding it for fooling the 
updated defender. In turn, the Blue Agent is explicitly 
hardened against the emergent strategies that were successful 
in the previous epoch. This creates a perpetual, reciprocal 
arms race where both agents are forced to become 
progressively more sophisticated. The goal of this process is 
to foster “emergent behavior”—the discovery of attack 
vectors and defensive strategies that were not pre-
programmed or anticipated by the human designers at the 
outset. It is this continuous, closed-loop process that drives the 
autonomous discovery and patching of complex system 
vulnerabilities that would be missed by any static or open-loop 
approach. 

Table I provides a critical analysis of state-of-the-art ICS 
defense frameworks, systematically positioning the ARC 
framework against existing classes of solutions and 
highlighting its unique combination of autonomous, adaptive 
hardening and explainability. 

TABLE I.  CRITICAL ANALYSIS OF STATE-OF-THE-ART ICS DEFENSE FRAMEWORKS 

Framework / 
Approach 

Detects 
Zero-
Days? 

Resilient to 
Adaptive 

Adversary? 

Autonomous 
Hardening? 

Provides 
Expla-
nations 
(XAI)? 

Scalability 
Model Key Limitation 

ARC Framework  
(This Work) 

Yes (via 
DRL) 

Yes (via Co-
Evolution) 

Yes (Closed-
Loop) 

Yes 
(SHAP) 

Federated  
(F-ARC) High initial DT modeling cost 

Signature-Based IDS No No No No Monolithic Reactive; cannot detect novel or 
“living-off-the-land” attacks. 

Shallow ML (e.g., 
SVM) Limited No No No Monolithic Fails to model temporal dependencies; 

brittle. 
Naive Deep Learning 
(LSTM/AE) Limited No No No Monolithic Vulnerable to adversarial examples 

that mimic normal data. 
CV-based Adversarial 
Training No Limited (wrong 

threat model) No No Monolithic Uses physically implausible L∞ threat 
models. 

Abstract Game Theory Yes (in 
theory) Yes (in theory) No No Monolithic Lacks concrete, implementable 

algorithms for real systems. 
Blockchain for Data 
Provenance No N/A (Integrity tool) No No Distributed Addresses data integrity only; 

performance overhead. 

III. F-SCDT: A HIGH-FIDELITY SANDBOX FOR ADVERSARIAL 
SIMULATION 

The ARC framework’s co-evolutionary arms race requires 
a specific environment: a high-fidelity, securely synchronized 
digital twin that can serve as a realistic and trustworthy 
“sparring gym” for the attacker and defender agents. A low-
fidelity twin would lead to the discovery of irrelevant 
vulnerabilities that do not exist in the physical world, while an 
insecure twin would allow the agents to “cheat,” undermining 
the entire training process. This section details the architecture 
of the Fortified Secure Digital Twin (F-SCDT), which 
establishes the foundational pillars of Model Fidelity and Data 
Integrity, providing the necessary ground truth for the 
subsequent adversarial training. 

A. The Imperative of Hybrid Physics-Informed and Data-
Driven Models to Achieve Model Fidelity 
To achieve the high fidelity required for realistic 

adversarial simulation, a purely physics-based or purely data-
driven model is insufficient. Physics-based models, while 
providing a strong theoretical foundation, often fail to capture 
unmodeled dynamics, equipment degradation, and the subtle, 
unique behaviors of a specific physical plant. Conversely, 
purely data-driven models, while excellent at learning 
complex correlations from data, lack physical grounding, 
making them prone to un-physically-plausible predictions 
when faced with out-of-distribution inputs—precisely the 
kind of inputs an adversary seeks to create. 

The F-SCDT therefore employs a hybrid model that fuses 
a first-principles physics model with a data-driven model that 
learns the residual error, combining the strengths of both 
approaches [39]. For the Tennessee Eastman Process (TEP) 
reactor, modeled as a non-isothermal Continuous Stirred-



Tank Reactor (CSTR), the governing ordinary differential 
equations (ODEs) provide a robust physical baseline. 

Equation (1) presents the mass balance on reactant A: 
𝑑𝑑𝐶𝐶𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝐹𝐹
𝑉𝑉

�𝐶𝐶𝐴𝐴𝐴𝐴 − 𝐶𝐶𝐴𝐴� − 𝑘𝑘0𝑒𝑒
− 𝐸𝐸

𝑅𝑅𝑅𝑅 𝐶𝐶𝐴𝐴      (1) 

where 𝐶𝐶𝐴𝐴 is the concentration of reactant A in the reactor 
(mol/L), 𝐹𝐹  is the volumetric flow rate into the reactor (L/min), 
𝑉𝑉  is the reactor volume (L), 𝐶𝐶𝐴𝐴𝐴𝐴  is the feed concentration of 
reactant A (mol/L), 𝑘𝑘0 is the pre-exponential factor (1/min), 
𝐸𝐸  is the activation energy (J/mol), 𝑅𝑅  is the universal gas 
constant (J/(mol·K)), and 𝑇𝑇  is the reactor temperature (K). 

Equation (2) shows the energy balance for the reactor: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝐹𝐹
𝑉𝑉

�𝑇𝑇𝐴𝐴 − 𝑇𝑇� + −∆𝐻𝐻
𝜌𝜌𝐶𝐶𝑝𝑝

𝑘𝑘0𝑒𝑒
− 𝐸𝐸

𝑅𝑅𝑅𝑅 𝐶𝐶𝐴𝐴 

− 𝑈𝑈𝑈𝑈
𝜌𝜌𝐶𝐶𝑝𝑝𝑉𝑉

(𝑇𝑇 − 𝑇𝑇𝑐𝑐)      (2) 

where 𝑇𝑇𝐴𝐴  is the feed temperature (K), 𝛥𝛥𝐻𝐻 is the heat of 
reaction (J/mol), 𝜌𝜌  is the fluid density (kg/L), 𝐶𝐶𝑝𝑝  is the 
specific heat capacity (J/(kg·K)), 𝑈𝑈  is the overall heat transfer 
coefficient (J/(min·m²·K)), 𝑈𝑈 is the heat transfer area (m²), 
and 𝑇𝑇𝑐𝑐 is the coolant temperature (K). These equations form 
the physics-informed component, 𝑓𝑓(𝑥𝑥, 𝑢𝑢, 𝑑𝑑). 

However, this model is never perfect. To capture the 
residual error, ϵϵ, arising from unmodeled phenomena such as 
catalyst degradation, equipment wear, or minor process 
fluctuations, a data-driven model is trained to learn this non-
linear error from historical operational data. The research 
chose a Gated Recurrent Unit (GRU) network over the more 
common Long Short-Term Memory (LSTM) network for this 
task. While both are effective at modeling temporal 
sequences, GRUs possess a simpler architecture with fewer 
parameters (two gates—a reset gate and an update gate—
versus LSTM’s three gates—input, output, and forget). This 
results in comparable performance with lower computational 
overhead and faster training times, a critical advantage for the 
high-iteration training loops within the ARC framework 
where the digital twin must be simulated repeatedly. 

The hybrid model is trained in two stages. First, the 
parameters of the physics model (like the heat transfer 
coefficient 𝑈𝑈  or the activation energy 𝐸𝐸) are estimated from 
steady-state historical data using optimization techniques such 
as non-linear least squares. This anchors the model in the 
plant’s general operating characteristics. Second, the GRU is 
trained on dynamic operational data to predict the residual 
error—the difference between the physics model’s output and 
the actual sensor readings. Equation (3) expresses the final, 
high-fidelity Hybrid Model: 

𝑥𝑥ℎ̇𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑓𝑓(𝑥𝑥, 𝑢𝑢, 𝑑𝑑) + 𝑔𝑔𝐺𝐺𝑅𝑅𝐺𝐺(𝑥𝑥, 𝑢𝑢, 𝜃𝜃)      (3) 

where 𝑥𝑥ℎ̇𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  represents the state derivatives from the 
hybrid model, 𝑓𝑓(𝑥𝑥, 𝑢𝑢, 𝑑𝑑) is the physics-based component with 
states 𝑥𝑥 , control inputs 𝑢𝑢 , and disturbances 𝑑𝑑 , while 
𝑔𝑔𝐺𝐺𝑅𝑅𝐺𝐺(𝑥𝑥, 𝑢𝑢, 𝜃𝜃) is the GRU-based correction with parameters 
𝜃𝜃. 

This hybrid approach ensures that the digital twin is not 
only grounded in physical laws but also adapts to the real-
world imperfections of the system. This is crucial for 

preventing “semantic drift,” where the twin’s representation 
of reality slowly diverges from the actual physical asset over 
time, and for ensuring the twin remains a trustworthy 
simulation environment for discovering realistic 
vulnerabilities. 

B. Ensuring Data Integrity Through a Verifiable Cyber-
Physical Data Pipeline 
Data Integrity is addressed by a verifiable data pipeline 

that provides strong guarantees of data authenticity and 
tamper-proofing from the sensor to the analysis engine. The 
threat model here considers data injection, modification, and 
replay attacks at both the sensor and network levels. The F-
SCDT architecture combines a hardware data diode [40] for 
enforcing unidirectional data flow from the OT network to the 
IT network, and a permissioned blockchain [41] (e.g., 
Hyperledger Fabric) for creating an immutable audit trail. 

An Industrial Internet of Things (IIoT) Gateway located 
on the OT network is responsible for batching sensor data. To 
ensure data origin authentication, this gateway signs the data 
batch using a private key securely stored in a Hardware 
Security Module (HSM) [42]. The cryptographic hash of the 
signed batch is then recorded as a transaction on the 
permissioned blockchain, creating a permanent and tamper-
evident record. Finally, the signed data batch is transmitted 
through the data diode to the F-SCDT environment. A data 
diode is a hardware-based cybersecurity device that enforces 
one-way data flow using a physical separation (typically 
optical), making it physically impossible for data, malware, or 
commands to flow back from the less trusted IT network into 
the critical OT network. 

A more advanced approach to ensuring integrity at the 
source involves the use of Physically Unclonable Functions 
(PUFs) [43] embedded within the sensors themselves. A PUF 
leverages minute, random variations in a chip’s physical 
microstructure, introduced during manufacturing, to generate 
a unique and unclonable digital fingerprint for that specific 
device. This fingerprint can be used to derive a cryptographic 
key that is never stored in non-volatile memory and is 
effectively part of the hardware’s intrinsic identity. A PUF-
enabled sensor could thus sign its own data at the point of 
creation, providing a hardware root of trust that is resilient to 
cloning and physical tampering, offering a stronger guarantee 
of data origin than a gateway-level HSM. 

Practical challenges remain, particularly the trade-off 
between the transaction throughput of the blockchain and the 
desired temporal granularity of the data. Small batch sizes 
increase cryptographic and network overhead, while large 
batch sizes reduce the forensic granularity available for 
incident analysis. Algorithm 1 outlines the conceptual data 
sealing process. 

Algorithm 1: Data Provenance Sealing 
Require: 𝐷𝐷𝑦𝑦𝑏𝑏𝑏𝑏𝑐𝑐ℎ: A data batch from IIoT Gateway. 
1: Procedure SealDataBatch(𝐷𝐷𝑦𝑦𝑏𝑏𝑏𝑏𝑐𝑐ℎ) 

Origin Authentication and Data Signing 

2: 𝑘𝑘𝑝𝑝𝑦𝑦𝑦𝑦𝑝𝑝 ← 𝐺𝐺𝑒𝑒𝑑𝑑𝐺𝐺𝑒𝑒𝐺𝐺𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐺𝐺𝐺𝐺() or 
𝐷𝐷𝑒𝑒𝐺𝐺𝐷𝐷𝐷𝐷𝑒𝑒𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐷𝐷𝑈𝑈𝐹𝐹() 

3: if 𝑘𝑘𝑝𝑝𝑦𝑦𝑦𝑦𝑝𝑝 is unavailable then 

4: Log(“CRITICAL: Security module key 
unavailable”) 



Algorithm 1: Data Provenance Sealing 
5: return FAILURE 
6: end if 
7: 𝐷𝐷𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 ← SignECDSA�𝐷𝐷𝑦𝑦𝑏𝑏𝑏𝑏𝑐𝑐ℎ, 𝑘𝑘𝑝𝑝𝑦𝑦𝑦𝑦𝑝𝑝� 

Immutable Forensic Record Creation 
8: ℎ𝑦𝑦𝑏𝑏𝑏𝑏𝑐𝑐ℎ ← SHA-256�𝐷𝐷𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦� 
9: status, receipt ← SubmitToLedger(ℎ𝑦𝑦𝑏𝑏𝑏𝑏𝑐𝑐ℎ) 

10: if status is CONNECTION_ERROR then 

11: Log(“WARNING: Ledger connection failed, 
audit trail suspended”) 

12: else if receipt is INVALID then 

13: Log(“WARNING: Blockchain transaction 
failed, audit trail incomplete”) 

14: end if 
Secure Unidirectional Transfer 
15: status ← PublishToDiode�𝐷𝐷𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦� 
16: if status is FAILURE then 

17: Log(“CRITICAL: Data Diode publishing 
failed”) 

18: return FAILURE 
19: end if 

  

20: return SUCCESS 
 

Algorithm 1 presents the data provenance sealing process, 
which ensures the integrity and authenticity of sensor data 
batches before they are transmitted to the analysis 
environment. The algorithm first authenticates the data origin 
using digital signatures generated with keys from either a 
Hardware Security Module (HSM) or Physically Unclonable 
Functions (PUFs). It then creates an immutable record of the 
data by submitting a cryptographic hash to a permissioned 
blockchain ledger. Finally, it securely publishes the signed 
data through a hardware data diode that enforces one-way 
flow from the operational technology (OT) network to the 
information technology (IT) network. 

IV. ARC FRAMEWORK AS A METHODOLOGY FOR CO-
EVOLUTIONARY ARMS RACE 

This section details the ARC framework, which formalizes 
the interaction between an attacker and a defender into a 
perpetual, automated arms race to achieve the third pillar of 
the Trinity of Trust: Analytical Resilience. This is 
accomplished by creating a closed-loop system where two 
agents, a “Red Agent” attacker and a “Blue Agent” defender, 
are forced to continuously adapt to one another. 

A. The Red Agent: Autonomous Vulnerability Discovery via 
Deep Reinforcement Learning 
The Red Agent is a Deep Reinforcement Learning (DRL) 

agent tasked with finding stealthy and physically plausible 
attack vectors within the F-SCDT. The problem is formalized 
as a Markov Decision Process (MDP) [44], which consists of 
a tuple (𝐺𝐺,𝑈𝑈, 𝐷𝐷 , 𝑅𝑅, 𝛾𝛾), where 𝐺𝐺 is the set of states, 𝑈𝑈 is the 
set of actions, 𝐷𝐷  is the state transition probability function, 𝑅𝑅 
is the reward function, and 𝛾𝛾 is the discount factor. 

• The research selected Proximal Policy Optimization 
(PPO) [45] as the core DRL algorithm. While off-
policy algorithms like Soft Actor-Critic (SAC) [46] 

can be more sample-efficient, they often suffer from 
training instability, especially in environments with 
high stochasticity and noisy state transitions, which are 
characteristic of complex ICS simulations. PPO, an on-
policy algorithm, offers a superior balance of sample 
efficiency, stability, and ease of implementation. Its 
defining feature is a clipped surrogate objective 
function, which constrains the size of policy updates in 
each training step. This prevents destructively large 
changes to the policy, which is critical for ensuring 
stable and reliable convergence when the agent is 
interacting with a high-fidelity, sensitive simulation 
environment like the F-SCDT. 

• State Space ( 𝐺𝐺 ): The state 𝑠𝑠𝑏𝑏  is a comprehensive 
vector containing all relevant process variables from 
the digital twin (e.g., temperatures, pressures, flow 
rates). Crucially, it also includes the anomaly score 
generated by the Blue Agent defender at the previous 
time step. This allows the Red Agent to perceive the 
defender’s state and learn which of its actions are being 
detected, enabling it to adapt its strategy toward greater 
stealth. 

• Action Space ( 𝑈𝑈 ): The action 𝑎𝑎𝑏𝑏  is a continuous-
valued vector representing manipulations to actuator 
setpoints (e.g., valve positions, pump speeds). To 
ensure physical plausibility, these actions are clipped 
to realistic operational ranges, preventing the agent 
from learning to execute physically impossible state 
jumps. 

• The reward function is the core of the agent’s 
intelligence, meticulously engineered to incentivize 
the discovery of attacks that achieve maximum 
physical disruption while remaining undetected. 
Equation (4) defines this reward function: 

𝑅𝑅(𝑠𝑠𝑏𝑏, 𝑎𝑎𝑏𝑏) = 𝑤𝑤𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦𝑑𝑑𝑝𝑝𝑏𝑏 × 𝐷𝐷𝐷𝐷𝑠𝑠𝐺𝐺𝑢𝑢𝐷𝐷𝑑𝑑𝐷𝐷𝐺𝐺𝐷𝐷(𝑠𝑠𝑏𝑏+1) 
−𝑤𝑤𝑦𝑦𝑠𝑠𝑏𝑏𝑠𝑠𝑐𝑐𝑏𝑏 × 𝐷𝐷𝑒𝑒𝑑𝑑𝑒𝑒𝐷𝐷𝑑𝑑𝐷𝐷𝐺𝐺𝐷𝐷𝐺𝐺𝐷𝐷𝐺𝐺𝐺𝐺𝑒𝑒(𝑠𝑠𝑏𝑏+1)      (4) 

where 𝑤𝑤𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦𝑑𝑑𝑝𝑝𝑏𝑏 and 𝑤𝑤𝑦𝑦𝑠𝑠𝑏𝑏𝑠𝑠𝑐𝑐𝑏𝑏 are weighting factors that 
balance disruption and stealth objectives. The 
𝐷𝐷𝐷𝐷𝑠𝑠𝐺𝐺𝑢𝑢𝐷𝐷𝑑𝑑𝐷𝐷𝐺𝐺𝐷𝐷  term is a weighted sum of normalized 
deviations from critical operational setpoints and 
safety limits, directly rewarding the agent for pushing 
the system toward an unsafe or inefficient state. The 
𝐷𝐷𝑒𝑒𝑑𝑑𝑒𝑒𝐷𝐷𝑑𝑑𝐷𝐷𝐺𝐺𝐷𝐷𝐺𝐺𝐷𝐷𝐺𝐺𝐺𝐺𝑒𝑒  is the maximum anomaly score 
produced by any model in the Blue Agent’s ensemble, 
providing a strong and direct penalty for being 
detected. The weights ( 𝑤𝑤𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦𝑑𝑑𝑝𝑝𝑏𝑏, 𝑤𝑤𝑦𝑦𝑠𝑠𝑏𝑏𝑠𝑠𝑐𝑐𝑏𝑏 ) are not 
arbitrary; they are critical hyperparameters determined 
through a rigorous sensitivity analysis [47]. This 
process involves systematically varying the weights 
and observing the Red Agent’s emergent behavior to 
find a balance that encourages sophisticated, multi-
stage attacks over simple, brute-force disruption that 
would be easily detected. 

B. The Blue Agent: An Adaptive Ensemble for a Moving 
Target Defense 
The Blue Agent is not a single model but an ensemble of 

diverse anomaly detectors, creating a multi-faceted defensive 
surface that is inherently more difficult for an adversary to 
evade. This ensemble consists of: 



1. An LSTM network [26], chosen for its proven ability 
to capture long-term temporal dependencies in 
sequential sensor data, making it effective against 
“low-and-slow” attacks. 

2. An Autoencoder [28], which excels at learning a 
compressed representation of the system’s normal 
state and identifying deviations based on 
reconstruction error. This makes it sensitive to attacks 
that violate complex physical correlations between 
multiple sensors. 

3. An Isolation Forest [48], a tree-based algorithm that is 
efficient and effective for general-purpose outlier 
detection, capable of identifying novel anomalies that 
may not fit the patterns learned by the neural network 
models. 

This diversity embodies the principle of a moving target 
defense at the algorithmic level; an adversary must learn to 
simultaneously fool three different detection logics, a 
significantly harder task than defeating a single model. The 
hardening process uses the novel attack vectors discovered by 
the Red Agent, further diversified with L0-norm perturbations 
from the JSMA attack, to create an augmented training set for 
continuously improving the ensemble. 

C. The Co-Evolutionary Loop 
The ARC algorithm formalizes the perpetual, closed-loop 

arms race between the Red and Blue agents. A key challenge 
in this continual learning process is “catastrophic forgetting” 
[49], where the defensive model, in learning to counter new 
threats, forgets how to detect older ones. The framework 
mitigates this with two mechanisms within the 
Train_Defender function: a replay buffer that stores all 
previously discovered attacks [50], and a balanced sampling 
strategy. Each augmented training batch is composed of 50% 
normal data, 20% newly discovered attacks from the DRL 
agent, 10% JSMA-diversified versions of these new attacks, 
and 20% randomly sampled attacks from the historical replay 
buffer. This ensures the defender trains on a comprehensive 
distribution of threats, maintaining its knowledge base while 
adapting to the latest emergent strategies. Furthermore, the 
inclusion of JSMA-generated attacks serves to diversify the 
training data beyond what the DRL agent might discover on 
its own, preventing the two agents from over-fitting to each 
other’s specific strategies and forcing the defender to 
generalize against a wider range of physically plausible L0-
norm attacks. 

Algorithm 2 presents the Adversarial Resilience Co-
evolution (ARC) process, which implements a closed-loop 
arms race between attacker and defender agents. 

Algorithm 2: Adversarial Resilience Co-evolution (ARC) 
Require: 

1. 𝐷𝐷0: Initial defender models 
2. 𝑍𝑍𝑠𝑠𝑛𝑛𝑦𝑦𝑛𝑛𝑏𝑏𝑛𝑛: Normal data 
3. 𝑍𝑍𝐴𝐴𝑏𝑏𝑑𝑑𝑛𝑛𝑏𝑏: Known fault data 
4. 𝑁𝑁𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ𝑠𝑠: Total number of co-evolutionary epochs 
5. 𝑁𝑁𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠

: Number of training steps for attacker per 
epoch 

6. 𝑁𝑁𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠
: Number of training steps for defender 

per epoch 

Algorithm 2: Adversarial Resilience Co-evolution (ARC) 
7. 𝑤𝑤𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦𝑑𝑑𝑝𝑝𝑏𝑏: Reward weight for disruption 
8. 𝑤𝑤𝑦𝑦𝑠𝑠𝑏𝑏𝑠𝑠𝑐𝑐𝑏𝑏: Reward weight for detection 

Initialize: 
1. 𝑈𝑈0: Initial attacker DRL agent 
2. 𝑍𝑍𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑎𝑎𝑠𝑠 ← ∅: Cumulative set of all generated 

attacks 
1: for epoch = 1 to 𝑁𝑁𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ𝑠𝑠 do 

Attacker (“Red Agent”) Training Phase 
2: 𝐷𝐷𝑐𝑐𝑑𝑑𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑏𝑏 ← 𝐷𝐷𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ−1 
3: function Train_Attacker�𝑈𝑈𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ−1,𝐷𝐷𝑐𝑐𝑑𝑑𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑏𝑏� 

4: for a_step = 1 to 𝑁𝑁𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠
 do 

5: 
Collect trajectory 𝜏𝜏  in DT using policy 
𝜋𝜋𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ−1

 

6: for each(𝑠𝑠𝑏𝑏, 𝑎𝑎𝑏𝑏) in 𝜏𝜏  
7: 𝑠𝑠𝑏𝑏+1 ← DT(𝑠𝑠𝑏𝑏, 𝑎𝑎𝑏𝑏) 
8: 𝐷𝐷𝑠𝑠𝑐𝑐𝑛𝑛𝑦𝑦𝑠𝑠 ← 𝐷𝐷𝑐𝑐𝑑𝑑𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑏𝑏(𝑠𝑠𝑏𝑏+1) 

9: 𝑅𝑅𝑏𝑏 ← 𝑤𝑤𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦𝑑𝑑𝑝𝑝𝑏𝑏 × 𝐷𝐷𝐷𝐷𝑠𝑠𝐺𝐺𝑢𝑢𝐷𝐷𝑑𝑑𝐷𝐷𝐺𝐺𝐷𝐷(𝑠𝑠𝑏𝑏+1) 
−𝑤𝑤𝑦𝑦𝑠𝑠𝑏𝑏𝑠𝑠𝑐𝑐𝑏𝑏 × 𝐷𝐷𝑠𝑠𝑐𝑐𝑛𝑛𝑦𝑦𝑠𝑠 

10: 
Update policy 𝜋𝜋𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ−1

 using PPO 
with rewards {𝐺𝐺𝑏𝑏} 

11: end for 
12: end for 
13: return updated agent 𝑈𝑈𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ 
14: end function 
15: 𝑈𝑈𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ ← Train_Attacker�𝑈𝑈𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ−1,𝐷𝐷𝑐𝑐𝑑𝑑𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑏𝑏� 
Generate New Attack Dataset from the Trained 
Attacker 

16: 𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛 ← Generate_Attacks(𝑈𝑈𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ, DT, 
num_samples) 

17: 𝑍𝑍𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑎𝑎𝑠𝑠 ← 𝑍𝑍𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑎𝑎𝑠𝑠 ∪ 𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛 
Defender (“Blue Agent”) Hardening Phase 

18: function Train_Defender(𝐷𝐷𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ−1, 𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛, 
𝑍𝑍𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑎𝑎𝑠𝑠) 

  

Diversify new attacks with L0 perturbations to improve 
generalization 
19: 𝑍𝑍𝐽𝐽𝐽𝐽𝐽𝐽𝐴𝐴 ← 𝑍𝑍𝐽𝐽𝐽𝐽𝐽𝐽𝐴𝐴�𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛,𝐷𝐷𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ−1� 
Create augmented training set with replay to prevent 
catastrophic forgetting 

20: 
𝑍𝑍𝑛𝑛𝑛𝑛𝑦𝑦_𝑠𝑠𝑏𝑏𝑛𝑛𝑝𝑝𝑛𝑛𝑠𝑠  
↑ Sample(𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑠𝑠

𝑍𝑍𝑛𝑛𝑒𝑒𝑛𝑛
, 𝐺𝐺𝑎𝑎𝑑𝑑𝐷𝐷𝐺𝐺 = 0.2) 

21: 
𝑍𝑍𝑏𝑏𝑑𝑑𝑠𝑠 ← 𝑍𝑍𝑠𝑠𝑛𝑛𝑦𝑦𝑛𝑛𝑏𝑏𝑛𝑛 ∪ 𝑍𝑍𝐴𝐴𝑏𝑏𝑑𝑑𝑛𝑛𝑏𝑏 ∪ 𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛

∪ 𝑍𝑍𝐽𝐽𝐽𝐽𝐽𝐽𝐴𝐴 ∪ 𝑍𝑍𝑛𝑛𝑛𝑛𝑦𝑦_𝑠𝑠𝑏𝑏𝑛𝑛𝑝𝑝𝑛𝑛𝑠𝑠 
  

22: for d_step = 1 to 𝑁𝑁𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠
 do 

23: Sample mini-batch from 𝑍𝑍𝑏𝑏𝑑𝑑𝑠𝑠 

24: Update weights of 𝐷𝐷𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ−1 via 
backpropagation on ensemble loss 

25: end for 



Algorithm 2: Adversarial Resilience Co-evolution (ARC) 
26: return updated defender 𝐷𝐷𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ 
27: end function 

28: 𝐷𝐷𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ ← Train_Defender(𝐷𝐷𝑠𝑠𝑝𝑝𝑛𝑛𝑐𝑐ℎ−1, 𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛, 
𝑍𝑍𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑎𝑎𝑠𝑠) 

29: end for 
30: return 𝐷𝐷𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠

 
 

V. EXPERIMENTAL VALIDATION AND ANALYSIS OF 
EMERGENT VULNERABILITIES 

This section presents the experimental validation of the 
ARC framework. The goal is not merely to demonstrate 
superiority over a static baseline but to show ARC’s utility as 
an automated process for discovering, analyzing, and patching 
complex, emergent vulnerabilities that would otherwise 
remain hidden. 

A. Experimental Setup 
Validation was conducted on two distinct and well-

regarded ICS security testbeds: the Tennessee Eastman 
Process (TEP) [18] and the Secure Water Treatment (SWaT) 
testbed [51]. The TEP is a complex, nonlinear chemical 
process simulation that is a standard benchmark for process 
control and security research, allowing for safe 
experimentation with highly disruptive attacks. SWaT is an 
operational physical testbed—a scaled-down but fully 
functional water treatment plant—that provides validation on 
real hardware, networks, and physical dynamics. Using both a 
complex simulation and a real-world testbed demonstrates the 
generalizability and practical applicability of the ARC 
process. 

The baseline defender model, D₀, was trained on a 
comprehensive dataset of normal operational data and a set of 
standard, pre-defined fault scenarios (e.g., single sensor 
failures, valve malfunctions) before the ARC co-evolutionary 
process began. This represents a typical, state-of-the-practice 
anomaly detection system. 

B. Main Results and Ablation Study 
The ARC-hardened model demonstrates significantly 

superior performance, particularly in detecting the novel, 
stealthy attacks discovered by the Red Agent during the co-
evolutionary process. As shown in Table II, the F1-Score for 
detecting a DRL-Discovered Stealth Attack improved from 
0.65 for the baseline model to 0.89 for the ARC-hardened 
model. Furthermore, the detection latency was reduced from 
over 1200 seconds (with many attacks being missed entirely) 
to 210 seconds. This reduction is operationally critical, as it 
can be the difference between isolating a compromised 
segment of the plant and suffering a full-scale, cascading 
failure. Table II presents key performance metrics of the ARC 
framework versus baseline on TEP. 

TABLE II.  KEY PERFORMANCE METRICS OF THE ARC FRAMEWORK 
VS. BASELINE ON TEP 

Scenario Model F1-
Score 

Detection  
Latency (s) 

Data Replay Attack 
ARC-
Hardened 0.93 65 

Baseline (D₀) 0.73 450 
DRL-Discovered Stealth 
Attack 

ARC-
Hardened 0.89 210 

Scenario Model F1-
Score 

Detection  
Latency (s) 

Baseline (D₀) 0.65 
> 1200 
(often 

missed) 
 

To deconstruct the sources of this performance gain, a 
rigorous ablation study [52] was conducted, the results of 
which are presented in Table III. This study systematically 
removes components from the full ARC framework to 
quantify their individual contributions. The results show that 
while each component of the defensive ensemble contributes 
to overall performance, the single most critical factor is the 
ARC training process itself. Removing the co-evolutionary 
hardening process while keeping the full defensive ensemble 
results in a massive 27.0% degradation in F1-Score on the 
DRL-discovered attack, dropping performance back to the 
baseline level. This provides strong quantitative evidence that 
it is the co-evolutionary dynamic—the arms race—that forges 
the model’s resilience to novel, intelligent threats. Table III 
shows the ablation study of detection engine components. 

TABLE III.  ABLATION STUDY OF DETECTION ENGINE COMPONENTS 

Configuration 
F1-Score (on DRL-
Discovered Attack) 

Performance 
Degradation 

ARC Framework (Full 
System) 0.89 - 

ARC Framework 
without LSTM 0.82 -7.9% 

ARC Framework 
without Autoencoder 0.80 -10.1% 

Full Ensemble without 
ARC Training 0.65 -27.0% 

 

The superior detection capability of the ARC-hardened 
model is further visualized by the Receiver Operating 
Characteristic (ROC) curve in Fig. 1, which shows a 
significantly larger area under the curve compared to the 
baseline. 

 
Fig. 1. ROC curves comparing the detection performance of the baseline 
(D₀) and the final ARC-Hardened model against the DRL-Discovered Stealth 
Attack. 



C. Deconstructing an Emergent, DRL-Discovered Stealth 
Attack 
The baseline model, though trained on a variety of 

standard faults, was completely blind to a sophisticated, multi-
stage attack vector that emerged from the ARC process. This 
emergent vulnerability, termed the “Coolant Priming and 
Valve Trip Attack,” provides a clear case study of the 
framework’s power as a discovery tool. 

• The Red Agent learned a two-stage strategy to induce 
a cascading failure in the TEP reactor. 

Priming Phase: First, the agent learned to slowly increase 
the reactor’s coolant flow over a 90-minute period. This 

change was subtle enough to be mistaken for normal 
operational drift by the baseline detector, which lacked the 
long-term temporal context to flag it as anomalous. This 
action, however, pushed the system into a pre-stressed, 

abnormal state without triggering an alarm. 
1. Triggering Phase: Second, after priming the 

system, the agent executed a sharp, simultaneous 
manipulation of the feed B and stripper steam valve 
setpoints. This combined action, when applied to 
the now-abnormal state created by the priming 
phase, was sufficient to push the reactor into a 
cascade failure. The baseline detector, evaluating 
this second action in isolation, failed to recognize 
its malicious intent because it lacked the context of 
the preceding priming phase. 

• Using SHAP (SHapley Additive exPlanations) [54], 
one can visualize why the models failed or succeeded, 
providing crucial insights for operators and analysts. 
SHAP assigns an importance value to each feature for 
a given prediction, explaining its contribution to the 
final output. 

o The SHAP force plot for the baseline model during 
the attack is confused and uninformative. It assigns 
small, conflicting importance values to various 
features, demonstrating its inability to understand 
the malicious interaction between the slowly 
increasing coolant flow and the sudden valve 
manipulations. 

o In stark contrast, the SHAP plot for the ARC-
hardened model correctly identifies the anomalous 
combination of high Coolant Flow and the 
manipulated valve settings as the primary drivers 
of the high anomaly score. This provides clear, 
interpretable evidence that the co-evolutionary 
process forced the defender to learn the complex, 
multi-stage nature of the vulnerability, 
transforming an uninterpretable “black box” 
failure into an understandable and actionable 
insight. 

Figure 2 shows SHAP plots explaining the model output 
during the trigger phase of the ‘Coolant Priming and Valve 
Trip Attack.’ 

 
(a) The baseline model’s confused explanation. 

 
(b) The ARC-hardened model’s clear explanation, correctly identifying the malicious interaction. 

Fig. 2. SHAP plots explaining the model output during the trigger phase of the ‘Coolant Priming and Valve Trip Attack.’ 

VI. DISCUSSION AND IMPLICATIONS 
The experimental validation of the ARC framework 

demonstrates a clear enhancement in detecting sophisticated, 
multi-stage attacks. However, the true implications of this 
work extend beyond mere performance metrics. This section 
deconstructs the methodological assumptions, delves deeper 
into the critical human factors that shape the modern cyber-
physical battlefield, and addresses the ethical responsibilities 
inherent in developing such powerful dual-use technologies. 

A. Deconstructing the “Circular Reasoning” Critique 
A valid and necessary critique of this experimental design 

is its potential for circularity: the defender (Blue Agent) is 
trained on attacks generated by the attacker (Red Agent), so 

its improved performance on those same attacks is, to some 
extent, expected. However, this assessment misunderstands 
the fundamental goal of the investigation. The objective is not 
to create a static product—a defensive model that can detect a 
specific, pre-defined set of attacks. Rather, the objective is to 
create and validate a dynamic process—a framework that can 
autonomously and continuously adapt to any intelligent 
adversary who seeks to exploit the system’s blind spots. 

The DRL-based Red Agent serves as a computational 
proxy—a tireless, creative, and strategically motivated 
sparring partner—for such an attacker. It is not programmed 
with specific attack scripts; instead, it is given a high-level 
goal (disrupt the process while evading detection) and turned 
loose to explore the vast state-action space of the system. Its 



emergent strategies, like the “Coolant Priming and Valve Trip 
Attack,” are not pre-conceived by the researchers. They are 
genuine discoveries—non-obvious, multi-step vulnerabilities 
that would be exceptionally difficult and time-consuming to 
find through manual red teaming or traditional penetration 
testing. 

Therefore, the performance gain observed in the 
experiments is not a tautology. It is a quantitative 
measurement of the emergent property of resilience that is 
forged by the co-evolutionary process itself. While the 
primary validation shows the model detecting attacks it was 
trained on, which is expected, the key insight is derived from 
the qualitative analysis of these emergent, non-obvious attack 
vectors, which reveal previously unknown vulnerabilities in 
the system's physical and temporal dynamics. The DRL-
discovered stealth attack is not merely a test case; it is a 
previously unknown vulnerability unearthed and subsequently 
patched by the ARC process. The framework’s success is thus 
measured not by its final F1-score on a static dataset, but by its 
demonstrated ability to find and patch these hidden 
weaknesses, transforming security from a static state of 
preparedness to a dynamic process of continuous self-
improvement and adaptation. This reframes security as a verb, 
not a noun—an ongoing activity of probing, learning, and 
hardening. 

B. Operator Trust, Cognitive Load, and the Weaponized 
Psychological Attack Surface 
The analysis of seminal attacks like Stuxnet and the Cyber 

Av3ngers campaign reveals a critical evolution in adversarial 
tactics: the target is often not just the machine, but the mind of 
the human operator. By replaying normal data, Stuxnet 
attacked the operator’s trust in their HMI, making their most 
reliable source of information a tool of deception. By defacing 
the control interface, the Cyber Av3ngers transformed a 
technical problem into an instrument of psychological 
warfare, designed to induce panic, confusion, and 
helplessness. This establishes a “psychological attack surface” 
as a critical domain for modern ICS defense, one that is often 
overlooked in purely technical analyses. 

Academic research in human factors and high-risk 
environments confirms that cyberattacks can induce 
“cybertrauma” [12], a state of acute stress characterized by 
heightened anxiety, an erosion of trust, and impaired cognitive 
function, which severely degrades decision-making under 
pressure. The cognitive workload of an ICS operator is already 
high, and poor HMI design can exacerbate this, leading to 
“alert fatigue” [55] where critical warnings are missed even in 
normal conditions. During a cyberattack, this cognitive load 
becomes extreme [56]. Operators can fall victim to well-
documented cognitive biases: 

• Under intense stress, humans tend to focus on a narrow 
range of perceived salient information, ignoring other, 
potentially critical, data streams [57]. An attacker can 
exploit this by creating a loud, obvious (but minor) 
distraction to draw the operator’s attention away from 
a more subtle, dangerous attack unfolding elsewhere. 

• This is the tendency for humans to over-trust the 
outputs of an automated system [58]. If the ARC 
framework’s Blue Agent has proven reliable in the 
past, an operator might blindly accept its conclusions 
without critical scrutiny, a tendency that can be 

exploited by the advanced adversarial attacks on 
explainability discussed later. 

The ARC framework’s XAI component is explicitly 
designed to bolster the human-in-the-loop by making the AI’s 
reasoning transparent and trustworthy. By providing a clear, 
feature-based explanation for why an anomaly is being 
flagged, it aims to reduce cognitive load and combat 
automation bias. However, this very trust becomes a new, 
high-value target for a sophisticated adversary. The 
effectiveness of any advanced defense ultimately depends on 
the operator’s ability to trust and correctly interpret its outputs, 
especially under the extreme stress of a cyber-physical 
incident [59]. This recognition leads directly to the critical 
future challenge of adversarial attacks against explainability 
itself, as discussed in Section VII-C. 

C. Foundational Challenges and Threats to Validity 
Several factors may limit the generalizability of these 

findings, and the development of this technology carries 
significant ethical responsibilities. 

• The correctness of the TEP and SWaT simulation 
environments is assumed based on their widespread 
use and acceptance within the research community. 
Any inaccuracies or unmodeled dynamics in these 
testbeds could affect the specific vulnerabilities 
discovered, potentially leading the Red Agent to 
discover exploits that are not viable in the real world. 

• While ARC is presented as a general framework, its 
application to different physical processes (e.g., a 
power grid, a pharmaceutical manufacturing line, a 
transportation network) would require significant re-
engineering. The physics-informed component of the 
hybrid digital twin would need to be completely 
replaced, and the agents would need to be retrained 
from scratch on process-specific data. The complexity 
and cost of developing the high-fidelity F-SCDT 
remains a significant barrier to entry. 

• Standard metrics like F1-Score and detection latency, 
while useful for academic comparison, do not fully 
capture the operational impact of an attack. Future 
work should incorporate more holistic, business- and 
safety-oriented metrics such as “time to recovery,” 
“cost of disruption,” “environmental impact,” or “risk 
to human safety”. 

D. The Dual-Use Dilemma 
A significant ethical consideration that cannot be 

overstated is the dual-use dilemma [60]. The Red Agent, by 
its very nature, is a potent tool for discovering and generating 
novel, high-impact attacks against critical systems. In the 
wrong hands, it could become a powerful weapon, automating 
the process of vulnerability discovery for malicious actors. 
Therefore, its development and deployment must be governed 
by a strict ethical framework [61] and robust technical 
controls. This includes ensuring the agent is confined to 
verifiably air-gapped simulation environments with no 
possible connection to live operational networks. It requires 
implementing rigorous, role-based access controls to the 
framework itself, and treating all discoveries—both the attack 
vectors and the corresponding defensive signatures—as 
highly sensitive threat intelligence to be used for defensive 
purposes only. A “Red Agent as a Service” for defensive 
vulnerability assessment is a potential commercial 



application, but it would require a level of institutional trust 
and verification that is currently unprecedented. 

The development of a potent offensive tool like the Red 
Agent carries significant ethical weight. A proactive 
mitigation strategy is therefore not optional, but an absolute 
necessity, centered on a framework for Responsible Offensive 
AI (ROAI). This framework must be built on three pillars that 
provide defense in depth against misuse: 

• Technical guardrails must be engineered into the agent 
as hard-coded, inviolable constraints. This goes 
beyond simple range-checking and involves creating 
non-negotiable boundaries, such as preventing the 
agent from ever targeting designated Safety 
Instrumented Systems (SIS) or from manipulating 
variables in a way that could lead to predefined 
catastrophic outcomes like vessel rupture or toxic 
release. 

• Immutable auditing using a secure ledger must create 
an unalterable forensic trail of every action, decision, 
and discovery made by the agent. This is critical for 
accountability, ensuring that a complete, trustworthy 
history of the agent’s training exists to be analyzed 
after any incident and preventing a sophisticated 
internal actor from covering their tracks by altering 
logs. 

• Robust ethical governance through an internal review 
board, analogous to an Institutional Review Board 
(IRB), is required to provide human oversight. This 
body must have the authority to review and approve 
experimental designs, ask difficult questions about 
worst-case scenarios, and halt any research that poses 
an unacceptable level of risk. This holistic approach, 
integrating technical, procedural, and ethical controls, 
is the only responsible path forward for developing 
technologies that, by their very nature, touch the edge 
of what is safe to automate. 

VII. FUTURE WORK AND VISION TOWARDS A COLLABORATIVE 
AND AUTONOMOUS DEFENSE ECOSYSTEM 

The ARC framework, as presented, provides a blueprint 
for autonomous resilience at the level of a single plant. 
However, the true vision is to scale this capability into a 
collaborative, industry-wide defense ecosystem that can learn 
from incidents across an entire sector, becoming exponentially 
more intelligent and resilient. 

A. F-ARC: A Federated Architecture for Scalable, Privacy-
Preserving Resilience 
Scaling the ARC framework to an entire industry sector—

comprising hundreds or thousands of individual facilities—
requires a collaborative, privacy-preserving approach. 
Federated Learning (FL) [62] provides a powerful paradigm 
for this challenge. In the proposed Federated ARC (F-ARC) 
architecture, individual facilities (e.g., multiple power plants, 
water treatment sites, or manufacturing floors) would each run 
their own local instance of the ARC loop. This allows them to 
benefit from autonomous hardening based on their own 
private data and unique operational context. 

Instead of sharing this sensitive OT data, which is often a 
major commercial and regulatory barrier, they would 
periodically send only the encrypted model parameter updates 
(gradients) from their newly hardened Blue Agents to a central 

aggregation server. The server, which could be operated by an 
industry Information Sharing and Analysis Center (ISAC) or 
a trusted third party, would then aggregate these updates to 
create a more robust, knowledgeable, and generalized global 
defensive model. This global model, which has learned from 
the experiences of all participants, is then distributed back to 
all facilities, allowing them to benefit from the collective 
intelligence of the entire ecosystem without ever exposing 
their raw data. 

A key challenge in this real-world setting is the non-IID 
(non-identically and independently distributed) nature of the 
data [63]. Different facilities will have unique equipment from 
various vendors, different operational patterns, and local 
anomalies that are not representative of the entire fleet. The 
standard Federated Averaging (FedAvg) algorithm, which 
simply averages the parameters of all client models, performs 
poorly under these conditions as it can be biased by outlier 
clients. Addressing this will require more advanced FL 
techniques, such as personalized federated learning [64]. In 
this approach, parts of the defensive model (e.g., early layers 
that learn general features) are trained globally, while other 
parts (e.g., later layers that learn process-specific features) are 
trained and retained locally, allowing each client to benefit 
from the global model while still adapting to the specific 
characteristics of its own environment. 

Furthermore, deploying FL in a real-world industrial 
setting presents significant technical hurdles, primarily 
stemming from the non-identically and independently 
distributed (non-IID) nature of the data. The non-IID problem 
in the F-ARC context manifests in several ways: 

• Different facilities will have different equipment from 
various vendors, leading to different sensor sets and 
operational parameters. 

• Some facilities may be targeted by specific adversaries 
or experience certain types of faults far more 
frequently than others. 

• Large, complex facilities will contribute vastly more 
data than smaller ones, potentially dominating the 
aggregation process. 

• The underlying data distribution at a single facility will 
change over time due to equipment wear, seasonal 
demand, and process optimization, making its data 
statistically different from its own past data. 

Addressing this will require moving beyond FedAvg to 
more advanced FL techniques. Personalized Federated 
Learning offers a promising direction, aiming to train models 
that are customized to each client’s local data distribution 
while still leveraging the knowledge from the federation. 
Several approaches are relevant: 

• Clustered Federated Learning (CFL) [64]: This 
approach would group participating facilities into 
clusters based on the similarity of their data 
distributions (e.g., grouping all facilities that use a 
specific type of turbine). A separate global model is 
then trained for each cluster, providing a more relevant 
defense than a single, monolithic global model. 

• Fine-Tuning and Multi-Task Learning: In this 
paradigm, a global model is trained on all data, but 
each local facility can then fine-tune the global model 
on its own private data to create a personalized version. 



This can be framed as a multi-task learning problem 
where the goal is to learn a shared representation that 
can be easily adapted to each client’s specific “task”. 

• Advanced Optimization Algorithms: Algorithms like 
FedProx add a proximal term to the local objective 
function, which regularizes local training by keeping 
the local models from diverging too far from the global 
model. Others, like SCAFFOLD [65], use control 
variates to correct for “client drift” in non-IID settings, 
leading to faster and more stable convergence. 

B. Securing the Federation: Proactive Defense Against 
Model Poisoning and Byzantine Failures 
While FL offers significant privacy benefits, it also 

introduces new vulnerabilities at the aggregation level. The 
most notable of these is model poisoning [66], where a 
malicious participant in the federation sends deliberately 
corrupted model updates to the central server. The goal of such 
an attack is twofold: it can be untargeted, aiming simply to 
degrade the global model’s overall performance, or it can be a 
highly targeted backdoor attack, designed to cause the global 
model to systematically misclassify a specific attack vector 
that the adversary intends to use later, effectively blinding the 
entire federation to a chosen weapon. 

Defending against this requires moving beyond simple 
Federated Averaging to Byzantine-resilient aggregation 
algorithms [67]. These algorithms are designed to produce a 
correct global model even if a fraction of the participants are 
malicious (or “Byzantine”). 

• Krum selects the single client update that is closest to 
its neighbors in the parameter space, operating on the 
assumption that benign updates will cluster together 
while malicious ones will be outliers. However, it can 
be computationally expensive for large federations and 
vulnerable to collusion attacks where multiple 
malicious clients work together to “pull” the center of 
the cluster toward their malicious updates. 

• Trimmed Mean is a statistically robust method that 
sorts all updates based on a given dimension and 
discards a certain percentage of the most extreme 
updates (both high and low) before averaging the rest. 
It is effective against simple outlier attacks but may fail 
against more sophisticated, targeted poisoning that is 
designed to be close to the mean. 

• Median calculates the coordinate-wise median of all 
updates. It is highly robust to extreme outliers but may 
discard useful information contained in the distribution 
of benign updates. 

• Recent Advancements like Layer-Adaptive Sparsified 
Model Aggregation (LASA) [68] offer more granular 
filtering. Instead of evaluating an entire model update 
as a single entity, LASA evaluates the updates at the 
layer level, providing a more fine-grained and 
potentially more effective defense against subtle 
poisoning attacks. 

A promising direction for a robust F-ARC architecture is 
a hybrid, multi-stage aggregation approach. This could 
involve using a computationally efficient filter like Trimmed 
Mean to discard gross outliers in a first pass, followed by a 
more robust but expensive method like Krum or Median on 

the reduced set of updates, balancing security with 
performance. 

Table IV provides a preliminary analysis of robust 
aggregation algorithms that could be used in the Federated 
ARC (F-ARC) architecture. 

TABLE IV.  PRELIMINARY ANALYSIS OF ROBUST AGGREGATION 
ALGORITHMS FOR F-ARC 

Aggregation 
Algorithm Mechanism Key 

Assumption 

Robustness 
to Attack 

Types 
Federated 
Averaging 
(FedAvg) 

Simple weighted 
average of all 
client updates. 

All clients are 
honest. 

None. Highly 
vulnerable. 

Trimmed 
Mean 

Discards a 
fraction of 
updates from 
each end before 
averaging. 

Malicious 
updates are 
statistical 
outliers. 

Moderate. 
Can resist 
simple 
untargeted 
attacks. 

Krum 

Selects the 
single update 
with the 
minimum sum 
of squared 
distances to its 
nearest 
neighbors. 

Benign updates 
are clustered. 
Number of 
attackers is 
known and < 
n/2. 

High against 
certain attacks 
but vulnerable 
to collusion. 

Median 

Calculates the 
coordinate-wise 
median of all 
updates. 

Malicious 
updates will not 
consistently 
affect the 
median. 

Moderate. 
Robust to 
extreme 
outliers. 

 

The table compares four approaches: standard Federated 
Averaging (FedAvg), which is vulnerable to attacks; Trimmed 
Mean, which can resist simple outlier attacks; Krum, which is 
strong against certain attacks but vulnerable to collusion; and 
Median, which offers moderate robustness against extreme 
outliers. Each algorithm operates on different assumptions 
about the nature of malicious updates and provides varying 
levels of security against different types of attacks. 

C. Adversarial Attacks on Explainability (AdvXAI) 
A more subtle, long-term, and deeply concerning threat 

exists: if operator trust is a key pillar of cyber-physical 
defense, then the XAI system itself becomes a high-value 
target. The emerging field of adversarial explainable AI 
(AdvXAI) [69] has confirmed that XAI methods like SHAP 
and Local Interpretable Model-agnostic Explanations (LIME) 
[70] are not inherently robust and are vulnerable to 
manipulation. An attacker can craft a special kind of 
adversarial example that not only fools the primary detection 
model (causing it to misclassify a malicious state as benign) 
but also simultaneously fools the explanation model, 
generating a misleading explanation that hides the true nature 
of the attack and reinforces the model’s incorrect prediction. 

This represents a sophisticated, second-order threat that 
targets the human-machine interface and the operator’s trust. 
A future, more advanced Red Agent could be trained not just 
to evade the Blue Agent’s detectors, but to do so in a way that 
generates a deliberately misleading SHAP plot. For example, 
an agent could learn to execute a complex, distributed attack 
across ten different sensors while simultaneously adding a 
large but harmless perturbation to an eleventh, unrelated 
sensor. The resulting SHAP explanation would incorrectly 
and misleadingly point to the single noisy sensor as the 
primary cause of the anomaly. This would misdirect the 
human operator’s attention, causing them to investigate a 



phantom problem while the more dangerous, coordinated 
attack continues unnoticed. This attack on the explanation 
itself undermines the entire human-in-the-loop defense 
paradigm. 

Developing XAI methods that are themselves robust to 
such adversarial manipulation is a critical and largely 
unexplored area for future research. This will likely require 
moving beyond post-hoc explanation methods like SHAP and 
toward inherently interpretable or “glass-box” models whose 
decision-making processes are transparent by design [71]. The 
ultimate goal is to create a defense that is not only accurate but 
also reliably and verifiably trustworthy, even in the face of an 
adversary who is actively trying to deceive both the machine 
and its human operator. 

Future research should focus on: 

• Explanation-Aware Training: Developing robust 
optimization techniques that train the primary model to 
not only be accurate but to also produce explanations 
that are stable and insensitive to small, irrelevant 
perturbations in the input. 

• Ensemble of Explanations: Proposing methods that 
generate explanations from multiple, diverse XAI 
techniques (e.g., SHAP, LIME, Integrated Gradients 
[72]) and only present an explanation to the operator if 
there is a strong consensus, flagging discordant 
explanations as potentially manipulated. 

• Inherently Interpretable Models: Investigating the 
trade-offs of using “glass-box” models, such as 
Explainable Boosting Machines (EBMs) [71] or other 
generalized additive models, which are transparent by 
design. While they may have lower predictive power 
on some complex tasks, their inherent interpretability 
may make them more resilient to the kind of second-
order attacks that can fool post-hoc explanation 
methods. 

D. Strategic Imperatives and Unresolved Questions 
The proliferation of autonomous, AI-driven offensive and 

defensive capabilities targeting critical infrastructure poses 
profound strategic and ethical challenges. Technical solutions 
alone are insufficient. The path forward requires a multi-
disciplinary effort to address several key unresolved 
questions: 

• How can autonomous response and recovery systems 
be designed that are not only technically effective but 
also resilient to meta-attacks on trust and 
explainability? 

• How can cognitive biases like automation bias and 
cognitive tunneling [73] be mitigated in high-tempo 
security environments to ensure meaningful human 
oversight? 

• What international treaties and “red lines” are needed 
to govern the use of these powerful dual-use 
technologies and prevent catastrophic escalation in 
cyberspace? 

VIII. CONCLUSION 
This paper confronted the critical challenge of securing 

industrial control systems against adaptive, intelligent 
adversaries who have demonstrated the capability and intent 

to cause physical disruption and psychological harm. 
Recognizing that static defenses are fundamentally brittle and 
that naive machine learning applications are vulnerable in the 
face of this evolving threat, the research introduced the 
Adversarial Resilience Co-evolution (ARC) framework. ARC 
formalizes a process for achieving autonomous, self-
hardening security through a perpetual, closed-loop co-
evolutionary arms race, conducted within a high-fidelity 
digital twin, between a DRL-based Red Agent, which 
autonomously discovers novel attack vectors, and an 
ensemble-based Blue Agent, which is continuously hardened 
against these emergent threats. 

Comprehensive experimental validation on the TEP and 
SWaT testbeds, supported by a rigorous ablation study and 
explainable AI analysis, provided strong evidence that the co-
evolutionary dynamic itself is the most critical driver of 
resilience against sophisticated, multi-stage attacks. By 
framing the problem through the lens of a “Trinity of Trust”—
Model Fidelity, Data Integrity, and Analytical Resilience—
the research provided a holistic security paradigm that 
addresses the core requirements for trustworthy cyber-
physical defense. 

The work further presented a technically grounded vision 
for scaling this approach across industries via a Federated 
ARC (F-ARC) architecture, a model for collaborative, 
privacy-preserving defense. The research also highlighted the 
critical future challenges that must be addressed to realize this 
vision. These include defending the federated learning process 
against model poisoning attacks using Byzantine-resilient 
aggregation algorithms and, most critically, defending the 
human-in-the-loop against the emerging threat of adversarial 
manipulation of the very explainability systems designed to 
foster trust. This work positions the study of dynamic, co-
evolutionary processes not merely as an academic exercise, 
but as a vital and necessary direction for creating the 
proactive, intelligent, and trustworthy defenses required to 
protect the critical systems that underpin modern society. 

This paper has argued that the security of modern 
Industrial Control Systems is not a problem to be solved, but 
a perpetual, co-evolutionary arms race to be managed. The 
convergence of IT and OT created a brittle foundation that 
adversaries evolved to exploit, forcing the development of an 
AI security plane that has, itself, become the new primary 
attack surface. In this environment of dynamic equilibrium, 
any static defense is destined for obsolescence. 

Navigating this unwinnable war requires a paradigm shift. 
Success will be defined not by the ability to build an 
impenetrable fortress, but by the capacity to anticipate, 
withstand, recover, and evolve in the face of a perpetually 
intelligent and adaptive adversary. 
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