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Abstract
Recent secure weight release schemes claim to
enable open-source model distribution while pro-
tecting model ownership and preventing misuse.
However, these approaches lack rigorous secu-
rity foundations and provide only informal secu-
rity guarantees. Inspired by established works in
cryptography, we formalize the security of weight
release schemes by introducing several concrete
security definitions. We then demonstrate our defi-
nition’s utility through a case study of TaylorMLP,
a prominent secure weight release scheme. Our
analysis reveals vulnerabilities that allow parame-
ter extraction thus showing that TaylorMLP fails
to achieve its informal security goals. We hope
this work will advocate for rigorous research at
the intersection of machine learning and security
communities and provide a blueprint for how fu-
ture weight release schemes should be designed
and evaluated.

1. Introduction
Deep learning models, especially large language models
(LLMs), pose unique challenges for model weight release,
the practice of sharing a model’s learned parameters with
users. Providers typically choose between closed API host-
ing, which preserves developer control but forces users to
expose private data to the service (Achiam et al., 2023),
and fully open-sourcing the weights, which protects user
privacy but cedes ownership and control of the model (Tou-
vron et al., 2023). This creates a dilemma: developers risk
unauthorized extraction or repurposing of their proprietary
weights if they release them openly, yet users face privacy
and availability concerns when models are accessible only
via APIs.

To address this, secure weight release schemes aim to enable
local or offline inference without exposing raw weights,
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thereby balancing utility and protection. An ideal scheme
would preserve accuracy and inference performance for
legitimate users while making it difficult for an adversary to
recover the original weights or to perform large-scale fine-
tuning abuse. Such guarantees are crucial because model
weights represent high-value intellectual property, often
requiring millions of dollars in training investment (Refael
et al., 2024).
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Figure 1. Overview of weight release schemes and our proposed se-
curity definitions. (a) Model developers transform original weights
into a restricted released model; (b) users either call an API (b1)
or run local inference on the restricted weights (b2); (c) proposed
game-based security definitions: weight recovery (c1), efficient
inference (c2) and weight leakage (c3).

However, current weight release schemes like TaylorMLP
(Wang et al., 2024) lack a formal security foundation. Their
security claims rest on informal hardness assumptions or
empirical observations without reductions to well-studied
hardness assumptions. Consequently, it remains unclear
under what adversarial models and assumptions weight con-
fidentiality truly holds, or how one might systematically
evaluate a scheme’s (in)security. Indeed, recent work shows
that fine-tuning can often strip out empirical safeguards,
hinting that ad hoc measures may be brittle (Tamirisa et al.,
2024).

In this paper, we fill this gap by introducing a formal frame-
work for model weight release security, as outlined in Fig-
ure 1. We define security properties, establish relationships
among them, and show how they can guide scheme design.
We then present a case study of TaylorMLP: we mount a pa-
rameter extraction attack that successfully recovers original
weights, demonstrating that TaylorMLP falls short of its in-
formal goals. Finally, we distill our insights into a blueprint
for future schemes, outlining design principles and evalua-
tion criteria to achieve provable security guarantees.

1

https://arxiv.org/abs/2506.19874v1


Towards Provable (In)Secure Model Weight Release Schemes

Our contribution in this paper is threefold.

• Formal security properties of weight release
schemes. We defined several formal security prop-
erties of weight release schemes and proved some of
their relations under this context.

• A case study against TaylorMLP. We performed an
analysis on TaylorMLP and demonstrated that it is vul-
nerable to our parameter extraction attack, thus failing
to deliver its claimed security goals.

• A blueprint for future weight release schemes. We
provide a blueprint for how future weight release
schemes should be designed and evaluated.

2. Related Work
Open-Source Models Open-source LLMs like LLaMA
2 (Touvron et al., 2023), Qwen (Bai et al., 2023), and
DeepSeek (Liu et al., 2024) have democratized access by re-
leasing full model weights under permissive licenses. While
this fosters innovation and reproducibility, it also hands
over complete control of the models to downstream users.
Without embedded technical safeguards, these releases rely
solely on legal agreements to prevent misuse.

Privacy-Aware Model Inference Cryptographic proto-
cols such as MPC and homomorphic encryption enable infer-
ence without exposing either model weights or user inputs,
as demonstrated by BOLT (Pang et al., 2024), BumbleBee
(Lu et al., 2023), and PUMA (Dong et al., 2023). These sys-
tems offer provable security under standard assumptions but
incur latency and resource costs orders of magnitude higher
than native inference. Such overheads currently preclude
their use for real-time or large-scale LLM deployment.

Weight Release Schemes TaylorMLP (Wang et al., 2024)
publishes truncated Taylor-series coefficients of MLP
weight matrices, allowing exact inference while obscuring
the original parameters and introducing controllable throt-
tling. Hardware obfuscation approaches embed DNNs in
locked circuits that only function under specific configura-
tions, preventing direct weight extraction (Goldstein et al.,
2021). Its security is based on the presumed hardness of
inverting the transformation, without formal reductions to
established cryptographic problems.

Model Tracing Watermarking and fingerprinting embed
hidden signals into model weights or outputs to detect unau-
thorized use. CoTGuard (Wen et al., 2025) and Double-i
Watermark (Li et al., 2024) insert secret triggers into reason-
ing traces or fine-tuning, while Mark Your LLM (Xu et al.,
2025) and ProFLingo (Jin et al., 2024) employ backdoor-
based or query-based fingerprints. These techniques demon-
strate empirical robustness against benign fine-tuning but

lack strong guarantees against adaptive adversaries.

Model Abuse and Misuse Risks Open releases can be
fine-tuned with minimal poisoned data to remove safety mit-
igations and repurpose models for harmful tasks. Surveys
by Yan et al. (Yan et al., 2024) and Li et al. (Li et al., 2023)
document how such attacks degrade alignment and enable
sensitive data extraction. These risks motivate technical con-
trols that enforce provable security properties in released
models.

3. Security of Weight Release Schemes
In this section, we first formally define the syntax of a weight
release scheme. Then we give several security properties
for weight release schemes with formal definitions. We
also discuss the relations of these security properties and
possible hardness assumptions under the context of weight
release schemes.

3.1. Weight release schemes

Consider a deep learning task where training the model on
dataset D ∈ D gives the model weight W ∈ W . The model
is expected to take x ∈ X as the input and output y ∈ Y
when running inference on weight W . We then define the
syntax of a weight release scheme as follows.

Syntax. A weight release scheme is a tuple of 5 probabilis-
tic algorithms Σ = (Train,Run,KGen,Release,Run’),
where

• Train : D →W abstracts the original training process
on dataset D ∈ D and produces a model weight W ∈
W .

• Run : W × X → Y abstracts the original inference
process which runs W ∈ W on input x ∈ X and
outputs y ∈ Y .

• KGen : ⊥ → Ksk × Kpk is similar to the public
key cryptography case, which generates a pair of key
(sk, pk) for future use. There are many cases where the
weight release scheme requires no key, and in this case
Ksk and Kpk can both be ∅.

• Release : Ksk ×W → W ′ is the core of the weight
release scheme which transforms the original weight
W ∈ W to the released version W ′ ∈ W ′ under some
private key sk. Note that depending on the security
requirements,W ′ is generally not the same asW , but
there are cases like hidden watermarking whereW ′ =
W .

• Run’ : Kpk × W ′ × X → Y models the user with
the public key pk inferencing the released version of
weight W ′ ∈ W ′ on input x ∈ X and outputs y ∈ Y .

Note that different from standard cryptographic practice
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where security parameters are included in the KGen param-
eter, the security parameters for a specific weight release
scheme are often fixed and implicitly determined by the
scheme (e.g., model weight size).

Game-based definition. We use game-based definitions
for formally specifying the properties of weight release
schemes through interactive experiments in this section, fol-
lowing standard cryptographic practice for defining security
properties of protocols(Bellare & Rogaway, 2004; Shoup,
2004). A game is a probabilistic experiment, often writ-
ten as a procedure, that captures the essential behavior of
the system whose output indicates the result of the experi-
ment. In our context, games allow us to rigorously compare
the behavior of original and released model weights while
accounting for the inherent randomness in neural network
training and inference processes.

Correctness. Informally, a weight release scheme is cor-
rect if inferencing the released version of weight leads to
same results as inferencing the original weight. Due to the
intrinsic randomness in the inference process, defining same
is not like defining equality. Here we consider Dist(a, b)
as a distance function measuring how different a, b ∈ S
are where S is the relevant domain for our definitions. We
also consider Same(a, b) as Dist(a, b) ≤ ϵ for some practi-
cally meaningful threshold δ. For example, Dist(Wa,Wb)
for Wa,Wb ∈ W can be defined as ∥Wa −Wb∥p where
∥·∥p is the matrix p-norm, and Same(Wa,Wb) can be de-
fined using δ = 10−3 for some specific model types. Then
correctness is defined as follows.
Definition 3.1 (Correctness of a weight release scheme).
We define the following game.

GameCorrectness(D)

1 : (pk, sk)←$ KGen()
2 : W ←$ Train(D)

3 : W ′ ←$ Release(sk,W )

4 : x←$ X
5 : y ←$ Run(W,x)

6 : y′ ←$ Run’(pk,W ′, x)

7 : return Same(y′, y)

Then a weight release scheme Σ with Σ =
(Train,Run,KGen,Release,Run’) is correct if

Pr[GameCorrectness(D)⇒ 1] = 1 (1)

for given D ∈ D.

3.2. Security properties

Informally, a secure weight release scheme aims to 1) pro-
tect the model ownership of developers while 2) allow users

to perform inference on the released model weight with
reasonalble efficiency. Additional security goals include
preventing abuse and further unintended modification of the
released model. To formally define these security properties,
we choose several typical security goals and formulate them
into game-based definitions. Each of the following security
goals starts with an example scenario followed by a game
and description of the adversary’s abilities and constraints.

Preventing weight recovery. One natural security goal
for secure weight release schemes is to prevent any adver-
sary from recovering the original weight. This goal can be
captured by the following game for weight release scheme
Σ on a given training dataset D ∈ D.

GameWRec(D,A)
1 : W ←$ Train(D)

2 : (pk, sk)←$ KGen()

3 : W ′ ←$ Release(sk,W )

4 : W ∗ ←$ A(pk,W ′)

5 : return Same(W ∗,W )

The advantage of an adversary A in this game is defined as

AdvWRec
Σ (D,A) = Pr[GameWRec(D,A)⇒ 1] (2)

Definition 3.2. Then for all efficient adversary A on some
dataset D ∈ D, if

AdvWRec
Σ (D,A) ≤ ϵ (3)

for some negligible ϵ with regard to the security paramter of
the scheme Σ, then the weight release scheme Σ is consid-
ered to be (D, ϵ)-weight-recovery-secure (WRec-secure).

Note that since weight recovery is a very strong attack
even for computational unbounded adversaries, because
in GameWRec(D,A), there is randomness in training and
D is not given to A thus making it intuitively infeasible for
A to recover the exact weight. Therefore, security property
aiming at preventing this attack is relatively weak compared
with other security properties defined in later parts of this
section.

Only ensuring (D, ϵ)-weight-recovery-secure does not pre-
vent practical attacks that do not rely on full weight recov-
ery. However, while this security property is too weak to
be practically useful for modeling real-world security, this
can be useful for proving that some weight release schemes
are blatantly insecure by constructing a valid and efficient
weight recovery adversary. In our case study of TaylorMLP,
we only used one released weight, but we can also define
a stronger variant that allows A make multiple queries to
Release(sk,W ), which would be convenient for proving
insecurity with more than one released weights.
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Preventing efficient inference. One of the underlying
goals for weight recovery attacks is to improve the inference
efficiency, as many current weight release schemes are de-
signed to introduce an efficiency gap between the released
weight and the original weight. For example, TaylorMLP
aims to slow down the inference of released weight typically
up to 8× to prevent abuse and make a distinction between
authorized and free versions of model weight.

Therefore, we introduce a stronger security property which
is defined to prevent efficient inference on released model
weights. To measure efficiency without loss of generality,
here we consider Cost(F, x) as a function measuring the
computational cost of running F (x) where F is a procedure
in our definitions. Cost can be measured both asymptotic
or concrete according to a different context and is often
instantiated with the running time of a procedure on a certain
input.

We assume that weight release scheme Σ is designed such
that Cost(Run’, (pk,W ′, x)) ≫ Cost(Run, (W,x)) for
W ′ ←$ Release(sk,W ) and x ∈ X . Similarly, we in-
troduce the following game for weight release scheme Σ on
a given training dataset D ∈ D.

GameEffiInf(D,A)
1 : W ←$ Train(D)

2 : (pk, sk)←$ KGen()

3 : W ′ ←$ Release(sk,W )

4 : x←$ X
5 : y′ ←$ Run’(pk,W ′, x)

6 : y∗ ←$ A(pk,W ′, x)

7 : return Same(y∗, y′)

The advantage of an adversary A in this game is defined as

AdvEffiInf
Σ (D,A) = Pr[GameEffiInf(D,A)⇒ 1] (4)

Definition 3.3. Then for all efficient adversary A
that runs with computational cost t such that t <
Cost(Run’, (pk,W ′, x)) for W ′ ←$ Release(sk,W ) and
x ∈ X on some dataset D ∈ D, if

AdvEffiInf
Σ (D,A) ≤ ϵ (5)

for some negligible ϵ with regard to the security paramter
of the scheme Σ, then the weight release scheme Σ is con-
sidered to be (D, t, ϵ)-efficient-inference-secure (EffiInf-
secure).

Different from (D, ϵ)-weight-recovery-secure, here we also
explicitly consider the computational cost in the security
definition. This is because if A is only polynomial time
bounded, then A can just distill from the released weight

into a more efficient weight spaceW∗. Therefore, in the def-
inition, we explicitly bound t < Cost(Run’, (pk,W ′, x))
to ensure a valid adversary with less computation bud-
get than direct inference. Similarly, we can also define
a stronger variant that allows A to make multiple queries to
Release(sk,W ) and add the query count as a parameter to
the security definition.

Note that efficient-inference-secure is a stronger security
property than weight-recovery-secure as performing effi-
cient inference does not necessarily need weight recovery.
For example, quantization of released weight can some-
times improve efficiency and thus can be considered a valid
attack in this security notion. In §3.3 we will prove that
efficient-inference-secure implies weight-recovery-secure.

Indistinguishability of released weights. Inspired by se-
mantic security and IND-CPA properties in cryptographic
works(Goldwasser & Micali, 1984), we can also define a
similar security property in the form of indistinguishability,
which is shown in the following game for weight release
scheme Σ on a given training dataset D ∈ D.

GameW-IND(D,A)
1 : b←$ {0, 1}
2 : (pk, sk)←$ KGen()
3 : W0 ←$ Train(D)

4 : W1 ←$ Train(D)(¬Same(W0,W1))

5 : W ′ ←$ Release(sk,Wb)

6 : b′ ←$ A(pk,W0,W1,W
′)

7 : return b = b′

The advantage of an adversary A in this game is defined as

AdvW-IND
Σ (D,A) = 2

∣∣∣∣Pr[GameW-IND(D,A)⇒ 1]− 1

2

∣∣∣∣
(6)

Definition 3.4. Then for all efficient adversary A runs
within computation cost t on some dataset D ∈ D, if

AdvW-IND
Σ (D,A) ≤ ϵ (7)

for some negligible ϵ with regard to the security paramter of
the scheme Σ, then the weight release scheme Σ is consid-
ered to be (D, t, ϵ)-weight-indistinguishability-secure (W-
IND-secure).

Intuitively, a good weight release scheme should leak no in-
formation about the original weight, and the game captures
this property by letting an adversary distinguish the original
weights of a released weight where the original weights are
different in value but are trained on the same training data.
If no adversary can win the game with a non-negligible
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advantage, that means that the scheme does not leak infor-
mation about the original weight. Similarly, we can define
a stronger variant that allows A to make multiple queries
to different (W0,W1,W

′) and add the query count as a pa-
rameter to the security definition. By adding conditions on
t, we can make (D, t, ϵ)-weight-indistinguishability-secure
a stronger security property than weight-recovery-secure
and efficient-inference-secure. We will show that weight-
indistinguishability-secure implies weight-recovery-secure
in §3.3.

3.3. Relations of the security properties

With the previously defined security properties, we show
two implication relations between these properties under
some assumption that fits the context. These relations are
shown by contraposition, that is, if we want to show A→ B,
then it is equivalent to showing ¬B → ¬A by constructing
an adversary for A from an adversary for B. This is also
known as security reductions in cryptographic works.

EffiInf-Secure implies WRec-Secure. By contraposi-
tion, we want to build an adversary B against EffiInf-
Secure game for scheme Σ from an adversary A against
WRec-secure game, given that weight release scheme Σ
satisfies Cost(Run’, (pk,W ′, x))≫ Cost(Run, (W,x)) +
Cost(A, (pk,W ′)) for W ′ ←$ Release(sk,W ) and x ∈
X . Adversary B is constructed as follows.

BA(pk,W ′, x)

1 : W ←$ A(pk,W ′)

2 : return Run(W,x)

The general idea is to first recover the original weight using
A and then run inference on the recovered weight. We need
to prove that B is both valid and efficient.

Proof. We know thatA is valid, meaning that the recovered
weight is the same as the original weight. Then by
the correctness of weight release schemes, we have
Run(W,x) is the same as Run’(pk,W ′, x). Therefore
B is valid. By the fact that Cost(Run’, (pk,W ′, x)) ≫
Cost(Run, (W,x)) + Cost(A, (pk,W ′)) we know
that Cost(BA, (pk,W ′, x)) ≈ Cost(A, (pk,W ′)) +
Cost(Run, (W,x)) ≪ Cost(Run’, (pk,W ′, x)), which
shows that B is efficient. Therefore B is both valid and
efficient.

From the proof we know that B wins whenever A wins, so
we have

AdvWRec
Σ (D,A) ≤ AdvEffiInf

Σ (D,B) (8)

which gives EffiInf-Secure implies WRec-Secure.

W-IND-Secure implies WRec-Secure. Similarly by con-
traposition, we want to build an adversary B against W-IND-
Secure game for scheme Σ from an efficient adversary A
against WRec-Secure game under some feasible assump-
tions. Adversary B is constructed as follows.

BA(pk,W0,W1,W
′)

1 : W ←$ A(pk,W ′)

2 : if Same(W,W0) then return 0

3 : else return 1

The general idea is to first recover the original weight using
A and then distinguish the original weight. Similarly, we
need to prove that B is both valid and efficient.

Proof. We know that A is valid, meaning that the recov-
ered weight is the same as the original weight. Because
GameW-IND ensures that ¬Same(W0,W1), so we have ei-
ther Same(W0,W ) or Same(W1,W ). B runs with con-
stant extra steps compared with A. Since A is efficient, B
is also efficient. Therefore B is both valid and efficient.

From the proof we know that B wins whenever A wins, so
we have

AdvWRec
Σ (D,A) ≤ AdvW-IND

Σ (D,B) (9)

which gives W-IND-Secure implies WRec-Secure.

4. Case Study: Insecurity of TaylorMLP
To show how our security definition can be applied to the
analysis of real-world weight release schemes, we present
a case study on a recent scheme named TaylorMLP. In this
case study we will have a brief review of how TaylorMLP
works and then we present an attack against the weight-
recovery-security of TaylorMLP with experimental results.
We then discuss the implications of this attack.

4.1. TaylorMLP

Based on syntax of weight release schemes described in
§3.1, TaylorMLP can be seen as a weight release scheme
Σ = (Train,Run,KGen,Release,Run’), where

• Train is the original LLM training process on the train-
ing dataset.

• Run is the original LLM inference algorithm on the
input prompt using the original model weight.

• KGen is not instantiated with a meaningful algorithm,
and in this case Ksk and Kpk are both ∅.

• Release is the algorithm that converts MLP in LLM
weight into TaylorMLP format as is shown in Algo-
rithm 1.

5



Towards Provable (In)Secure Model Weight Release Schemes

Model OPT-125M OPT-1.3B OPT-2.7B OPT-6.7B Llama2-7B Llama2-13B

# TaylorMLP Parameters 28,311,552 402,653,184 838,860,800 2,147,483,648 1,442,840,576 2,831,155,200
# Recovered Parameters 28,310,784 401,649,665 837,347,840 2,144,915,459 1,442,840,576 2,831,155,200
Recovered Ratio 99.99% 99.76% 99.82% 99.88% 100.00% 100.00 %

Running Time 19.70 s 116.79 s 187.88 s 417.92 s 318.60 s 571.05 s
Attack Cost in USD 0.01 0.05 0.07 0.17 0.13 0.22

Table 1. Attack Performance. “# TaylorMLP Parameters” refers to the total number of weight parameters processed by TaylorMLP in the
model, while “# Recovered Parameters” denotes the number of weight parameters successfully recovered by our attack. “Recovered
Ratio” is defined as the proportion of weights that can be successfully recovered using our proposed method, whereas “successfully” is
defined as the relative error of the recovered weights is less than 1%. Relative error is calculated as |Wrec −W|/|W| · 100% where
Wrec denotes the recovered weights and W denotes the ground-truth weights.

Algorithm 1 Transforming MLP to TaylorMLP
Require: MLP(•|V,b,W, c) and z0
Ensure: TaylorMLP(•|V, z0, {Θi,0, · · · ,Θi,N}Di=1)

1: for i := 1 to D do
2: Wi and ci take the i-th row and i-th element of W

and c, respectively.
3: Θi,0 = Wi ⊙ Act(z0 + b) + ci
4: for n := 1 to N do
5: Θi,n = Wi ⊙ Act(n)(z0 + b)(n!)−1

6: end for
7: end for

• Run’ is a LLM inference algorithm on input prompt
using TaylorMLP format weight.

In short, TaylorMLP transforms (b,Wi, ci) into
(z0, [Θi,0,Θi,1, ...,Θi,N ]) by calculating

z0 =
zmax + zmin

2
(10)

Θi,n = Wi ⊙
Act(n)(z0 + b)

n!
(11)

where Act(n) is the n-th order derivative of activation func-
tion and zmax /min is the max /min value collected on
some test input. The correctness of TaylorMLP can be
shown below.

yi = Act(z + b) ·Wi + ci (12)

≈

〈
Wi,

N∑
n=0

Act(n)(z0 + b)

n!
⊙ (z− z0)

n

〉
+ ci

(13)

=

N∑
n=0

〈
Wi ⊙ Act(n)(z0 + b)(n!)−1, (z− z0)

n
〉
(14)

=

N∑
n=0

⟨Θi,n, (z− z0)n⟩ (15)

4.2. The weight recovery attack

The general idea is that while TaylorMLP introduces ran-
domness in z0, since most transformations are elementwise
and more parameters are added, it is possible to solve equa-
tions from the released weight to recover the original weight.
We present our attack for weight recovery as follows.

The attack. We start by transforming Equation 11, which
gives

Wi = (n!)Θi,n ⊙
1

Act(n)(z0 + b)
(16)

We can see that as long as we can solve for the value of b,
we can solve Wi given Act(n) is invertible in some range.
Note that we have multiple such equations. Consider a pair
(a, b) satisfying 0 ≤ a < b ≤ N , we have

Wi = (a!)Θi,a ⊙
1

Act(a)(z0 + b)
(17)

= (b!)Θi,b ⊙
1

Act(b)(z0 + b)
(18)

After rearranging, we get

(a!)Θi,a

(b!)Θi,b
=

Act(a)(z0 + b)

Act(b)(z0 + b)
(19)

Since this equation holds elementwise, for each element
of (z0 + b), we can obtain one equation. To simplify the

notation, we denote fa,b(x) =
Act(a)(x)

Act(b)(x) . Then we have

(a!)Θi,a[j]

(b!)Θi,b[j]
= fa,b((z0 + b)[j]) (20)

for j ∈ [D]. Considering that for most pairs (a, b), fa,b(x)
is expected to be invertible, we can recover (z0 + b) with
high probability, thus solving for the value of b, and conse-
quently recovering Wi.

6



Towards Provable (In)Secure Model Weight Release Schemes

Efficiency. The attack is efficient given Act is efficiently
invertible using numerical methods like Newton’s method.
For activation functions like SiLU and GeLU as used in the
original TaylorMLP paper, the attack takes O(N ·#Params)
time and space, which is efficient.

Numerical stability. In the real scenario for activation
functions like SiLU, fa,b(x) = Act(a)(x)

Act(b)(x) suffers from oc-
casional problems with floating point numerical stability
on some outlier weight values. This is partly due to the
widespread use of float16 in LLM inference and switching
to double-precision floating point numbers mitigates this
issue. However, due to the fractional nature of fa,b, some
outlier weight values can not be reliably solved due to nu-
merical stability issues, and this leads to a small portion
(< 1%) of weights that can not be recovered in practice,
which is discussed in our experiments.

4.3. Experiments

Experiment settings. Following the evaluation in the orig-
inal TaylorMLP paper, we choose OPT and Llama model
family to evaluate the effectiveness of our attack. We pro-
cess the MLP layers of each transformer block of the model
weights to get the released weight. We then implemented
our attack in Python 3 using numpy and scipy. We run the
attack to recover the MLP layer weights using the released
weight as input. All experiments were conducted on an x86
Linux machine equipped with 20 CPU cores and 128 GB of
memory without GPU acceleration.

We measure the number and ratio of successfully recovered
weight values as well as running time and estimated cost
of the attack. A weight value is considered recovered suc-
cessfully if its error compared with the original value is less
than 1%. Estimated cost is calculated based on the price of
instances from mainstream cloud providers that are compa-
rable to the x86 Linux machine used in the experiment.

Results. The results are shown in Table 1. In our ex-
periments, models from OPT and Llama of various sizes
consistently achieved recovered rates very close to 100%,
indicating that the relative error between Wrec and W is
negligible. Furthermore, due to differences in architecture
and weight distribution between the Llama-2 and OPT mod-
els, the relative error also varies. Specifically, the recovery
results for Llama-2 are noticeably better than those for OPT.

We measured the time required to recover the entire set of
model weights. As shown in our results, the OPT-125M
model requires less than 20 seconds, while the largest model
tested, Llama-2-13B, takes under 10 minutes. The recovery
process is quite efficient, even on a standard CPU machine.

We then roughly estimated the monetary cost associ-

ated with the weight recovery process. Referring to
m8g.8xlarge instance with a similar configuration on
AWS, the price is approximately $1.43616 per hour. There-
fore the highest cost among tested models is only $0.22 for
a successful attack for computation. This demonstrates that
the attack is cost-effective and feasible even for attackers
with limited budget in practice.

Additionally, we visualize the relative error between the
ground-truth weights and the recovered weights using a
heat map. As shown in Figure 2, the majority of errors
are extremely low, with only a few channels exhibiting
relatively larger errors. This demonstrates the effectiveness
of our recovery method, as it is able to accurately recover
most of the elements.
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Figure 2. Relative Error for recovered weights in OPT-1.3B. We
concatenate weights across all layers of the OPT-1.3B model along
the x-axis for comprehensive visualization. To enhance visual
clarity and emphasize variations, we apply a log10 scale to the
relative error values.

4.4. Takeaways

The attack demonstrates that TaylorMLP is vulnerable to our
weight recovery attack, thereby failing to provide weight-
recovery-security. From the security relations established in
§3.3, TaylorMLP consequently also fails to ensure efficient-
inference-security and weight-indistinguishability-security.
These results establish the insecurity of TaylorMLP as a
weight release scheme designed to protect model ownership
and prevent unauthorized use.

While the original TaylorMLP paper conducted detailed
evaluations of correctness and efficiency gaps, and claimed
that fine-tuning the released model is infeasible, the authors
did not formulate formal security definitions or provide
rigorous security proofs under reasonable assumptions. This
lack of formal security analysis led to unnoticed design
vulnerabilities that we successfully exploited in our attack.
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5. Design Principles for Future Weight Release
Schemes

Based on our security definitions and analysis of TaylorMLP,
we outline key principles for designing and evaluating future
weight release schemes.

Clear security goals. Current real-world weight release
schemes are usually exclusive, meaning that two weight
release schemes are generally not easily combined to hedge
the risk. For example, if a developer decides to protect the
model using TaylorMLP and has released the model in this
format, he or she may not easily switch to another scheme
given TaylorMLP is broken, thus the already released model
is now under threat.

Depending on typical use cases for developers, users and
adversaries, security goals can vary. While informal security
notions are not enough against real-world attacks, they are
a good starting point for sketching the security goals of
a weight release scheme. Future schemes should begin
with precise security definitions that specify the adversarial
model, threat capabilities, and desired security properties,
drawing from established cryptographic frameworks such
as digital signature schemes(Guo et al., 2023).

Provable security. To ensure robust security guarantees,
weight release schemes should provide formal security
proofs. A security proof requires: 1) formal syntax defining
the scheme’s algorithms, 2) explicit computational hardness
assumptions, 3) precise security definitions, and 4) rigorous
proofs using established techniques such as security reduc-
tions. Such proofs relate the scheme’s security to widely
accepted hardness assumptions, providing theoretical foun-
dations beyond informal arguments.

Offensive evaluation. Provable security alone is insuffi-
cient due to gaps between theoretical models and real-world
implementations(Koblitz & Menezes, 2007). Schemes re-
quire thorough offensive evaluation to identify potential
vulnerabilities before deployment. As demonstrated in our
TaylorMLP analysis, successful attacks serve as “proofs
of insecurity” that can invalidate informal security claims.
This adversarial testing reveals practical limits and guides
parameter selection for secure deployment.

Compatibility requirements. Beyond security, practi-
cal adoption requires compatibility with existing ML in-
frastructure. For example, the Run’ algorithm may inte-
grate seamlessly with mainstream inference frameworks to
avoid imposing additional implementation burdens on users.
Schemes that require specialized execution environments
or exotic data formats can face significant adoption barriers
regardless of their security properties.

6. Conclusion
We have taken a step toward establishing a rigorous theo-
retical foundation for secure weight release by formalizing
security definitions for weight release schemes. Our case
study of TaylorMLP reveals model weight recovery vulnera-
bilities, demonstrating that existing schemes fail to achieve
their informal security claims and highlighting the gap be-
tween promised and actual security guarantees.

We hope this work will advocate for rigorous research at the
intersection of machine learning and security communities.
By providing concrete security definitions and demonstrat-
ing their application, we establish a blueprint for designing
and evaluating future secured weight release schemes that
provide meaningful security guarantees rather than false
assurances.
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A. Analysis of numerical stability of SiLU/GeLU derivative.
The numerical stability of higher-order derivatives of the SiLU and GeLU activation function exhibits significant sensitivity
when evaluating ratios of derivatives. As demonstrated in Fig.3 and Fig.4, ratios of SiLU derivatives within the interval
[−10, 10] frequently encounter numerical instability, often resulting in large fluctuations or undefined values at various
points away from zero. While stability improves in the vicinity of zero due to more balanced numerical magnitudes, even
slight deviations or outliers in the input distributions can cause pronounced instabilities. Importantly, since different network
architectures and model sizes inherently produce distinct internal numerical distributions, the resulting numerical instabilities
manifest differently across these models, leading to varying degrees of reconstruction errors and inaccuracies. Therefore, the
numerical instability induced by varying distributions across different model architectures and scales inevitably introduces a
certain degree of error into our reconstruction method, underscoring the necessity for careful numerical considerations when
employing higher-order SiLU derivatives in analysis and optimization tasks.

B. Computational Infrastructure.
Table 2 provides details on the computational infrastructure and environment information.

Name Value

CPU Intel Core Ultra 7 265K
Memory 128GB

Data type torch.bfloat16

OS Debian GNU/Linux trixie/sid

Python 3.13.3
numpy 2.2.6
torch 2.7.1
transformers 4.52.4
scipy 1.15.3
matplotlib 3.10.3

Table 2. Configuration of experiment and computing infrastructure.
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Numerical Stability of SiLU Derivative

Figure 3. Numerical stability analysis of SiLU derivative ratios. Each subplot shows the ratio between SiLU derivatives from first to
fifth order, evaluated over the interval. Diagonal entries represent ratios of derivatives with themselves and therefore equal 1. Many
off-diagonal entries exhibit significant numerical instability, characterized by large fluctuations or extreme values, particularly away from
zero. These instabilities highlight potential sources of errors and inaccuracies in practical computations involving higher-order SiLU
derivatives.
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Figure 4. Numerical stability analysis of GeLU derivative ratios. Similar to SiLU, ratios between GeLU derivatives from first to fifth
order show numerical instabilities characterized by large fluctuations and extreme values, particularly away from zero. Although minor
differences exist, overall stability patterns closely resemble those observed for SiLU.
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