
ar
X

iv
:2

50
6.

20
10

1v
1

 [
cs

.C
R

]
 2

5
Ju

n
20

25
1

Secure Multi-Key Homomorphic Encryption with
Application to Privacy-Preserving Federated

Learning
Jiahui Wu, Tiecheng Sun, Member, IEEE, Fucai Luo, Haiyan Wang, Weizhe Zhang, Senior Member, IEEE

Abstract—Multi-Key Homomorphic Encryption (MKHE), pro-
posed by López-Alt et al. (STOC 2012), allows for performing
arithmetic computations directly on ciphertexts encrypted under
distinct keys. Subsequent works by Chen and Dai et al. (CCS
2019) and Kim and Song et al. (CCS 2023) extended this concept
by proposing multi-key BFV/CKKS variants, referred to as the
CDKS scheme. These variants incorporate asymptotically optimal
techniques to facilitate secure computation across multiple data
providers. In this paper, we identify a critical security vulner-
ability in the CDKS scheme when applied to multiparty secure
computation tasks, such as privacy-preserving federated learning
(PPFL). In particular, we show that CDKS may inadvertently
leak plaintext information from one party to others. To mitigate
this issue, we propose a new scheme, SMHE (Secure Multi-Key
Homomorphic Encryption), which incorporates a novel masking
mechanism into the multi-key BFV and CKKS frameworks
to ensure that plaintexts remain confidential throughout the
computation. We implement a PPFL application using SMHE
and demonstrate that it provides significantly improved security
with only a modest overhead in homomorphic evaluation. For
instance, our PPFL model based on multi-key CKKS incurs less
than a 2× runtime and communication traffic increase compared
to the CDKS-based PPFL model. The code is publicly available
at https://github.com/JiahuiWu2022/SMHE.git.

Index Terms—Multi-key homomorphic encryption, masking
scheme, privacy protection, federated learning.

I. INTRODUCTION

Homomorphic encryption (HE) is a cryptographic technique
that enables computations to be performed directly on en-
crypted data, eliminating the need for decryption during the
process. This property allows for the secure processing of
sensitive data while preserving its confidentiality. For decades,
constructing a fully homomorphic encryption (FHE) scheme,
capable of supporting arbitrary computations on ciphertexts,
remained an open problem until Gentry’s groundbreaking
work [1]. Since then, significant advancements have been
achieved in the field, leading to various HE schemes such as
BFV [2], [3], GSW [4], BGV [5], TFHE [6], and CKKS [7].
These schemes have expanded the practicality and efficiency of
HE, making it a vital tool for secure computations in modern

This work is supported by The Key Program of the Joint Fund of the
National Natural Science Foundation of China (Grant No. U22A2036).

Jiahui Wu, Tiecheng Sun, Haiyan Wang, and Weizhe Zhang are
with the Department of New Networks, Pengcheng Laboratory, Shen-
zhen 518000, China; Fucai Luo is with the School of Computer Sci-
ence and Technology, Zhejiang Gongshang University, Hangzhou, China
(e-mail: wujh01@pcl.ac.cn/jiahuiwu2022@163.com; tiechengsun@126.com;
lfucai@126.com; wanghy01@pcl.ac.cn; wzzhang@hit.edu.cn.); Correspond-
ing author: Weizhe Zhang.

applications. One of the key features of HE is its ability
to enable secure computation “on-the-fly,” meaning that data
owners are not required to be actively involved during the
computation process. Instead, the evaluation can be carried
out entirely by a public server. This makes HE particularly
appealing for scenarios such as cloud computing, where data is
processed remotely, and privacy preservation is of paramount
importance.

In recent years, the demand for secure multiparty com-
putation (MPC) protocols has surged, driven by applications
such as federated learning [8]. MPC allows multiple parties to
collaboratively evaluate a function or circuit on their private
inputs without revealing any information beyond the final
result. However, traditional single-key HE schemes are not
well-suited for such multi-party settings. A major limitation
arises when multiple data sources are involved, as standard
HE schemes typically require all data to be encrypted under
the same encryption key. This requirement grants the entity
possessing the corresponding decryption key full access to the
encrypted data, which raises issues regarding privacy and the
reliance on centralized trust.

To address these limitations, researchers have extended
the functionality of HE through approaches such as thresh-
old homomorphic encryption (THE) [9]–[14] and multi-key
homomorphic encryption (MKHE) [15]–[21]. THE allows
decryption authority to be distributed among multiple parties,
ensuring that no single entity possesses full access to the secret
key. Similarly, MKHE enables computations on ciphertexts
encrypted under different keys, thereby avoiding the need for
a single shared encryption key and mitigating the risk of
authority concentration. These extensions not only overcome
the limitations of single-key HE but also integrate seamlessly
with secure MPC protocols, preserving the inherent advantages
of HE. Recognizing their potential, the National Institute
of Standards and Technology (NIST) has highlighted these
primitives as promising candidates for standardization in its
recent call for multi-party threshold cryptographic schemes
[22]. As a result, THE and MKHE have emerged as essential
building blocks for advancing privacy-preserving technologies
in collaborative and distributed environments.

In THE, multiple parties collaboratively generate a common
public key, with the corresponding secret key shared among
them through a secret-sharing mechanism. Although THE
schemes generally achieve performance levels comparable to
single-key HE and are typically more efficient than multi-key
HE schemes, they suffer from a critical limitation: reliance on

https://arxiv.org/abs/2506.20101v1

2

a static key access structure. In other words, all participants
must be predetermined and fixed during the initial setup
phase. In contrast, this work focuses on MKHE, which offers
significant advantages in terms of flexibility and reduced inter-
action requirements. Specifically, MKHE schemes allow each
participant to independently generate their own public-secret
key pairs without needing knowledge of other parties’ keys.
This property enables operations on ciphertexts encrypted
under different keys and allows computations to be performed
in a public cloud environment without establishing a common
public key. Moreover, recent advances in MKHE have intro-
duced full dynamism, allowing computations to be performed
on multi-key ciphertexts without predefined circuits. Arbitrary
circuits can be evaluated in real time, and new participants
or ciphertexts can be incorporated into ongoing evaluations
at any stage. This flexibility facilitates the construction of
SMC protocols on top of MKHE, leveraging its dynamic
and adaptive nature [17]. The ability to seamlessly integrate
new participants and ciphertexts on-the-fly is a key advantage,
making MKHE particularly well-suited for applications such
as federated learning, where the set of participants may change
throughout the computation process.

While MKHE provides a flexible and dynamic framework,
designing secure and efficient MKHE schemes is significantly
more challenging than for other homomorphic encryption
variants, due to stringent functional and security requirements.
Since the pioneering work of López-Alt et al. [15], who
introduced the first MKHE scheme based on NTRU, consider-
able efforts have been made to extend traditional (single-key)
HE schemes into their multi-key counterparts [16]–[21], [23],
[24]. Nonetheless, achieving both strong security guarantees
and practical efficiency in MKHE remains a substantial chal-
lenge. Early MKHE constructions often suffered from high
computational and communication overhead, limiting their
practicality in real-world deployments. Recent advancements
[19]–[21] have proposed improved designs with significantly
enhanced asymptotic and concrete efficiency, representing the
current state-of-the-art in MKHE. However, despite these
improvements, previously overlooked security vulnerabilities
have emerged, making these MKHE schemes potentially less
secure than their single-key HE counterparts.

A. Challenges and Contributions

Recent MKHE schemes, particularly the CDKS construc-
tions [20], [21], have significantly improved practicality.
However, they exhibit security vulnerabilities in real-world
multiparty computation scenarios. To address this, we revisit
the security assumptions of CDKS-style constructions and
identify several critical challenges. Our main contributions are
summarized below.

Challenge 1: Inadequate Security Guarantees in CDKS
for MPC. The CDKS schemes [20], [21] lack adequate secu-
rity guarantees in MPC settings. In these schemes, ciphertexts
from different parties are expanded into a unified format
embedding all parties’ identity information for joint evaluation.
Our analysis reveals that this expansion and evaluation process
may inadvertently leak plaintext data. A detailed examination

of this vulnerability, rooted in the ciphertext expansion mech-
anism, is provided in Section IV-B.

Our Solution: We propose a secure multi-key HE frame-
work named SMHE. Our approach introduces a new ciphertext
expansion and evaluation method by leveraging masking prim-
itives, originally developed in GSW-based MKHE [16], [17],
and we adapt them to the polynomial-based structures of BFV
and CKKS.

At a high level, a masking refers to an encryption of a
random value that is added to a fresh ciphertext. Since the
masking is itself a semantically secure ciphertext, it reveals no
information about the random value it encodes. This encrypted
randomness serves as a one-time pad to conceal the partici-
pant’s plaintext during ciphertext expansion and intermediate
homomorphic evaluation. This effectively mitigates the attack
we later demonstrate against CDKS, in which adversaries
exploit partial decryption results to infer individual plaintexts.

The core challenge lies in efficiently constructing such
encrypted masks that can be correctly removed during final
decryption to preserve result correctness, without undermin-
ing the inherent dynamism of the MKHE framework. In
GSW-based MKHE schemes [16], [17], the masking scheme
allows each party P to produce auxiliary information U
during encryption. This information, published together with
the ciphertext C, leaks no information about the underlying
plaintext and is used to support joint computation. When a
second participant P ′ joins with public key pk′, the auxiliary
information U and pk′ can be used to construct a masking
matrix X satisfying

(sk, sk′)

(
C X
0 C

)
= (skC, skX + sk′C)

≈ (µ · skΘ, µ · sk′Θ) = µ(sk, sk′)Θ,

(1)

where sk and sk′ are the secret keys of the two parties, µ is the
plaintext of the party P , and Θ is a fixed public matrix. Define
the concatenated secret key sk = (sk, sk′) and the expanded

ciphertext C =

(
C X
0 C

)
. Then, using GSW decryption,

the plaintext is recovered as µskΘ · Θ−1W ≈ µ, where W
is a fixed GSW decryption vector. Similarly, for party P ′,
with auxiliary information U ′ and ciphertext C ′, the expansion

yields: sk
(

C ′ 0
X ′ C ′

)
= (skC ′+sk′X ′, sk′C ′) ≈ µ′ ·skΘ,

where X ′ is constructed from U ′ and pk, and µ′ is the plaintext
of P ′. The homomorphic addition of the two parties’ expanded

ciphertexts is given by: C+C
′
=

(
C + C ′ X
X ′ C + C ′

)
, and

its decryption yields:

sk

(
C + C ′ X
X ′ C + C ′

)
·Θ−1W

=
(
sk(C + C ′) + sk′X ′, skX + sk′(C + C ′)

)
·Θ−1W

≈ (µ+ µ′)skΘ ·Θ−1W = µ+ µ′.

This ensures the correctness of homomorphic addition. Homo-
morphic multiplication can be handled similarly, as shown in
[16], [17]. By using this construction, ciphertexts encrypted
under different keys are transformed into a unified expansion

3

format, enabling efficient homomorphic operations in a dy-
namic multi-key setting. This allows each party to encrypt data
independently while still enabling collaborative computation,
without predetermining key structures or decryption.

Challenge 2: While the masking scheme proposed in [16],
[17] effectively ensures the security and the correctness of
GSW-based MKHE schemes, it cannot be directly applied to
CKKS or BFV schemes for the following reasons:

R1: GSW ciphertexts are represented as matrices C ∈
Zn×m
Q , whereas CKKS/BFV ciphertexts are polynomial pairs

ct = (c0, c1) ∈ R2
Q. This structural difference makes it chal-

lenging to construct a multi-key CKKS/BFV joint decryption
equation of the form

⟨sk, (ct+ cx)⟩+ ⟨sk′, ct⟩ ≈ µ · θ,

(where cx is a masking with the same form as ct constructed
by a auxiliary information we denote as Γ, and θ is a constant
term), analogous to the GSW multi-key decryption equation(
sk(C +X) + sk′C

)
·Θ−1W ≈ µ · sk ·W = µ.

R2: The GSW masking scheme requires large extended
ciphertexts for correct demasking, with each single-bit en-
cryption resulting in a ciphertext of size O(N2), quadratic in
the number of parties. This leads to significant computational
and communication overhead. Therefore, it is necessary to
design a new masking scheme for CKKS/BFV that ensures
the expanded ciphertext size scales linearly with N , thereby
improving both computational and space efficiency.

Our Solution: To address the challenges outlined in R1
and R2, we propose a novel masking scheme specifically
designed for CKKS/BFV. To ensure the correctness of the
joint decryption of the masked ciphertext (implicitly implying
the unmasking operation followed by decryption), we add an
additional “demasking” ciphertext to the masked ciphertext.
Specifically, we construct a masking ciphertext cx = (x0, x1)
and a “demasking” ciphertext cz = (z0, z1), where cx contains
a random mask r. The condition ⟨sk, cx⟩+⟨sk′, cz⟩ ≈ 0 must
hold, and the correct joint decryption is then given by:

⟨sk, cx⟩+ ⟨sk′, cz⟩+ ⟨sk, ct⟩ ≈ µ

⇒ ⟨(1, s, s′), (z0 + x0 + c0, x1 + c1, z1)⟩ ≜ ⟨sk, ct⟩ ≈ µ

where sk = (1, s, s′) is the concatenated secret key and
ct = (z0 + x0 + c0, x1 + c1, z1) ≜ (c̄0, c̄1, c̄2) is the expanded
ciphertext. Notably, the size of our expanded ciphertext ct is
linear with the number of participants. The remaining task is
to construct the equation

⟨sk, cx⟩+ ⟨sk′, cz⟩ ≈ 0. (2)

Taking the CKKS scheme as an example (which is similar
to the BFV scheme), encryption of a plaintext µ is expressed
as ct← Encrypt(pk, µ) = w · pk + (µ+ e0, e1) (mod Q),
where w is a random polynomial, sk = (1, s) is the secret key,
pk = (b = −as + e, a) is the public key, a is a polynomial
in a given ring RQ, and e, e0, e1 represent small errors. The
construction of Eq. (2) is then described as follows.

Let cz be a ciphertext representing zero. It then follows that:

⟨sk′, cz⟩ = ⟨(1, s′), r·pk+(e0, e1)⟩ = r(b−b′)+ez (mod Q),

where r is a random polynomial, b′ = −as′ + e′, and cz ←
Encrypt(pk, 0) = r · pk + (er0 , er1) (mod Q) represents
the encryption of the plaintext zero, with e′, er0 , er1 being
small errors. The masking is performed using the random
polynomial r, which is encrypted as auxiliary information
Γ← Encrypt(pk, r) = w·pk+(r+ex0

, ex1
), where ex0

, ex1

are small errors. The evaluator then sets cx = Γ(b′−b) to make
⟨sk, cx⟩+ ⟨sk′, cz⟩ ≈ r(b′ − b) + r(b− b′) = 0.

Challenge 3: In the decryption process, the evaluator is
expected to compute a correction term cx = Γ(b′ − b) such
that ⟨sk, cx⟩ + ⟨sk′, cz⟩ ≈ 0. However, since b′ − b ∈ RQ is
essentially a random polynomial, we have:

⟨sk, cx⟩ = ⟨sk, (b′ − b)(w · pk + (r + ex0
, ex1

))⟩
= (b′ − b)

(
(w · b+ r + ex0

) + (w · a+ ex1
)s
)

= (b′ − b)(r + we+ ex0 + ex1s) = r(b′ − b) + E (mod Q)

where E = (b′ − b)(we + ex0 + ex1s) ∈ RQ is a large and
non-negligible noise term. As a result, the desired equation
⟨sk, cx⟩+ ⟨sk′, cz⟩ ≈ 0 fails to hold due to this accumulated
noise, rendering the decryption equation invalid.

Solution: To control the noise growth, we apply the gadget
decomposition technique to reduce the growth of E, ensuring
that ⟨sk, cx⟩ + ⟨sk′, cz⟩ ≈ 0. For a detailed explanation of
the gadget decomposition technique, the reader is referred
to Section III-C, and for a comprehensive description of our
masking scheme, Section V-A provides further details.

II. RELATED WORK

MKHE enables computations on ciphertexts encrypted un-
der distinct keys. López-Alt and Wichs [15] first introduced
an MKHE scheme based on the NTRU cryptosystem, whose
security relies on a relatively non-standard assumption con-
cerning polynomial rings. This assumption differs from the
more widely used Learning With Errors (LWE) assumption
[25] or its ring-based variant [26], and it currently lacks
a worst-case hardness theorem [18] to support its security.
Subsequent work by Clear et al. [16] proposed an LWE-
based MKHE scheme that employs a multikey variant of the
GSW scheme and ciphertext extension techniques. Mukher-
jee et al. [17] later simplified this approach. Both of these
schemes design masking scheme for the GSW cryptosystem.
Specifically, the masking system enables evaluators to generate
a specific mask by combining a universal mask and a tar-
get participant identity. This mask facilitates the “encoding”
of ciphertexts from different identities into a larger matrix,
which allows for joint homomorphic computations on these
ciphertexts. Mukherjee et al. also proposed a 2-round (plain)
MPC protocol in the common random string (CRS) model for
secure distributed decryption. Peikert and Shiehian [18] further
extended the multi-key GSW scheme to develop two multi-hop
MKHEs. However, all these GSW-based MKHE variants face
a major limitation: they can only encrypt a single bit in a
large expanded GSW ciphertext, which results in substantial
space and time complexities as the bit-length of the ciphertext
grows quadratically with N2, where N is the number of
distinct participants. Brakerski et al. [23] proposed an MKHE
scheme based on LWE that employs short ciphertexts and

4

TABLE I: The symbols and their corresponding
interpretations.

Symbols Interpretations

n / N The number of the clients / The RLWE dimension
H / ⌊·⌉ Gadget decomposition function / The rounding function
g, τ Gadget vector and its dimension
λ Security parameter
ZQ Z ∩ (−Q/2, Q/2]

⟨u, v⟩ The inner product of two tuples/vectors u, v

||a||∞ The ℓ∞-norm of the coefficient vector of a
χ / U(·) χ distributions over R / Uniform distribution
Dσ Discrete Gaussian distribution with standard deviation σ

a← A a is sampled from a set or distribution A

ct / ct / ĉt Fresh ciphertext/Expanded ciphertext/Masked ciphertext
cij / c̄ij The jth component of the ciphertext cti / cti

a quasi-linear expansion rate. However, both the asymptotic
and concrete efficiency of this scheme have not been clearly
understood, making its practical applicability uncertain.

A follow-up study by Chen et al. [19] introduced a multi-
key TFHE and presented the implementation results. Mean-
while, another line of research [20], [21] has focused on
designing multi-key variants of batch HEs, such as BFV
[2], [3] and CKKS [7]. However, these constructions exhibit
significant security vulnerabilities and thus applications such
as privacy-preserving federated learning [27] and secure dis-
tributed sparse Gaussian processes [28] that utilize the multi-
key CKKS scheme fail to meet their stated security objectives.

In this paper, we propose new multi-key variants of batch
HE schemes, including CKKS and BFV, by introducing a
novel masking scheme for the CKKS/BFV cryptosystem. Our
scheme supports the encryption of both floating-point and
integer values with multiple bits, without requiring the large
ciphertext expansion as in [16]–[18]. Furthermore, our scheme
addresses the security vulnerabilities present in existing multi-
key CKKS/BFV constructions [20], [21].

III. PRELIMINARIES

In this section, we introduce the background knowledge of
ring learning with errors problem, multi-key homomorphic
encryption, and gadget decomposition. Table I summarizes
mathematical notations used in this paper.

A. Ring Learning with Errors

The Ring Learning With Errors (RLWE) assumption is
based on polynomial arithmetic with coefficients in a fi-
nite field. Specifically, let N be a power of two. Define
R = Z[x]/(xN + 1) and RQ = ZQ[x]/(x

N + 1). Let χ
be a probability distribution over R, and σ > 0 be a real
number. The RLWE assumption, defined by the parameters
(N,Q, χ, σ), asserts that it is computationally infeasible to
distinguish between two scenarios: given polynomially many
samples of either (a, b) ∈ R2

Q or (a, a · s+ e) ∈ R2
Q, where s

is drawn from χ and e is sampled from the discrete Gaussian
distribution Dσ with mean 0 and standard deviation σ, the
distribution of the two cases remains indistinguishable. The
RLWE assumption serves as the foundation for homomorphic
encryption schemes like BFV and CKKS.

B. Multi-Key Homomorphic Encryption

Multi-Key homomorphic encryption (MKHE) is an cryp-
tographic scheme that extends the capabilities of traditional
single-key HE to support computations on ciphertexts en-
crypted using distinct keys. It contains the following algo-
rithms:
• pp← MKHE.Setup(1λ). Generates a set of public param-

eters pp based on a given security parameter λ.
• (sk, pk)← MKHE.KeyGen(pp). Generates a secret-public

key pair (sk, pk) using the public parameters pp.
• ct ← MKHE.Encrypt(µ, pk). Encrypts the plaintext µ

with the public key pk and outputs the fresh ciphertext ct.
• ct← MKHE.Expand

(
{pk1, · · · , pkn}, i, ct

)
. Expands the

given ciphertext ct, encrypted under pki, into an expanded
ciphertext ct associated with n public keys {pk1, · · · , pkn}.

• ct ← MKHE.Eval(C, {ct1, · · · , ctk}, {pkid}id∈T). Per-
forms homomorphic evaluation on a circuit C using the
ciphertexts {ct1, · · · , ctk}, and outputs the ciphertext ct
associated with the joint public key set {pkid}id∈T that
corresponds to all input ciphertexts involved.

• µ := MKHE.Decrypt(ct; {skid}id∈T). Recovers the
plaintext µ using the corresponding private keys {skid}id∈T

of all public keys referenced in the given ciphertext ct.
A unique feature of MKHE is its use of “reference sets”
{pkid}id∈T . Each ciphertext maintains a reference to the
public keys under which the data has been encrypted. Initially,
a fresh ciphertext is tied to a single key. As homomorphic
computations progress and involve ciphertexts encrypted under
additional keys, the reference set expands. Decryption requires
all secret keys corresponding to the keys in the reference
set. Specifically, in collaborative scenarios, each participant
partially decrypts the ciphertext with his secret key and broad-
casts the partial decryption result. Then, the plaintext can be
constructed by combining all participants’ partial decryption
results. This distributed decryption is as follows:
• νid := MKHE.PartDec(ct, skid). Partially decrypts the

ciphertext ct with the secret key skid and returns the partial
decryption result νid.

• µ := MKHE.FullDec(ct, {νid}id∈T). Fully decrypts to
obtain the plaintext µ by combining the partial decryption
results {νid}id∈T corresponding to all ciphertexts associated
with the public keys referenced in the given ciphertext ct.
The correctness and security of MKHE is defined as follows.

Definition 1 (Correctness). Let ct1, · · · , ctn be MKHE
ciphertexts encrypting messages µ1, · · · , µn, respectively.
Denote by {pki}i∈[1,n] the combined public key set
associated with these ciphertexts. Suppose ct ←
MKHE.Eval(C, ct1, · · · , ctn; {pki}i∈[1,n]) is the result
of evaluating a circuit C over these ciphertexts. Then,
decryption using the corresponding secret keys {ski}i∈[1,n]

correctly recovers the result with overwhelming probability:

MKHE.Dec(ct; {ski}i∈[1,n]) = C(µ1, · · · , µn).

For approximate encryption schemes such as CKKS, this cor-
rectness notion is relaxed to allow for small errors, resulting

5

in the approximate correctness condition:

MKHE.Dec(ct; {ski}i∈[1,n]) ≈ C(µ1, · · · , µn).

Definition 2 (Simulation-Based Security). An MKHE scheme
is secure if it is simulation-based secure that any real-world
adversary interacting with the system cannot learn more than
what is revealed by an ideal functionality.

Formally, let λ be the security parameter. Consider a set
of users I (|I| ≥ 2, i.e., multi-party setting), each holding
a message µi and a public/secret key pair (pki, ski) ←
MKHE.KeyGen(pp), where pp ← MKHE.Setup(1λ). The
parties perform the following:
• Message encryption: cti ← MKHE.Encrypt(pki, µi);
• Ciphertext expansion: ct← MKHE.Expand

(
{pki}i∈I , i, cti

)
;

• Evaluation: ct← MKHE.Eval(C, {cti}i∈I ; {pki}i∈I);
• Decryption: νi := MKHE.PartDec(ct, ski) and µ :=
MKHE.FullDec(ct, {νi}i∈I).
Let A be a real-world adversary who observes all cipher-

texts, public keys, partial decryption, and the evaluation result.
Then there exists a probabilistic polynomial-time simulator
Sim such that the following distributions are computationally
indistinguishable:
• Real-world view: The adversary’s view in the real protocol

execution, including the public parameters pp, public keys
{pki}, input ciphertexts {cti, cti}, the evaluated ciphertext
ct, the partial decryption {νi}, and optionally the final
output µ.

• Ideal-world simulation: The simulated view produced by
Sim, given only the public parameters pp and the final
output µ = C(µ1, . . . , µn).

We say the scheme is secure if: Viewreal
A (λ) ≈c Viewideal

Sim (λ),
i.e., no efficient adversary can distinguish between the real
view and the ideal simulation with non-negligible probability.

C. Gadget Decomposition
In lattice-based HE schemes, the accumulation of noise

during homomorphic operations poses a significant challenge
to the efficiency and correctness of computations. One widely
used technique for mitigating this noise growth is Gadget
Decomposition. By leveraging structured representations, gad-
get decomposition not only reduces the complexity of oper-
ations but also provides a mechanism for controlling noise
in ciphertexts, enabling efficient and accurate homomorphic
computations. Informally, gadget decomposition is designed
to represent elements in a ring as compact, structured linear
combinations of predefined basis elements.

Definition 3 (Gadget Decomposition). Let Q and τ be a
modulus and a positive integer, respectively. A gadget decom-
position is defined as a mapping H : RQ → Rτ that meets
the conditions below for all b ∈ RQ:
• Reconstruction property: A constant vector g = (g0, g1,
· · · , gτ−1) ∈ Rτ

Q exists such that ⟨H(b), g⟩ ≡ b (mod Q).
• Bounded coefficients: The coefficients of H(b) are small,

i.e., ∥H(b)∥∞ ≤ BH for some constant BH > 0.

The vector g is referred to as the gadget vector, while H(b)
is a compact representation of b with bounded coefficients.

The mapping H can be viewed as a right inverse of the
inner product operation G(u) = ⟨g,u⟩ (mod Q), ensuring
that G(H(b)) = b.

Definition 4 (Gadget Encryption). For a given message µ ∈ R
and a secret key sk = (1, s) with s ∈ R, a pair Γ = (ς0, ς1)←
GgtEnc(sk, µ) ∈ Rτ×2

Q is defined as a gadget encryption of
the message if its decryption meets ⟨sk,Γ⟩ ≈ µ · g (mod Q).

Definition 5 (External Product). Define b ⊡ ς = ⟨H(b), ς⟩
(mod Q) as the external product of b and ς , where b ∈ RQ

and ς ∈ Rτ
Q. Additionally, for Γ = (ς0, ς1) ∈ Rτ×2

Q , we define
b⊡ Γ = (b⊡ ς0, b⊡ ς1).

By employing the gadget decomposition technique, it be-
comes feasible to homomorphically perform multiplication
on arbitrary ring elements while avoiding the generation of
excessive noise. Specifically, let Γ = (ς0, ς1) ∈ Rτ×2

Q

represent a gadget encryption of µ ∈ R using sk, satisfying
⟨sk,Γ⟩ = µ ·g+e (modQ) for a small e ∈ Rτ . The external
product (c0, c1)← b ⊡ Γ then meets:

⟨sk, (c0, c1)⟩ = ⟨sk, (b⊡ ς0, b⊡ ς1)⟩ = ⟨H(b), ⟨sk,Γ⟩⟩
= ⟨H(b), µ · g + e⟩ = b · µ+ e (modQ),

(3)

where the noise term e = ⟨H(b), e⟩ ∈ R remains small.
Consequently, (c0, c1) can be viewed as a noisy encryption
of b · µ, as intended.

IV. OVERVIEW OF PRIOR WORK

This section reviews the most relevant researches proposed
by Chen and Dai et al. [20] and Kim and Song et al. [21].
The former designs multi-key BFV/CKKS variants, while
the latter focuses on enhancing computational efficiency and
mitigating noise growth in these schemes. Collectively, we
refer to these schemes as CDKS. We begin by outlining
the core construction of CDKS and then highlight a critical
security vulnerability within the framework.

Algorithm 1 CDKS Relinearization

Input: ctmult = (ci,j)i,j∈[0,n] ∈ R
(n+1)×(n+1)
Q ,

{evki = (bi,di,ui,vi)}i∈[1,n]

Return: ctmult = (c̄i)i∈[0,n] ∈ Rn+1
Q

1: c̄0 ← c0c
′
0

2: for i = 1 to n do
3: c̄i ← c0c

′
i + cic

′
0 (mod Q)

4: for i = 1 to n do
5: for j = 1 to n do
6: c̄j ← c̄j + cic

′
j ⊡ di (mod Q)

7: c̄i ← c̄i + cic
′
j ⊡ bj (mod Q)

8: (c̄0, c̄i)← (c̄0, c̄i) + cic
′
j ⊡ (vi,ui) (mod Q)

A. Foundational Construction of CDKS

CDKS is built on the CRS model, where all key hold-
ers share access to identical public random polynomials.
Specifically, tt contains the following algorithms. Components
specific to the multi-key CKKS and multi-key BFV schemes
are highlighted in blue and red, respectively.

6

• pp ← CDKS.Setup(1λ): Let N denote the RLWE di-
mension, Q =

∏L
i=0 qi represent the ciphertext modulus

for some integers qi, the plaintext modulus t ∈ Z, the key
distribution χ over R, and the error distribution Dσ with
σ be positive value. a← U(Rk

Q) is a CRS. and the public
parameter is defined as pp = (N, t,Q, χ, σ,a).

• (sk, pk, evk)← CDKS.KeyGen(pp): Generates secret and
public keys (sk = (1, s), pk = (b, a)) and an evaluation key
evk = (b,d,u,v): Sample s, γ ← χ, e0, e1, e2 ← Dτ

σ ,
u ← U(Rτ

Q) and compute b = −s · a + e0 (mod Q),
d = −γ · a+ s · g+ e1 (mod Q), v = −s · u− γ · g+ e2
(mod Q). Set b = b[0] and a = a[0] which are the first
components of b and a, respectively. The subscripts is used
to identify keys associated with distinct key holders.

• ct ← CDKS.Encrypt(µ, pk): Samples w ← χ and
e0, e1 ← Dσ . Encrypts the given plaintext µ ∈ R and
outputs the ciphertext ct = w · pk+ (µ+ e0, e1) (mod Q).
(Encrypts the given plaintext µ ∈ Rt and returns the
ciphertext ct = w · pk + (⌊(Q/t) · µ⌉+ e0, e1) (mod Q)).

• ct := CDKS.Expand ({pk1, · · · , pkn}; i; ct): Expands the
given ciphertext ct, encrypted under pki, into a expanded
ciphertext ct associated with n public keys {pk1, · · · , pkn}.
Specifically, a ciphertext ct = (c0, c1) is expanded into the
ciphertext ct = (c̄0, · · · , c̄n) ∈ Rn+1

Q , where c̄0 = c0, c̄i =
c1, and the remaining {c̄j}j∈[1,n],j ̸={0,i} are all set to 0.

• ctadd ← CDKS.Add(ct, ct
′
): For the given ciphertexts

ct, ct
′ ∈ Rn+1

Q , the addition is performed as ctadd = ct+ ct
′

(mod Q).
• ctmult ← CDKS.Mult(ct, ct

′
; {evki}i∈[1,n]): For the given

ciphertexts ct = (ci)i∈[0,n], ct
′
= (c′i)i∈[0,n] ∈ Rn+1

Q and
their associated evaluation keys {evki}i∈[1,n], the multi-
plication is performed as ctmult = (cic

′
j)i,j∈[0,n] (mod Q)

(ctmult = (⌊(t/Q)ci · c′j⌉)i,j∈[0,n] (mod Q)). Run Algo-
rithm 1 with (ctmul, {evki}i∈[1,n]) and output the result
ctmult.

• µ← CDKS.Decrypt(ct, sk): Decrypts a given ciphertext
ct = (c̄0, c̄1, · · · , c̄n) using sk = (1, s1, · · · , sn) and
outputs µ = ⟨sk, ct⟩ (mod Q). Return µ (Return µ =
⌊(t/Q) · µ⌉).

In CDKS, the distributed decryption process is as follows:
• νi ← CDKS.PartDec(ci, si): Partially decrypts the given

ciphertext component ci using si and outputs νi = cisi+ei
(mod Q), where ei ← Dσ .

• µ := CDKS.Merge(c0, {νi}i∈[1,n]): Merges the results of
partial decryption to compute µ = c̄0 +

∑n
i=1 νi (mod Q).

Return µ (Return µ = ⌊(t/Q) · µ⌉).

The distributed decryption process is correct since

µ = c̄0 +

n∑
i=1

νi = ⟨sk, ct⟩+
n∑

i=1

ei ≈ ⟨sk, ct⟩ (mod Q).

B. Security Vulnerability of CDKS

The CDKS scheme fails to provide the level of security
it claims. As a result, existing MPC applications built upon
CDKS, such as secure federated learning (FL) [27] and se-
cure distributed sparse gaussian process [28], inherit CDKS’s
inherent vulnerabilities and consequently fail to achieve their

. . .

Client 1

Administration
server

Client 2 Client N

Parameters
Secret keys

Request

Cloud server
Local parameter

Gloal parameter

. . .

Client 1 Client 2 Client n

Server
Local parameter

Gloal parameter

Fig. 1: FL system model.

intended security guarantees. This limitation arises from a
fundamental flaw in CDKS that allows either the server or the
clients to recover plaintexts. To illustrate this issue, consider
an FL system with n clients and an aggregation server (as
depicted in Fig. 1) secured using CDKS. The core process
unfolds as follows:
• Key generation: Each client i generates its secret-public

key pair (ski, pki).
• Encryption: Each client i trains its local model and en-

crypts its local paremeter µi into a fresh ciphertext cti =
(ci0, c

i
1). Then, it sends cti to the server.

• Secure aggregation of local updates: Upon receiving
cti = (ci0, c

i
1), the server applies CDKS.Expand to expand

the ciphertext into cti = (ci0, 0, · · · , 0, ci1, 0, · · · , 0), where
ci0 and ci1 are replaced in the first and (i + 1)th positions,
respectively, while the remaining positions are padded with
zeros. Then, by using CDKS.Add, the server aggregates all
expanded ciphertexts {cti}i∈[1,n] into the global ciphertext

ct =
(n∑
i=1

ci0, c
1
1, c

2
1, · · · , cn1

) △
= (c̄0, c̄1, c̄2, · · · , c̄n),

which is then sent to all clients for decryption.
• Decryption to obtain a global update: Each client i first

computes its partial decryption result νi ← CDKS.PartD-
ec(c̄i, si) = ci1si+ ei (mod Q)(ei ← Dσ), and broadcasts
νi to the other clients or sends it to the aggregation server.
Then, any client or the server computes the final decryption
result as the global update:

µ := CDKS.Merge(c̄0, {νi}i∈[1,n]) = c̄0 +
n∑

i=1

νi (4)

=

n∑
i=1

(ci0 + ci1 · si) +
n∑

i=1

ei ≈
n∑

i=1

µi (mod Q)

Although the above process ensures correct parameter ag-
gregation, it exposes local client parameters even under the
honest-but-curious assumption, where both the server and the
clients are assumed to faithfully execute the FL protocol while
being curious to infer the privacy data of other clients based
on the information it observes during the execution of the
protocol. This security vulnerability stems from the ciphertext
expansion and distributed decryption processes. Specifically,
each component c̄i (i ∈ [1, n]) of the expanded ciphertext ct =
(c̄0, c̄1, c̄2, · · · , c̄n) is associated with only the fresh ciphertext
ci1 of client i. This design facilitates decryption correctness:
during partial decryption, each client i simply uses its secret
key si to decrypts its corresponding component c̄i, obtaining

7

the partial decryption result νi = ci1 · si + ei (mod Q). In
the full decryption phase, the server (or all clients) merges the
shared values as c̄0 +

∑n
i=1 νi ≈

∑n
i=1 µi (mod Q), since

each individual decryption step satisfies ci0 + νi ≈ µi, and the
first component c̄0 =

∑n
i=1 c

i
0. Thus, the correctness of the

full decryption is ensured. However, this simple mechanism,
while guaranteeing correct decryption, introduces a critical
security vulnerability. Since ci0, as part of the fresh ciphertext
cti = (ci0, c

i
1), is public, and the partial decryption result νi

is shared to either the server or the clients for full decryption,
any participant with access to νi can directly recover the client
i’s plaintext via ci0 + νi ≈ µi (mod Q).

This compromise demonstrates that CDKS fails to provide
adequate security guarantees in MPC scenarios. To address the
security limitations of CDKS, in this work, we propose secure
MKHE schemes, named SMHE, to achieve secure multi-key
variants of CKKS and BFV.

V. NEW MULTI-KEY VARIANTS OF CKKS AND BFV

To achieve our secure multi-key homomorphic encryption
(SMHE), we retain the foundational structure of CDKS but
introduce a masking scheme. This masking scheme ensures
both the security and correctness of homomorphic addition,
thereby enabling secure aggregation applications such as FL.
Furthermore, ciphertexts processed through homomorphic ad-
dition with the masking scheme can still be directly evaluated
by the homomorphic multiplication operations of CDKS with-
out additional requirements or auxiliary computations.

A. A Masking Scheme for CKKS and BFV

We design a masking scheme tailored for CKKS and
BFV, highlighting its role as a critical component in MKHE
framework. Essentially, a masking scheme enables the use of
a CKKS/BFV public key pk (with an associated secret key
sk = (1, s)) and a plaintext µ to generate a triple (ct, cz,Γ).
Here, ct = (c0, c1) represents CKKS/BFV encryption of µ
under pk, while cz = (z0, z1) and Γ = (ς0, ς1) act as auxiliary
information with two key properties: (1) the triple (ct, cz,Γ)
provides computational hiding for µ, similar to ct alone, and
(2) when provided with another CKKS/BFV public key pk′

(corresponding to a secret key sk′ = (1, s′)), it becomes
feasible to construct a pair of polynomials cx = (x0, x1) ∈
R2

Q according to Γ, such that ⟨sk, cx⟩ + ⟨sk′, cz⟩ ≈ 0 and
⟨sk, ct⟩+ ⟨sk, cx⟩+ ⟨sk′, cz⟩ ≈ µ. The latter also implies that
⟨(1, s, s′), (c0 + x0 + z0, c1 + x1, z1)⟩ = ⟨sk, ct⟩ ≈ µ. Here,
sk = (1, s, s′) is the decryption key and ct = (c0 + x0 +
z0, c1 + x1, z1) is a masked ciphertext.

CKKS/BFV Masking Scheme. The masking scheme con-
tains a triple of algorithms defined as follows:
• UniEnc (µ, pk): Given a message µ ∈ RQ and a

CKKS/BFV public key pk, returns a ciphertext ct.
• MaskEnc (r, pk) : Given a random masking r and a public
pk, the masking encryption algorithm outputs a pair (cz,Γ).

• Extend (Γ, pk, pk′): Provided with Γ and two CKKS/BFV
public keys pk, pk′, outputs cx ∈ R2

Q.
The masking scheme meets the following properties:

Semantic Security: For a given security parameter λ, the
security of CKKS/BFV encryption ensures that:

(pp, pk,UniEnc(µ, pk))
comp
≈ (pp, pk,UniEnc(µ′, pk)),

(pp, pk,MaskEnc(r, pk))
comp
≈ (pp, pk,MaskEnc(r′, pk)),

where pp ← FHE.Setup(1λ), (sk, pk) ← FHE.Keygen
(pp), r′ ← χ, and µ′ ← RQ. FHE represents the traditional
single-key CKKS/BFV scheme.

Correctness: Let pp ← FHE.Setup(1λ), and consider
two independently generated key pairs (sk, pk) and (sk′, pk′),
obtained from FHE.Keygen(pp). For any µ ∈ RQ, let
ct← UniEnc(µ, pk), (cz,Γ)← MaskEnc(r, pk), and cx←
Extend(Γ, pk, pk′). Then µ := FHE.Decrypt(sk, ct) and

⟨sk, ct⟩+ ⟨sk, cx⟩+ ⟨sk′, cz⟩ = µ+ e,

where ∥e∥∞ ≤ (2N2 + 4N)Bχ + τN ·BχBH.

Instantiation. We now instantiate our masking scheme.
• UniEnc(µ, pk) : Given a plaintext µ ∈ RQ and a public

key pk = (b, a) ∈ R2
Q, sample w ← χ and ew0

, ew1
← Dσ .

Encrypts µ with pk using CKKS/BFV encryption algorithm
to output a fresh ciphertext ct:

ct← FHE.Enc(pk, µ) (5)
=CKKS w · pk + (µ+ ew0

, ew1
) (mod Q).

=BFV w · pk + (⌊(Q/t) · µ⌉+ ew0
, ew1

) (mod Q).

• MaskEnc(r, pk) : Given a random masking r ∈ RQ, this
algorithm outputs the masking ciphertexts (cz,Γ):
1) Sample er0 , er1 ← Dσ .
2) Encrypt the value 0 with r and pk using CKKS/BFV

encryption algorithm and output

cz ← FHE.Encrypt(pk, 0; r)

= r · pk + (er0 , er1) (mod Q).
(6)

3) Perform gadget encryption on r and output Γ ←
GgtEnc(sk, r), which meets ⟨sk,Γ⟩ ≈ r · g (mod Q).

• Extend(Γ, pk, pk′): On input Γ ∈ Rτ×2
Q and public keys

pk = (b, a) ∈ R2
Q, pk

′ = (b′, a) ∈ R2
Q, the algorithm

outputs cx = (b′ − b)⊡ Γ, such that ⟨sk, cx⟩ ≈ r(b′ − b).

• Extend∗(Γ, pk, {pki}i∈[1,n]): This algorithm takes Γ ∈
Rτ×2

Q and the public keys pk and {pki}i∈[1,n] as input,
computes

∑
i∈[1,n](bi − b) =

∑
i∈[1,n] bi − nb, and outputs

cx =
(∑

i∈[1,n](bi − b)
)
⊡ Γ, such that ⟨sk, cx⟩ ≈ r ·∑

i∈[1,n](bi − b).
The Extend∗ algorithm simplifies the process of
running the Extend algorithm for all n public key
{pki}i∈[1,n]. Rather than executing Extend(Γ, pk, pk1) +
· · · + Extend(Γ, pk, pkn) =

∑
i∈[1,n](bi − b) ⊡ Γ, it

consolidates these computations into a single execution of
Extend∗(Γ, pk, {pki}i∈[1,n]).

Semantic Security. The attacker’s view consists of the dis-
tribution (pp, pk, ct, cz,Γ), where pp ← SMHE.Setup(1λ),
(sk, pk) ← SMHE.Keygen(pp), ct ← UniEnc(µ, pk), and
(cz,Γ)← MaskEnc(r, pk), where µ ∈ RQ.

The semantic security proof leverages the security of

8

CKKS/BFV encryption and follows these steps: (1) Modify Γ
to the gadget encryption of 0 instead of the gadget encryption
of r. This is justified by the semantic security of CKKS/BFV
encryption. (2) Replace ct and cz with encryptions of ran-
dom messages. Similarly, this step relies on the security of
CKKS/BFV encryption, as the random sample w is unknown
and the random sample r is no longer accessible after the first
modification. As a result, the distribution becomes independent
of µ, establishing semantic security.

Correctness. Let {(sk, pk), (sk′, pk′)} represent two valid
key pairs produced by SMHE.Keygen(pp). Recall that sk =
(1, s), sk′ = (1, s′); s, s′ ← χ; , pk = (b, a) ∈ R2

q , pk
′ =

(b′, a) ∈ R2
q with b = −a · s + e (mod Q), b′ = −a · s′ + e′

(mod Q), and ∥e∥∞, ∥e′∥∞ ≤ βχ.
The masking ciphertext with public key pk is (cz,Γ) ←

MaskEnc(r, pk). For a message µ, let ct← UniEnc(µ, pk)
and cx← Extend(Γ, pk, pk′). We have

⟨sk, ct⟩ = ⟨(1, s), (wb+ ⌊(Q/t)·µ⌉+ ew0 , wa+ ew1)⟩ (7)
= ⌊(Q/t)·µ⌉+ we+ ew0 + sew1 = ⌊(Q/t)·µ⌉+ ec,

⟨sk′, cz⟩ = ⟨(1, s′), (rb+ er0 , ra+ er1)⟩ (8)
= rb+ er0 + ras′ + s′er1 = r(b− b′) + e′c,

where ec = we+ ew0 + sew1 and e′c = re′ + er0 + s′er1 with
∥ec∥∞, ∥e′c∥∞ ≤ (N2 + 2N)Bχ. Due to the correctness of
linear combinations, we can also deduce that

⟨sk, cx⟩ = ⟨sk, (b′ − b)⊡ (ς0, ς1)⟩
= ⟨H(b′ − b), ⟨sk, (ς0, ς1)⟩⟩ = r(b′ − b) + er,

(9)

where er = ⟨H(b′− b), e⟩, ∥er∥∞ ≤ τN ·BχBH. Combining
these results, we can obtain that ⟨sk, cx⟩+ ⟨sk′, cz⟩ ≈ 0 and
⟨sk, ct⟩+ ⟨sk, cx⟩+ ⟨sk′, cz⟩ = ⌊(Q/t)·µ⌉+ e∗ ≈ ⌊(Q/t)·µ⌉,
where ∥e∗∥∞ ≤ (2N2 + 4N)Bχ + τN ·BχBH, as required.

B. SMHE Construction

We construct our SMHE based on the proposed masking
scheme, which contains the following algorithms:
• pp ← SMHE.Setup(1λ) → pp: Takes as input a security

parameter λ and outputs the system parameters pp =
{N, t,Q, χ σ,a,H,g}, where N = N(λ) is the RLWE
dimension; t ∈ Z is the plaintext modulus; Q =

∑L
i=1 qi is

the ciphertext modulus; χ and Dσ are the key distribution
and error distribution, respectively; a ← U(Rd

q) is a CRS;
H : RQ → Rτ and g ∈ Rτ

Q are a gadget decomposition
and its gadget vector, respctively.

• (sk, pk, evk) ← SMHE.KeyGen(pp): Generates a secret-
public key pair (sk = (1, s), pk = (b, a)) and an evaluation
key evk = (b,d,u,v) following the CDKS construction.

• C ← SMHE.Encrypt(µ, pk): This algorithm encrypts
the given plaintext µ ∈ R (µ ∈ Rt) into the ciphertext
ct and generates masking ciphertexts {cx,Γ} under the
encryption key pk, producing a tuple C = {ct, cx,Γ}.
The encryption and masking components are produced
using the functions UniEnc(µ, pk) and MaskEnc(r, pk),
respectively. Specifically, the algorithm samples w, r ← χ
and ev0, ev1, er0, er1 ← Dσ and computes ct = w · pk +
(µ + ev0, ev1) (mod Q), cz = r · pk + (er0, er1) (mod Q)
(ct = w · pk + (⌊(Q/t) · µ⌉ + ev0, ev1) (mod Q), cz =

r · pk + (⌊(Q/t) · µ⌉ + er0 , er1)) (mod Q)), and Γ ←
GgtEnc(sk, r).

• ct := SMHE.Expand({pkj}j∈[1,n], i, ct): The algorithm
expands the given ciphertext ct = (c0, c1), encrypted
under the public key pki, into an expanded ciphertext
ct = (c̄j)j∈[0,n], where:

c̄0 = c0 and c̄j =

{
c1 if j = i,

0 otherwise,
for j ∈ [1, n].

We denote the associated key and the reference set of the
expanded ciphertext ct as pki and {pkj}j∈[1,n], respectively.
• ctadd ← SMHE.Add2

(
ct1, ct2; pk1, pk2; {czi, Γi}i∈[1,2]

)
:

This algorithm takes as inputs two expanded cipher-
texts ct1 = (c10, c

1
1, 0), ct2 = (c20, 0, c

2
1) ∈ R3

q ,
which correspond to the fresh ciphertexts ct1 =
(c10, c

1
1), ct2 = (c20, c

2
1), encrypted under keys pk1 and

pk2, respectively. The associated masking parameters are
{czi,Γi}i∈[1,2]. The algorithm first performs cx1 =
(x1

0, x
1
1) ← Extend(Γ1, pk1, pk2), cx2 = (x2

0, x
2
1) ←

Extend(Γ2, pk2, pk1). Then, it masks the two ciphertexts
as ĉt1 = (c10+x1

0+z20 , c
1
1, z

1
0), ĉt2 = (c20+x2

0+z10 , z
2
0 , c

2
1)

1.
Finally, the algorithm outputs ctadd = ĉt1 + ĉt2 (mod Q).
• ctadd ← SMHE.Add

(
ct, ct

′
; {pkj}j∈T , {pk′j}j∈T ′ ; {czk,

Γk}k∈T∪T ′
)
: This algorithm is a general case of homo-

morphic addition. It takes as inputs two ciphertexts ct =
(ci)i∈[0,n], ct

′
= (c′i)i∈[0,n] ∈ Rn+1

q , the corresponding
reference sets {pkj}j∈T and {pk′j}j∈T ′ , and the involved
masking parameters {czk, Γk}k∈T∪T ′ . It invokes Algo-
rithm 2 on the inputs and outputs the homomorphic addition
result ctadd = (c̄i)i∈[0,n].

• ctmult ← SMHE.Mult(ct, ct
′
; {evki}i∈[1,n]): For two given

ciphertexts ct = (ci)i∈[0,n], ct
′
= (c′i)i∈[0,n] ∈ Rn+1

Q and
their associated public keys {pki}i∈[1,n], the multiplication
is performed as ctmult = (cic

′
j)i,j∈[0,n] (mod Q) (ctmult =

(⌊(t/Q)ci · c′j⌉)i,j∈[0,n] (mod Q)). Run Algorithm 1 with
(ctmul, {evki}i∈[1,n]) and output the result ctmult.
• νi ← SMHE.PartDec(c̄i, si): Partially decrypts a given

ciphertext component c̄i using si and outputs νi = c̄isi +
ei (mod Q), where ei ← χ.

• µ := SMHE.Merge(c̄0, {νi}i∈[1,n]): Compute µ = c̄0 +∑n
i=1 νi (mod Q). Return µ (Return µ = ⌊(t/Q) · µ⌉).

1) Security of SMHE Construction: We now present the
security analysis of the proposed SMHE scheme under the
semi-honest adversarial model using a simulation-based proof.

Security Setting. We consider a semi-honest adversary
A who follows the protocol honestly but may try to infer
additional information from observed messages. To prove
security, we follow the real/ideal world simulation paradigm

1The masked ciphertexts ĉt1, ĉt2 can be equivalently interpreted as being
obtained via an expansion of the masked fresh ciphertexts. That is, although
the actual implementation performs masking after ciphertext expansion, the
resulting ciphertexts ĉt1, ĉt2 can be conceptually understood as the expansion
of masked ciphertexts: ĉt1 = SMHE.Expand({pki}i∈[1,2], 1, ct1 + cx1 +

cz2), ĉt2 = SMHE.Expand({pki}i∈[1,2], 2, ct2 + cx2 + cz1). This
conceptual view clarifies the design intuition behind our masking strategy:
masking is applied before expansion to hide sensitive plaintexts while enabling
multi-key compatibility.

9

Algorithm 2 SMHE addition algorithm

Input: ct = (ci)i∈[0,n] and ct
′

= (c′i)i∈[0,n], associated with
public keys {pkj}j∈T and {pkj}j∈T ′ , respectively; The involved
masking parameters {czk,Γk}k∈T∪T ′ .

Return: ctadd = (c̄i)i∈[0,n] ∈ Rn+1
Q

1: c̄0 = c0 + c′0 (mod Q)
2: {cxi = (0, 0)}i∈[1,n], {cz′i = (0, 0)}i∈[1,n]

3: for i ∈ [1, n] do
4: if i ∈ T then
5: cxi ← Extend∗(Γi, pki, {pkj}j∈T ′\i) (mod Q)
6: cz′i ←

∑
j∈T ′\i czj (mod Q)

7: if i ∈ T ′ then
8: cxi ← cxi + Extend∗(Γi, pki, {pkj}j∈T\i) (mod Q)
9: cz′i ← cz′i +

∑
j∈T\i czj (mod Q)

10: (c̄0, c̄i)← (c̄0, ci + c′i) + cxi + cz′i (mod Q)

as defined in Definition 2, requiring that any view generated in
the real-world execution is computationally indistinguishable
from a simulated view generated in the ideal world, where
only the final output is known.

Simulator Construction. Let I be the set of n honest
parties, each holding a message µi and a key pair (pki, ski)
generated via MKHE.KeyGen. Let C be the function evaluated
over the encrypted messages, and let µ = C(µ1, . . . , µn) be
the final output.

We construct a PPT simulator Sim that, given only the
public parameters pp and the final output µ, generates a view
that is computationally indistinguishable from the adversary’s
real-world view:
• Encryption Simulation: SMHE employs RLWE-based en-

cryption (e.g., CKKS or BFV). Under the RLWE assump-
tion, the ciphertexts are semantically secure. Hence, Sim
can simulate each ciphertext cti as a uniformly random
element from the ciphertext space, without knowing the
corresponding plaintext µi.

• Evaluation Simulation: The evaluation phase includes ci-
phertext expansion, masking, and arithmetic operations. Due
to the introduction of masking terms during expansion,
the evaluated ciphertext ct is statistically independent of
the inputs. Thus, Sim can simulate ct and intermediate
ciphertexts using fresh samples of the appropriate algebraic
structure.

• Partial Decryption Simulation: Each party generates a par-
tial decryption share νi, which includes fresh RLWE-style
noise. The simulator Sim can generate these as random
RLWE-like elements that are indistinguishable from actual
decryptions. The final decryption result µ is known, so Sim
can simulate the full decryption outcome consistently.
Security Guarantee. Let Viewreal

A denote the adversary’s
view in the real execution, and let Viewideal

Sim be the simulated
view. Under the RLWE assumption, we have:

Viewreal
A (λ) ≈c Viewideal

Sim (λ).

That is, no efficient adversary can distinguish between the real
and ideal views with non-negligible probability. This proves
that SMHE achieves simulation-based security against semi-
honest adversaries.

Remark. Although our analysis is in the semi-honest
setting, the SMHE scheme can be extended to handle ma-
licious adversaries by incorporating verifiable computation
techniques, such as zero-knowledge proofs [29] or interactive
oracle proofs [30], which allow each party to prove correctness
of operations without revealing private data. We leave the
integration of such mechanisms to future work.

2) Correctness of Homomorphic Evaluation: We now
present the correctness of the proposed homomorphic evalua-
tion algorithm. We begin by analyzing the correctness in the
two-party secure computation setting and subsequently extend
the discussion to the general case.

Correctness of Homomorphic Addition for Two-Party
Computation. The correctness of SMHE homomorphic addi-
tion is ensured by the correctness of the underlying masking
scheme. Assume the two parties are P1 and P2, who indepen-
dently generate their key materials as

(ski, pki,mpi = (czi,Γi), evki)← SMHE.KeyGen(pp)

for i = 1, 2. Each party Pi encrypts its plaintext µi into a
fresh ciphertext cti = (ci0, c

i
1) ← SMHE.Encrypt(µi, pki).

The fresh ciphertexts are then expanded (associated with only
the two-party encryption keys pk1 and pk2) as

ct1 := SMHE.Expand({pk1, pk2}, 1, ct1) = (c10, c
1
1, 0),

ct2 := SMHE.Expand({pk1, pk2}, 2, ct2) = (c20, 0, c
2
1),

which are further masked and added to obtain

ctadd = (c̄0, c̄1, c̄2)

← SMHE.Add2

(
ct1, ct2; pk1, pk2; {czi,Γi}i∈[1,2]

)
= (c10 + c20 + x1

0 + x2
0 + z10 + z20 , c

1
1 + x1

1 + z21 , c
2
1 + x2

1 + z11)

where the masking components are generated as

cz1 = (z10 , z
1
1), cx1 = (x1

0, x
1
1)← Extend(Γ1, pk1, pk2),

cz2 = (z20 , z
2
1), cx2 = (x2

0, x
2
1)← Extend(Γ2, pk2, pk1).

Decryption of ctadd is performed as follows: Each party Pi

computes a partial decryption

νi ← SMHE.PartDec(c̄i, si) = c̄isi+ei (mod Q), i ∈ [1, n]

where ei ← χ. The full decryption result is

µ := SMHE.Merge(c̄0, {νi}i∈[1,n])

= c̄0 + c̄1s1 + c̄2s2 + e1 + e2

≈ ⟨(1, s1, s2), (c10 + c20 + x1
0 + z20 + x2

0 + z10 , (10)

c11 + x1
1 + z21 , c

2
1 + x2

1 + z11)⟩
= ⟨sk1, (ct1 + cx1 + cz2)⟩+ ⟨sk2, (ct2 + cx2 + cz1)⟩
≈ ⟨sk1, ct1⟩+ ⟨sk2, ct2⟩ ≈ µ1 + µ2 (mod Q).

Eq. (10) holds due to the correctness of the masking
scheme, which ensures that ⟨sk1, (cx1 + cz2)⟩+ ⟨sk2, (cx2 +
cz1)⟩ (mod Q) ≈ 0. Therefore, the correctness of the homo-
morphic addition for two parties in SMHE is achieved.

Correctness of Homomorphic Addition in a General
Case. Let ct = (ci)i∈[0,n] and ct

′
= (c′i)i∈[0,n] represent

two expanded ciphertexts associated with encryption

10

keys {pkj}j∈T and {pkj}j∈T ′ , respectively. Denote the
plaintexts corresponding to these ciphertexts are µ and
µ′, respectively. That is, ⟨sk, ct⟩ ≈ µ (mod Q) and
⟨sk, ct′⟩ ≈ µ′ (mod Q) hold, where sk = (1, s1, · · · , sn).
The masking parameters associated with the two
expanded ciphertexts are given as {(czk,Γk)}k∈T∪T ′ .
The result of the homomorphic addition between the
two expanded ciphertexts is ctadd = (c̄k)k∈[0,n] ←
SMHE.Add

(
ct, ct

′
; {pkj}j∈T , {pkj}j∈T ′ ; {czk,Γk}k∈T∪T ′

)
and its decryption proceeds as follows:

⟨sk, ctadd⟩ = c̄0 +
∑

i∈[1,n]

si · c̄i (11)

=
(
(c0 + c′0) +

∑
i∈[1,n]

si · (ci + c′i)
)
+

∑
i∈T∪T ′

⟨ski, (cxi + cz′i)⟩

≈ ⟨sk, ct⟩+ ⟨sk, ct′⟩ ≈ µ+ µ′ (mod Q)

Eq. (11) holds due to the correctness of the masking scheme,
which ensures that

∑
i∈T∪T ′ ⟨ski, (cxi + cz′i)⟩ (mod Q) ≈

0. Therefore, the correctness of the homomorphic addition in
SMHE is achieved.

Correctness of Homomorphic Multiplication. The cor-
rectness of homomorphic multiplication in SMHE is ensured
by the correctness of ciphertext multiplications proposed in
[20] and [21]. While this applies to the multiplication of two
expanded ciphertexts derived from fresh ciphertexts, we now
demonstrate that the correctness also holds for multiplications
between an expanded ciphertext and a masked ciphertext, as
well as for multiplications between two masked ciphertexts.

• Correctness of multiplications between an expansion
ciphertext and a masked ciphertext: Let ĉt = (ĉi)i∈[0,n]

denote a masked ciphertext, for example, ĉt =
SMHE.Add

(
ct, ct

′
; {pkj}j∈T , {pkj}j∈T ′ ; {czk,Γk}k∈T∪T ′

)
,

with a plaintext value of µ + µ′ (mod Q). Here,
ct = (ci)i∈[0,n] and ct

′
= (c′i)i∈[0,n] are two

expanded ciphertexts defined as earlier. The result of
the homomorphic multiplication between the masked
ciphertext ĉt and the expanded ciphertext ct

′ is ctmult =
(c̄i)i∈[0,n] ← SMHE.Mult(ĉt, ct

′
; {evki}i∈[1,n]), where

c̄0 = ĉ0 · c′0 +
∑

i∈[1,n]

(∑
j∈[1,n]

ĉi · c′j ⊡ bj

)
⊡ vi (mod Q),

c̄i = ĉi · c′0 + ĉ0 · c′i +
∑

j∈[1,n]

ĉj · c′i ⊡ dj

+
(∑
j∈[1,n]

ĉi · c′j ⊡ bj

)
⊡ ui (mod Q)

for i ∈ [1, n]. The decryption of ctmult proceeds as follows:

⟨sk, ctmult⟩ = c̄0 +
∑

i∈[1,n]

si · c̄i

= ĉ0c
′
0 +

∑
i∈[1,n]

si(ĉi · c′0 + ĉ0 · c′i) +
n∑

i,j=1

(
(ĉic

′
j ⊡ di) · sj

+ ĉic
′
j ⊡ bj(vi + si · ui)

)
(mod Q).

According to the relinearization algorithm in [20], [21], the

following approximation holds:

(ĉic
′
j⊡di)·sj+ ĉic

′
j⊡bj(vi+si ·ui) ≈ ĉic

′
j ·sisj (mod Q).

Thus, the decryption simplifies to (we define s0 = 1):

⟨sk, ctmult⟩ ≈
∑

i∈[0,n]

∑
j∈[0,n]

ĉic
′
j · sisj

= ⟨sk, ĉt⟩ × ⟨sk, ct′⟩ = (µ+ µ′)× µ′ (mod Q).

Therefore, the correctness of the homomorphic multiplica-
tion between a masked ciphertext and an expanded cipher-
text is established.

• Correctness of multiplications between two masked cipher-
texts: Similarly, the correctness of the homomorphic mul-
tiplication between two masked ciphertexts can be demon-
strated by applying the same reasoning and leveraging the
properties of the relinearization algorithm.

VI. APPLICATION TO PRIVACY-PRESERVING FL

A. Specific Phase of PPFL Model

We utilize the proposed SMHE to construct PPFL model.
As presented in Fig. 2, PPFL contains the following steps:
Initialization: Public parameters and keys generation.
• Public parameter generation. The server and the clients

negotiate the security parameter λ and generates the
public parameters pp = {N, t,Q, χ σ,a,H, g} ←
SMHE.Setup(1λ) an initial global model parameter ŵ0.

• Key generation. Each client i generates its secret-public
key pair (ski = (1, si), pki = {bi, a}) by executing
SMHE.KeyGen(pp).

Model training and encryption (Client side): Each client i
locally trains its model and encrypts its local update.
• Model initialization. Initializes the local model as wt

i ←
ŵ(t−1), where t ≥ 1 represents the t-th round of training.

• Training. Trains its local model wt
i with a mini-batch dataset

to generate a local gradient gti (a.k.a local model update).
• Encryption. The client encodes gti as µi ∈ R, encrypts µi

as {cti, czi,Γi} ← SMHE.Encrypt(µi, eki), and sends
{cti, czi,Γi} to the server.

Secure aggregation (Server side): After receiving all the n
clients’ submissions, the server performs secure aggregation.
• Ciphertext expandsion. The server expands the ciphertexts
cti = (ci,0, ci,1) (i ∈ [1, n]) into cti = (c̄i,j)j∈[1,n] by
invoking SMHE.Expand({pkj}j∈[1,n]; i; cti). Here,

c̄i,0 = ci,0 and c̄i,j =

{
ci,1 if j = i,

0 otherwise,
for j ∈ [1, n]

• Weighted aggregation. The server selects some clients
and aggregates their local gradients as a global gradient.
Denote the selected client set as Sbenign with the size
m = |Sbenign|. The server aggregates all the m cipher-
texts {ctidi}idi∈Sbenign

as an aggregation ciphertext ctmadd.
Specifically, the server first computes

ct
1
add ← SMHE.Add(ctid1

, (0)m+1; id1, idm; {czid1
,

Γid1
}, {czidm

,Γidm
})

11

Encryptor

Decryptor

Encryption
key

eki = (bi, a)

ML model
Local

dataset
Di

Gradient

Encrypted
local

gradient cti

Client i
(Data Owner) Server

Benign gradient
filtering

Gradient
aggregation

Benign
gradients

Encrypted
global

gradient

MergePartial decryption

Secret key
ski = (1, si)

Global gradient

Encryptor

Decryptor

Encryption
key

ekj = (bj, a)

ML model
Local

dataset
Dj

Gradient

Encrypted
local

gradient ctj

Client j
(Data Owner)

Encrypted
global

gradient

Partial decryption

Secret key
skj = (1, sj)

(c0, 0, 0, c1, 0, 0)

The i-th component

Encryptor

Decryptor

Encryption
key

eki = (bi, a)

ML model
Local

dataset
Di

Gradient

Encrypted
local

gradient cti

Client i
(Data Owner) Server

Client selection

Gradient
aggregation

Selected
gradients

Encrypted
global

gradient

MergePartial decryption

Secret key
ski = (1, si)

Global gradient

Encryptor

Decryptor

Encryption
key

ekj = (bj, a)

ML model
Local

dataset
Dj

Gradient

Encrypted
local

gradient ctj

Client j
(Data Owner)

Encrypted
global

gradient

Partial decryption

Secret key
skj = (1, sj)

Fig. 2: High-level overview of robust and privacy-preserving federated learning.

For i ∈ [2,m], the server computes

ct
i
add ← SMHE.Add(ct

i−1
add , ctidi ; idi−1, idi; {czidi−1 ,

Γidi−1}, {czidi ,Γidi}).

Here, we have idi−1 = idm when i = 1, and idi+1 =

id1 when i = m. The aggregation ciphertext is ct
m
add

△
=

(c̄0, c̄id1
, · · · , c̄idm

) and c̄idi
is then sent to the client idi.

Partial decryption (Client side): Each client idi (idi ∈
Sbenign) computes the partial decryption result νidi

=
SMHE.PartDec(c̄idi

, sidi
) = c̄idi

·sidi
+eidi

(mod Q) with
eidi
← χ. Then, it sends νidi

to the server.

Full decryption and model update (Server side):
• Full decryption. After receiving {νidi

}idi∈Sbenign
from all

the m clients in Sbenign, the server obtains the final decryp-
tion result µ = c̄0 +

∑
idi∈Sbengin

νidi
(modQ). Then the

server decodes µ as the weighted aggregation gradient ĝt.
• Parameter update. The server updates the global model as
ŵt := ŵt−1 − η ĝt∑m

i=1 αi
and sends ŵt to the clients for the

next iteration until the final training model is obtained.

B. Security and Correctness

The security of the PPFL model is guaranteed by the
underlying security of the SMHE scheme, as analyzed in Sec-
tion V-B1. We now analyze the correctness of the ciphertext
aggregation and decryption processes within PPFL.

During the aggregation process, the aggregated ciphertext
is computed as ct

1
add ← SMHE.Add(ctid1

, (0)m+1; id1, idm;
{czid1

,Γid1
}, {czidm

,Γidm
}), yielding:

ct
1
add = (cid1

0 + xid1,idm

0 + zidm
0 + xidm,id1

0 + zid1
0 ,

cid1
1 + xid1,idm

1 + zm1 , 0, . . . , 0, xidm,id1

1 + zid1
1),

and the final aggregated ciphertext is denoted as ct
m
add

△
=

(c̄0, c̄id1
, . . . , c̄idm

), where

c̄0 =
∑

idi∈Sbenign

(
cidi
0 + x

idi,idi−1

0 + x
idi,idi+1

0 + 2zidi
0

)
,

c̄idi
= cidi

1 + x
idi,idi−1

1 + x
idi,idi+1

1 + z
idi−1

1 + z
idi+1

1 , i ∈ [1,m].

Here, m = |Sbenign| and cxidi,idj = (x
idi,idj

0 , x
idi,idj

1) ←
Extend(Γidi , pkidi , pkidj) for idi, idj ∈ Sbenign, with
idi−1 = idm when i = 1, and idi+1 = id1 when i = m.

The decryption of the aggregated ciphertext ctnadd is

µ = c̄0 +
∑

idi∈Sbenign

(c̄idi · sidi + eidi) (12)

=
∑

idi∈Sbenign

((
cidi0 + cidi1 sidi + eidi

)
+ ⟨skidi , cxidi,idi−1⟩

+ ⟨skidi , czidi−1⟩+ ⟨skidi , cxidi,idi+1⟩+ ⟨skidi , czidi+1⟩
)

=
∑

idi∈Sbenign

(
cidi0 + cidi1 sidi

)
+ e∗ ≈

∑
idi∈Sbenign

µidi (mod Q).

Eq. (12) holds due to the correctness of the masking scheme,
which ensures that

⟨skidi
, cxidi,idi−1

⟩+ ⟨skidi
, czidi−1

⟩
= ⟨skidi

, (bidi−1
− bidi

)⊡ (ς
idi−1

0 , ς
idi−1

1)⟩
+ ⟨skidi

, (ridi−1
ekidi

+ (e0, e1))⟩
≈ ridi−1

(bidi−1
− bidi

) + ridi−1
(bidi

− bidi−1
) = 0 (mod Q),

and similarly, ⟨skidi
, cxidi,idi+1

⟩ + ⟨skidi
, czidi+1

⟩ ≈ 0
(mod Q). The error bound of the decryption is ∥e∗∥∞ ≤
(3m3 + 6m2 +m)Bχ + 2dm2 ·BχBH.

C. Implementation

We conduct PPFL experiments using SMHE, where the
multi-key CKKS scheme is applied to encrypt the gradients.

1) Experimental Setup: The experiments were conducted
on a computer equipped with an Nvidia GeForce GTX 1080
Ti GPU and an Intel Core i7-6700 CPU. The SMHE al-
gorithms were implemented in C++ using the NTL 10.4.0
[31] and GMP 6.2.1 [32] libraries to handle arbitrary-
length integers and high-precision arithmetic. The FL mod-
els were executed using the PyTorch 1.11.0 framework in
Python 3.8. To build our PPFL framework, a dynamic li-
brary containing all SMHE-related code was generated and
invoked within a Python script. The code is available at
https://github.com/JiahuiWu2022/SMHE.git.

Benchmark Models, Dateset, and Parameter Setting. To
evaluate the effectiveness of our SMHE-based PPFL model,
we conduct comparative experiments against the existing mul-
tiparty HE schemes: CDKS [21], THE [14], and MKGSW
[17]. All models are assessed under two distinct learning
scenarios to ensure comprehensive and fair comparison. In the
first scenario, we train a fully connected neural network (FCN)

12

on the MNIST dataset. The network includes an input layer
with 784 neurons, two hidden layers with 128 and 64 neurons
respectively, and an output layer with 10 neurons representing
digit classes from 0 to 9 using one-hot encoding. The model
is optimized using the Adam algorithm with a mini-batch size
of 64. In the second scenario, we adopt the CIFAR-10 dataset
to train a lightweight version of AlexNet with approximately
1.25 million parameters. Training is conducted using a batch
size of 128 and the RMSprop optimizer with a decay factor of
10−6. For both FL tasks, the datasets are randomly partitioned
among multiple clients for simulating collaborative training.

For the SMHE parameters, we largely follow the settings
used in CDKS and THE [14], [20], [21] to ensure a fair com-
parison. Specifically, the distribution χ ← R is instantiated
with coefficients drawn from {0, 1}, and the error term is
sampled from a discrete Gaussian distribution e ← Dσ with
standard deviation σ = 3.2. For gadget decomposition, we
adopt the RNS-friendly method proposed by Bajard et al. [33].
We set the gadget vector dimension to τ = 8, the RLWE
polynomial dimension to N = 214, the security parameter to
λ = 256, and the number of slots to ns = 8192. The actual
security level under standard RLWE assumptions corresponds
to 128 bits, as estimated by the LWE estimator. To accelerate
the masking encryption and masking extension procedures,
we incorporate the SIMD strategy proposed in [34]. For the
MKGSW parameters, we follow the TFHE setting [35] to
achieve a 128-bit security level by setting the LWE dimension
to 512, the modulus to 232, and the gadget dimension to 10.
The computation and communication complexity of SMHE
scales linearly with the number of clients n, which is consis-
tent with both CDKS and THE, whereas MKGSW exhibits
quadratic growth with respect to n. Since SMHE inherits the
homomorphic multiplication procedure from CDKS without
modification, its multiplication complexity remains identical
to that of CDKS. Therefore, in our experiments, we focus on
comparing the runtime and communication overhead of the
homomorphic addition algorithm among SMHE, CDKS, THE,
and MKGSW in the context of PPFL applications.

2) Experimental Results: We report the performance of
PPFL models using SMHE, CDKS, THE, and MKGSW, fo-
cusing on runtime, communication traffic, and model accuracy.

Runtime. Fig. 3 presents the runtime breakdown of PPFL
models across different computation phases on both the client
and server sides for a single training iteration. The results are
averaged over 100 training iterations for all models except
the MKGSW-based model, whose runtime is approximated
using the MKGSW evaluation time reported in TFHE [35].
As a bit-level HE scheme, MKGSW incurs an impractically
high runtime due to its inherent computational complexity.
For example, under the FCN setting, the total runtime reaches
3570.65s on the client side and 2702.17s on the server
side. This excessive overhead renders MKGSW unsuitable
for real-world PPFL applications. In contrast, the other three
models, THE-based, CDKS-based, and our SMHE-based mod-
els, exhibit significantly lower runtimes, making them more
feasible for practical deployment. Among these, THE-based
and CDKS-based models demonstrate comparable runtime
performance. Our SMHE-based scheme introduces a moderate

increase in runtime relative to THE and CDKS, primarily
due to the incorporation of the masking extension mechanism.
For instance, under the AlexNet setting, the total client-side
runtime of SMHE increases by less than 2× compared to the
CDKS- and THE-based models (4.64s vs. 2.72s and 7.77s,
respectively). Similarly, on the server side, SMHE incurs a
higher overall runtime – 2.17s for FCN and 38.22s for AlexNet
– compared to CDKS (0.97s and 31.23s) and THE (0.96s and
32.58s). In all cases, the runtime increase remains within a
2× range, which we consider a reasonable trade-off given the
enhanced security guarantees provided by SMHE.

Besides, compared to THE, our approach significantly re-
duces the client-side key generation time (e.g., 0.08s vs.
5.09s for FCN) by allowing each participant to generate
their key locally, without the need for interactive threshold
key generation protocols. This eliminates the communication
overhead inherent in THE’s distributed key setup, leading to a
substantial reduction in key generation and distribution latency.

Overall, SMHE strikes a practical balance between im-
proved security, flexibility, and runtime efficiency. Compared
to MKGSW, it achieves vastly lower computational overhead,
while maintaining acceptable runtime increases relative to
THE and CDKS. These features make SMHE a scalable and
effective solution for PPFL applications.

TABLE II: Comparison of communication traffic for one
iteration of different PPFL models.

Model\Network FCN AlexNet
Plain (#gradient) 109.386K 1.25M
THE-based (cipher traffic) 7.00MB 76.50MB
CDKS-based (cipher traffic) 7.00MB 76.50MB
SMHE-based (cipher traffic) 16.00MB 139.50MB
MKGSW-based (cipher traffic) 33.39GB 381.47GB

Communication Traffic. Table II presents the commu-
nication traffic per iteration for different PPFL models un-
der FCN and AlexNet networks. The row labeled “Plain
(#gradient)” reflects the number of model gradients in the
plain FL, 109,386K for FCN and 1.25M for AlexNet. For
encrypted models, the MKGSW-based model introduces an
extremely high communication burden, 33.39GB per iteration
for FCN and 381.47GB for AlexNet, mainly due to its bit-level
encryption. This renders MKGSW impractical for real-world
PPFL applications, where communication efficiency is a crit-
ical concern. In contrast, the other three models: THE-based,
CDKS-based, and our SMHE-based scheme offer significantly
lower communication costs and are more suitable for practical
deployment. Specifically, THE-based and CDKS-based models
share similar ciphertext formats and therefore exhibit identical
communication traffic, requiring only 7MB and 76.5MB per
iteration for FCN and AlexNet, respectively. Our SMHE-
based model incurs a moderate increase in communication
traffic, reaching 16MB for FCN and 139.5MB for AlexNet.
This overhead stems from the ciphertext extension mechanism
introduced by our masking design to support secure multi-
key computation. However, despite the increase, the total
traffic remains within approximately 2× that of CDKS and
THE, which is a reasonable cost given the added benefits.
Overall, SMHE offers a practical and scalable solution that

13

keygen train&enc idle partialDec overall

100

102

104
tim

e
(s

)

0.0
8

1.5
9 2.4

0

0.5
7

4.6
4

0.0
8

0.9
8

1.0
5

0.6
1

2.7
25.0

9

1.0
2

1.0
3

0.6
3

7.7
7

0.12

1750.18 1791.68

28.67

3570.65Ours
CDKS
THE
MKGSW

(a) FCN client-side time distribution

idle aggregation fullDec modelUpdate overall

100

102

104

tim
e

(s
)

1.1
5

0.7
9

0.1
7

0.0
6

2.1
7

0.5
9

0.1
3 0.1

7
0.0

8

0.9
7

0.6
2

0.1
1 0.1

8

0.0
5

0.9
6

1821.32

87.51

793.23

0.04

2702.17

(b) FCN server-side time distribution

keygen train&enc idle partialDec overall

100

102

104

tim
e

(s
)

0.0
9

17
.40 19

.01

6.8
8

43
.38

0.0
7

11
.71

11
.45

7.1
2 30

.35

5.1
5 12

.02
10

.51
6.9

1 34
.59

0.13

19635.37 21767.29

320.00

41722.79

(c) AlexNet client-side time distribution

idle aggregation fullDec modelUpdate overall

100

102

104

tim
e

(s
)

12
.61

1.1
8

24
.35

0.0
8

38
.22

5.2
9

0.1
4

25
.70

0.1
0

31
.23

6.7
3

0.1
6

25
.61

0.0
8

32
.58

20812.97

954.32

9760.25

0.08

31528.34

(d) AlexNet server-side time distribution

Fig. 3: Runtime breakdown comparison of PPFL models using different HEs , where “idle” denotes the duration during
which the clients/server remain inactive while waiting for other parties to complete their operations. For CDKS and THE,

“train&enc” represents the time spent on local model training and encryption. For MKGSW and SMHE, this stage
additionally includes the time for masking generation.

balances enhanced security and key flexibility with acceptable
communication overhead, unlike MKGSW, whose bit-level
structure incurs prohibitive costs in PPFL settings.

Model Accuracy. Fig. 4 displays the final model accuracy
of the PPFL models under different client elimination rates.
As observed from the results, the SMHE (CDKS)-based model
exhibits strong robustness against client elimination. Even with
50 distributed clients and a high elimination rate of 50%, the
final model accuracy remains above 85% for FCN and 66%
for AlexNet, indicating that the model tolerates a substan-
tial fraction of client drop without significant performance
degradation. In contrast, the THE-based model (where the
threshold is set to 0.8 in the experiment) shows a drastic
decline in accuracy once the proportion of eliminated clients
exceeds the threshold. The final model accuracy drops sharply,
eventually reaching a level close to that of random guessing,
indicating the failure of effective model convergence. These
results demonstrate that SMHE-based model offers greater
fault tolerance and flexibility in the presence of unreliable or
excluded clients, whereas the THE-based system is sensitive
to threshold violations due to their dependency on sufficient
participant contributions.

TABLE III: Comparisons of total training time and network
traffic for converged FCN and AlexNet models under

different PPFL modes.

Model Mode Epochs Accuracy Time(h) Traffic(GB)

FCN

Plain 34 97.94% 0.13 0.65
THE 34 97.64% 7.75 21.85
CDKS 37 97.62% 3.57 23.77
SMHE 35 97.90% 6.22 41.40

AlexNet

Plain 268 74.01% 4.21 48.67
THE 267 73.79% 194.29 777.92
CDKS 270 73.97% 180.12 786.67
SMHE 263 73.84% 232.49 1397.31

Training to Convergence. We next compare the total

10 20 30 40 50
Number of Clients

0

20

40

60

80

100

M
od

el
 A

cc
ur

ac
y

(%
)

0% elimination
10% elimination
30% elimination
50% elimination

(a) FCN model accuracy for
SMHE-based PPFL model

10 20 30 40 50
Number of Clients

20

40

60

M
od

el
 A

cc
ur

ac
y

(%
)

0% elimination
10% elimination
30% elimination
50% elimination

(b) AlexNet model accuracy for
SMHE-based PPFL model

10 20 30 40 50
Number of Clients

0

20

40

60

80

100

M
od

el
 A

cc
ur

ac
y

(%
)

0% elimination
10% elimination
30% elimination
50% elimination

(c) FCN model accuracy for
CDKS-based PPFL model

10 20 30 40 50
Number of Clients

20

40

60

M
od

el
 A

cc
ur

ac
y

(%
)

0% elimination
10% elimination
30% elimination
50% elimination

(d) AlexNet model accuracy for
CDKS-based PPFL model

10 20 30 40 50
Number of Clients

0

20

40

60

80

100

M
od

el
 A

cc
ur

ac
y

(%
)

0% elimination
10% elimination
30% elimination
50% elimination

(e) FCN model accuracy for
THE-based PPFL model

10 20 30 40 50
Number of Clients

10

20

30

40

50

60

70

M
od

el
 A

cc
ur

ac
y

(%
)

0% elimination
10% elimination
30% elimination
50% elimination

(f) AlexNet model accuracy for
THE-based PPFL model

Fig. 4: Comparison of final model accuracy under different
client elimination rates using SMHE/CDKS/THE scheme,

where the models are all trained for 10, 000 iterations.

14

training time and network traffic of THE-, CDKS-, and SMHE-
based PPFL models until convergence is reached. The number
of clients is set to 10. Due to the exceedingly high time
and communication costs involved in the full training process,
we simulate federated learning locally until convergence and
estimate the total training time and communication cost based
on the bandwidth and iteration counts. Table III presents the
estimated results for both FCN and AlexNet models, from
which we can observe that (1) All PPFL models using SMHE,
CDKS, and THE achieve high prediction accuracy, exceeding
97% on FCN and around 74% on AlexNet. (2) For the FCN
model, SMHE achieves comparable accuracy (97.90%) to the
plaintext baseline (97.94%), with only slightly more training
epochs (35 vs. 34). It incurs 6.22 hours of training time and
41.40 GB network traffic, which are less than 2× that of
THE and CDKS. (3) For the more complex AlexNet model,
SMHE also reaches similar accuracy to the plaintext case
(73.84% vs. 74.01%) with slightly fewer epochs. However,
it requires 232.49 hours and 1397.31 GB of traffic, which are
less than 1.8× of THE and CDKS. Overall, compared with
THE and CDKS, the SMHE-based PPFL models introduce
only a modest increase in training time and communication
cost (less than 2×) while ensuring stronger security guarantees
and offering better dynamism, making it a practical and secure
choice for PPFL applications.

VII. CONCLUSION

In this paper, we propose a novel secure multi-key ho-
momorphic encryption (SMHE) scheme tailored for privacy-
preserving FL. Our scheme addresses critical security vulner-
abilities identified in previous MKHE schemes, specifically
those proposed by Chen et al. and Kim et al., which inadver-
tently reveal plaintext information during multiparty secure
computation tasks such as federated learning. By introducing
a masking scheme into the CKKS and BFV frameworks,
our enhanced scheme ensures the confidentiality of data
while supporting efficient and secure homomorphic operations.
Future work includes further optimizing the efficiency of
ciphertext expansion in SMHE and exploring its integration
with advanced applications such as secure model inference
and encrypted machine learning.

REFERENCES

[1] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
ACM Symp. Theory Comput. (STOC), 2009, pp. 169–178.

[2] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical gapsvp,” in Proc. Int. Cryptol. Conf. (CRYPTO), 2012,
pp. 868–886.

[3] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

[4] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Proc. Int. Cryptol. Conf. (CRYPTO), 2013, pp. 75–
92.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Trans. Comput.
Theory, vol. 6, no. 3, pp. 1–36, 2014.

[6] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur. (ASIACRYPT), 2016,
pp. 3–33.

[7] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur. (ASIACRYPT), 2017, pp. 409–437.

[8] H. B. McMahan et al., “Advances and open problems in federated
learning,” Foundations and Trends® in Machine Learning, vol. 14,
no. 1, 2021. [Online]. Available: https://arxiv.org/abs/1912.04977

[9] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and
D. Wichs, “Multiparty computation with low communication, computa-
tion and interaction via threshold fhe,” in Proc. Annu. Int. Conf. Theory
Appl. Cryptogr. Tech. (EUROCRYPT), 2012, pp. 483–501.

[10] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. Rasmussen,
and A. Sahai, “Threshold cryptosystems from threshold fully homo-
morphic encryption,” in Proc. Int. Cryptol. Conf. (CRYPTO), 2018, pp.
565–596.

[11] C. Mouchet, E. Bertrand, and J.-P. Hubaux, “An efficient threshold
access-structure for rlwe-based multiparty homomorphic encryption,”
Journal of Cryptology, vol. 36, no. 2, p. 10, 2023.

[12] C. Mouchet, J. Troncoso-Pastoriza, J.-P. Bossuat, and J.-P. Hubaux,
“Multiparty homomorphic encryption from ring-learning-with-errors,”
Proc. Priv. Enhancing Technol. Symp. (PETS), vol. 2021, no. 4, pp.
291–311, 2021.

[13] J. Park, “Homomorphic encryption for multiple users with less commu-
nications,” IEEE Access, vol. 9, pp. 135 915–135 926, 2021.

[14] J. Ma, S.-A. Naas, S. Sigg, and X. Lyu, “Privacy-preserving federated
learning based on multi-key homomorphic encryption,” Int. J. Intell.
Syst., vol. 37, no. 9, pp. 5880–5901, 2022.

[15] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in Proc. ACM Symp. Theory Comput. (STOC), 2012, pp. 1219–1234.

[16] M. Clear and C. McGoldrick, “Multi-identity and multi-key leveled fhe
from learning with errors,” in Proc. Int. Cryptol. Conf. (CRYPTO), 2015,
pp. 630–656.

[17] P. Mukherjee and D. Wichs, “Two round multiparty computation via
multi-key fhe,” in Proc. Annu. Int. Conf. Theory Appl. Cryptogr. Tech.
(EUROCRYPT), 2016, pp. 735–763.

[18] C. Peikert and S. Shiehian, “Multi-key fhe from lwe, revisited,” in Proc.
Theory Cryptogr. Conf. (TCC), 2016, pp. 217–238.

[19] H. Chen, I. Chillotti, and Y. Song, “Multi-key homomorphic encryp-
tion from tfhe,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur.
(ASIACRYPT), 2019, pp. 446–472.

[20] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-key homomor-
phic encryption with packed ciphertexts with application to oblivious
neural network inference,” in Proc. ACM Conf. Comput. Commun. Secur.
(CCS), 2019, pp. 395–412.

[21] T. Kim, H. Kwak, D. Lee, J. Seo, and Y. Song, “Asymptotically
faster multi-key homomorphic encryption from homomorphic gadget
decomposition,” in Proc. ACM Conf. Comput. Commun. Secur. (CCS),
2023, pp. 726–740.

[22] L. Brandão and R. Peralta, “Nist first call for multi-party threshold
schemes,” Nat. Inst. Standards Technol., Gaithersburg, MD, USA, 2023.

[23] Z. Brakerski and R. Perlman, “Lattice-based fully dynamic multi-key fhe
with short ciphertexts,” in Proc. Int. Cryptol. Conf. (CRYPTO), 2016,
pp. 190–213.

[24] L. Chen, Z. Zhang, and X. Wang, “Batched multi-hop multi-key fhe from
ring-lwe with compact ciphertext extension,” in Proc. Theory Cryptogr.
Conf. (TCC), 2017, pp. 597–627.

[25] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM, vol. 56, no. 6, pp. 1–40, 2009.

[26] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” Journal of the ACM, vol. 60, no. 6,
pp. 1–35, 2013.

[27] X. Hao, C. Lin, W. Dong, X. Huang, and H. Xiong, “Robust and secure
federated learning against hybrid attacks: A generic architecture,” IEEE
Trans. Inf. Forensics Secur., vol. 19, pp. 1576–1588, 2024.

[28] A. Nawaz, G. Chen, M. U. Raza, Z. Iqbal, J. Li, V. C. Leung, and
J. Chen, “Secure distributed sparse gaussian process models using multi-
key homomorphic encryption,” in Proc. AAAI Conf. Artif. Intell. (AAAI),
vol. 38, no. 13, 2024, pp. 14 431–14 439.

[29] H. Sun, J. Li, and H. Zhang, “zkllm: Zero knowledge proofs for large
language models,” in Proc. ACM Conf. Comput. Commun. Secur. (CCS),
2024, pp. 4405–4419.

[30] D. F. Aranha, A. Costache, A. Guimarães, and E. Soria-Vazquez,
“Heliopolis: Verifiable computation over homomorphically encrypted
data from interactive oracle proofs is practical,” in Proc. Int. Conf.
Theory Appl. Cryptol. Inf. Secur. (ASIACRYPT), 2025, pp. 302–334.

[31] “Ntl libarary,” https://libntl.org/, 2017.
[32] “Bmp libarary,” https://gmplib.org/, 2020.

15

[33] J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A full rns variant
of fv like somewhat homomorphic encryption schemes,” in Proc. Sel.
Areas Cryptogr. (SAC), 2016, pp. 423–442.

[34] J. Wu, W. Zhang, and F. Luo, “Esafl: Efficient secure additively
homomorphic encryption for cross-silo federated learning,” IEEE Trans.
Dependable Secure Comput., 2025.

[35] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: fast
fully homomorphic encryption over the torus,” Journal of Cryptology,
vol. 33, no. 1, pp. 34–91, 2020.

