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Abstract—Machine learning providers commonly distribute
global models to edge devices, which subsequently personalize
these models using local data. However, issues such as copyright
infringements, biases, or regulatory requirements may require
the verifiable removal of certain data samples across all edge
devices. Ensuring that edge devices correctly execute such un-
learning operations is critical to maintaining integrity.

In this work, we introduce a verification framework leverag-
ing zero-knowledge proofs, specifically zk-SNARKSs, to confirm
data unlearning on personalized edge-device models without
compromising privacy. We have developed algorithms explicitly
designed to facilitate unlearning operations that are compatible
with efficient zk-SNARK proof generation, ensuring minimal
computational and memory overhead suitable for constrained
edge environments. Furthermore, our approach carefully pre-
serves personalized enhancements on edge devices, maintaining
model performance post-unlearning.

Our results affirm the practicality and effectiveness of this
verification framework, demonstrating verifiable unlearning with
minimal degradation in personalization-induced performance
improvements. Our methodology ensures verifiable, privacy-
preserving, and effective machine unlearning across edge devices.

I. INTRODUCTION

Machine unlearning aims to erase the influence of specific
data points from trained models, addressing privacy regula-
tions such as GDPR, which grant individuals the “right to be
forgotten.” Ensuring that unlearning has been done correctly,
however, is challenging. The client, who holds a personalized
model, must prove to the model provider that the requested
data has been removed—without revealing any sensitive in-
formation to the model provider. This is especially difficult
if the client might be dishonest or unwilling to perform the
unlearning faithfully. This challenge is exacerbated on edge
devices, where users personalize centralized models locally
with sensitive private data that should neither be disclosed
nor transferred elsewhere. Consequently, proving that a data
point has been successfully unlearnt on such personalized
models demands privacy-preserving verification mechanisms.
Recently, zero-knowledge succinct non-interactive arguments
of knowledge (zk-SNARKSs) have emerged as a promising
cryptographic technique for verifying computations, partic-
ularly in deep neural network inference [1]. zk-SNARKSs
thus represent a potential solution by enabling edge devices
(acting as provers) to demonstrate the correctness of their local
unlearning computations without revealing underlying private
data or personalized model parameters.

However, personalized model unlearning on edge devices
introduces unique challenges. Unlike centralized settings
where the model provider can compute and distribute unlearn-
ing updates, applying such updates directly to personalized
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models can severely degrade their tailored performance, un-
dermining the benefits of personalization. Furthermore, naively
sending the raw unlearning data (i.e., the forget set) to the
client and requesting proof of unlearning is infeasible: i) it
exposes the forget set, compromising its privacy, and ii) it re-
quires clients to generate ZkSNARK proofs for full unlearning
algorithms—such as multi-epoch gradient ascent or retraining
on the retained dataset—which demands prohibitively high
computation and memory, making it impractical for edge
devices. Generating zZkSNARK proofs for such heavy proce-
dures is particularly unrealistic, as proof generation for even
moderate-scale training remains orders of magnitude more
expensive than inference-level proofs [2]. These limitations
highlight the need for a new approach that enables efficient
and privacy-preserving verification of unlearning on locally
personalized models, without revealing sensitive data or com-
promising model utility. In this work, we address this gap
by designing a zkSNARK-friendly approximate unlearning
procedure tailored for personalized models on edge devices.

II. METHODOLOGY

Our methodology—outlined in Figure [[—proceeds in two
tightly integrated stages. (i) Approximate machine unlearning
is achieved by pruning neurons predominantly activated by
the forget set, followed by Optimal Brain Surgeon (OBS)-
based weight adjustment tailored to the user’s personalized
loss landscape. (ii) A zkSNARK proof is then generated for
the proposed unlearning procedure, which combines pruning
and weight adjustment. Since the procedure is designed to be
efficient and zk-friendly, it enables practical proof generation
on resource-constrained clients.

A. Unlearning Algorithm

Selective pruning provides a promising avenue for approx-
imate machine unlearning [3]], as it identifies and removes
model components (e.g., neurons or attention heads) that are
disproportionately influential on the targeted forget set, while
preserving performance on the retain set. Formally, let Dryroer
and Die,in denote the forget and retain datasets, respectively.
For each neuron n, an importance score is computed as

_ Importance(Dyyrger, 1)
~ Importance(Drein, 1) + €

Score(n; Dretain ) Dforgel)

where Importance(D, n) quantifies the average magnitude of
neuron n’s activations over dataset D. Neurons with the high-
est scores are pruned by zeroing their associated parameters,
thereby selectively removing the influence of the forget set.
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Fig. 1. Framework overview of the proposed privacy-preserving method.

While pruning yields a binary mask that can be applied
to remove parameters and induce forgetting, directly applying
such a mask to a personalized model is problematic. Per-
sonalized models have adapted their parameters to sensitive
local data; thus, indiscriminate pruning based on global im-
portance scores can erase features critical for the personaliza-
tion task, resulting in significant accuracy degradation. This
phenomenon arises because pruning typically targets neurons
influential to the forget set, without considering their contribu-
tion to the retained personalized data, as neural representations
often entangle multiple tasks and data sources.

To mitigate this degradation, we leverage the OBS frame-
work [4]|-[6], which uses second-order information to opti-
mally adjust the remaining weights after pruning. Formally,
starting from a dense parameter vector w*, the post-pruning
parameters wj; are determined by minimizing the second-
order Taylor approximation of the loss:

* 1 * * *
L(wy) — L(w™) =~ g(wM —w*) T Hp (w*)(wa — w*),
where Hp, (w*) is the Hessian matrix of the loss evaluated at
w*. Therefore, for a pruned weight ¢, the optimal adjustment
to the remaining weights is given by:
w;

[Hp (w*) s

where e; is the unit vector corresponding to weight i.
Building on this principle, some recent works [6], [7]
introduce block-wise pruning for computational efficiency. In
our adaptation, we compute the empirical Fisher information
matrix on the personalized dataset to accurately capture the
local curvature relevant to the user’s data. This ensures that
pruning-induced perturbations are adjusted to preserve per-
formance on the personalization dataset, while still achieving
approximate unlearning of the targeted forget set.

*

ow* = — Hp(w*) ey, (1

Algorithm 1: Verifiable Approximate Unlearning

Input: Public parameters pub, initial personalized model
commitment comp, pruning mask mask, Fisher
matrix commitment comg

Output: New model commitment com’s, zkSNARK proof 7

Client Setup:
> Commit to Fisher matrix HE, obtain comz (Offline step)

3 Unlearning Request:
4 Receive pruning mask mask from model provider

Model Weight Adjustment:
for each pruned weight i in mask do

| Compute weight adjustment dw; using Equation (T)
end

9 New Model Computation:
10 Update model weights: wp = wp + dw*

11 Proof Generation:

12 Generate zkSNARK proof 7 that:

13 (i) dw™ computed correctly from compy and mask
14 (ii) com’s = comp + Jw*

15 Proof Verification:
16 Verifier checks 7 and updated commitment com’s

=~

. Efficient Zero-Knowledge Proof Generation

Building on the pruning-based approximate unlearning strat-
egy, we now describe how the proposed method enables
efficient zZkSNARK proof generation on edge devices. Instead
of requiring the prover (i.e., the client) to generate a proof
for the full fine-tuning or retraining process—which would be
computationally prohibitive—we design a lightweight proof
structure tailored to the unlearning procedure. Each client com-
mits to the empirical Fisher information matrix H¥ computed
on their personalized dataset. Upon receiving the unlearning
request (specified as a pruning mask), the prover needs only
to demonstrate the model update according to the weight
adjustment in Equation (I)). The overall interaction between
prover and verifier is illustrated in Figure [I] and Algorithm [T}

Since weight updates are performed block—wise —-with
H f structured as a block diagonal matrix —- the proof gen-
eration decomposes into verifying independent matrix vector
multiplications within each block. This structure is highly zk-
friendly, as it avoids non-linear operations that are difficult
to verify and allows block-wise proofs to be generated se-
quentially or in parallel. After applying the weight adjustment
updates, the client proves that the new model commitment
corresponds to the sum of the previous model commitment
and the sparse model update. Crucially, the actual model
parameters and the specific updates remain completely hidden
from the model provider (the verifier), ensuring that privacy
is preserved throughout the verification process of unlearning.

III. EVALUATION

Our experimental evaluation aims to assess the effectiveness
of the proposed unlearning algorithm in personalized settings.
Specifically, we focus on: (i) evaluating the extent to which
the unlearning algorithm removes information pertaining to



TABLE I
IMPACT OF UNLEARNING AND WEIGHT ADJUSTMENT ON PERSONALIZED MODEL PERFORMANCE

Method Forget Class Accuracy (%) |  Personalized Accuracy (%) 1
Personalized Model (Baseline) 93.7 71.5
After Applying Unlearning Mask 60.5 69.4
After Weight Adjustment (Our method) 59.5 70.9
Improvement over Naive Mask (%) 1.7 714

the forget class on the personalized model by measuring the
model’s accuracy on that class; (ii) quantifying the impact
of directly applying the unlearning mask on the personalized
model’s performance; and (iii) determining the degree to
which the weight adjustment compensates for any performance
degradation resulting from the unlearning process.

To simulate this scenario, we utilize a Vision Transformer
(ViT) model pretrained on the ImageNet dataset. The model
provider selects the "’birds” class as the forget set and computes
the corresponding unlearning mask based on the pretrained
model. The mask modifies only the Multi-Layer Perceptron
(MLP) sublayers within the transformer blocks, pruning 2% of
their parameters while leaving all other model parameters un-
changed. To emulate personalization, each client fine-tunes the
model on a subset of the ImageNet-Sketch dataset [[8], focusing
on specific classes such as “fish.” ImageNet-Sketch introduces
a domain shift through sketch-style images, challenging the
model to generalize across visual modalities while preserving
class semantics—making it a strong benchmark for studying
personalization under distributional variation. Personalization
is performed by fine-tuning the upper layers of the ViT model,
using a layer-wise learning rate decay while freezing early
transformer blocks. This allows the model to adapt to client-
specific data without destabilizing general representations.

In our experiments, we evaluate the effectiveness of the
proposed unlearning procedure in removing the influence of
the forget set while preserving personalized model utility.
Table [[] shows the personalized model’s performance before
unlearning, after applying the pruning-based mask, and after
our OBS-based weight adjustment.

Applying the unlearning mask alone substantially reduces
the model’s accuracy on the forget class (from 93.7% to
60.5%), indicating that the pruning successfully disrupts the
model’s reliance on the targeted data. However, this step also
introduces a non-negligible performance drop on the client’s
personalized data (from 71.5% to 69.4%), underscoring the
trade-off between forgetting and utility preservation.

Our weight adjustment method restores most of the lost
personalized accuracy (up to 70.9%) and further lowers the
forget class accuracy to 59.5%. Measured relative to the
masked model, these gains highlight our method’s ability to
enhance forgetting while recovering utility. Notably, this is
achieved by modifying only 2% of the MLP parameters.

IV. CONCLUSION AND FUTURE WORK

We proposed an initial framework to approach the challenge
of verifiable machine unlearning for personalized models on

edge devices, motivated by the need for privacy-preserving
compliance with unlearning requests. We proposed an efficient
pruning-based approximate unlearning method based on OBS
adjustment, tailored for zkSNARK-friendly proof generation.

Experiments on personalized ViT models fine-tuned on
ImageNet-Sketch demonstrate that the proposed method en-
ables effective unlearning, recovering over 70% of the person-
alized accuracy lost due to naive pruning, while maintaining
minimal degradation in downstream utility.

Future work includes a concrete evaluation of proof gen-
eration costs—covering computation time and memory us-
age on edge devices—compared against baselines such as
naive retraining verification or approximate unlearning meth-
ods not designed for zk-friendliness. Additionally, extending
our method to large-scale personalized models such as large
language models (LLMs), where block-diagonal Fisher ap-
proximation and sparse updates are critical, is a promising
direction to further validate scalability and effectiveness.
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