
ar
X

iv
:2

50
6.

19
94

3v
1

 [
cs

.C
R

]
 2

4
Ju

n
20

25

Quantum-Resistant Domain Name System: A Comprehensive System-Level
Study

JUYOUL LEE, Florida Institute of Technology, USA

SANZIDA HOQUE, Florida Institute of Technology, USA

ABDULLAH AYDEGER, Florida Institute of Technology, USA

ENGIN ZEYDAN, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Spain

The Domain Name System (DNS) plays a foundational role in Internet infrastructure, yet its core protocols remain vulnerable to

compromise by quantum adversaries. As cryptographically relevant quantum computers become a realistic threat, ensuring DNS

confidentiality, authenticity, and integrity in the post-quantum era is imperative. In this paper, we present a comprehensive system-level

study of post-quantum DNS security across three widely deployed mechanisms: DNSSEC, DNS-over-TLS (DoT), and DNS-over-HTTPS

(DoH). We propose Post-Quantum Cryptographic (PQC)-DNS, a unified framework for benchmarking DNS security under legacy,

post-quantum, and hybrid cryptographic configurations. Our implementation leverages the Open Quantum Safe (OQS) libraries

and integrates lattice- and hash-based primitives into BIND9 and TLS 1.3 stacks. We formalize performance and threat models and

analyze the impact of post-quantum key encapsulation and digital signatures on end-to-end DNS resolution. Experimental results on a

containerized testbed reveal that lattice-based primitives such as Module-Lattice-Based Key-Encapsulation Mechanism (MLKEM)

and Falcon offer practical latency and resource profiles, while hash-based schemes like SPHINCS+ significantly increase message

sizes and processing overhead. We also examine security implications including downgrade risks, fragmentation vulnerabilities, and

susceptibility to denial-of-service amplification. Our findings inform practical guidance for deploying quantum-resilient DNS and

contribute to the broader effort of securing core Internet protocols for the post-quantum future.

Additional Key Words and Phrases: PQC, DNS, DoT, DoH

ACM Reference Format:
Juyoul Lee, Sanzida Hoque, Abdullah Aydeger, and Engin Zeydan. 2018. Quantum-Resistant Domain Name System: A Comprehensive

System-Level Study. 1, 1 (June 2018), 29 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The Domain Name System (DNS) is a fundamental basis of the Internet that translates human-readable domain names

into Internet Protocol (IP) addresses and facilitates all modern network communication. However, the original DNS

protocol was not designed with security in mind, leaving it vulnerable to a number of attacks. Common threats include

DNS spoofing (or cache poisoning), where attackers inject false DNS records into a resolver’s cache, DNS amplification

attacks, a form of Distributed Denial of Service (DDoS), where DNS servers are exploited to flood a target with traffic,

and DNS hijacking, where queries are redirected to malicious servers [18]. Over the past two decades, a number of DNS

Authors’ addresses: Juyoul Lee, Florida Institute of Technology, Melbourne, FL, USA, juyoul2023@my.fit.edu; Sanzida Hoque, Florida Institute of

Technology, Melbourne, FL, USA, shoque2023@my.fit.edu; Abdullah Aydeger, Florida Institute of Technology, Melbourne, FL, USA, aaydeger@fit.edu;

Engin Zeydan, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Barcelona, Spain, engin.zeydan@cttc.cat.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX
https://arxiv.org/abs/2506.19943v1

2 Lee et al.

security extensions and enhancements, Domain Name System Security Extensions (DNSSEC), DNS over TLS (DoT),

and DNS over HTTPS (DoH), have been developed to mitigate threats such as spoofing, tampering and surveillance [1]

[35]. DNSSEC provides data integrity and origin authentication through digital signatures and thus protects against

cache poisoning and similar attacks. DoT, and DoH, provide encrypted transport mechanisms to protect DNS requests

and responses from eavesdropping and data manipulation in transit. Together, these protocols form the backbone of

secure DNS resolution in the current Internet ecosystem.

However, the security of all three protocols depends on classical public key cryptographic primitives, most commonly

RSA, ECDSA, and X25519, which are known to be vulnerable to quantum attacks. Once quantum computers can be

deployed on a large scale, algorithms like Shor’s will render these cryptosystems obsolete and make DNS vulnerable to

privacy and integrity issues [4].

To counter this new threat, there is growing interest in Post-QuantumCryptography (PQC) - cryptographic algorithms

designed to resist attacks from quantum computers. Although standardization efforts are underway, most notably

by National Institute of Standards and Technology (NIST), adapting these new primitives to the DNS infrastructure

is a major challenge. The DNS is a performance-critical system with strict constraints on message size, latency, and

compatibility. Post-quantum signature schemes such as MLDSA, Falcon, and SPHINCS+, while secure against quantum

adversaries, may introduce larger keys and signatures or increased computational overhead, which can impact DNSSEC’s

ability to remain efficient and interoperable. Similarly, post-quantum key exchange mechanisms must be evaluated in

the context of DoT and DoH, where low-latency TLS handshakes are essential for practical use.

While progress has been made in incorporating post-quantum cryptographic primitives into particular compo-

nents of DNS security, such as DNSSEC with PQ-signatures [22] or TLS with PQ key exchanges [6], most current

research endeavors focus on these protocols alone. This disjointed picture leads to an inadequate comprehension

of the performance of post-quantum measures across the whole DNS security stack, especially when deployed in

combination within real-world operational constraints. In particular, encrypted DNS protocols such as DoT and DoH,

which form the privacy-enhancing basis of current DNS resolution, have received little attention in the post-quantum

discourse compared to DNSSEC. Furthermore, the impact of the introduction of post-quantum cryptography on the

interoperability, latency and scalability of DNS systems has hardly been comprehensively investigated when all three

protocols are analysed together. This narrow focus creates a notable gap in the literature: the lack of a thorough,

comparative, and system-level examination of DNSSEC, DoT, and DoH within post-quantum cryptography frameworks.

Without this, it is difficult to assess the practical feasibility and trade-offs of transitioning DNS infrastructure to a

post-quantum-resilient architecture.

To address this gap, our research presents a comprehensive analysis of post-quantum security concerning the three

primary DNS protection mechanisms: DNSSEC, DoT, and DoH. We specifically present the following key contributions:

• Post-Quantum DNS Implementation and Evaluation Framework: We present a unified implementation of

DNSSEC, DoT, and DoH protocols secured with NIST-recommended post-quantum cryptographic primitives. Our

framework enables protocol-level benchmarking across classical, hybrid, and PQC-only modes, and includes a formal

model of DNS resolution performance under varying cryptographic configurations. Experimental results quantify

latency, bandwidth, and resource trade-offs, providing practical insights into DNS migration feasibility.

• Security Threat Taxonomy and Mitigation Strategies: We identify critical vulnerabilities introduced by PQC

adoption-such as downgrade attacks, timing leaks, and fragmentation exploits-and propose mitigation strategies

ranked by severity. Our analysis informs secure-by-design integration of PQC into DNS systems.

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 3

• Deployment Challenges and Design Recommendations: We uncover practical constraints-including compatibility

gaps, resource consumption at the edge, and hybrid mode fragility-that limit immediate deployment. Based on our

findings, we offer actionable guidance for transitioning DNS infrastructure toward quantum resilience.

The remainder of the paper is structured as follows. Section 2 surveys related work on DNS security extensions and

post-quantum cryptography in networked protocols. Section 3 presents the system architecture and formalizes the

performance model, protocol sequence, and associated cost equations for PQC-DNS. Section 3 also analyzes emerging

security threats introduced by PQC adoption, and presents corresponding mitigation strategies. Section 4 reports

empirical findings for DNSSEC, DoT, and DoH under classical, hybrid, and post-quantum cryptographic configurations.

Section 5 discusses deployment challenges, sustainability, and directions for future work. Finally, Section 6 concludes

the paper.

2 RELATEDWORK

DNS, a foundational component of the Internet, has long been recognized as a target of privacy and integrity attacks.

In response, several privacy enhancements such as DoT [17], DoH [16], and DNSSEC [3] have been standardised to

enable encryption and authentication. However, these protocols are based on classical cryptographic primitives that

are vulnerable to future quantum adversaries. With the standardisation of PQC underway [23], recent research has

begun exploring how DNS security protocols can be adapted for post-quantum resilience. Early work on PQ-TLS, e.g.

by Stebila et al. [37] and Hülsing et al. [19], demonstrated hybrid key exchange techniques that combine classical and

post-quantum algorithms (e.g. X25519+MLKEM) within the TLS 1.3 framework. These hybrid approaches have been

piloted in real-world deployments, including Google Chrome [39] and Cloudflare [9], and showed acceptable latency

and bandwidth overheads. However, these evaluations primarily focused on performance metrics rather than broader

integration into DNS infrastructures.

Work on incorporating post-quantum cryptography for DNS has been comparatively limited. Titan-DoH by Ali and

Chen [2] introduces a trust-aware, adaptive architecture for PQC-secure DoH. Their solution integrates trust algebra,

graph signal processing, Bayesian contextual inference, and FrodoKEM-based TLS handshakes, supported by verifiable

delay functions to identify encrypted malicious requests. The system demonstrates high accuracy and low latency

under simulated adversarial loads, pushing the boundaries of secure PQC-ready DoH infrastructures.

Other existing work focuses primarily on DNSSEC. The IETF DNSOP working group has explored considerations

for integrating post-quantum signatures into DNSSEC, addressing issues like key size, algorithm agility, and protocol

compatibility [14]. Zhang et al. [42] evaluated SPHINCS+ in a DNSSEC setting, noting its suitability for quantum-resilient

authentication but also highlighting challenges due to its large signature sizes and the risk of IP-layer fragmentation.

These concerns underscore the importance of experimentally validating PQ signatures within real DNS server and

resolver implementations. Pan et al. [25] present a double signature DNSSEC method that integrates classical and

post-quantum techniques to provide transitional security against quantum and classical attacks. Through the use of

application layer fragmentation, their dual-signed records provide resolution over UDP while adhering to packet size

limitations. Raavi et al. [27] tackle fragmentation-based attacks using a commit-and-reveal method with a blockchain-

based public key offloading strategy. Their approach guarantees fragment authenticity and lowers DNSSEC packet

size, especially for substantial signatures such as Falcon-512. The solution, though unique, addresses fragmentation

mis-association issues inside DNSSEC and does not integrate with wider DNS security protocols like DoT and DoH.

Manuscript submitted to ACM

4 Lee et al.

Goertzen and Stebila [13] propose ARRF (Application-layer Request-based Resource Fragmentation), which moves

fragmentation logic to the application layer. Unlike prior fragmentation methods, ARRF sends an initial truncated

response and requires the client to request additional fragments explicitly, improving both reliability and backward

compatibility. Their experiments show ARRF significantly reduces resolution time and data overhead compared

to traditional DNS-over-UDP with TCP fallback when using PQC algorithms such as Falcon-512, Dilithium2 (aka

MLDSA44), and SPHINCS+. Expanding upon ARRF, McGowan et al. [22] identify a memory exhaustion vulnerability

that can be exploited by altered RRSIZE fields. They address this using a dynamic memory allocation approach that

maintains ARRF’s efficiency while protecting against amplification threats. Rawat and Jhanwar have contributed

several complementary protocols aimed at minimizing the overhead of PQC integration. They present QNAME-Based

Fragmentation (QBF) [31], a DNS-layer fragmentation scheme that avoids IP fragmentation and TCP fallback altogether.

QBF fragments DNSSEC responses using standard DNS records, enabling reconstruction in a single round trip without

altering the DNS protocol stack. Their experimental results demonstrate significant performance gains: QBF outperforms

both standard DNS and parallel ARRF in post-quantum resolution scenarios, particularly with Falcon-512, Dilithium2

(aka MLDSA44), and SPHINCS+. By remaining fully backward compatible and avoiding changes to zone files or

DNS stacks, QBF represents a promising middle ground for immediate PQC deployment. Rawat and Jhanwar further

extend this line of work with the SL-DNSSEC protocol [33], which replaces digital signatures with post-quantum Key

Encapsulation Mechanisms (KEMs) and MACs, significantly decreasing message size and resolution delay. TurboDNS

[32] enhances PQC DNSSEC over TCP by including authentication data into the first UDP query, using cryptographic

cookies to provide one-round-trip resolution. While these protocols offer substantial performance gains, they depart

from traditional signature-based validation chains, posing challenges for universal adoption. In parallel, Schutijser et al.

[34] introduce PATAD, a containerized platform for PQC and DNSSEC experimentation. PATAD employs PowerDNS

and modular topologies to assess Falcon and other signature methods inside realistic zone hierarchies. While PATAD

enables empirical benchmarking of Falcon and other candidates, it remains focused on DNSSEC and does not extend to

encrypted DNS protocols such as DNS-over-TLS (DoT) or DNS-over-HTTPS (DoH).

Several theses offer foundational empirical studies supporting the integration of post-quantum signatures in DNSSEC.

Jafarli [20] presents a Merkle Tree-based framework using XMSS for the signing of grouped records. This framework

optimizes payload dimensions and signing efficacy by adjusting tree size according to record update frequency, but

at the expense of heightened memory consumption and update intricacy. Beernink [5] assesses the viability of many

post-quantum cryptography algorithms using actual DNS traffic and signer logs. His research demonstrates that Falcon-

512 complies with current DNS packet limitations while exerting little computing burden. Beernink further presents

an out-of-band key exchange architecture to bypass signature size constraints for more substantial post-quantum

cryptography systems such as Rainbow. Projects like PQDNS [26] and industry recommendations from NLnet Labs [21]

and NIST [7] have emphasized the importance of prototyping and testing post-quantum secure DNS under realistic

operational conditions. However, most existing works focus on isolated components (e.g., PQ-TLS or PQ-DNSSEC)

rather than a holistic evaluation across all major DNS security channels.

3 PROPOSED PQC-DNS METHOD

In this section, we first give a short background on the DNS infrastructure and how the DNS protocol works. Later, we

describe the problem that we aim to solve. Then, we define our proposed PQC-DNS sequences, and finally we discuss

security threats and potential mitigation techniques.

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 5

TLD server

H (example1.com)

Record List

Authoritative
server

UserStub DNS Resolver

Validating Resolver
(DNSSEC check)

Record List

. . .

Record List

Root Server

H (example2.com)

DoH/DoT Network
Layer

Cache
Layer

Index
Layer

Data
Layer

Fig. 1. Layered Architecture of Secure DNS

3.1 DNS Infrastructure

Fig. 1 presents a vertically layered architecture of secure DNS resolution that integrates DoH, DoT, and DNSSEC into a

coherent workflow. It is structured across four key layers: Network, Cache, Index, and Data, each representing a distinct

phase in the resolution and security pipeline. At the Network Layer, a user initiates a DNS query that is transmitted

securely to a DNS resolver using encrypted transport protocols (DoH or DoT), ensuring confidentiality and protection

against man-in-the-middle attacks. The resolver forwards the query to a Validating Resolver in the Cache Layer, which

checks whether the result is cached and performs DNSSEC validation by verifying digital signatures (RRSIG) against

trusted keys (DNSKEY and DS). If the answer is not locally available, the resolver consults the Index Layer, where the

queried domain (e.g., example.com) is hashed and mapped to a pointer that locates the relevant DNS records. Finally,

the Data Layer contains the actual signed DNS records retrieved from external authoritative DNS servers, such as the

Root, TLD (.com), and domain-specific authoritative name servers. These servers return the required resource records

(A, AAAA, DNSKEY, RRSIG), which are then validated recursively up to the DNS root using DNSSEC. The validated

result is passed back up through the layers and ultimately returned to the user. This layered model demonstrates how

privacy (via DoH/DoT) and integrity (via DNSSEC) are simultaneously enforced in modern DNS infrastructure.

3.2 Problem Formulation

While the security properties of PQC algorithms have been rigorously analyzed in isolation, their systematic integration

into DNS protocols remains underexplored, especially for encrypted transport mechanisms such as DoT and DoH.

Modern transition frameworks, such as those proposed by NIST and the IETF, include both PQC-only and hybrid

Manuscript submitted to ACM

6 Lee et al.

classical+PQC configurations to accommodate backward compatibility. However, their real-world impact on latency,

resource consumption, and protocol compatibility requires a unified system-level evaluation. To address this, we propose

a unified post-quantum DNS security architecture (PQC-DNS) that evaluates three deployment classes:

(1) Legacy-only: DNS configurations using classical KEM and signature algorithms.

(2) PQC-only: DNS configurations using post-quantum KEMs and signatures.

(3) Hybrid:Mixed deployments combining classical and PQC schemes in KEM or digital signatures.

We define a DNS resolution performance profile P (𝑘,𝑠)
DNS

as a function of cryptographic configurations, as described

in Equation 1. Notations used throughout the paper are listed in Table 1.

P (𝑘,𝑠)
DNS

= 𝛿DNSSEC · SDNSSEC (𝑘, 𝑠) + STransport (𝑘, 𝑠) (1)

Each S𝑖 (𝑘, 𝑠) is defined as:

S𝑖 (𝑘, 𝑠) =
(
𝑇
latency

, 𝐵
bandwidth

,𝐶
client

,𝐶server, 𝑀client

)
(2)

Table 1. Notation Summary for PQC-DNS Performance Modeling

Symbol Meaning
P (𝑘,𝑠)
DNS

DNS resolution performance profile under KEM 𝑘 and signature 𝑠 scheme

𝑘 Selected post-quantum Key Encapsulation Mechanism (e.g., MLKEM)

𝑠 Selected post-quantum Signature Scheme (e.g., MLDSA, Falcon, SPHINCS+)

𝛿DNSSEC Indicator variable for whether DNSSEC is enabled (1) or disabled (0)

S𝑖 (𝑘, 𝑠) Measured performance metrics under (𝑘, 𝑠) for component 𝑖

𝑇
latency

End-to-end resolution latency

𝐵
bandwidth

Total bandwidth consumed for DNS transaction

𝐶
client

,𝐶server CPU usage on client and server during resolution

𝑀
client

Memory overhead on the client

𝑇
Phase1

Time to establish a PQC-secure TLS 1.3 session

𝑇CH,𝑇SH Time to send/receive ClientHello / ServerHello

𝑇KEM,𝑇SIG Time for key encapsulation and signature verification

𝑇KDF Time for TLS key derivation function

𝑇FIN Time to exchange TLS Finished messages

𝑇TLS_termination Time for TLS session termination or reset

𝑛 Number of DNS resolution steps (root, TLD, authoritative)

𝑇query,𝑖 ,𝑇response,𝑖 Time to send query and receive response from DNS server 𝑖

𝑇DNSSEC,𝑖 Time to validate DNSSEC signature at server 𝑖

𝑇return Time to return final validated DNS response to client

This formulation allows systematic comparison across cryptographic configurations and quantifies trade-offs in

latency, computational effort, bandwidth, and memory.

Security Model:We consider an adversary A with quantum computational capabilities, capable of executing Shor’s

and Grover’s algorithms. The attacker may (i) Eavesdrop and perform MITM attacks on TLS handshakes. (ii) Perform

DNS spoofing and cache poisoning. (iii) Attempt to break digital signatures or key exchanges via quantum means. We

assume PQC primitives satisfy the following: (i) KEMs are IND-CCA2 (Indistinguishability of Ciphertexts under Chosen-

Ciphertext Attack) secure under quantum adversaries [8]. (ii) Signatures are EUF-CMA (Existential Unforgeability under

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 7

Chosen Message Attack) secure in the quantum random oracle model [41]. The system seeks to provide post-quantum

confidentiality, authenticity, and integrity for DNS queries and responses against such adversaries.

3.3 PQC-DNS Protocol Sequence

Fig. 2 illustrates the architecture of PQC-DNS. The protocol consists of two stages: a TLS 1.3 handshake with PQC

primitives and the subsequent DNS resolution.

Client Recursive
Resolver

Root DNS
Server

TLD DNS
Server

Authoritative
DNS Server

1. ClientHello with Key Share
(i.e. MLKEM)

3. Verify Certificate

Phase 1: TLS 1.3 Handshake (PQC-secured channel)

2. ServerHello with Certificate
(i.e. MLDSA)

4. Key Exchange

5. Key Derivation

PQC Secure TLS Session Established

Phase 2: DNS Resolution over Secure PQ TLS Channel

1. Encrypted DNS Query
2. Query for Zone

9. Encrypted DNS Response

4. Query for Domain

5. Referral to Authoritative + DNSSEC DS record

7. DNS Record + DNSSEC Signatures

3. Referral to TLD +
DNSSEC metadata

6. Final Query

8. Verify DNS
Signatures

 TLS Session Termination

Fig. 2. Layered Protocol Sequence for PQC-DNS with DNSSEC Option

Phase 1: Establishing PQC-Secure TLS 1.3 Session
Let 𝑇

Phase1
be the total time to establish a post-quantum secure TLS session. We define:

Manuscript submitted to ACM

8 Lee et al.

𝑇
Phase1

= 𝑇CH +𝑇SH +𝑇KEM +𝑇SIG +𝑇KDF +𝑇FIN +𝑇TERM (3)

This handshake ensures post-quantum confidentiality and mutual authentication prior to DNS exchange.

Phase 2: Encrypted Recursive DNS Resolution
Once TLS is established, DNS queries traverse the traditional recursive path under encryption. The total time for

DNS query resolution is:

𝑇
Phase2

=

𝑛∑︁
𝑖=1

(𝑇query,𝑖 +𝑇response,𝑖) + 𝛿DNSSEC ·
𝑛∑︁
𝑖=1

𝑇DNSSEC,𝑖 +𝑇return (4)

The variables appearing in these equations are defined in Table 1.

3.4 Security Considerations

PQC-DNS resists quantum attacks due to the use of NIST-standardized algorithms. However, there are further threats

to be considered as follows: (i) Timing Attacks: Constant-time implementations of post-quantum KEM and signature

algorithms are essential to prevent side-channel leakage during TLS handshakes. Recent work has shown that even

lattice-based schemes like Kyber and Dilithium may be susceptible if implemented without strict timing controls [15].

(ii) DDoS Attacks: The increased bandwidth and CPU overhead introduced by PQC operations, especially during

handshake and validation phases, can be exploited for denial-of-service attacks. Mitigation strategies include client

puzzles and rate-limiting mechanisms tailored for PQC-induced latency [36]. (iii) Downgrade Attacks: Hybrid configura-

tions combining classical and post-quantum algorithms must rigorously enforce cipher suite negotiation policies to

prevent fallback to classical-only modes. Improper negotiation can expose sessions to downgrade attacks, negating

the intended quantum resistance [38]. (iv) Fragmentation Vulnerabilities: Large PQC signatures (e.g., SPHINCS+) may

trigger IP-layer fragmentation, particularly in DNSSEC responses. Techniques such as Application-layer Request-based

Resource Fragmentation (ARRF) [11] mitigate this by moving fragmentation logic to the application layer. QNAME-Based

Fragmentation (QBF) [28] avoids IP-layer fragmentation entirely by using standard DNS record fields. While protocols

like TurboDNS [30] and SL-DNSSEC [29] improve post-quantum DNSSEC performance, they do not directly address

fragmentation and may pose compatibility trade-offs. (v) Key/Signature Reuse: Reusing nonces or ephemeral keys in

PQC schemes (e.g., Dilithium, Falcon) can lead to private key recovery via algebraic attacks. This risk is amplified

in multithreaded resolver environments with shared randomness. Mitigation includes using hardened libraries (e.g.,

liboqs) that enforce one-time key usage and thread-safe randomness [10]. (vi) Interoperability Failures: PQC deployment

may fail across clients, resolvers, or middleboxes lacking support for hybrid or PQC-only cipher suites. Misconfigured

fallback behavior can result in silent downgrades or dropped connections. Operators should test compatibility using

hybrid-aware configurations and monitor failure modes [40]. Finally, the summary of these threats and potential

mitigation strategies are listed in Table 2.

4 EXPERIMENTAL EVALUATIONS

In this section, we describe our experimental setup, metrics, numerical findings, and provide our analysis on the results.

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 9

Table 2. Summary of Threats and Mitigations in PQC-DNS Deployment

Threat Description and Exploit Vector Mitigation Strategy Severity
Timing Attacks Variation in handshake duration reveals secret-

dependent operations in KEM or signatures.

Use constant-time implementations of all cryptographic

primitives; avoid branching on secret values [15].

High

DDoS Amplifi-
cation

PQC handshakes consume more CPU/memory, mak-

ing resolvers vulnerable to resource exhaustion via

spoofed requests.

Deploy client puzzles, adaptive rate-limiting, and TLS ses-

sion resumption to mitigate load [36].

High

Downgrade At-
tacks

Adversary forces fallback to classical-only modes in

hybrid configurations by interfering with cipher ne-

gotiation.

Enforce hybrid binding and strict cipher suite policies;

validate negotiated modes [38].

High

Fragmentation
Attacks

Large PQC signatures cause IP-layer fragmentation,

which can be exploited for DNS poisoning or evasion.

Use application-layer fragmentation techniques (e.g.,

ARRF [11]) or QNAME-based approaches [28]; avoid UDP-

only transport.

Medium

Key/Signature
Reuse

Incorrect implementation may reuse nonces or keys,

weakening PQC scheme guarantees.

Use verified libraries (e.g., liboqs), follow NIST-compliant

API usage, and enforce nonce uniqueness [10].

Medium

Interoperability
Failures

Mixed deployments may fail due to unsupported PQC

or hybrid modes in client or middleboxes.

Conduct fallback testing, negotiate cipher suite compati-

bility, and monitor DNS path transparency [40].

Medium

WSL Host

Internet

Docker Container 1
(DNS Client with Multiple Threads)

Docker Container 2
(DNS Server with OQS-BIND)

DNS Query
DNS Response

Client Thread 1

Client Thread 2

Client Thread N

Fig. 3. Experimental setup used in our evaluations.

4.1 Experimental Setup

The experimental testbed consisted of two Docker containers running on Ubuntu 22.04, deployed within a Windows

Subsystem for Linux 2 (WSL2) as presented in Fig. 3 to isolate resource usage from host system activities and obtain

accurate performance benchmarks. One container operated as a PQC-enabled local DNS resolver, while the other

functioned as a client issuing DNS queries. The resolver was built using a forked version of BIND9 (OQS-BIND) [12],

compiled with OpenSSL integrated with the Open Quantum Safe (OQS) library and oqsprovider. This configuration

enabled support for post-quantum key exchange and digital signature algorithms. The resolver acted as a local DNS

server capable of handling DNS-over-TLS (DoT), DNS-over-HTTPS (DoH), and DNSSEC queries. The client container

generated DNS queries over both DoT and DoH protocols using the dig tool with the +tls and +https options,

respectively. Each test run issued 100 queries to a test domain hosted on the resolver.

The benchmark tests were conducted on a system running Windows 11 Home, equipped with an Intel(R) Core(TM)

i7-10700 CPU operating at 2.90 GHz. The processor consists of 8 physical cores and 16 threads. The machine has 16.0 GB

Manuscript submitted to ACM

10 Lee et al.

of installed RAM, of which 15.7 GB is usable. The experimental environment was set up using Windows Subsystem for

Linux 2 (WSL2), with Ubuntu 22.04 running as the guest operating system. WSL2 dynamically allocated approximately

7.6 GiB of RAM for the guest system, and provided access to all 16 logical CPUs (8 cores with 2 threads per core). The

software stack consisted of Docker version 26.1.3 as the container engine, OpenSSL 3.4.0 with integrated support for

post-quantum cryptography, and liboqs version 0.12.0. The OQS OpenSSL provider used was oqsprovider version 0.8.0.

The DNS resolver used in the experiments was a customized build of BIND, based on a forked version of BIND 9.19.17

(referred to as OQS-BIND), compiled to support PQC-DNS with liboqs and oqsprovider.

4.2 Evaluation Framework and Benchmarking Metrics

To evaluate the impact of different cryptographic configurations on DNS performance, we analyze the components of

the performance vector S𝑖 (𝑘, 𝑠), previously introduced in Section 3.2. This vector represents the empirical behavior of

the system under each KEM-signature pair (𝑘, 𝑠). We develop Python-based benchmarking scripts that automates DNS

query execution, monitors system resources, captures network traffic, and aggregates performance data across repeated

trials. It uses tools such as psutil, /usr/bin/time, and tshark to gather reproducible system-level measurements.

The full benchmarking suite and some sample packet captures are available on GitHub
1
. The step-by-step execution

of the evaluation framework is formally defined in Algorithm 1 and a high-level summary is presented in Fig. 4. The

individual components of S𝑖 (𝑘, 𝑠) are defined as follows:

TLS
 Configuration

Update

CSV
Initialization

Traffic
 Capture

Query
Execution

Loop

Stop
Packet
Capture

Summary
Metrics

Computation

TLS
Handshake
Validation

Comparison
Summary
Logging

Edit openssl.cnf
to set selected
KEM group.

Create CSV with
timestamped
performance
metrics.

Start tshark
on eth0 to
capture port
853 traffic.

Run dig +tls
repeatedly;
measure and
log metrics.

Terminate
tshark and
finalize
capture file.

Compute
averages for
metrics.

Check .pcap file
for TLS
handshake
failures.

Append config
and averaged
results to CSV
log.

Fig. 4. Process Steps of Benchmarking

• Latency (𝑇
latency

): This value is calculated based on the time (in milliseconds) it takes between the first packet for a

DNS request from the client to the last packet received for that request. This metric measures the responsiveness of

the protocol and the ease of use.

• Bandwidth Usage (𝐵
bandwidth

): The total network traffic generated by each DNS query, measured in kilobytes, taking

into account both transmitted and received data. This reflects protocol efficiency and cryptographic overhead.

• CPU Usage : The percentage of CPU time consumed during the DNS query was measured independently for the

client and the server to assess the cryptographic workload on both sides:

(i) Client CPU Usage (𝐶
client
): This metric reflects the CPU utilisation of the dig process that initiates the DNS query.

The /usr/bin/time -v utility was used to run dig and provides detailed statistics. The field “Percent of CPU this

job got” was extracted using regular expressions. This raw percentage represents the ratio of CPU time to real (wall

clock) time and is calculated internally as follows:

Raw CPU % =

(
User Time + System Time

Elapsed Time

)
× 100

1
https://github.com/ljy4499/pqc-dns

Manuscript submitted to ACM

https://github.com/ljy4499/pqc-dns

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 11

Algorithm 1 Post-Quantum Secure DNS Evaluation

1: procedure EvaluateSecureDNS(KEM,DS,Domain, 𝑁)

2: // Step 1: TLS Configuration
3: Open openssl.cnf
4: Locate section [system_default_sect]
5: Update Groups parameter to KEM
6: // Step 2: Metrics CSV Initialization
7: Create CSV with columns:

{𝑡 , 𝑙 , 𝑏, 𝑐 , 𝑟 }, where:

𝑡 = timestamp, 𝑙 = latency (ms)

𝑏 = bandwidth (KB), 𝑐 = CPU (%), 𝑟 = RAM (%)

8: // Step 3: Start Traffic Capture
9: Launch tshark on interface eth0
10: Apply filter: tcp port 853
11: Save output to file dot_{KEM}_{DS}.pcapng
12: // Step 4: Execute DNS Queries
13: for 𝑖 ← 1 to 𝑁 do
14: 𝐵pre ← Network I/O snapshot

15: 𝑇start ← System time

16: Execute dig + tls @DS Domain
17: 𝑇

end
← System time

18: 𝐵post ← Network I/O snapshot

19: 𝑙 ← (𝑇
end
−𝑇start) × 1000

20: 𝑏 ← (𝐵post − 𝐵pre)/1024

21: 𝑐 ← CPU usage from /usr/bin/time
22: 𝑟 ← Peak RSS divided by container memory

23: Append {𝑡, 𝑙, 𝑏, 𝑐, 𝑟 } to CSV

24: end for
25: // Step 5: Stop Traffic Capture
26: Terminate tshark process

27: // Step 6: Summary Metric Computation
28: Read all records from CSV

29: Compute:
¯𝑙 , ¯𝑏, 𝑐 , 𝑟

30: Display summary statistics

31: // Step 7: TLS Handshake Validation
32: Run tshark − r < pcap_file >

33: if “failure” in output then
34: Report TLS handshake error

35: else
36: Report handshake success

37: end if
38: // Step 8: Log Final Results
39: Append {KEM,DS, ¯𝑙, ¯𝑏, 𝑐, 𝑟 } to:

dot_comparison_results.csv
40: end procedure

“User Time” accounts for execution of user-level instructions (e.g., cryptographic operations), while “System Time”

includes time spent in kernel-level operations such as I/O. "Elapsed Time" refers to the total real-world (wall-clock)

duration from the start to the end of the operation. To present this on a normalized 0–100% scale, the raw value was

Manuscript submitted to ACM

12 Lee et al.

divided by the number of virtual CPUs allocated to the container (16 vCPUs):

Normalized CPU % =
Raw CPU %

𝑛vCPU

This normalization ensures that a value of 100% represents full utilization of all assigned cores.

(ii) Server CPU Usage (𝐶server): This metric was derived from periodic snapshots using docker stats, which provides

live CPU utilization for containers. All other background processes were terminated to ensure the accuracy of the

measurement.

A monitoring script continuously sampled the container’s CPU usage, and the highest observed percentage over the

entire duration of client requests was recorded as the server’s CPU usage. Internally, docker stats computes CPU

usage as:

Raw CPU =

(
ΔContainer CPU %

ΔSystem CPU %

)
× vCPUs × 100

– ΔContainer CPU usage: The total amount of CPU time consumed by the container during the measurement period.

– ΔSystem CPU usage: The total CPU time in the system for the same period.

– vCPUs: The number of virtual CPUs allocated to the container. In this case, the container was allocated 16 vCPUs.
This formula calculates the proportion of CPU time consumed by the container relative to the host system’s total

CPU time, scaled by the number of virtual CPUs allocated to the container. To present this on a normalized 0–100%

scale, the raw value was divided by the number of virtual CPUs allocated to the container (16 vCPUs):

Normalized CPU % =
Raw CPU %

𝑛vCPU

This adjustment ensures comparability with the normalized client CPU usage and expresses container CPU consump-

tion as a proportion of its full computational capacity.

• Memory Usage (𝑀
client
): The peak physical memory used by the dig process, relative to the total available memory

in the container. The maximum resident set size (RSS) in kilobytes was obtained from /usr/bin/time -v. It was

converted to mebibytes (MiB):

RAM Peak (MiB) =
RSS (KB)

1024

RAM usage was computed as a percentage of total memory (i.e., 7810.3 MiB):

RAM Usage (%) =

(
RAM Peak (MiB)

7810.3

)
× 100

To evaluate the scalability and impact of PQC on resources with concurrent DNS workloads, a multi-threaded test

configuration was used. In contrast to the single-threaded tests described above, this benchmark included 100 parallel

workers (i.e., DNS clients), each sending one query per session, resulting in a total number of 10,000 queries in 100

sessions. The Docker built-in utility docker stats was used to capture CPU and memory usage metrics. Resource

utilisation was recorded by taking snapshots at regular intervals and extracting the peak values from the client and server

during the test period. All reported CPU usage values were normalised on a scale from 0 to 100%, which corresponds

to the normalisation approach used in the single-thread evaluation. This ensures fair comparisons between different

cryptographic methods and system configurations. This benchmark specifically aims to evaluate the behaviour of PQC

algorithms under load compared to traditional cryptographic methods, with a focus on throughput scaling and system

resource evolution under high query volume. Network usage and latency are measured as shown in Algorithm 2.

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 13

Algorithm 2 Execute Multi-client DNS Test Session

1: function RunSession(session_id)
2: 𝐵start ← GetTotalNetworkBytes

3: 𝑇start ← GetCurrentTime

4: Initialize thread pool with 100 workers

5: for all worker ∈ thread pool do
6: Submit RunDNSQuery

7: end for
8: Wait for all queries to complete

9: 𝑇
end
← GetCurrentTime

10: 𝐵
end
← GetTotalNetworkBytes

11: Δ𝑇 ← (𝑇
end
−𝑇start) × 1000 ⊲ Latency in ms

12: Δ𝐵 ← (𝐵
end
− 𝐵start)/1024 ⊲ Bandwidth in KB

13: WriteToCSV(𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑖𝑑 , Δ𝑇 , Δ𝐵)
14: end function

4.3 Experimental Results: Legacy vs. PQC Algorithms

This section presents the benchmark results of DNS using various combinations of classical and post-quantum KEM and

Digital Signatures (DSs) at different NIST security levels [24]. For each evaluated cryptographic configuration (𝑘, 𝑠), we
compute the corresponding performance vector S𝑖 (𝑘, 𝑠) as defined in Section 3.2. The performance data are organized

by protocol category, with separate tables for DoT, DoH, DNSSEC-enabled configurations ans security levels. All

tables present results across the three cryptographic profiles: (i) Legacy-only, (ii) PQC-only and (iii) Hybrid. Each table

includes measurements for latency, bandwidth usage, CPU utilization by the client/server, and memory consumption,

whose notations and definitions are introduced earlier in the notation summary (Table 1) and Section 4.2. We bolded
the lowest numerical values in each subcategory for each metric in each table provided. Each combination (𝑘, 𝑠) is
categorized based on the cryptographic primitives used to facilitate comparison across hybrid and fully post-quantum

configurations.

In Table 3, the benchmark evaluates DoT performance using a range of PQC and legacy algorithms at NIST security

level 1, which corresponds to the legacy 128-bit security level. Despite initial expectations that PQC algorithms would

incur significant performance penalties relative to legacy counterparts, certain combinations-particularly MLKEM512

paired with either MLDSA44 or Falcon512-demonstrated latency metrics that closely matched or even outperformed

legacy configurations. These combinations achieved latencies around 9 ms, which is comparable to commonly used

Elliptic Curve and RSA-based solutions. However, a consistent trend was observed in bandwidth usage: PQC-based

configurations generally incurred a higher data overhead. This is attributable to the larger key and signature sizes

characteristic of quantum-resistant primitives. Among PQC candidates, SPHINCS+-SHA2-128f and HQC-128 exhibited

significantly higher latency and bandwidth usage. These results highlight a trade-off between post-quantum robustness

and operational efficiency, making these algorithms less practical for latency-sensitive applications.

The benchmark in Table 4 represents the performance of DoH at NIST security level 1 and is directly comparable to

the previously presented DoT benchmark results. For all analysed combinations of key exchange and digital signature,

the metrics for latency, CPU usage and memory consumption show negligible differences between DoH and DoT. The

main deviation lies in the bandwidth utilisation: DoH configurations consistently caused a slight overhead of 0.3 to 0.4

kilobytes on average compared to their DoT counterparts. This increase is due to the HTTP-based encapsulation and

the additional protocol headers inherent to DoH.

Manuscript submitted to ACM

14 Lee et al.

Table 3. DNS over TLS Benchmark Results by Algorithms (Security Level 1)

KEM DS Latency(ms) Bandwidth(kB) Client / Server CPU(%) Memory(%)

[Legacy(KEM) + Legacy(DS) Algorithms]
ffdhe2048 rsa2048 10.08 4.14 5.00 / 0.95 0.151

ffdhe2048 ecdsa-p256 9.67 3.58 5.39 / 0.71 0.154

ffdhe2048 ed25519 9.61 3.50 5.38 / 0.71 0.153

secp256r1 rsa2048 9.36 3.78 5.33 / 0.78 0.155

x25519 rsa2048 9.17 3.71 5.27 / 0.76 0.153

[PQC(KEM) + PQC(DS) Algorithms]
mlkem512 mldsa44 9.10 10.54 5.80 / 0.50 0.165

mlkem512 falcon512 9.11 6.54 5.47 / 0.57 0.164

mlkem512 sphincssha2128f 16.36 38.24 3.14 / 2.76 0.165

hqc128 mldsa44 19.07 15.54 4.41 / 1.62 0.166

hqc128 falcon512 19.13 11.67 4.39 / 1.64 0.164

[Legacy(KEM) + PQC(DS) Algorithms]
ffdhe2048 mldsa44 9.61 9.51 5.37 / 0.75 0.161

ffdhe2048 falcon512 9.73 5.51 5.35 / 0.81 0.159

ffdhe2048 sphincssha2128f 17.16 37.19 3.15 / 2.81 0.158

secp256r1 mldsa44 8.91 9.14 5.71 / 0.55 0.163

x25519 falcon512 8.97 5.08 5.61 / 0.61 0.158

[PQC(KEM) + Legacy(DS) Algorithms]
mlkem512 rsa2048 9.37 5.17 5.42 / 0.74 0.161

mlkem512 ecdsa-p256 8.96 4.60 5.77 / 0.47 0.163

mlkem512 ed25519 8.91 4.54 5.90 / 0.47 0.161

hqc128 rsa2048 19.67 10.17 4.37 / 1.71 0.160

hqc128 ecdsa-p256 19.08 9.60 4.46 / 1.61 0.162

Table 4. DNS over HTTPS Benchmark Results by Algorithms (Security Level 1)

KEM DS Latency(ms) Bandwidth(kB) Client / Server CPU(%) Memory(%)

[Legacy(KEM) + Legacy(DS) Algorithms]
ffdhe2048 rsa2048 9.97 4.54 5.00 / 0.97 0.152

ffdhe2048 ecdsa-p256 9.67 3.96 5.41 / 0.74 0.155

ffdhe2048 ed25519 9.63 3.90 5.40 / 0.74 0.154

secp256r1 rsa2048 9.43 4.13 5.37 / 0.80 0.156

x25519 rsa2048 9.19 4.13 5.39 / 0.80 0.154

[PQC(KEM) + PQC(DS) Algorithms]
mlkem512 mldsa44 8.93 10.95 5.76 / 0.52 0.166

mlkem512 falcon512 9.07 6.89 5.53 / 0.60 0.166

mlkem512 sphincssha2128f 16.44 38.67 3.19 / 2.83 0.166

hqc128 mldsa44 19.23 15.96 4.46 / 1.66 0.167

hqc128 falcon512 19.11 12.10 4.41 / 1.67 0.165

[Legacy(KEM) + PQC(DS) Algorithms]
ffdhe2048 mldsa44 9.96 9.88 5.35 / 0.77 0.162

ffdhe2048 falcon512 9.93 5.89 5.22 / 0.83 0.160

ffdhe2048 sphincssha2128f 17.11 37.64 3.16 / 2.91 0.159

secp256r1 mldsa44 8.93 9.48 5.72 / 0.57 0.164

x25519 falcon512 9.16 5.47 5.58 / 0.66 0.159

[PQC(KEM) + Legacy(DS) Algorithms]
mlkem512 rsa2048 9.41 5.60 5.36 / 0.77 0.162

mlkem512 ecdsa-p256 8.87 5.00 5.84 / 0.51 0.163

mlkem512 ed25519 8.84 4.88 5.93 / 0.49 0.161

hqc128 rsa2048 19.49 10.57 4.41 / 1.74 0.161

hqc128 ecdsa-p256 19.06 10.04 4.48 / 1.64 0.163

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 15

The results in the Table 5 show the DoT performance results at NIST security level 3, which corresponds to 192 bits of

security. One notable observation is the superior performance of MLKEM768 paired with MLDSA65, which outperforms all

tested legacy combinations in terms of latency, achieving the lowest measured value (9.24 ms). Compared to traditional

key exchange mechanisms like FFDHE3072 or SECP384R1 paired with RSA3072 or ECDSA-P384, this PQC combination

delivers faster DoT performance. However, PQC algorithms exhibit a significantly higher bandwidth cost, consuming

between 2× to 23× more bandwidth than legacy counterparts. For example, the HQC192 with SPHINCS+ signatures

combination notably increases total bandwidth usage, with values exceeding 87 kB compared to sub-5 kB values in

legacy configurations. This illustrates the tradeoff between post-quantum security and communication overhead, which

must be considered when evaluating PQC deployment in bandwidth-sensitive environments.

Table 5. DNS over TLS Benchmark Results by Algorithms (Security Level 3)

KEM DS Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)

[Legacy(KEM) + Legacy(DS) Algorithms]
ffdhe3072 rsa3072 12.51 4.77 4.45 / 1.58 0.152

ffdhe3072 ecdsa-p384 12.29 3.92 4.62 / 1.25 0.152

secp384r1 rsa3072 13.20 4.21 4.28 / 1.66 0.152

secp384r1 ecdsa-p384 13.01 3.36 4.73 / 1.33 0.153

[PQC(KEM) + PQC(DS) Algorithms]
mlkem768 mldsa65 9.24 13.58 5.63 / 0.55 0.161

mlkem768 sphincssha2192f 21.69 75.63 2.50 / 3.49 0.162

hqc192 mldsa65 39.64 24.68 3.95 / 2.19 0.166

hqc192 sphincssha2192f 51.95 86.63 3.11 / 3.01 0.164

[Legacy(KEM) + PQC(DS) Algorithms]
ffdhe3072 mldsa65 11.22 12.12 5.02 / 1.06 0.161

ffdhe3072 sphincssha2192f 23.47 74.16 2.47 / 3.46 0.158

secp384r1 mldsa65 11.79 11.57 4.92 / 1.15 0.162

secp384r1 sphincssha2192f 24.17 73.61 2.45 / 3.46 0.159

[PQC(KEM) + Legacy(DS) Algorithms]
mlkem768 rsa3072 10.81 6.23 4.74 / 1.24 0.160

mlkem768 ecdsa-p384 10.19 5.38 4.96 / 0.85 0.161

hqc192 rsa3072 41.43 17.33 3.82 / 2.28 0.160

hqc192 ecdsa-p384 41.05 16.48 3.92 / 2.20 0.161

The benchmark in Table 6 shows the DoH performance results at NIST security level 3. The results show no significant

difference compared to the previous DoT benchmark results.

The benchmark in Table 7 shows the DoT performance results at NIST security level 5, which corresponds to a

256-bit security level of the legacy algorithms. One noticeable observation is the consistently low latency achieved by

the PQC algorithms MLKEM1024 with MLDSA87, achieving sub-10 ms latency. These results outperform several legacy

combinations-such as FFDHE4096 with RSA4096-which exhibited latencies ranging from 12 to 18 ms. However, not all

PQC configurations demonstrated such efficiency. The HQC256 key encapsulation mechanism, when paired with either

PQC or legacy digital signature schemes, significantly increased the latency, reaching values over 65 ms. This degradation

in performance is primarily due to HQC’s large key and ciphertext sizes, which impose higher computational and

transmission overhead during the TLS handshake process.

Fig. 5 shows a comparison of DoT performance at NIST security levels 1, 3 and 5. It is noteworthy that the KEM

of MLKEM in conjunction with the DS algorithms of MLDSA or Falcon has a consistently low latency regardless of the

security level, indicating good scalability of performance. In contrast, algorithms such as HQC and SPHINCS+ showed a

proportional increase in latency with increasing security level, reflecting their greater computational and structural

Manuscript submitted to ACM

16 Lee et al.

Table 6. DNS over HTTPS Benchmark Results by Algorithms (Security Level 3)

KEM DS Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)

[Legacy(KEM) + Legacy(DS) Algorithms]
ffdhe3072 rsa3072 12.49 5.12 4.44 / 1.61 0.153

ffdhe3072 ecdsa-p384 12.36 4.34 4.69 / 1.33 0.154

secp384r1 rsa3072 13.11 4.56 4.28 / 1.67 0.154

secp384r1 ecdsa-p384 12.95 3.75 4.77 / 1.37 0.153

[PQC(KEM) + PQC(DS) Algorithms]
mlkem768 mldsa65 9.02 13.95 5.66 / 0.57 0.162

mlkem768 sphincssha2192f 21.67 76.06 2.50 / 3.51 0.163

hqc192 mldsa65 39.79 25.13 3.97 / 2.24 0.167

hqc192 sphincssha2192f 51.99 87.07 3.13 / 3.02 0.165

[Legacy(KEM) + PQC(DS) Algorithms]
ffdhe3072 mldsa65 11.08 12.47 5.12 / 1.06 0.162

ffdhe3072 sphincssha2192f 23.60 74.59 2.47 / 3.46 0.159

secp384r1 mldsa65 11.82 11.91 4.89 / 1.19 0.163

secp384r1 sphincssha2192f 24.25 74.05 2.49 / 3.46 0.160

[PQC(KEM) + Legacy(DS) Algorithms]
mlkem768 rsa3072 10.53 6.67 4.81 / 1.32 0.161

mlkem768 ecdsa-p384 10.37 5.78 5.10 / 0.87 0.162

hqc192 rsa3072 41.09 17.77 3.82 / 2.32 0.161

hqc192 ecdsa-p384 40.96 16.93 3.93 / 2.22 0.162

Table 7. DNS over TLS Benchmark Results by Algorithms (Security Level 5)

KEM DS Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)

[Legacy(KEM) + Legacy(DS) Algorithms]
ffdhe4096 rsa4096 16.65 5.39 3.73 / 2.26 0.152

ffdhe4096 ecdsa-p521 16.56 4.26 4.17 / 1.76 0.153

ffdhe4096 ed448 13.51 4.13 4.63 / 1.40 0.152

secp521r1 rsa4096 18.74 4.66 3.59 / 2.37 0.153

x448 rsa4096 12.47 4.51 3.89 / 2.02 0.152

[PQC(KEM) + PQC(DS) Algorithms]
mlkem1024 mldsa87 9.13 17.76 5.48 / 0.57 0.165

mlkem1024 falcon1024 9.29 10.28 5.42 / 0.71 0.165

hqc256 mldsa87 65.97 36.11 3.78 / 2.38 0.167

hqc256 falcon1024 65.54 28.64 3.75 / 2.39 0.166

[Legacy(KEM) + PQC(DS) Algorithms]
ffdhe4096 mldsa87 13.54 15.70 4.63 / 1.41 0.162

ffdhe4096 falcon1024 13.83 8.09 4.49 / 1.48 0.159

secp521r1 mldsa87 16.64 14.95 4.28 / 1.65 0.162

secp521r1 falcon1024 15.90 7.36 4.31 / 1.68 0.159

x448 mldsa87 9.63 14.82 5.40 / 0.71 0.159

x448 falcon1024 9.90 7.21 5.31 / 0.84 0.158

[PQC(KEM) + Legacy(DS) Algorithms]

mlkem1024 rsa4096 12.38 7.46 3.95 / 1.96 0.159

mlkem1024 ecdsa-p521 13.07 6.30 4.41 / 1.24 0.158

mlkem1024 ed448 9.13 6.19 5.44 / 0.56 0.158

hqc256 rsa4096 68.78 25.93 3.60 / 2.54 0.161

hqc256 ecdsa-p521 68.15 24.82 3.74 / 2.47 0.161

overhead. In terms of bandwidth, all configurations showed a clear trend: as the security level increased, so did the

bandwidth consumption. This is due to the larger key and ciphertext sizes required to maintain a higher level of

cryptographic strength, especially for code-based or stateless hash-based schemes such as HQC and SPHINCS+.

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 17

Fig. 5. DoT Latency (left) and Bandwidth(right) comparison chart by Security Level 1, 3, and 5

The benchmark in Table 8 presents DoH performance results at NIST security level 5. The results show no significant

difference when compared to the previous DoT benchmark result. To avoid redundancy and enhance readability, a

comparison chart is omitted.

Table 8. DNS over HTTPS Benchmark Results by Algorithms (Security Level 5)

KEM DS Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)

[Legacy(KEM) + Legacy(DS) Algorithms]
ffdhe4096 rsa4096 16.78 5.84 3.68 / 2.27 0.153

ffdhe4096 ecdsa-p521 16.79 4.72 4.15 / 1.80 0.154

ffdhe4096 ed448 13.63 4.60 4.64 / 1.43 0.153

secp521r1 rsa4096 18.82 5.07 3.60 / 2.39 0.153

x448 rsa4096 12.70 4.95 3.89 / 2.03 0.153

[PQC(KEM) + PQC(DS) Algorithms]
mlkem1024 mldsa87 9.41 18.17 5.43 / 0.59 0.166

mlkem1024 falcon1024 9.50 10.67 5.38 / 0.74 0.166

hqc256 mldsa87 65.52 36.58 3.77 / 2.41 0.168

hqc256 falcon1024 65.89 29.10 3.77 / 2.46 0.167

[Legacy(KEM) + PQC(DS) Algorithms]
ffdhe4096 mldsa87 13.78 16.03 4.60 / 1.42 0.162

ffdhe4096 falcon1024 13.95 8.50 4.46 / 1.54 0.160

secp521r1 mldsa87 15.82 15.43 4.41 / 1.66 0.163

secp521r1 falcon1024 16.00 7.76 4.27 / 1.73 0.160

x448 mldsa87 9.75 15.17 5.39 / 0.73 0.162

x448 falcon1024 10.04 7.62 5.19 / 0.86 0.159

[PQC(KEM) + Legacy(DS) Algorithms]
mlkem1024 rsa4096 12.36 7.86 3.90 / 1.97 0.160

mlkem1024 ecdsa-p521 12.06 6.72 4.56 / 1.27 0.161

mlkem1024 ed448 9.20 6.62 5.46 / 0.59 0.159

hqc256 rsa4096 68.44 26.41 3.62 / 2.59 0.162

hqc256 ecdsa-p521 68.17 25.28 3.74 / 2.46 0.162

This benchmark in Table 9 presents the DNSSEC performance results. While PQC-based DNSSEC algorithms

exhibit higher bandwidth usage compared to legacy algorithms, this increase is primarily due to the larger size of

Manuscript submitted to ACM

18 Lee et al.

the cryptographic signatures and certificates. Despite this overhead, the latency remains nearly unaffected across all

tested algorithms. For example, MLDSA44 and SPHINCS+ variants show significantly higher bandwidth consumption

than RSA2048 or ED25519, yet maintain comparable latency values, indicating that DNSSEC verification remains

computationally lightweight even with post-quantum algorithms.

Table 9. DNSSEC Benchmark Results of Algorithms

DNSSEC Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)

[Legacy(DNSSEC) Algorithms]
rsa2048sha256 6.22 0.53 6.08 / 0.10 0.141

ecdsap256sha256 6.28 0.34 6.11 / 0.10 0.141

ed25519 6.20 0.34 5.99 / 0.10 0.141

[PQC(DNSSEC) Algorithms]
mldsa44 6.83 3.46 6.07 / 0.25 0.141

falconpadded512 6.29 0.93 6.16 / 0.10 0.141

sphincssha2128fsimple 6.88 8.89 5.91 / 0.26 0.142

The benchmark in Table 10 presents the performance results for DNSSEC combined with DoT using a range of

cryptographic algorithms at NIST Security Level 1. The overall behavior of the algorithms remains consistent with the

non-DNSSEC configurations, particularly in terms of latency, CPU, and memory usage. The primary difference observed

is an increase in bandwidth, which is expected due to the additional DNSSEC-related cryptographic material. However,

this increase does not have a significant impact on latency or other system metrics. Algorithms such as SPHINCS+, which

already produce large signature sizes, contribute substantially to the bandwidth overhead. Consequently, configurations

involving SPHINCS+ exhibit significantly higher bandwidth consumption compared to other algorithms.

Table 10. DNSSEC with DoT Benchmark Results by Algorithms (Security Level 1)

DNSSEC KEM DS Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)
[Legacy(DNSSEC) + Legacy(KEM) + Legacy(DS) Algorithms]
rsa2048 ffdhe2048 rsa2048 10.32 4.44 4.92 / 0.94 0.153

ecdsap256 ffdhe2048 ecdsa-p256 9.77 3.68 5.38 / 0.72 0.156

ed25519 ffdhe2048 ed25519 9.55 3.61 5.42 / 0.71 0.154

[PQC(DNSSEC) + PQC(KEM) + PQC(DS) Algorithms]
mldsa44 mlkem512 mldsa44 9.21 12.95 5.55 / 0.51 0.166

falcon512 mlkem512 falcon512 9.05 7.24 5.51 / 0.59 0.165

sphincssha2128f mlkem512 sphincssha2128f 16.31 45.96 3.18 / 2.79 0.165

[Legacy(DNSSEC) + PQC(KEM) + PQC(DS) Algorithms]
rsa2048 mlkem512 mldsa44 9.04 10.84 5.83 / 0.50 0.166

ecdsap256 mlkem512 falcon512 9.02 6.66 5.54 / 0.58 0.165

ed25519 mlkem512 sphincssha2128f 16.35 38.35 3.16 / 2.78 0.165

[PQC(DNSSEC) + Legacy(KEM) + Legacy(DS) Algorithms]
mldsa44 ffdhe2048 rsa2048 10.24 6.55 4.95 / 0.94 0.153

falcon512 ffdhe2048 ecdsa-p256 9.69 4.27 5.34 / 0.71 0.156

sphincssha2128f ffdhe2048 ed25519 9.89 11.29 5.29 / 0.71 0.154

This benchmark in Table 11 presents DNSSEC with DoH performance results at NIST security level 1. The results

show no significant difference when compared to the previous DoT benchmark result. To avoid redundancy and enhance

readability, a comparison chart is omitted.

The results in Table 12 list DoT performance under a multi-thread scenario using 100 concurrent queries at NIST

Security Level 1. The results show consistent trends with earlier benchmarks: PQC key exchange mechanisms such

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 19

Table 11. DNSSEC with DoH Benchmark Results by Algorithms (Security Level 1)

DNSSEC KEM DS Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)
[Legacy(DNSSEC) + Legacy(KEM) + Legacy(DS) Algorithms]
rsa2048 ffdhe2048 rsa2048 10.88 4.86 4.93 / 0.99 0.154

ecdsap256 ffdhe2048 ecdsa-p256 9.72 4.07 5.40 / 0.76 0.157

ed25519 ffdhe2048 ed25519 9.56 4.02 5.42 / 0.74 0.155

[PQC(DNSSEC) + PQC(KEM) + PQC(DS) Algorithms]
mldsa44 mlkem512 mldsa44 9.18 13.39 5.56 / 0.53 0.167

falconp512 mlkem512 falcon512 9.06 7.64 5.49 / 0.60 0.166

sphincssha2128f mlkem512 sphincssha2128f 16.38 46.42 3.27 / 2.79 0.166

[Legacy(DNSSEC) + PQC(KEM) + PQC(DS) Algorithms]
rsa2048 mlkem512 mldsa44 9.01 11.25 5.68 / 0.57 0.167

ecdsap256 mlkem512 falcon512 9.06 7.06 5.46 / 0.62 0.166

ed25519 mlkem512 sphincssha2128f 16.46 38.78 3.25 / 2.78 0.166

[PQC(DNSSEC) + Legacy(KEM) + Legacy(DS) Algorithms]
mldsa44 ffdhe2048 rsa2048 10.09 6.98 4.95 / 0.97 0.154

falcon512 ffdhe2048 ecdsa-p256 9.69 4.65 5.39 / 0.81 0.157

sphincssha2128f ffdhe2048 ed25519 9.76 11.74 5.39 / 0.74 0.155

as MLKEM512 combined with signature schemes like MLDSA44 or Falcon512 yield comparable or even lower latencies

than several legacy combinations. Notably, despite the significantly increased bandwidth-scaling linearly with the

number of concurrent queries-the latency remains unaffected. This is likely due to the small size of each DNS query and

response, which minimizes network congestion and avoids saturating the bandwidth capacity, especially under typical

modern network conditions. With these observations, DNS performance confirms that latency is often dominated

by cryptographic processing and handshake round-trips, not data volume per se. However, algorithms with heavier

computational loads-such as SPHINCS+ and HQC-introduce higher latencies, correlating with increased server-side CPU

usage. The observed CPU impact suggests that for algorithms with large key or signature sizes, the processing overhead

(e.g., signature verification or key decoding) becomes the dominant latency factor under load, rather than network

throughput.

Meanwile, the results in Table 13 presents Multi-thread (100 Concurrent Queries) DoH performance results at NIST

security level 1. The results show no significant difference when compared to the previous DoT benchmark result. To

avoid redundancy and enhance readability, a comparison chart is omitted.

Compared to the 100-concurrent-query benchmark, the 1000-query scenario presented in Table 14 reveals important

scalability distinctions between algorithmic combinations. While general latency trends remain consistent, the increased

concurrency amplifies differences in resource handling, particularly CPU usage and bandwidth overhead. For example,

combinations like MLKEM512 + Falcon512 continue to perform efficiently, but now exhibit slightly higher client

CPU utilization, reflecting the cumulative impact of repeated cryptographic operations at scale. Conversely, resource-

intensive algorithms such as HQC128 + SPHINCS+ and HQC128 + Falcon512 demonstrate more pronounced performance

degradation: latencies exceed 2200 ms and server CPU usage approaches 30 percent, signaling stress under high load.

Bandwidth scales predictably with query volume, but bandwidth-intensive schemes-especially those using SPHINCS+-

now produce transfer volumes exceeding 38 MB per session, reinforcing concerns about deployment in constrained

networks. Notably, hybrid combinations involving PQC signatures (e.g., ffdhe2048 + SPHINCS+) show similar trends,

with CPU bottlenecks becoming more evident than in the lower-concurrency test.

Compared to the 1,000-concurrent-query scenario, the 10,000-query benchmark as presented in the Table 15 exposes

sharper scalability limitations in both cryptographic processing and system resource usage. While high-performance

Manuscript submitted to ACM

20 Lee et al.

Table 12. Multi-thread (100 Concurrent Queries) DNS over TLS Benchmark Results by Algorithms (Security Level 1)

KEM DS Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)

[Legacy(KEM) + Legacy(DS) Algorithms]
ffdhe2048 rsa2048 125.28 412.28 72.01 / 13.18 2.66

ffdhe2048 ecdsa-p256 111.55 354.97 74.71 / 9.61 2.09

ffdhe2048 ed25519 113.53 347.88 75.07 / 9.67 3.03

secp256r1 rsa2048 114.23 375.25 72.68 / 10.63 3.04

x25519 rsa2048 109.89 368.80 73.32 / 10.44 2.93

[PQC(KEM) + PQC(DS) Algorithms]
mlkem512 mldsa44 106.08 1044.63 76.80 / 6.30 3.91

mlkem512 falcon512 107.54 651.29 76.52 / 7.33 3.50

mlkem512 sphincssha2128f 206.10 3827.23 44.88 / 42.60 6.08

hqc128 mldsa44 231.62 1553.43 65.56 / 26.24 3.74

hqc128 falcon512 234.98 1167.13 64.88 / 26.46 3.59

[Legacy(KEM) + PQC(DS) Algorithms]
ffdhe2048 mldsa44 112.65 948.52 74.38 / 10.09 3.04

ffdhe2048 falcon512 114.85 549.03 72.28 / 10.86 2.91

ffdhe2048 sphincssha2128f 215.98 3724.60 45.17 / 42.33 7.98

secp256r1 mldsa44 105.98 907.35 76.50 / 7.13 3.94

x25519 falcon512 109.67 505.50 76.00 / 7.70 3.45

[PQC(KEM) + Legacy(DS) Algorithms]
mlkem512 rsa2048 112.60 514.90 73.66 / 10.03 3.25

mlkem512 ecdsa-p256 110.05 450.78 77.69 / 5.92 3.54

mlkem512 ed25519 111.08 444.13 75.96 / 5.83 3.52

hqc128 rsa2048 242.12 1017.43 63.62 / 27.73 3.78

hqc128 ecdsa-p256 234.85 960.10 65.85 / 26.15 3.87

Table 13. Multi-thread (100 Concurrent Queries) DNS over HTTPS Benchmark Results by Algorithms (Security Level 1)

KEM DS Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)

[Legacy(KEM) + Legacy(DS) Algorithms]
ffdhe2048 rsa2048 116.57 442.58 71.82 / 13.89 2.72

ffdhe2048 ecdsa-p256 114.43 386.64 74.09 / 9.82 3.69

ffdhe2048 ed25519 126.00 378.61 76.88 / 9.35 3.77

secp256r1 rsa2048 113.69 406.72 73.16 / 11.06 3.16

x25519 rsa2048 123.77 399.66 72.56 / 10.61 3.83

[PQC(KEM) + PQC(DS) Algorithms]
mlkem512 mldsa44 117.57 1085.28 78.26 / 6.85 3.18

mlkem512 falcon512 128.04 683.36 79.03 / 7.34 3.63

mlkem512 sphincssha2128f 213.58 3857.46 44.32 / 42.27 6.47

hqc128 mldsa44 231.99 1581.33 65.17 / 26.22 3.77

hqc128 falcon512 236.47 1194.90 65.46 / 26.67 4.36

[Legacy(KEM) + PQC(DS) Algorithms]
ffdhe2048 mldsa44 126.36 979.29 73.72 / 10.34 4.17

ffdhe2048 falcon512 127.36 579.55 72.97 / 11.28 3.97

ffdhe2048 sphincssha2128f 230.49 3754.98 46.35 / 42.37 5.07

secp256r1 mldsa44 114.97 943.96 76.35 / 7.50 4.38

x25519 falcon512 115.84 537.87 76.85 / 7.93 3.64

[PQC(KEM) + Legacy(DS) Algorithms]
mlkem512 rsa2048 125.30 545.89 75.47 / 10.22 3.68

mlkem512 ecdsa-p256 116.64 491.30 78.84 / 6.33 3.50

mlkem512 ed25519 129.77 483.09 79.06 / 6.10 4.02

hqc128 rsa2048 240.28 1045.36 63.94 / 27.50 4.70

hqc128 ecdsa-p256 225.07 987.77 65.90 / 26.06 3.98

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 21

Table 14. Multi-thread (1000 Concurrent Queries) DNS over TLS Benchmark Results by Algorithms (Security Level 1)

KEM DS Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)

[Legacy(KEM) + Legacy(DS) Algorithms]
ffdhe2048 rsa2048 1170.67 4135.29 81.76 / 16.36 3.17

ffdhe2048 ecdsa-p256 1128.47 3564.65 86.91 / 11.66 3.19

ffdhe2048 ed25519 1138.10 3495.04 86.47 / 11.42 3.17

secp256r1 rsa2048 1134.85 3766.40 85.14 / 12.80 3.03

x25519 rsa2048 1038.85 3700.32 84.26 / 12.16 2.93

[PQC(KEM) + PQC(DS) Algorithms]
mlkem512 mldsa44 1041.92 10525.63 88.90 / 7.23 3.14

mlkem512 falcon512 1015.81 6531.43 87.35 / 8.36 1.93

mlkem512 sphincssha2128f 2031.86 38334.88 51.76 / 49.66 3.33

hqc128 mldsa44 2273.20 15597.85 71.99 / 28.91 3.02

hqc128 falcon512 2286.71 11736.69 71.76 / 29.43 3.28

[Legacy(KEM) + PQC(DS) Algorithms]
ffdhe2048 mldsa44 1129.35 9498.89 86.35 / 11.88 2.11

ffdhe2048 falcon512 1084.89 5504.62 84.53 / 12.80 1.90

ffdhe2048 sphincssha2128f 2099.34 37310.66 50.80 / 50.76 3.35

secp256r1 mldsa44 1008.65 9129.04 87.34 / 8.05 1.82

x25519 falcon512 989.28 5069.88 87.17 / 8.72 1.91

[PQC(KEM) + Legacy(DS) Algorithms]
mlkem512 rsa2048 1075.10 5161.51 85.06 / 11.65 1.97

mlkem512 ecdsa-p256 1050.44 4587.73 89.40 / 6.67 1.87

mlkem512 ed25519 1056.15 4518.04 89.91 / 6.70 2.00

hqc128 rsa2048 2378.82 10241.93 70.11 / 30.91 3.08

hqc128 ecdsa-p256 2319.31 9663.87 72.50 / 28.82 3.02

Table 15. Multi-thread (10000 Concurrent Queries) DNS over TLS Benchmark Results by Algorithms (Security Level 1)

KEM DS Latency (ms) Bandwidth (kB) Client / Server CPU (%) Memory (%)

[Legacy(KEM) + Legacy(DS) Algorithms]
ffdhe2048 rsa2048 12210.94 41409.08 85.04 / 16.81 3.24

ffdhe2048 ecdsa-p256 11527.69 35695.47 88.77 / 12.26 3.11

ffdhe2048 ed25519 11407.90 34987.19 88.88 / 11.83 3.2

secp256r1 rsa2048 11477.12 37709.48 87.05 / 13.52 3.34

x25519 rsa2048 11424.62 37058.06 87.45 / 13.28 3.28

[PQC(KEM) + PQC(DS) Algorithms]
mlkem512 mldsa44 11097.96 105253.99 92.55 / 8.02 3.16

mlkem512 falcon512 10841.17 65355.13 91.48 / 9.18 3.21

mlkem512 sphincssha2128f 21392.90 383485.47 57.28 / 54.17 4.28

hqc128 mldsa44 24288.86 156244.86 79.65 / 32.49 4.89

hqc128 falcon512 24723.59 117645.91 75.73 / 31.36 4.55

[Legacy(KEM) + PQC(DS) Algorithms]
ffdhe2048 mldsa44 11867.66 95013.24 95.71 / 13.44 3.06

ffdhe2048 falcon512 12014.42 55072.27 94.09 / 14.55 3.03

ffdhe2048 sphincssha2128f 22821.37 373292.91 56.34 / 55.74 5.13

secp256r1 mldsa44 11062.00 91298.88 91.69 / 8.75 3.09

x25519 falcon512 11249.60 50711.74 89.81 / 9.33 2.97

[PQC(KEM) + Legacy(DS) Algorithms]
mlkem512 rsa2048 11224.52 51639.30 87.52 / 12.28 3.06

mlkem512 ecdsa-p256 11114.39 45836.77 92.10 / 7.08 3.01

mlkem512 ed25519 11560.73 45110.46 94.02 / 7.05 3.47

hqc128 rsa2048 24643.51 102661.15 73.80 / 31.28 4.69

hqc128 ecdsa-p256 23974.78 96905.00 73.32 / 30.27 4.95

Manuscript submitted to ACM

22 Lee et al.

combinations such as MLKEM512 + Falcon512 and MLKEM512 + MLDSA44 continue to demonstrate favorable latency-

remaining near or slightly above 11,000 ms-client CPU usage now consistently exceeds 90-percent, suggesting that

cryptographic operations are nearing saturation on the hardware. Algorithms with larger signature sizes and higher

verification costs, notably SPHINCS+ and HQC, experience significant performance degradation under this load: latencies

surpass 24,000 ms, server CPU usage rises above 30-percent, and memory consumption increases to nearly 5-percent

in extreme cases. Bandwidth overhead scales linearly with the query volume as expected, yet the total transfer size

becomes critical-e.g., over 380 MB for MLKEM512 + SPHINCS+-raising deployment concerns in environments with

limited throughput capacity. Hybrid combinations such as FFDHE2048 + SPHINCS+ and FFDHE2048 + Falcon512

exhibit similar symptoms, with both latency and CPU overhead widening their gap compared to mid-scale tests. These

results affirm that while many PQC algorithms remain viable at moderate concurrency levels, certain schemes-especially

those with hash-based signatures or large ciphertexts-present low performance in high-throughput use cases.

4.4 Analysis and Discussion of the Benchmarking Metrics

The following analysis evaluates experimental benchmarking between PQC and conventional cryptographic techniques

applied to DoT, DoH and DNSSEC configurations. Themeasurements were conducted in controlled Docker environments

and focused on four primary performance metrics: Latency, bandwidth, CPU usage and memory consumption. The

differences between the NIST security levels, the algorithm families (lattice, hash and code-based) and the protocol

layers were investigated to understand the impact on real-world deployment.

Latency Usage: Traditional algorithms such as FFDHE and RSA consistently exhibited faster handshake latency

due to compact key sizes and minimal arithmetic complexity. Among PQC schemes, Falcon, ML-KEM, and ML-

DSA demonstrated competitive latency, benefiting from efficient implementations and hardware-accelerated integer

operations. In contrast, HQC and SPHINCS+ exhibited higher latency due to complex decoding logic or deep Merkle tree

structures [23]. The NIST security levels directly impacted latency. Higher levels require increased internal dimensions

(e.g., lattice ring size, number of hash iterations), which translate to longer computation times during key encapsulation

and signature verification. The latency was not only influenced by the bandwidth, but also by the computational effort.

Algorithms with high arithmetic complexity or serialization overhead (e.g. syndrome decoding in HQC) significantly

increased the handshake duration. Protocol differences (i.e., DoT vs. DoH) had a negligible effect on latency, with HTTP

framing overhead being minimal.

Bandwidth Usage: Traditional schemes transmitted smaller public keys and cipher-texts, keeping total handshake

sizes compact. PQC algorithms, especially those based on hash and code constructs, required significantly more

bandwidth due to large key and signature sizes. Hash-based algorithms (e.g., SPHINCS+) embed large hash trees into

their signatures, leading to particularly high message overheads. Code-based schemes like HQC involve expanded

cipher-texts for error correction. Lattice-based schemes (e.g., ML-KEM) offered a middle ground, achieving strong

security with moderate bandwidth increases-due to their compact structured matrices and avoidance of large random

data. DoH showed slightly higher bandwidth usage than DoT because of the extra overhead from HTTP/2 framing and

headers. This difference is protocol-related and not caused by the cryptographic algorithms, including Legacy and PQC

schemes.

CPU Usage: CPU load during the establishment of the handshake exhibited a clear asymmetry between the client and

the server. Across all algorithms, the client most likely experienced significantly higher CPU usage compared to the

server. This reflects the dual burden of the client to perform both key encapsulation and signature verification, which

are typically more computationally intensive than the decapsulation and signing operations of the server. Lattice-based
Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 23

schemes such as ML-KEM and ML-DSA, used vectorized modular arithmetic (e.g., AVX2) to accelerate operations [43].

These schemes showed high CPU usage on the client side but relatively low load on the server, indicating efficient

de-capsulation routines. Hash-based schemes such as SPHINCS+, consumed fewer CPU cycles per clock but required

many sequential operations during signature verification. This resulted in longer handshake durations and moderate

CPU usage on both the client and the server. Code-based schemes such as HQC, showed a more balanced CPU load

between the client and server. The client’s CPU usage is lower because its operations, while involving some sequential

processing, are less computationally intensive. In contrast, the server’s higher CPU usage is driven by the error correction

process, which involves complex and sequential syndrome decoding, causing a heavier load on the server side. Classical

cryptographic schemes, such as FFDHE with RSA or ECDSA, demonstrated stable and moderate CPU usage on both

client and server sides. Their widespread optimization across platforms and decades of hardware support contributed to

low cryptographic overheads, making them ideal for resource-constrained or latency-sensitive deployments. However,

this efficiency comes at the cost of vulnerability to quantum attacks, underscoring the need to transition toward PQC

alternatives despite the computational trade-offs. As security levels rise, the CPU load distribution between client

and server becomes more evident. For higher security levels, the server CPU usage tends to increase due to the more

complex de-capsulation and signature generation processes, while the client CPU usage generally decreases as key

encapsulation and signature verification become more efficient, often benefiting from hardware acceleration or better

optimizations. The underlying mathematical operations-such as number-theoretic transforms in lattice-based schemes,

syndrome decoding in code-based schemes, or hash-tree traversal in hash-based schemes-significantly influence CPU

usage. These operations affect not only the overall computational cost but also how efficiently the algorithms can be

parallelized and optimized on modern hardware. Additionally, higher security levels typically increase computational

demands, further impacting CPU utilization on both client and server systems.

Memory Usage: Across all test scenarios, memory consumption remained within manageable limits. Traditional

algorithms like RSA and ECDSA showed minimal memory overhead due to compact key sizes and optimized cryp-

tographic routines. Among post-quantum algorithms, SPHINCS+ had the highest memory footprint, attributed to

the deep hash tree structures used in its stateless signature generation. Conversely, ML-KEM and ML-DSA exhibited

moderate memory usage due to their reliance on structured lattices and matrix arithmetic. HQC, while demanding

more memory on the server during decoding, maintained acceptable RAM usage overall. None of the tested algorithms

had significant impact on the allocated container memory, suggesting feasibility for DNS deployments even on modest

hardware, provided CPU trade-offs are addressed.

Impact of DNSSEC: DNSSEC introduced only minor increases in bandwidth when applied with traditional algorithms.

When paired with PQC signatures (e.g., SPHINCS+), the increase became more pronounced, due to larger DNSKEY and

RRSIG records, though it did not affect latency significantly. Applying DNSSEC without TLS caused no measurable

latency penalty and introduced minimal resource overhead-highlighting its feasibility even in resource-constrained

deployments. In combined DoT/DoH with DNSSEC scenarios, while bandwidth increased as expected, no significant

differences were observed in other performance metrics such as latency or CPU usage between legacy and PQC

algorithms.

Relationship of Metrics: Larger messages do contribute to increased bandwidth-but they are not the dominant cause

of latency. Latency depends more heavily on algorithmic compute time and hardware optimization. High CPU usage

may correlate with better performance, as it often indicates effective parallelism. For example, lattice-based schemes

that fully utilized CPU resources achieved quicker handshakes despite high computational intensity. Some schemes

with low CPU usage still had poor latency due to serial or complex internal processes that failed to take advantage of

Manuscript submitted to ACM

24 Lee et al.

available processing power. Bandwidth, CPU, and latency must be interpreted together rather than in isolation. No

single metric accurately predicts overall performance across all protocols and algorithms.

Multi-threaded Benchmarking Results: Several metrics were evaluated for benchmarking purposes. The results

of the analyses for the individual metrics are listed below:

• Latency: Compared to legacy algorithms, several PQC algorithm combinations- - especially ML-KEM with ML-DSA

and Falcon- - showed strong performance at lower or comparable latency. This suggests that even under high

concurrency, lattice-based methods can maintain responsiveness. However, algorithms such as SPHINCS+ and HQC

required significantly more time to complete query transactions, highlighting their heavier cryptographic operations.

Despite the transition to a multi-threaded environment, the overall latency trends remained consistent with those

observed in the single-threaded test scenario.

• Bandwidth: As expected, the PQC algorithms consume significantly more bandwidth than their legacy counterparts.

This increase is due to the inherently larger key sizes and message structures of PQC cryptography. Furthermore, the

behaviour was consistent with what was observed for single-threaded methods -the bandwidth values were about

100 times larger than a single-query session, reflecting the batch size of 100 concurrent queries per session.

• CPU Usage: CPU utilization on the client side remained consistently high for legacy algorithms. In contrast, PQC

algorithms showed varying CPU demand depending on the underlying cryptographic family. Lattice-based schemes

like ML-KEM and Falcon maintained higher client CPU and lower server CPU use, while hash-based (e.g., SPHINCS+)

and code-based (e.g., HQC) algorithms presented more server CPU usage compared to Legacy and Lattice-based

algorithms. These trends resembled the single-threaded results, with no significant deviation observed in the multi-

threaded context.

• Memory Usage: Unlike CPU behavior, memory usage showed a noticeable increase due to multi-threaded execution.

While legacy and PQC algorithms both experienced higher memory consumption, the increase was more pronounced

in algorithms with inherently larger operational footprints-again, such as SPHINCS+ and HQC. This shift reflects the

expected outcome of parallelized query execution placing additional demands on system memory.

Fig. 6. Multi-thread (100 Concurrent Queries) DoT Latency (left) and Bandwidth (right) comparison chart - Security Level 1

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 25

Fig. 6 presents multi-thread (i.e., 100 concurrent clients) DoT latency and bandwidth comparison chart based on

Security Level 1 in an increasing order, Fig. 7 shows for 1000 concurrent clients, and 10000 concurrent queries are

displayed in Fig. 8. As with the single-threaded tests, DoH showed no significant performance differences compared

to DoT, apart from the expected slight increase in bandwidth utilisation due to the HTTP header overhead. This

pattern also remained consistent in the multi-threaded setting, indicating that protocol encapsulation does not result in

additional performance degradation with concurrent query load.

Fig. 7. Multi-thread (1000 Concurrent Queries) DoT Latency (left) and Bandwidth (right) comparison chart - Security Level 1

Fig. 8. Multi-thread (10000 Concurrent Queries) DoT Latency (left) and Bandwidth (right) comparison chart - Security Level 1

Manuscript submitted to ACM

26 Lee et al.

5 LIMITATIONS AND DISCUSSIONS

While our study presents a comprehensive performance evaluation of post-quantum DNS security mechanisms, several

limitations and open issues remain that merit discussion.

Environment Configuration Complexity: During the initial phase of this study, configuring a working post-quantum

DNS environment posed considerable challenges. The integration of OpenSSL, liboqs, oqsprovider, and a forked

BIND implementation (OQS-BIND) required substantial manual effort due to a lack of existing documentation or

established deployment practices. Configuration mismatches, cryptographic interface inconsistencies, and versioning

incompatibilities across these libraries significantly delayed experimental progress. This reflects a broader challenge

in PQC deployment, which is the absence of mature tooling and interoperability support for production-ready DNS

applications.

Hardware-Dependent Benchmark Results: All performance metrics reported in this paper were obtained from a

controlled local environment with fixed hardware specifications. While this ensures internal consistency and fair

algorithmic comparisons, the results are inherently hardware-dependent and may not generalize to other platforms.

In particular, CPU-bound operations such as lattice-based key encapsulations or hash-based signature verifications

are sensitive to processor architecture, instruction set optimizations (e.g., AVX2), and system load. As such, these

results should not be directly compared to benchmarks conducted in dissimilar environments. Moreover, network jitter,

cross-traffic, and carrier-grade NAT behavior may impact real-world performance differently than reported here. Future

work should extend this study to wide-area deployments or cloud-based DNS providers such as Cloudflare, Quad9, or

Google DNS.

Security and Implementation Caveats: Our security model assumes ideal implementations of PQC primitives. In

practice, side-channel resistance is highly dependent on careful software and hardware engineering. Recent studies [15]

have shown that even constant-time implementations of Kyber and Dilithium can be vulnerable under real-world

leakage. Furthermore, hybrid TLS deployments may expose endpoints to downgrade attacks if cipher suite negotiation

is improperly enforced [38]. Ensuring downgrade resilience remains an open challenge, particularly during transitional

deployments where backward compatibility with classical clients must be maintained.

DDoS and Operational Risks: One critical operational concern is the susceptibility of PQC-enhanced handshakes

to denial-of-service attacks. Recent work [36] has demonstrated that the larger message sizes and increased CPU

cycles required by post-quantum TLS can be exploited to launch resource exhaustion attacks against resolvers and

servers. While our benchmarks included multi-threaded evaluations, future research must investigate rate-limiting,

client puzzles, or adaptive throttling in high-load scenarios to maintain resolver availability.

Sustainability and Scalability Considerations: The long-term viability of post-quantum DNS deployment depends

not only on cryptographic soundness but also on sustainability and scalability across diverse Internet environments.

Post-quantum algorithms-particularly lattice- and hash-based schemes-introduce nontrivial increases in computation

time, memory footprint, and message size. These overheads raise concerns about energy efficiency, especially in edge and

embedded deployments where power and thermal budgets are tightly constrained. For instance, the use of hash-based

signatures like SPHINCS+ can amplify CPU cycles and bandwidth usage, potentially leading to increased data center

energy demands and greater environmental impact. While lattice-based schemes such as MLKEM and Falcon offer more

favorable performance-energy trade-offs, even these incur latency and CPU penalties compared to classical counterparts

like X25519 or ECDSA. As global DNS infrastructure spans thousands of recursive and authoritative servers, even

modest per-query increases can aggregate into substantial operational cost and carbon footprint. Scalability is also

Manuscript submitted to ACM

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 27

challenged by the asymmetric nature of PQC performance, where server-side decapsulation and signature verification

may dominate processing costs. In high-throughput scenarios, such as those faced by large DNS providers or CDNs, this

imbalance could limit the capacity to handle peak query loads without architectural optimizations such as hardware

acceleration, TLS session resumption, or offloading cryptographic functions to secure enclaves. To ensure scalable

and sustainable deployment, future work must include energy profiling under realistic workloads, exploration of post-

quantum hardware accelerators, and protocol-level optimizations such as lightweight hybrid modes and session caching.

These enhancements are critical for aligning post-quantum security with operational feasibility and environmental

responsibility.

Standardization and Deployment Barriers: Although NIST has finalized several PQC algorithms for standardization,

many production-grade DNS resolvers (e.g., Unbound, PowerDNS) and TLS libraries still lack stable PQC integration.

Our implementation is based on OQS-BIND and patched OpenSSL versions, which may diverge from mainstream

stacks. Ensuring ecosystem-wide adoption will require coordinated efforts across DNS software vendors, TLS library

maintainers, and browser manufacturers. Moreover, regulatory frameworks for DNS security (e.g., ICANN or DNSSEC

root signing authorities) may need to update operational policies to accommodate hybrid or post-quantum-only

deployments.

Despite these challenges, our results demonstrate that carefully selected PQC primitives-particularly MLKEM and

Falcon-can enable post-quantum DNS security without incurring prohibitive performance penalties. Our findings can

inform future standardization and deployment strategies for quantum-resilient DNS infrastructures.

6 CONCLUSION AND FUTUREWORK

The findings presented in this study highlight the technical feasibility and practical considerations of deploying post-

quantum cryptographic algorithms in DNS infrastructure, particularly in securing DNSSEC, DNS over TLS, DNS over

HTTPS. By evaluating multiple algorithm classes across key performance metrics-latency, bandwidth, CPU, and memory

usage-this work provides a foundation for informed decision-making in future DNS security designs. The demonstrated

trade-offs emphasize that no single algorithm is universally optimal; rather, the suitability of a PQC scheme depends

heavily on its operational context and intended role within the DNS protocol stack. As quantum-resistant standards

continue to evolve, aligning DNS security mechanisms with these cryptographic advancements will be essential for

maintaining long-term trust and resilience in global name resolution systems.

Future research should explore several key directions to advance the deployment of post-quantum secure DNS.

First, evaluating the energy consumption and thermal behavior of PQC operations-particularly in edge computing

environments-can help assess their sustainability and scalability. Second, integrating PQC mechanisms into emerging

transport protocols such as DNS-over-QUIC (DoQ) would extend quantum resilience to modern, low-latency communi-

cation layers. Additionally, further investigation is needed into how PQC impacts resolver-side behaviors, including

caching strategies and TTL (time-to-live) optimizations, which are critical for performance and efficiency at scale.

Finally, conducting real-world user studies to measure latency perception and packet reliability under post-quantum

DNS deployments will provide valuable insight into practical usability and quality-of-service implications.

Future work should also address these limitations by deploying PQC-enabled DNS in a production-like setting with

real-world traffic patterns and multiple authoritative zones. In particular, scaling tests using distributed testbeds or

cloud-based DNS resolvers could yield deeper insight into performance under load. Further, efforts should be made to

measure protocol-level resilience, such as the effect of PQC on packet loss, retransmissions, and handshake failure rates

Manuscript submitted to ACM

28 Lee et al.

in lossy or mobile networks. Lastly, given the fast-evolving nature of PQC standardization, continuous tracking of NIST

and IETF progress will be essential to align future DNS deployments with approved cryptographic profiles.

ACKNOWLEDGMENTS

This work is partly supported by the Spanish Ministry of Economy and Competitiveness (MINECO)-Program UNICO

I+D under Grant TSI-063000-2021-54, Grant TSI-063000-2021-55, “ERDF A way of making Europe” project funded by

MCIN/AEI/ 10.13039/501100011033 under grant PID2021-126431OB-I00 and Generalitat de Catalunya grant 2021 SGR

00770

REFERENCES
[1] S. Abirami and R. Naresh. 2024. DNS Enhancement with DNSSEC and DoT for Enhanced Online Security. In 2024 2nd International Conference on

Networking and Communications (ICNWC). 1–11. https://doi.org/10.1109/ICNWC60771.2024.10537516

[2] Basharat Ali and Guihai Chen. [n. d.]. Titan-Doh: Trust-Integrated Threat Adaptive Network for Post-Quantum Secure Dns Over Https. Available at
SSRN 5230452 ([n. d.]).

[3] Rob Austein, Roy Arends, Matt Larson, Dan Massey, and Scott Rose. 2005. DNS Security Introduction and Requirements. RFC 4033. https:

//tools.ietf.org/html/rfc4033

[4] Abdullah Aydeger, Engin Zeydan, Awaneesh Kumar Yadav, Kasun T Hemachandra, and Madhusanka Liyanage. 2024. Towards a quantum-resilient

future: Strategies for transitioning to post-quantum cryptography. In 2024 15th International Conference on Network of the Future (NoF). IEEE,
195–203.

[5] GJ Beernink. 2022. Taking the quantum leap: Preparing dnssec for post quantum cryptography. Master’s thesis. University of Twente.

[6] Jessica Bozhko, Yacoub Hanna, Ricardo Harrilal-Parchment, Samet Tonyali, and Kemal Akkaya. 2023. Performance evaluation of quantum-resistant

TLS for consumer IoT devices. In 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC). IEEE, 230–235.
[7] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, and Rene Peralta. 2016. Report on Post-Quantum Cryptography. Technical Report NISTIR 8105.

NIST. https://doi.org/10.6028/NIST.IR.8105

[8] Céline Chevalier, Ehsan Ebrahimi, and Quoc-Huy Vu. 2022. On security notions for encryption in a quantum world. In International Conference on
Cryptology in India. Springer, 592–613.

[9] Cloudflare. 2022. Post-Quantum DNS and TLS. https://blog.cloudflare.com/post-quantum-for-dns/

[10] Viktor Dukhovni and Peter Schwabe. 2023. Don’t Reuse That Nonce: Failures in Randomness for Post-Quantum Signatures. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES) 2023, 1 (2023), 1–24. https://doi.org/10.46586/tches.v2023.i1.1-24

[11] Christopher Goertzen and Douglas Stebila. 2022. ARRF: Application-layer Request-based Resource Fragmentation for Post-Quantum DNSSEC. In

Proceedings of the 17th International Conference on Availability, Reliability and Security (ARES). https://doi.org/10.1145/3538969.3544435

[12] Jason Goertzen. 2023. OQS-BIND: PQC-enabled Bind9 using Open Quantum Safe’s oqs-provider. https://github.com/Martyrshot/OQS-bind

[13] Jason Goertzen and Douglas Stebila. 2023. Post-quantum signatures in DNSSEC via request-based fragmentation. In International Conference on
Post-Quantum Cryptography. Springer, 535–564.

[14] DNSOP Working Group. 2023. Post-Quantum DNSSEC Considerations. Internet Draft, IETF. https://datatracker.ietf.org/doc/draft-dnsop-pqdnssig/

[15] Jakob Hochstätter, Thomas Unterluggauer, and Peter Schwabe. 2023. Leaky Kyber: Practical Side-Channel Attacks on Masked Kyber. In Proceedings
of the 32nd USENIX Security Symposium. USENIX Association. https://www.usenix.org/conference/usenixsecurity23/presentation/hochstatter

[16] Paul Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS (DoH). RFC 8484. https://tools.ietf.org/html/rfc8484

[17] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul Hoffman. 2016. Specification for DNS over Transport Layer Security

(TLS). RFC 7858. https://tools.ietf.org/html/rfc7858

[18] Adam Ali.Zare Hudaib and Esra’a Ali Zare Hudaib. 2014. DNS Advanced Attacks and Analysis. International Journal of Computer Science and
Security (IJCSS) 8, 2 (April 2014), 63–74. https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCSS-905

[19] Andreas Hülsing, Joost Rijneveld, and Douglas Stebila. 2021. PQC in TLS: How to Make and Break It. In 30th USENIX Security Symposium.

https://www.usenix.org/conference/usenixsecurity21/presentation/hulsing

[20] Sevinj Jafarli. 2022. Providing DNS Security in Post-Quantum Era with Hash-Based Signatures. Master’s thesis. University of Twente.

[21] NLnet Labs. 2023. PQC Readiness in DNS. https://nlnetlabs.nl

[22] Cameron McGowan, James Liu, and Sushmita Ruj. 2025. Security Considerations for Post-Quantum Signatures in DNSSEC via Request-Based

Fragmentation. In Companion Proceedings of the ACM on Web Conference 2025. 1189–1193.
[23] National Institute of Standards and Technology. 2022. Post-Quantum Cryptography Standardization. https://csrc.nist.gov/projects/post-quantum-

cryptography.

[24] National Institute of Standards and Technology (NIST). 2015. SP 800-152: A Profile for U.S. Federal Cryptographic Key Management Systems. Special
Publication SP 800-152. NIST Computer Security Division. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-152.pdf Final

Manuscript submitted to ACM

https://doi.org/10.1109/ICNWC60771.2024.10537516
https://tools.ietf.org/html/rfc4033
https://tools.ietf.org/html/rfc4033
https://doi.org/10.6028/NIST.IR.8105
https://blog.cloudflare.com/post-quantum-for-dns/
https://doi.org/10.46586/tches.v2023.i1.1-24
https://doi.org/10.1145/3538969.3544435
https://github.com/Martyrshot/OQS-bind
https://datatracker.ietf.org/doc/draft-dnsop-pqdnssig/
https://www.usenix.org/conference/usenixsecurity23/presentation/hochstatter
https://tools.ietf.org/html/rfc8484
https://tools.ietf.org/html/rfc7858
https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCSS-905
https://www.usenix.org/conference/usenixsecurity21/presentation/hulsing
https://nlnetlabs.nl
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-152.pdf

Quantum-Resistant Domain Name System: A Comprehensive System-Level Study 29

publication, October 30, 2015.

[25] Syed W Shah Pan, Din Duc Nha Nguyen, Robin Doss, Warren Armstrong, Praveen Gauravaram, et al. 2024. Double-Signed Fragmented DNSSEC for

Countering Quantum Threat. arXiv preprint arXiv:2411.07535 (2024).
[26] PQDNS Project. 2022. Post-Quantum Secure DNS Prototype. https://pqdns.dev

[27] Manohar Raavi, Simeon Wuthier, and Sang-Yoon Chang. 2024. Securing Post-Quantum DNSSEC Against Fragmentation Mis-Association Threat. In

ICC 2024-IEEE International Conference on Communications. IEEE, 97–102.
[28] Arpit Rawat and Mayank Jhanwar. 2023. QBF: QNAME-Based Fragmentation for Post-Quantum DNSSEC. In IEEE Symposium on Security and

Privacy Workshops (SPW). https://doi.org/10.1109/SPW59501.2023.00053

[29] Arpit Rawat and Mayank Jhanwar. 2023. SL-DNSSEC: A Size-Optimized Post-Quantum Secure DNSSEC Protocol Using KEM and MAC. In 2023
ACM Asia Conference on Computer and Communications Security (AsiaCCS). https://doi.org/10.1145/3579856.3592816

[30] Arpit Rawat and Mayank Jhanwar. 2023. TurboDNS: Efficient Post-Quantum Secure DNSSEC over TCP. In 2023 IEEE International Conference on
Distributed Computing Systems (ICDCS). https://doi.org/10.1109/ICDCS58692.2023.00123

[31] Aditya Singh Rawat and Mahabir Prasad Jhanwar. 2023. Post-quantum DNSSEC over UDP via QNAME-Based Fragmentation. In International
Conference on Security, Privacy, and Applied Cryptography Engineering. Springer, 66–85.

[32] Aditya Singh Rawat and Mahabir Prasad Jhanwar. 2024. Post-Quantum DNSSEC with Faster TCP Fallbacks. In International Conference on Cryptology
in India. Springer, 212–236.

[33] Aditya Singh Rawat and Mahabir Prasad Jhanwar. 2024. Quantum-safe Signatureless DNSSEC. Cryptology ePrint Archive (2024).
[34] Caspar Schutijser, Elmer EH Lastdrager, Ralph Koning, and Cristian EW Hesselman. 2024. A testbed to evaluate quantum-safe cryptography in

DNSSEC. In DNS and Internet Naming Research Directions, DINR 2024.
[35] Jayasree Sengupta, Mike Kosek, Justus Fries, Simone Ferlin-Reiter, and Vaibhav Bajpai. 2024. On Cross-Layer Interactions of QUIC, Encrypted

DNS and HTTP/3: Design, Evaluation, and Dataset. IEEE Transactions on Network and Service Management 21, 3 (2024), 2992–3007. https:

//doi.org/10.1109/TNSM.2024.3383787

[36] Haya Shulman and Michael Waidner. 2023. Post-Quantum DDoS: How Quantum-Safe Handshakes Can Be Weaponized. In Proceedings of the
Network and Distributed System Security Symposium (NDSS). https://www.ndss-symposium.org/ndss-paper/post-quantum-ddos-how-quantum-

safe-handshakes-can-be-weaponized/

[37] Douglas Stebila, Scott Fluhrer, and Shay Gueron. 2016. Hybrid key exchange in TLS 1.3. IACR Cryptology ePrint Archive 2016 (2016), 1008.

https://eprint.iacr.org/2016/1008

[38] Douglas Stebila, Scott Fluhrer, and Martin Thomson. 2023. Hybrid Key Exchange in TLS 1.3. Internet-Draft draft-ietf-tls-hybrid-design-05, IETF.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-05 Work in Progress.

[39] Google Security Team. 2023. Experimenting with post-quantum TLS in Chrome. https://security.googleblog.com/2023/08/experimenting-with-

post-quantum-tls-in.html

[40] Chris Wood, Martin Thomson, and Daniel Migault. 2023. Interoperability Considerations for Post-Quantum TLS. Internet-Draft draft-wood-tls-pqc-

interoperability-01, IETF. https://datatracker.ietf.org/doc/html/draft-wood-tls-pqc-interoperability-01 Work in Progress.

[41] Keita Xagawa. 2024. Signatures with memory-tight security in the quantum random oracle model. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 30–58.

[42] Yuan Zhang, Zi Hu, and Kevin Schomp. 2022. Evaluating SPHINCS+ for DNSSEC. In Proceedings of the NDSS Workshop on DNS Privacy.
[43] Jieyu Zheng, Haoliang Zhu, Yifan Dong, Zhenyu Song, Zhenhao Zhang, Yafang Yang, and Yunlei Zhao. 2024. Faster Post-quantum TLS 1.3 Based on

ML-KEM: Implementation and Assessment. In European Symposium on Research in Computer Security. Springer, 123–143.

Manuscript submitted to ACM

https://pqdns.dev
https://doi.org/10.1109/SPW59501.2023.00053
https://doi.org/10.1145/3579856.3592816
https://doi.org/10.1109/ICDCS58692.2023.00123
https://doi.org/10.1109/TNSM.2024.3383787
https://doi.org/10.1109/TNSM.2024.3383787
https://www.ndss-symposium.org/ndss-paper/post-quantum-ddos-how-quantum-safe-handshakes-can-be-weaponized/
https://www.ndss-symposium.org/ndss-paper/post-quantum-ddos-how-quantum-safe-handshakes-can-be-weaponized/
https://eprint.iacr.org/2016/1008
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-05
https://security.googleblog.com/2023/08/experimenting-with-post-quantum-tls-in.html
https://security.googleblog.com/2023/08/experimenting-with-post-quantum-tls-in.html
https://datatracker.ietf.org/doc/html/draft-wood-tls-pqc-interoperability-01

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed PQC-DNS Method
	3.1 DNS Infrastructure
	3.2 Problem Formulation
	3.3 PQC-DNS Protocol Sequence
	3.4 Security Considerations

	4 Experimental Evaluations
	4.1 Experimental Setup
	4.2 Evaluation Framework and Benchmarking Metrics
	4.3 Experimental Results: Legacy vs. PQC Algorithms
	4.4 Analysis and Discussion of the Benchmarking Metrics

	5 Limitations and Discussions
	6 Conclusion and Future Work
	Acknowledgments
	References

