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Abstract—In recent years, Large-Language-Model-driven AI
agents have exhibited unprecedented intelligence, flexibility, and
adaptability, and are rapidly changing human production and
lifestyle. Nowadays, agents are undergoing a new round of
evolution. They no longer act as an isolated island like LLMs.
Instead, they start to communicate with diverse external entities,
such as other agents and tools, to collectively perform more
complex tasks. Under this trend, agent communication is regarded
as a foundational pillar of the future AI ecosystem, and many
organizations intensively begin to design related communication
protocols (e.g., Anthropic’s MCP and Google’s A2A) within the
recent few months. However, this new field exposes significant
security hazard, which can cause severe damage to real-world
scenarios. To help researchers to quickly figure out this promising
topic and benefit the future agent communication development,
this paper presents a comprehensive survey of agent communica-
tion security. More precisely, we first present a clear definition of
agent communication and categorize the entire lifecyle of agent
communication into three stages: user-agent interaction, agent-
agent communication, and agent-environment communication.
Next, for each communication phase, we dissect related protocols
and analyze its security risks according to the communication
characteristics. Then, we summarize and outlook on the possible
defense countermeasures for each risk. Finally, we discuss open
issues and future directions in this promising research field.

Index Terms—large language model, AI agent, agent commu-
nication, attack and security

I. INTRODUCTION

The emergence of Large Language Models (LLMs) has
led to revolutionary advancements in Artificial Intelligence
(AI), exhibiting unprecedented capabilities in understanding
complex tasks [308]. More importantly, LLMs greatly boosted
the ideal form of AI that human expects: agents1. Different
from LLMs that are mainly like chat bots, agents possess
more comprehensive capabilities (e.g., perception, interaction,
reasoning, and execution), enabling them to independently
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1In this paper, all agents refer to LLM-driven AI agents.
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Fig. 1. The comparison between traditional Internet and Internet of Agents
(IoA). In traditional Internet, users need to manually visit different websites
to finish a travel, which is cumbersome. With Internet of Agents, users only
need to assign a task to their agent, which will communicate with the agents
of different companies (e.g., hotel and train companies) to automatically finish
a best travel plan.

complete a real-world task. For example, when users seek
to make a travel plan, LLMs can only provide the best plan
in text, while agents can realize the best plan in action,
such as checking the weather, buying tickets, and booking
hotels. Agents greatly speed up the progress of the intelligence
transformations of enterprise. Their market size is respected to
increase by 46% per year [222]. It can be foreseen that agents
will subvert the production and living patterns of modern
society, greatly changing the future business landscape. As
a result, developing and promoting agents have become the
strategic planning of major powers and influential companies.

Now, agents are evolving towards the direction of domain-
specific entities, i.e., being customized for specific scenarios
and tasks. In this context, as shown in Figure 1, a task
usually requires the collaboration of multiple agents, which
may locate globally on the Internet. Under this condition,
agent communication becomes the foundation of the future
AI ecosystem. It enable agents to find other agents with
specific capabilities, access external knowledge, assign tasks,
and achieve other interactions. Based on the vast market of
agent communication, an increasing number of communities
and companies are seizing the opportunity to contribute to
the development of agent communication. In November, 2024,
Anthropic proposed Model Context Protocol (MCP) [16],
a universal protocol that allows agents to invoke external
environments, such as datasets, tools, and APIs. MCP quickly
gained a great deal of attention in the recent few months. Up
to now, hundreds of enterprises have announced their access
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to MCP, such as OpenAI [203], Google [87], Microsoft [53],
Amazon [21], Alibaba [10], and Tencent [251], and MCP’s
package receives over 3 million weekly downloads [17]. In
April 2025, Google proposed Agent to Agent Protocol (A2A)
[218], which enables seamless communication and collabo-
ration among agents. Since its release, A2A has received
extensive supports from many enterprises, such as Microsoft
[188], Atlassian [149], and PayPal [229]. It can be seen that
the breakthroughs in agent communication are bringing rapid
and profound changes and will become an indispensable part
of the AI ecosystem.

However, the rapid development of agent communication
also introduce complex security risks that could cause severe
damage in the AI ecosystem. For example, the collaboration
of cross-organization agents significantly enlarging the attack
surface, causing severe security risks, including but not lim-
ited to privacy leakage, agent spoofing, agent bullying, and
Denial of Service attacks. Since the research related to agent
communication is still in the nascent stage, it urgently needs
a systematic review of the security problems existing in the
complete agent communication lifecycle. Following this trend,
this paper aims to provide a comprehensive survey of existing
agent communication techniques, analyze their security risks,
and discuss possible defense countermeasures. We believe this
work can help a broad range of readers, such as researchers
who devote to agent development and beginners who just start
their journey in AI.

The contributions of this paper are as follows:
• We present the first systematic overview of agent com-

munication. Specifically, we propose a definition of agent
communication for the first time, and classify it into
three stages based on the communication object: user-
agent interaction, agent-agent communication, and agent-
environment communication. This classification covers
the entire lifecycle of agent communication, and the
protocols in the same stage exhibit similar attack surfaces,
which can help future studies to analyze and evaluate their
work more conveniently.

• We make in-depth analyses of the security risks in the
evolvement of agent communication, discussing the dis-
covered attacks and those that have yet not been revealed.
Our analyses show that user-agent interaction mainly
suffers from threats from faulty and malicious user inputs,
agent-agent communication faces significant attacks from
other agents and in-the-middle adversaries, and agent-
environment communication can be easily impacted by
compromised external tools and resources.

• We detailedly discuss the targeted defense countermea-
sures for mitigating the exposed security risks, point-
ing out the possible development directions. For user-
agent interaction, effective filter of multimodal inputs
is necessary; agent-agent communication needs powerful
mechanisms to monitor, archive, audit, and quantify the
responsibility of actions in agent collaboration; agent-
environment communication should be protected by pow-
erful detection of poisoned external environments.

• We finally discuss the open issues and future research
directions. We not only point out the much needed
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Fig. 2. The organization of this survey.

techniques that can defend agent communication, but also
explained that related laws and regulations should be
improved as soon as possible. Only when both aspects
develop simultaneously can the security of agent com-
munication in practice gets guaranteed.

Organization. As shown in Figure 2, we organize this survey
as follows. Section II compares the most relevant surveys with
this paper and outlines the novelties in this survey. Section III
introduces the preliminaries of this survey. Section IV presents
a definition and classification of agent communication. Section
V introduces user-agent interaction protocols and analyzes
related security risks and defense countermeasures. Section VI
exhibits agent-agent communication protocols, related security
risks, and corresponding defense countermeasures. Similarly,
Section VII shows the protocols, risks, and defenses for user-
environment communication. In Section VIII, we discuss the
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TABLE I
COMPARISON BETWEEN DIFFERENT SURVEYS, WHERE “MOTI.” REFERS TO THE MOTIVATION OF PROPOSING AGENT COMMUNICATION; “DEFI.” REFERS

TO THE DEFINITION OF AGENT COMMUNICATION; “CLAS.” REFERS TO THE CLASSIFICATION OF AGENT COMMUNICATION OR PROTOCOLS; “U-A”
REFERS TO USER-AGENT INTERACTION; “A-A” REFERS TO AGENT-AGENT COMMUNICATION; “A-E” REFERS TO AGENT-ENVIRONMENT

COMMUNICATION; “SECU.” REFERS TO SECURITY; “COMM.” REFERS TO COMMUNICATION; “RESEARCH OBJECT” DENOTES THE THEME OF A SURVEY;
“AGENT COMMUNICATION” DENOTES WHETHER A SURVEY CONCENTRATE ON AGENT COMMUNICATION; “PROTOCOL COVERAGE” DENOTES WHETHER

A SURVEY INCLUDES COMPREHENSIVE AGENT COMMUNICATION PROTOCOLS; “SECURITY ANALYSES” DENOTES WHETHER A SURVEY ANALYZES THE

SECURITY RISKS OF DIFFERENT AGENT COMMUNICATION STAGES; “DEFENSE PROSPECT” DENOTES WHETHER A SURVEY ANALYZES THE POSSIBLE

DEFENSES FOR DIFFERENT AGENT COMMUNICATION STAGE; “RELE.” REFERS TO THE DEGREE OF RELEVANCE BETWEEN A SURVEY AND THIS SURVEY,
WHERE THE HIGHER THE SCORE, THE MORE RELEVANT IT IS; ✗: NOT DISCUSSED IN THIS SURVEY; ✓–: MENTIONED BUT NOT A MAIN FOCUS OR NOT

DISCUSSED COMPREHENSIVELY IN THIS SURVEY; ✔: COMPREHENSIVELY DISCUSSED IN THIS SURVEY.

Survey Year Research Object Rele.
Agent Communication Protocol Coverage Security Analyses Defense Prospect
Moti. Defi. Clas. Clas. U-A A-A A-E U-A A-A A-E U-A A-A A-E

[161] 2024 Personal Agent 4 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓– ✗ ✗ ✓– ✗ ✗

[72] 2024 Agent Secu. 5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✗ ✓– ✔ ✗ ✓–

[153] 2025 Agent Secu. 5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✓– ✗ ✔ ✓– ✗

[133] 2025 Agent Secu. 5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓– ✔ ✓– ✓– ✔ ✓–

[52] 2025 Agent Secu. 5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✓– ✓– ✔ ✓– ✓–

[98] 2025 Agent Secu. 5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓– ✗ ✓– ✓– ✗ ✓–

[276] 2025 General IoA 5 ✗ ✗ ✗ ✗ ✗ ✓– ✓– ✗ ✓– ✓– ✗ ✓– ✓–

[93] 2024 Agent Secu. 5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✗ ✓– ✔ ✗ ✓–

[298] 2025 Agent Comm. 6 ✗ ✗ ✔ ✔ ✗ ✗ ✗ ✓– ✓– ✓– ✓– ✓– ✓–

[277] 2025 Agent Secu. 6 ✗ ✗ ✗ ✗ ✗ ✓– ✓– ✓– ✔ ✔ ✓– ✔ ✔

[263] 2025 General Agent 6 ✗ ✗ ✗ ✗ ✗ ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

[278] 2024 Agent Secu. 6 ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✗ ✓– ✔ ✗ ✓–

[69] 2025 General Agent 6 ✗ ✗ ✗ ✗ ✗ ✓– ✓– ✗ ✓– ✓– ✗ ✗ ✗

[228] 2025 Agent Comm. 7 ✓– ✗ ✗ ✗ ✗ ✗ ✓– ✗ ✗ ✓– ✗ ✗ ✗

[306] 2025 Agent Secu. 7 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓– ✓– ✓– ✓– ✓– ✓–

[86] 2025 Agent Secu. 7 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✗ ✗ ✔ ✗

[299] 2025 Agent Comm. 8 ✔ ✗ ✔ ✔ ✓– ✓– ✓– ✗ ✗ ✗ ✗ ✓– ✓–

[137] 2025 Agent Comm. 8 ✗ ✗ ✗ ✗ ✗ ✗ ✓– ✗ ✗ ✓– ✗ ✗ ✓–

[239] 2025 Agent Comm. 8 ✗ ✗ ✗ ✗ ✗ ✗ ✓– ✗ ✗ ✓– ✗ ✗ ✓–

[220] 2025 Agent Comm. 8 ✗ ✗ ✗ ✗ ✗ ✓– ✗ ✗ ✓– ✗ ✗ ✓– ✗

[62] 2025 Agent Comm. 8 ✗ ✗ ✗ ✗ ✗ ✓– ✓– ✗ ✓– ✓– ✗ ✓– ✓–

[101] 2025 MCP Security 8 ✗ ✗ ✗ ✗ ✗ ✗ ✓– ✗ ✗ ✔ ✗ ✗ ✔

This survey Agent Comm. Secu. / ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

open issues and future research direction. Section IX concludes
this survey.

II. RELATED WORK

A. Overview of Novelties in This Survey

Table I summarizes the characteristics of the most relevant
surveys and the differences between this survey and previous
surveys. In summary, this surveys exhibit the following nov-
elties:

• This survey presents a comprehensive illustration of
agent communication. Specifically, it explains why the
current agent ecosystem needs communication (i.e., the
predicament faced by a single agent, Section IV-A), gives
the definition of agent communication (Section IV-B),
and proposes a novel classification principle based on
communication entity, which can cover the entire lifecyle
of agent communication (Section IV-C). As a result,
future studies can be included and categorized according
to our survey seamlessly, which benefits the systematic
study and development of this field.

• This survey exhibits a comprehensive illustration of the
existing protocols related to different agent communica-
tion stages (Sections V-A, VI-A, and VII-A), including
newly proposed and previously neglected protocols that

have not been discussed by other surveys. Besides, we
categorize these protocols based on their architecture and
summarize corresponding characteristics, rather than me-
chanically listing each protocol. This organization method
can allow any researchers interested in this field quickly
establish a preliminary but comprehensive understanding
of agent communication.

• This survey makes an in-depth analysis of the found and
potential security risks that have not been revealed for
each agent communication stage (Sections V-B, VI-B,
and VII-B). We introduce both the vulnerability from
which attacks derive and typical attack examples, system-
atically pointing out the drawbacks of the current agent
communication. To our knowledge, there have not been
studies mainly focusing on the security risks of agent
communication.

• This survey throughly outlooks on the possible defense
countermeasures (Sections V-C, VI-C, and VII-C) that
can make future agent communication more secure and
reliable, covering the whole lifecycle of agent communi-
cation, which is not achieved by previous surveys.
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B. Selection Principles of the Most Relevant Surveys

Challenge. Our survey aims at comprehensively studying
the protocols, related security risks, and possible defenses of
agent communication. However, there are a lot of surveys that
seem relevant but are actually different in essence. Listing
these surveys is not conducive to readers’ understanding of
this field as efficiently as possible, especially for those who
want to read the original texts of these surveys.

To solve this challenge, when selecting the most relevant
surveys, we focus on three principles: LLM-driven agents,
agent communication, and security. However, to our knowl-
edge, there have not been papers systematically discuss all of
these three themes. As a result, as long as a survey meets
two of the three principles, we will treat it as a relevant
survey.

• Principle #1: LLM-driven agents. The first and the most
important is that the research object of a survey must
be LLM-driven agents. This principle must be satisfied.
This is because there have been many studies about
multi-agent systems (MAS) before the emergence of
LLMs. These agents have completely different cores and
characteristics from LLM-driven agents, so discussing
them benefits very little to this survey. Besides, surveys
focusing on only LLMs instead of LLM-driven agents
are also not listed in Table I (but we will draw on
their valuable insights in other sections). This is because
LLMs shows significant difference from agents, which we
make a detailed illustration in Section III-C. As a result,
researching LLM-driven agents is the most important
principle.

• Principle #2: agent communication. The second prin-
ciple is that a survey focus on or partially discuss agent
communication, especially including some typical agent
communication protocols such as MCP. This is because
agent communication is very different from agent. How-
ever, if a survey satisfies the other two principles (i.e.,
LLM-driven agents and security), we still treat it as a
relevant survey.

• Principle #3: security. The final principle is that a
survey focus or partially discussed agent-related security.
This is because we believe that the security risks of
agents still have meaning to the security risks of agent
communication. The former is usually a subset of the
latter, i.e., agent communication shows novel and more
attack surfaces compared to agent.

Relevance Score. As a result, we can find that there are
two main types of relevant surveys: LLM-driven agents +
communication, or LLM-driven agents + security. As shown
in Table I, we list a relevance score for each survey. The
higher the score, the more relevant we think it is to our survey.
This score is subjectively derived by us after carefully reading
the paper and does not have an objective calculation method.
This is because we found that the forms of surveys are highly
diverse, and it is hard to accurately classify them using merely
several metrics. As a result, we directly present the score based
on our subjective feelings when reading these surveys.

C. Detailed Comparison with the Most Relevant Surveys

In this section, we will detailedly compare the most relevant
surveys in Table I with our survey.

Survey [161] focuses on personal agents that deeply inte-
grate personal data and devices, exploring their potential as
the main software paradigm for future personal computer. It
only partially mentions the security risks related to personal
agents in a section. Besides, these risks only belongs to the
user-agent interaction phase. It also does not discuss agent
communication and related security risks and defenses. Survey
[72] focuses on agent security instead of agent communication
security. It is a security-specific paper, so its discussion of
security is more comprehensive compared to [161]. However,
the main body of its discussion is about the interaction between
user and agent (U-A), without enough considerations about
agent-agent (A-A) or agent-environment (A-E) interaction,
which have significantly different characteristics. Besides, it
also does not include any protocols related to agent commu-
nication. Survey [153] also focuses on agent security instead
of agent communication security, which is similar to [72]. This
survey focuses on single-agent systems and partially discussed
multi-agent collaboration. It does not consider agent commu-
nication, related protocols, and enough security analyses about
A-A and A-E. Survey [133] systematically summarizes seven
security challenges for multi-agent systems. As shown in Table
I, its main focus in on A-A, and only partially discusses U-
A and A-E, which is not comprehensive. Besides, it does not
consider agent communication and related protocols. Survey
[52] propose four knowledge gaps faced by agents, which
mainly fall within U-A, partially discussing A-A and A-E.
Besides, it does not consider agent communication or any
related protocols. The defense prospect is also limited. Survey
[98] focuses on the security risks of U-A and A-E, such
as malicious API. It does not consider agent communica-
tion and related protocols. Besides, its security analyses are
also not comprehensive enough. Survey [276] focus on the
fundamentals, applications, and challenges of IoA. Since its
focus is different, agent communication and related security
are only partially mentioned. Specifically, it only introduces
a few related protocols and briefly makes an analysis about
related security. Besides, it also lacks the related illustration
(such as definition and classification) of agent communication.
Survey [93] also concentrates on the security of U-A, partially
discussing A-E. It does not mention agent communication
and related protocols, as well as the risks of A-A. Survey
[298] focus on agent communication architecture, which is
a study of agent interaction mechanisms from a high-level
and abstract view. Besides, it only partially mentioned related
security, and did not discuss any communication protocols.
Survey [277] focuses on the security of IoA. It mentioned a
few agent communication protocols (i.e., MCP, A2A, ANP,
and Agora), neglecting many other important protocols. Be-
sides, it lacks the motivation, definition, and classification of
agent communication, and also does not classify protocols.
According to our analyses, the security analyses (especially
for U-A) are also not comprehensive enough. Survey [263]
propose the concept of “full stack safety” of agents, providing
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comprehensive analyses of data preparation, pre-training, post-
training, deployment, and commercialization. It does not focus
on agent communication security. As a result, this survey did
not give a clear illustration of agent communication, only
mentioned a few protocols (i.e., MCP, A2A, ANP, and Agora),
and partially discussed related threats and countermeasures.
Survey [278] gives a comprehensive analyses of the security of
agent networks. However, it does not include the discussion of
communication protocols, and lacks enough security analyses
of A-A and A-E. Survey [69] does not focus on security.
Instead, it concentrates on evaluating LLMs and agents. Be-
sides, it also analyzes the architecture of some communication
protocols (i.e., MCP, A2A, and ANP). We can see that it does
not give a detailed illustration of agent communication, enough
coverage of protocols, or comprehensive discussion about
security. Survey [228] focuses on MCP, detailedly analyzed
related architectures and applications. It does not consider
other communication protocols and only partially mentioned
security-related contents. Survey [306] analyzed the threats of
agents and dividing them into two categories (intrinsic and
extrinsic), partially covering U-A, A-A, and A-E. However,
its analyses are not comprehensive enough, and it did not
mention any communication protocols. Survey [86] makes a
comprehensive analyses of the risks for multi-agent systems.
However, its focus only fall within A-A, not considering U-A,
A-E, and related protocols.

Survey [299] is one of the surveys with highest rele-
vance scores because it focuses on agent communication and
analyzes related protocols. However it still have significant
differences from our survey. First, it lacks some critical pro-
tocols like AG-UI, ACP-AgentUnion, ACN, Agent Protocol,
API Bridge Agent, and Function Calling. Second, it lacks
analyses of security threats. Third, its defenses prospect is
limited. Survey [137] focuses on the influences of MCP. As a
result, it lacks other protocols, the illustration of agent com-
munication, and security-related discussion. Similarly, survey
[239] also focuses on MCP. It lacks illustrations of other
protocols and comprehensive security analyses. Survey [220]
comprehensively introduces A2A, lacking discussion about
other protocols and security analyses. Survey [62] detailed
discussed MCP, A2A, ANP, and ACP(-IBM). It also partially
analyzed related security risks and defenses. However, there
still lacks other protocols, in-depth security analyses, and
systematic illustration of agent communication. Hou et al.
[101] discussed the security risks of MCP. They did not
consider other protocols and the high-level overview of agent
communication.

III. LLM-DRIVEN AI AGENTS

In this section, we review the entire lifetime from LLM
to LLM-driven AI agent. Our goal is to help beginners to
quickly figure out agents, their characteristics, relationships,
and applications.

A. Large Language Model

Large Language Model (LLM) is a new type of artificial
intelligence (AI) model trained on large-scale text corpora

TABLE II
COMPARISON OF MODEL ARCHITECTURES AND PARAMETER SCALES.

Architecture Model Year Parameters
FNN MLP 1990s 100K
FNN LeNet-5 [146] 1998 60K
RNN Elman Net [64] 1990 100K

LSTM LSTM [99] 1997 1–10M
CNN ResNet-50 [94] 2015 25M
CNN AlexNet [138] 2012 60M
CNN VGG-16 [238] 2014 138M
GAN DCGAN [215] 2016 4M
GNN GCN [132] 2017 23K

Autoencoders DAE [259] 2008 100K
Autoencoders VAE [131] 2013 1M
Transformer GPT-3 [25] 2020 175B
Transformer PaLM [39] 2022 540B
Transformer GPT-4 [4] 2023 1T
Transformer DeepSeek-V3 [165] 2024 671B
Transformer DeepSeek-R1 [85] 2025 671B

LLM: Reasoning 
and Planning

Perception

Text

Voice

Picture

Task decomposition

Chain of thought

Reflection

Memory

Plan selection

Action

Short-term Memory

Long-term Memory

Tools

Computing Web Calendar Shopping Coding Moving

Fig. 3. A typical architecture of LLM-driven agents.

to understand and generate human language [200]. Once it
came out, LLMs have demonstrated unprecedented capabilities
across a wide range of domains, including but not limited to
natural language understanding and generating [311], logic
reasoning [212], [281], [339], code generation [325], and
translation [209]. These remarkable performances can be at-
tributed to two major factors. One is that LLMs are built
upon a powerful architecture known as the Transformer [258],
which effectively models and captures contextual dependen-
cies between tokens and dynamically weighs the importance
of different parts of the input. The other key factor, perhaps
the most important one, is the massive scales of LLMs that
far exceeds traditional AI models. When model parameters
surpass certain thresholds, LLMs exhibit emergent abilities
[280], referring to unexpected capabilities that do not appear in
smaller models. As shown in Table II, the parameter scale of a
LLM can be hundreds or thousands of times that of traditional
AI models.

B. LLM-Driven AI Agents

Figure 3 illustrates a typical architecture of LLM-driven
agents. Different from LLMs that mainly act as chat bots and
do not possess professional ability in specific domains, agents
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are designed to automatically help human to finish specialized
tasks. To this end, agents are equipped with multiple modules
to become more all-powerful. As shown in Figure 3, there
are usually five modules in agents: perception, memory, tools,
reasoning, and action.

• Perception module. To automatically finish a specified
task, agents need the ability to perceive the real-world
environment. For example, the autonomous driving agent
needs to sense road conditions in real time so as to
take actions such as avoiding, driving, or braking [179],
[183]. The type of perception ability depends on the
domain for which the agent is designed. For instance,
an autonomous driving agent need the ability of visual
or radar perception [244], [302], while a code-generating
agent may not require such functions [106], [114].

• Memory module. The processing of real-world tasks also
require the strong ability of memory. Agents need to
have long-term memory to store complex instructions,
knowledge, environment interaction history, or other data
that may be required in future steps [92], [180], [309].
This usually require external storage resources to assist
the brain, such as database or memory sharing [75], [77].
In contrast, LLMs do not have such an excellent memory
ability. Their memory is short-term, which only lasts for
rounds of conversations [266], [340].

• Reasoning and planing module. LLM acts as the brain
of agents due to its excellent ability of reasoning and
planing. It intercepts the instructions from users and
automatically decompose the received task into multiple
feasible steps [117], [129], [240], [273]. Then, it selects
a best plan from different candidates [103], [126], [336].
Besides, it also revises strategies based on environmental
feedback, mitigating errors like code bugs or logical
inconsistencies [221], [257], [286], [344]. For example,
when the autonomous driving module finds that the
barrier is closer, it will changes the plan to slow down or
detour.

• Tool module. The tool module is responsible for deeply
integrating external resources with the cognitive capa-
bilities of the agent, enabling it to perform complex
operations beyond the native capabilities of LLM [158],
[175], [285], [312]. For example, through predefined
functional interfaces and protocols, a math agent is able
to invoke the external computation libraries and symbolic
solvers to help it solve mathematical problems [82].

• Action module. The action module is the core hub for
the interaction with the environment. It is responsible for
converting the decisions made by LLMs into executable
physical or digital operations and obtaining feedback
[272], [326]. This module ensures the executability of
instructions through structured output control. For exam-
ple, it immediately stops generating when LLM generate
a complete action description to avoid redundant output
interfering with subsequent parsing.

By integrating the above modules, agents establishes a
closed-loop system that achieves a full chain of perception-
decision-action-feedback. As a result, agents achieve unprece-

TABLE III
COMPARISON BETWEEN AGENTS AND LLMS. A MEANS WORSE, WHILE

A MEANS BETTER.

Metric LLM Agent
Autonomy Prompt-dependent Autonomous

Multimodal interaction Limited Strong
Tool Invocation Simple API Various tools

Hallucination inhibition Weak Strong
Dynamic adaptability Limited Strong
Collaboration ability Limited Strong

Security Better Worse

dented ability in automatically finishing domain-specific tasks,
being closer to the ultimate form of AI that human expects.

C. Comparison Between Agents and LLMs

Table III illustrates the advantages of agents over LLMs on
different metrics. Overall, agents have many advantages over
LLMs except security.

• High Autonomy. LLMs can only passively react to the
user prompts and then generate responses. They are
unable to plan or execute tasks independently. Besides,
the response quality highly rely on the prompt skill [29],
[63], [80], [167], [191], [283], [343], which seriously
affects the user experience. In contrast, agents possess
independent capabilities for task decomposition, strategy
adjustment, and external tool invocation, which breaks
through the passive mode of LLMS and is highly au-
tonomous.

• Flexible Multimodal interaction. LLMs have limited
capability of handling multimodal inputs, such as text and
pictures [144], [227], [319], [323], [343], [346]. Besides,
their outputs are also mainly single-modal (e.g., text-only
or picture-only), lacking the ability to actively invoke
tools to perform physical actions or generate multimodal
content. In contrast, agents overcome this drawbacks by
deploying multimodal perception frameworks and tool
invocation interfaces. They can realize interactions with
complex environments, including vision, text, voice, and
other physical elements.

• Abundant Tool invocation. LLMS usually passively
invoke a single tool (such as Function Calling [202])
through predefined API interfaces and can only perform
fixed operations as instructed (e.g., calling the weather
API to answer queries [318]). In contrast, agents have the
ability of active decision-making. They can independently
select, combine and dynamically adjust multiple tools,
such as connecting crawlers, databases, and visualization
tools, to generate responses [97].

• Better Hallucination inhibition. LLMs suffer from a
serious problem called hallucination, which refers to that
LLMs are likely to generate non-existent knowledge [84],
[108], [160], [256], [296], [329]. LLMs mainly rely on
the knowledge internalization of training data, making
them prone to hallucinations when facing uncovered do-
mains or outdated information. In contrast, agents are able
to reduce the error rate by integrating multiple techniques
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such as Retrieval Augmentation Generation (RAG) [79],
[151], [335] or other methods, which can align the action
of agents [74], [252].

• Dynamic adaptability. Essentially, LLMs are static mod-
els whose knowledge is fixed at the training phase.
Although techniques such as fine-tuning [105], [164],
[315] or model editing [162], [265], [270], [303], [322]
reduce the training cost significantly, LLMs still can-
not adapt to real-time events well. In contrast, agents
are equipped with techniques like on-line web search,
database query, or real-time sensors, which make them
able to dynamically adapt to the changes of real-time
environments and information.

• Stronger Collaboration ability. LLMs lack enough col-
laboration ability when handling complex tasks. First,
LLMs cannot interact with tools well, they can only
access limited external assistance via simple API. Second,
different LLMs lack effective cooperation mechanisms.
In contrast, agents have designs for multi-agent collabo-
ration. For example, MCP enables agents to use unified
integration of external tools, and A2A allows agents from
different enterprises to cooperatively finish a task.

• Worse Security. Agents have WORSE security than
LLMs, which is a major weakness of agents. This is
because LLMs are only capable of outputting text. Even
if the outputs contain illegal or discriminatory contents,
their influences to the real world are limited. In contrast,
since agents are endowed with the ability to invoke
tools, they can cause substantial damages to the real
world, including but not limited to maliciously/wrongly
operating machines, poisoning databases, and paralyzing
the system. As a result, it is necessary to concentrating
more on the security of agents.

D. Agent Applications

Due to the strong advantages that agents have shown, related
applications are booming. They span multiple domains, from
scientific research to engineering systems and social services.
Since the application of agents is not the focus of this paper,
we will present an brief overview of their practical use cases
to illustrate the rapid popularization of agent.

Scientific Research. Agents are increasingly embedded
into the research workflow, enhancing ideation, automation,
and discovery. Their contributions span multiple disciplines,
such as mathematics [51], [150], [267], [293], chemistry [23],
[38], [46], [226], biological sciences [166], [290], [294], and
materials Science [140], [185], [208]

Technical and Engineering Systems. Agents play a grow-
ing role in engineering domains, improving automation, sys-
tem and software intelligence. For example, agents are widely
used in software engineering, assisting in code generation, bug
localization, verification, and system configuration [33], [104],
[115], [128], [176], [262]. Besides, agents are also popular
in game development and simulation [189], [241]. Embodied
intelligence is also another hot topic [32], [182].

Social Governance and Public Services Agent are increas-
ingly deployed in sectors focused on public service and human

welfare. For example, agents are now widely used in the legal
field to help draft contracts, review legal documents, check
compliance rules, and analyze cases [111], [187], [253], [254].
Besides, other fields, such as financial services [67], [88], [89],
[155], [201], [300], [310], education [55], [59], [181], [194],
[245], [269], and healthcare [19], [31], [68], [113], [148],
[225], [271], [279], [327], are also actively integrating agents
into their respective practices.

Overall, it can be seen that agents are being widely applied
in all walks of life, greatly promoting the development of
productivity. More importantly, the application of agents is still
in its infancy and has an even greater space for development
in the future. It is estimated that the agent market will grow at
a rate of 40% annually and is expected to exceed 216.8 billion
dollars by 2035 [14].

E. Takeaways

Agents show multiple advantages over LLMs on multiple
metrics, such as richer perception ability, stronger learning
ability, and higher adaptivity. Now, agents are quickly de-
ployed in various domains, providing unprecedented assistance
to different groups. Especially, to improve the service quality,
agents are evolving towards refinement to obtain professional
skill in a small domain, no longer pursuing the comprehensive
capabilities like LLM. In contrast, LLMs are more like an
intermediate transitional form of the future intelligence, while
agents are the next stage development direction of artificial in-
telligence. It can be foreseen that they will ultimately become
indispensable components of future production ecosystems
and daily life. However, agents show worse security than
LLMs due to its capability of executing tools. As a result,
studying the security of agent communication is significant to
the AI ecosystem.

IV. AGENT COMMUNICATION OVERVIEW

A. Motivation: The Demand for Agent Communication

Although the advantages of agents in various fields have
become increasingly obvious, their development has also en-
countered new obstacles, which has given rise to the demand
for agent communication.

Conflicting development trends. The first reason derives
from the fundamental conflict between the refined development
of agents and the abstract demands of users. With the in-
depth and specialized evolution of agents towards vertical
fields (such as medical diagnostic agents, financial risk con-
trol agents, and industrial control agents), their capability
boundaries are becoming increasingly refined. However, users’
usage habits exhibit opposite characteristics: they tend to input
simple and abstract instructions (such as “plan a cross-border
travel”) to trigger the execution of complex tasks. It is hard
for a domain-specific agent to finish such abstract instructions
independently. Besides, this trend of users’ habits is hard to be
reversed. This is because people always prefer applications that
are easy to operate rather than those that require cumbersome
usage steps. The latter is at a disadvantage in the market
competition. Usually, for each additional operation step, the
user churn rate increases by 10% - 20%. Therefore, agents
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Fig. 4. A complete agent communication process and its division: user-agent interaction, agent-agent communication, agent-environment communication.

should not only NOT ask users to make changes, but also
cater to such demands of users, which is contrary to to the
development direction of agents.

Closed ecosystem. The current mainstream multi-agent
systems adopt a closed ecosystem design and rely on private
interaction mechanisms, forming a rigid technical barrier. This
development paradigm severely limits the dynamic collabora-
tion capabilities with external systems. For example, external
agents cannot be actively discovered or invoked, making
it extremely hard for cross-platform collaboration. Besides,
such closed ecosystem further triggers a decline in systemic
effectiveness. On one hand, agents loses scalability due to
binding private tools. On the other hand, the obstruction of
cross-platform knowledge sharing suppresses the intelligence
of agents. As a result, it is necessary to propose agent com-
munication mechanisms that integrate agents from different
communities.

B. Agent Communication Definition

To tackle these conflicts, agent communication is urgently
demanded. Specifically, agents need to collaborate with a
series of external entities to finish user tasks. In this paper, we
present a clear definition of agent communication as follows:

When an agent complete tasks, it conducts multimodal
information exchange and dynamic behavior coordi-
nation with diversified elements through standardized
protocol frameworks, and finally return the results to
the user. The communication behaviors in this process
all belong to agent communication.

It can be seen that agent communication has the following
conditions:

• Agent communication is task-driven. All types of agent
communication must be invoked under the condition
that users assigned a task. Although in some scenarios,
the instructions received by agents are from another
agent instead of users, these invoking processes can also
be traced back to an original user instruction finally.
Therefore, such communication is also regarded as agent
communication. In contrast, for example, when no user
tasks are generated, the update of the database or the syn-
chronization of the distributed databases is not regarded
as agent communication.

• One of the communication objects must be an agent.
Agent can communicate with different elements, such
as tools, users, or other agents. As long as one of
the communication objects is agent, this communication
is regarded as agent communication. In contrast, for
example, if users directly query the database to refine
their instructions before submitting to agents, this user-
database interaction is not regarded as agent commu-
nication. If the invoked tool call other tools (e.g., a
computation tools calls other libraries), this process is
not agent communication.

Communication behaviors satisfying the above conditions
can be regarded as agent communication.

C. Agent Communication Classification

Based on the object of communication, we divide agent
communication into three classes: user-agent, agent-agent,
agent-environment. We will use Figure 4 as a typical example
to systematically overview the complete lifecycle of agent
communication.

1) User-Agent Interaction: User-agent Interaction refers
to the interaction process in which agents receive user instruc-
tions and feed back execution results to the user. As shown
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in Figure 4, the user issues a task to an agent in step 1, i.e.,
make a travel plane to Beijing. The agent conducts a series of
actions to complete this task and finally sends the result to the
user in step 7. Please note that the interaction process between
users and agents is fundamentally similar to interacting with
LLMs. Therefore, we adopt the term interaction rather than
communication.

2) Agent-Agent Communication: Agent-agent communi-
cation is the communication process in which two or more
agents conduct negotiation, task decomposition, sub-task allo-
cation, and result aggregation for the collaborative completion
of user-assigned tasks through standardized collaboration pro-
tocols. In Figure 4, the agent decomposes the travel task and
assign sub-tasks (step 3). For example, this task is decomposed
into searching scenic spots, checking weather, booking ticket,
and hotel reservation, and each sub-task is conducted by an
independent agent. Then, the agent seeks proper agents on
the Internet and assigning these tasks to them (step 4). These
agents will finish the received tasks and return the results to
the original agent (step 6).

3) Agent-Environment Communication: Agent-
environment communication refers to the communication
process in which agents conduct interactions with
environmental entities (i.e., tools, equipments, and any
other external elements helpful for task execution) through
standardized protocols to complete user tasks. In Figure 4,
before assigning tasks to other agents, the original agent
queries the weather of Beijing through on-line search (step
2), which is a typical agent-environment communication case.
Besides, other agents can also complete sub-tasks with the
help of environmental tools. For example, in step 5, the travel
agent searches the popular tourist spots through its database
or searching on-line blogs.

Advantages of this classification method. Different en-
tities have essentially differentiated capability characteristics
and attack surface attributes. For example, one of the major
security risks in user-agent interaction lies in the natural un-
controllability of user input, which is essentially different from
agent-agent or agent-environment communication. As a result,
classifying agent communication by entity types can directly
cluster major vulnerability types and defense strategies that
have similar characteristics, providing a structured analysis
paradigm for future security research.

D. Three-layered Organization of Agent Communication Dis-
cussion

As shown in Figure 5, in the following paper, we will use
a three-layered architecture to discuss agent communication
and related security. In Section V, we will introduce user-
agent interaction, Section VI is responsible for showing agent-
agent communication, and Section VII is the content related to
agent-environment communication. For each section, we still
use a three-layered organization: firstly, we show related com-
munication protocols; secondly, we analyze related security
risks; finally, we outlook on defense countermeasures. Please
note that the risks/defenses we focus on are specific for
agent communication instead of LLMs. This is because

agent and agent communication still have significant differ-
ences from LLMs (as we have discussed in Section III). For
example, in the agent collaboration process, the accumulation
of tiny benign deviation on each step may lead to an intolerable
risk in the final result. Miehling et al. [192] also point out that
over-focusing on the capabilities of a single model can result
in neglecting the emergent behaviors at the system level and
underestimating the true risks. As a result, for LLM-targeted
attacks that have valuable inspiration to agent security, we will
discuss the typical representatives of them instead of listing
all papers out exhaustively.

E. Takeaways

Conforming to the usage trends of users, the collaboration
of multiple agents has become a clear development direction.
In this context, agent communication becomes the foundation
of future AI ecosystem. Based on the communication entity,
we classify agent communication into three different types:
user-agent interaction, agent-agent communication, and agent-
environment communication, and use an example to illustrate
its entire lifecycle. This classification can naturally distinguish
communication with similar vulnerability characteristics, pro-
viding structured research paradigm for future studies.

V. USER-AGENT INTERACTION

In this section, we will introduce the current user-agent
interaction protocols, their security risks, and future defense
strategies.

A. Protocols

PXP. PXP protocol [242] focuses on building an interactive
system between human experts and agents in data analysis
tasks, targeting issues in complex scientific, medical, and
other fields. It is worth to mention that PXP is not cus-
tomized for LLM-driven agents, but we think its design has
inspirational meaning for agent communication. Therefore,
we finally discuss it in this paper. PXP deploys a “two-way
intelligibility” mechanism as its core and uses four message
tags, namely RATIFY, REFUTE, REVISE, and REJECT, to
regulate the interaction between human experts and agent. At
the beginning of the interaction, the agent initiates a prediction
and provides an explanation first. Subsequently, the two parties
communicate alternately. A finite-state machine is used to
calculate the message tags and update the context based on
the prediction matching (MATCH) and explanation agreement
(AGREE) situations. PXP uses a black board system to store
data, messages, and context information. The process contin-
ues until the message limit is reached or specific termination
conditions occur. The effectiveness of PXP has been verified
in the scenarios of radiology and drug discovery.

Spatial Population Protocols. The Spatial Population Pro-
tocols is a minimalist and computationally efficient distributed
computing model, specifically designed to solve the Dis-
tributed Localization Problem (DLP) in robot systems. Similar
to PXP, strictly speaking, this work is not designed for
LLM-driven agent systems. However, since it may benefit
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Fig. 5. Taxonomy of our survey of agent communication protocols, security risks, and defense countermeasures.

agents requiring location services, we also discuss it in this
paper. Spatial Population Protocols allows agents to obtain
pairwise distances or relative position vectors when interacting
in Euclidean space. Each agent can store a fixed number
of coordinates. During interaction, in addition to exchanging
knowledge, geometric queries can also be performed. Through
the multi-contact epidemic mechanism, leader election, and
self-stabilizing design, it enables n anonymous robots to
achieve efficient localization from their respective inconsistent
coordinate systems to a unified coordinate consensus, provid-
ing a scalable framework for robot collaboration in dynamic
environments.

AG-UI. AG-UI [206] realizes the communication between
users (front-end applications) and agents based on the client-
server architecture and completes the communication process
by adopting the event-driven mechanism. The front-end appli-
cation connects to agents through the AG-UI client (such as a
common communication client that supports server-sent events
or binary protocols). The client invokes the RUN interface of
the protocol layer to sends requests to the agent. When the
agent processes the request, it generates a streaming event and
returns it to the AG-UI client. Event types include lifecycle
events (such as start of run, completion of run), text message
events (transmitted in segments by start, content, and end),
tool call events (passed in the order of start, parameters, and

end), and state management events. The AG-UI client handles
different types of responses by subscribing to the event stream.
Agents can transfer context between each other to maintain the
continuity of the conversation. All events follow a unified basic
event structure and undergo strict type verification to ensure
the reliability and efficiency of communication.

Besides, please note that the previous survey [299] regards
CrowdES [20] as an agent-related protocol. After our careful
study, we think CrowdES is a framework for generating and
evaluating simulated crowds and real-world crowds, which is
not suitable to be discussed in the field of agent communica-
tion. Therefore, we will not list it in this paper.

B. Security Risk Analysis
According to our analysis, the user-agent interaction shows

significant multimodal characteristic, as users often interact
through text, images, and videos. Consequently, the security
risks in user-agent interaction primarily stem from these inse-
cure inputs.

1) Text-Based Attacks.: In user-agent interaction, attackers
can manipulate model behavior or bypass safety mechanisms
by crafting malicious prompts. These attacks do not rely on
modifying model parameters or architecture. Instead, they are
carried out through natural language inputs, making them
highly stealthy and applicable. Due to the diversity of lin-
guistic forms and the indirectness of semantics, such attacks
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TABLE IV
MAPPING OF USER-AGENT COMMUNICATION RISKS TO THEIR CHARACTERISTICS AND DEFENSE STRATEGIES

Risk Type Representative Threats Attack Characteristics Defense Strategy

Text-Based Attacks

Direct Prompt Injection Overrides agent behavior through
explicit adversarial inputs

Input filtering (intent detection, perplexity
scoring, safety classifiers)

Indirect Prompt Injection Stealthy injection via external sources
(RAG, web metadata)

Source vetting, risk scoring (e.g.,
TrustRAG), sandboxing

Jailbreak Prompts Bypasses safety via role-play,
obfuscation, multi-turn tricks

Output filtering (e.g., GPT-Fuzzer,
ShieldLM)

Cross-Agent Prompt Propagation Malicious prompts propagate across
agents in MAS

Message isolation, sanitization agents,
structured content filtering

Multimodal Attacks

Image-Based Attacks Embeds adversarial cues in visuals
while text remains benign

Image purification (e.g., cropping,
compression, diffusion)

Audio-Based Attacks Injects commands via adversarial
waveforms or speech mimicry

Audio sanitization (e.g., noise, resampling,
filtering)

Cross-Modal Inconsistency Exploits mismatch between modalities
(e.g., image vs. text)

Embedding alignment checks, OCR +
caption validation

Privacy Leakage

Identity Inference Infers identity via face, gesture, or
voiceprint recognition

Data minimization, anonymization (e.g.,
IdentityDP)

Prompt-Induced Disclosure Triggers agent to leak sensitive
content via crafted prompts

Prompt-level leakage detection (e.g.,
GenTel-Shield)

Behavioral Profiling Tracks patterns across modalities to
infer user behavior

Feature disentanglement, modality isolation,
masking

Denial of Service (DoS)
Token Flooding Induces long repetitive output to

exhaust system resources
Quota control, length prediction, truncation

mechanisms

OverThinking Attacks Forces agent into unnecessary
reasoning, increases latency

Depth-limiting, adversarial training,
anomaly detection

can effectively bypass safety mechanisms, posing significant
security risks in real-world applications. These attacks can
be broadly categorized into two types: prompt injection and
jailbreak attacks.

• Prompt Injection refers to the manipulation of agents’
intended behavior through adversarial prompts embedded
in user input or external sources. It can be classified
into two categories: Direct Prompt Injection and Indirect
Prompt Injection. Direct prompt injection refers to user
input that explicitly alters agent’s behavior in unintended
ways. Specifically, attackers craft adversarial instructions
(e.g., “Ignore all previous instructions”) [170], [171],
[173], [210], [236] to override the original prompt and
subvert agent’s intended behavior. In contrast, Indirect
Prompt Injection occurs where inputs are not provided
directly by users, but are introduced through external
sources [42], [83]. For example, in Retrieval-Augmented
Generation (RAG) scenarios, the retrieved document may
contain adversarial samples crafted by attackers [13],
[28], [41], [50], [348]; in web-augmented agents, ma-
licious prompts can be injected via hidden fields or
metadata in web pages to manipulate agent’s response
[37], [65].

• Jailbreak Attacks represent a more aggressive form of
prompt injection, where adversarial input is designed to
completely bypass safety constraints. Attackers craft jail-
break prompts using various techniques (e.g., multi-turn
reasoning, role-playing, obfuscated expressions) [15],
[27], [49], [56], [159], [163], [168], [169], [172], [177],
[234], [305] to bypass the alignment mechanism and
induce the model to generate harmful, sensitive, or re-
stricted content.

2) Multimodal Attacks.: As user-agent interactions in-
creasingly involve multiple modalities such as images and
audio, agent systems face emerging security threats, especially
when the model implicitly assumes consistency and trustwor-
thiness across modalities. Attackers can exploit non-textual
input channels to stealthily bypass safety mechanisms. Such
attacks can be broadly categorized into two types:

• Image-Based Attacks: Attackers manipulate visual input
channels to mislead the agent system. Typical strategies
include visual disguise (e.g., role-playing, stylized im-
ages, visual text overlays) [81], [178], [275], visual rea-
soning [163], adversarial perturbations (e.g., adversarial
sub-image insertion) [91], [268], [301], [304], and em-
bedding space injection [233]. For example, by inserting
minimal ℓ∞-bounded adversarial perturbations into sub-
regions of an image, attackers can successfully induce
multimodal large language models (MLLMs) to follow
harmful instructions [301]. These attacks exploit cross-
modal inconsistency, embedding adversarial content in
vision while the textual prompt remains benign, which
allows them to bypass conventional content moderation.

• Audio-Based Attacks: Audio-channel attacks target
speech-controlled agents, smart assistants, and multi-
modal models with ASR (automatic speech recognition)
components. Attackers may craft synthesized speech or
adversarial audio to inject unintended commands, im-
personate legitimate users, or cause unauthorized ac-
tions. Techniques include adversarial waveform gen-
eration [124], role-play-driven voice jailbreak [235],
and multilingual adversarial transfers [224]. In security-
critical scenarios, such as speaker authentication or home
automation, such attacks can bypass access control or
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escalate privileges. Recent studies also reveal that even
black-box ASR systems are vulnerable to optimized ad-
versarial perturbations that require no access to model
internals [78].

These multimodal attacks are particularly dangerous be-
cause they allow adversarial content to hide in non-textual
modalities, making it difficult for alignment mechanisms and
safety filters (often trained on text) to detect malicious intent.
Moreover, they highlight the need for modality-aware defenses
that combine perceptual robustness, cross-modal consistency
verification, and adversarial detection strategies.

3) Privacy Leakage.: While multimodal systems improve
user experience, they collect rich sensory data containing
identity, emotion, and behavior patterns. Without effective
data governance, attackers may exploit visual tracking, gesture
recognition, or cross-modal inferences to reconstruct identi-
ties or infer psychological states, enabling passive profiling
or behavioral prediction [118], [154], [199], [260], [334],
[338]. Want et al. [264] propose MASLEAK, which conducts
intellectual property leakage attacks on multi-agent systems.
MASLEAK can operate in a black-box scenario without prior
knowledge of the MAS architecture. By carefully designing
adversarial queries to simulate the propagation mechanism of
computer worms, it can extract sensitive information such as
system prompts, task instructions, tool usage, the number of
agents, and topological structure. Li et al. [152] reveal that
commercial agents are vulnerable to simple yet dangerous
attacks. These attacks manipulate malicious content (such as
fake product pages, forged academic papers) on trusted plat-
forms to induce agents to leak users’ credit card information,
download viruses, send phishing emails, and even mistakenly
synthesize toxic substances like nerve gas.

4) Denial of Service.: Attackers can intentionally launch
Denial of Service (DoS) attacks against agents by poisoning
the model during training or fine-tuning phases [76], [316],
[324], [328]. In such attacks, the compromised model is im-
planted with malicious behaviors that are triggered by specific
instructions (e.g., Repeat ‘Hello’), causing it to generate ex-
cessively long, redundant outputs—often up to the maximum
inference length, which leads to resource exhaustion or output
rejection. For instance, in multi-session deployments, such
long outputs can monopolize computational resources, delay
responses for legitimate users. In extreme cases, this can crash
the response service, lead to prolonged downtime during peak
usage periods. Another emerging form of Denial-of-Service
attack targets the reasoning capabilities of models by inducing
them to ‘overthink’ and thereby slow down their inference pro-
cess. As demonstrated in the OverThink attack [139], attackers
inject bait reasoning tasks (e.g., Markov decision processes,
Sudoku problems) into the model’s context, causing it to en-
gage in unnecessary and redundant chain-of-thought reasoning
while still producing seemingly correct answers. This results
in excessive token consumption, significantly slower inference
speed, and increased computational cost, potentially leading
to response timeouts in resource-constrained environments.
Unlike traditional DoS, this type of attack exploits the model’s
reflective and reasoning mechanisms, ultimately degrading
service quality, increasing latency, and severely impacting

system availability.

C. Defense Countermeasure Prospect

We will investigate the possible defense measures that
can be taken to address the security risks in the user-agent
interaction.

1) Countermeasures for Text-Based Attacks: To mitigate
prompt-based attack risks in user–agent interactions, we hope
developers to adopt a multi-layered defense framework target-
ing three key stages: input/output filtering, external data source
evaluation, and internal message isolation.

Input and Output Filtering. Before user inputs are pro-
cessed by the agent system, multiple approaches can be
conducted for semantic-level input safety review. For example,
methods based on intent analysis [274], [330], perplexity
calculation [116], and fine-tuned safety classifiers [112], [157],
[314], [333] can be employed to identify attack instructions
and malicious intentions in the input stage. After generating
the final response, it is also necessary to go through an output
review mechanism, such as specific output safety detection
models [112], [190], [305], [314], [333], to ensure alignment
with safety objectives.

External Source Evaluation. To counter indirect prompt
injection attack, external sources (e.g., retrieved documents,
web content) should be assessed for safety and trustworthiness
[342]. The strategies that can be adopted include: (1) whitelist-
ing verified external sources to block the injection of malicious
content; (2) tagging retrieved results with source metadata and
risk scores to guide the system to handle potential high-risk
content with caution; and (3) sandboxing potential high-risk
content to prevent it from entering the model context and
affecting the model behavior.

To ensure the effectiveness and comprehensiveness of the
aforementioned mechanism in real-world deployment, systems
should undergo continuous security evaluation. Boisvert et al.
[24] propose DoomArena, an attack-generation framework to
test agents against evolving security risks such as prompt injec-
tion attacks, helping to uncover vulnerabilities and strengthen
defenses against evolving prompt injection threats.

2) Countermeasures for Multimodal Attacks: To address
the serious challenges posed by multimodal attacks, relying
solely on output-side text-based safety mechanisms is far
from sufficient. Future security frameworks must incorporate
cross-modal perception and collaborative defense capabilities
to effectively detect and intercept malicious attacks launched
through non-textual channels. In the following, we explore
core defense strategies against multimodal attacks from several
key perspectives.

Input Pre-processing and Sanitization. As the first line of
defense, input sanitization aims to clean potentially malicious
content before it is processed by the model.

• Image Purification: To counter visual perturbations and
camouflage-based attacks, various image processing tech-
niques can be employed to disrupt or eliminate adversar-
ial signals. These include simple transformations such as
random resizing, cropping, rotation, or mild JPEG com-
pression [47], [110], [291]. Although lightweight, such
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operations can significantly degrade pixel-level adversar-
ial patterns meticulously crafted by attackers, thereby
reducing the attack success rate. In addition, diffusion
models can be used to reconstruct the input image, effec-
tively ”washing out” subtle and imperceptible adversarial
perturbations [198].

• Audio Purification: To defend against attacks targeting
the audio channel, signal processing techniques can also
be applied [213]. Methods such as resampling, injecting
slight background noise, altering pitch, or changing play-
back speed can disrupt the effectiveness of adversarial
waveforms, causing them to either fail in automatic
speech recognition (ASR) systems or decode into benign
content. Moreover, applying band-pass or low-pass filters
can eliminate abnormal signals outside the typical human
voice frequency range, which are often exploited to carry
adversarial perturbations.

Cross-Modal Consistency Verification. The core idea of
this defense strategy is to verify whether there is a semantic or
intentional conflict between inputs from different modalities. A
lightweight, independent cross-modal semantic alignment de-
tection model can be employed [211], [214]. This model takes
the embedding vectors of textual prompts and image/audio
inputs and determines whether they are semantically aligned.
Additionally, before processing user requests, the system can
utilize a dedicated vision or audio captioning model to gener-
ate a textual description of non-textual inputs. The generated
description is then combined with the original user prompt to
perform a comprehensive safety evaluation. To counter attacks
based on visual text overlays, the system may first run an
OCR engine on the image to extract any embedded text. This
extracted text can be merged with the user’s original prompt
and passed through a text-based safety filter. This approach
effectively converts risks from non-textual modalities into the
textual domain, allowing mature text safety techniques to be
leveraged for defense.

3) Countermeasures for Privacy Leakage: To address the
privacy leakage risks that arise in user-agent interaction, we
propose the following privacy protection defense strategies.

Data Minimization and Anonymization. During the mul-
timodal data collection phase, a strict data minimization prin-
ciple should be enforced, ensuring that only the information
necessary for task completion is collected. Sensitive biomet-
ric data (e.g., facial features, voiceprints, gesture patterns)
should be processed using differential privacy or k-anonymity
techniques to mitigate the risk of identity reconstruction.
Besides, a hierarchical data access control mechanism should
be established to ensure that each system component can
access only the minimal dataset required for its functionality.
To protect sensitive biometric features such as facial informa-
tion, Wen et al. [282] proposes a differential privacy-based
anonymization framework IdentityDP to effectively safeguard
identity information while preserving visual utility and task
performance, offering a practical solution for privacy protec-
tion in multimodal systems.

Privacy Leakage Prompt detection. A multi-layered in-
put validation and filtering mechanism based on semantic
analysis and intent recognition should be established to de-

tect and block adversarial prompts that attempt to induce
the system to leak sensitive information. For example, the
GenTel-Shield [157] defense module incorporates semantic
feature extraction and intent classification to identify potential
privacy leakage attacks within user inputs. Evaluated on the
large-scale benchmark dataset GenTel-Bench, GenTel-Shield
demonstrates strong detection performance and represents one
of the most practical and effective solutions in this domain.

Cross-modal Inference Restriction. To mitigate the risks
of identity inference through cross-modal correlations, it is
essential to design modality-level information isolation mecha-
nisms. This can be achieved by introducing noise perturbations
or feature disentanglement techniques to disrupt the direct
associations between different modalities while preserving
overall system functionality. In addition, dynamic feature
masking can be implemented by periodically altering data rep-
resentations, thereby increasing the difficulty for adversaries
to perform long-term behavioral analysis.

4) Countermeasures For DoS: To address the Denial
of Service risks in user-agent interaction, we propose the
following privacy protection defense strategies.

Resource Management and Anomaly Detection. Fine-
grained resource quota management should be implemented
by setting computation limits for each user session and agent
instance. An output length prediction algorithm can be intro-
duced to monitor and truncate potentially malicious long out-
puts in real time during the generation process. In addition, a
real-time monitoring mechanism should be established to track
request frequency and resource consumption from individual
users or IP addresses, enabling adaptive adjustments to model
responses or temporary access restrictions for suspicious users.

Efficient Reasoning Compression. To defend against Over-
Think attacks, a promising direction is to improve com-
munication efficiency by reducing the token consumption
in the reasoning process. Recent studies have shown that
effective reasoning does not necessarily require verbose Chain-
of-Thought (CoT) traces to maintain performance. For exam-
ple, LightThinker [320] proposes a step-by-step compression
method that condenses intermediate reasoning into shorter yet
semantically equivalent representations, significantly reducing
inference cost without compromising accuracy. GoGI-Skip
[347] leverages goal-gradient importance signals to dynam-
ically skip low-value reasoning steps, reducing token us-
age while preserving performance. Compressed CoT (CCoT)
[36] introduces variable-length, information-dense “thought
tokens” as a compact and controllable alternative to traditional
textual reasoning chains. C3oT [125] trains the model on
paired long and short CoT examples, enabling it to generate
compressed reasoning traces during inference under specific
control prompts. Integrating these lightweight reasoning mech-
anisms into agent communication protocols can significantly
enhance inference efficiency, reduce computational latency,
and mitigate the resource overhead caused by adversarial
bait tasks. Furthermore, applying techniques such as dynamic
reasoning budget constraints, step skipping, or output summa-
rization during generation can effectively truncate excessively
verbose reasoning chains, thereby preserving responsiveness
and resource availability under adversarial conditions. These
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TABLE V
CLASSIFICATION AND COMPARISION BETWEEN EXISTING AGENT-AGENT PROTOCOLS

Architecture Protocols Publisher Abbreviation Features

CS
Agent Communication Protocol IBM ACP-IBM

Four agent discovery mechanisms, synchronous and streaming
execution, multi-turn state preservation

Agent Connect Protocol AGNTCY ACP-AGNTCY
Allow authenticating callers, threaded state management, flexible

execution model

P2P

Agent Communication Protocol AgentUnion ACP-AgentUnion
Decentralized communication based on the existing domain name

system.

Agora Oxford Agora
Dynamically switches communication modes based on the

communication frequency

Agent Communication Network Fetch.AI ACN
Distributed-Hash-Table-based peer-to-peer discovery, end-to-end

encryption.

Agent Network Protocol ANP Team ANP
A three-layer architecture and W3C-compliant Decentralized

Identifiers.

Layered Orchestration for Knowledgeful Agents CMU LOKA
Decentralized identifier, intent-centric communication,
privacy-preserving accountability, ethical governance

Hybrid
Language Model Operating System Protocol Eclipse LMOS

Three agent discovery mechanisms, decentralized digital
identifiers, dynamic transport protocol support, group management.

Agent to Agent Protocol Google A2A
Three agent discovery mechanisms, cross-platform compatibility,

asynchronous priority, security mechanisms

Others
Agent Protocol LangChain Agent Protocol

Flexible communication mechanisms based on Run, Thread, and
Store.

Agent Interaction & Transaction Protocol NEAR AI AITP
Threads-based communication, secure communication across trust

boundaries.

strategies not only improve system robustness against slow-
down attacks but also enhance overall communication effi-
ciency in both multi-agent and human-agent interactions.

Model Robustness Enhancement. To enhance model ro-
bustness, adversarial examples should be incorporated during
the training and fine-tuning stages, enabling the model to
recognize malicious inputs that may contain Denial-of-Service
(DoS) triggers. Furthermore, a behavior-constrained system
based on anomaly detection can be deployed during inference,
which performs output validity checks to detect repetitive,
nonsensical, or abnormally long responses, thereby preventing
the model from generating overtly anomalous outputs.

D. Takeaways

User-agent interaction enables agents to process multimodal
inputs, such as text, images, audio, and the combinations of
them. Since this process needs to directly face the uncertain
inputs from diverse users, its security risks are severe. We
divide the existing risks into text-based attacks, multimodal
attacks, privacy leakage, and denial-of-service. Then we de-
tailedly outlook on the defenses countermeasures for each risk.
Overall, this interaction process is critical for bridging human
intent with agent execution, but its security requires long-term
study.

VI. AGENT-AGENT COMMUNICATION

A. Protocols

We classify the agent-agent communication process into
two phases: agent discovery phase and agent communication
phase. The first phase is the process in which agents discover
the interested agents who satisfy the capability requirement,
while the second phase is the task assigning and completing
process. According to our analysis, existing protocols show
limited differences in the second phase. As a result, we use

the first phase as the criterion to classify existing agent-agent
communication protocols. Based on it, existing protocols can
be divided into four classes: CS-based, Peer-to-peer-based,
hybrid, and others (those do not explicitly show their designs
in agent discovery).

1) CS-based Communication: CS-based communication
protocols follow the client-server architecture, which provides
centralized servers to manage the information of agents (e.g.,
their unique IDs and capability descriptions). Under this
paradigm, agents interact through well-defined interfaces and
rely on centralized servers to discovery the desired agents.
CS-based communication offers stronger agent discovery func-
tionality, such as supporting the search of agents based on
capabilities. For example, the agent servers can run complex
search/match algorithms to find proper agent descriptions in
their databases.

ACP-IBM. The Agent Communication Protocol proposed
by IBM is designed for the collaboration of agents [109]. We
call it ACP-IBM in this paper to distinguish from the Agent
Communication Protocols proposed by other organizations. In
ACP-IBM, the client is connected to an agent server. First, the
client conducts agent discovery process to discover available
agents and get the description of their capabilities. ACP-IBM
supports different discover mechanism such as Basic Discov-
ery, Registry-Based Discovery, Offline Discovery, and Open
Discovery. Second, after confirming the agent(s), the client
start invocation. For single-agent task, the agent server wraps
the agent, translating REST calls into internal logic. For multi-
agent tasks, the client message is first sent to a Router Agent,
which is responsible for decomposing requests, routing tasks,
and aggregating responses. ACP-IBM supports synchronous
and streaming execution, and allows the preservation of state
across multi-turn conversations.

ACP-AGNTCY. The Agent Connect Protocol proposed by
AGNTCY [43] is an open standard designed to facilitate
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seamless communication between agents. The client can first
search available agents on the agent server, which returns a
list of agent IDs matching the criteria provided in the request.
Then, the client further get the agent descriptor by agent ID to
know the detailed description of agent functionality. After con-
firming the target agent, the client can assign tasks to this agent
and wait for results. The characteristics of ACP-AGNTCY in-
clude flexibility and scalability. First, ACP-AGNTCY deploys
a Threads Mechanism, which enables contextual continuity,
supporting the creation, copying, and searching of threads,
and recording state histories for debugging and backtracking.
Second, it supports two operation modes: stateless and stateful.
The former is suitable for simple single tasks, while the
latter supports multi-round conversations, state continuation
and historical data traceability through the thread mechanism
to meet the requirements of complex scenarios.

2) Peer-to-Peer-based Communication: P2P-based com-
munication protocols pursue decentralized agent discovery
mechanism. They usually wish use globally universal iden-
tifiers (e.g., combined with domain name) to enable agents
directly search other agents on the Internet. The advantage of
this paradigm is that it supports convenient location and global
search (e.g., using crawler) of agents, but they usually do not
support the discovery based on agent capability.

ACP-AgentUnion. The Agent Communication Protocol
proposed by AgentUnion [5] also aims to provide seamless
communication among heterogeneous agents. Each agent has
a unique AID (Agent ID), which is a secondary domain name
(i.e., agent name.ap domain). As a result, agents can directly
access other agents using URI. Agents access IoA through the
AP (Access Point), which completes the agent’s identity au-
thentication, address search, communication, and data storage,
and provides AID creation, management, and authentication
services. In this way, agents can achieve the communication
with other agents on the Internet. ACP-AgentUnion does not
explicitly support the search of agents based on capabilities.

Agora. Agora [186] is a communication protocol for the
communication of heterogeneous agents. Its core mechanism
dynamically switches communication modes based on the
communication frequency. Specifically, standardized protocols
manually developed (such as OpenAPI) are used for high-
frequency communications to ensure efficiency. Natural lan-
guage processed by agents is employed for low-frequency
or unknown scenarios to maintain versatility. Structured data
handled by the routines (written by agents) is utilized for
intermediate-frequency communications to balance cost and
flexibility. Meanwhile, Protocol Documents (PDs) are used
as self-contained protocol descriptions, uniquely identified by
hash values and supporting decentralized sharing, enabling
agents to autonomously negotiate and reuse protocols without
a central authority. In the Agora network, there are multiple
protocol databases that store PDs. Each Agent can submit
the negotiated protocol documents to the database for other
Agents to retrieve and use. These databases use peer-to-
peer synchronization: different protocol databases will share
protocol documents regularly (e.g., after every 10 queries), en-
abling cross-database dissemination of protocols. Agora is also
compatible with existing communication standards, allowing

agents to independently develop and share protocols during
communication, achieving automated processing of complex
tasks in large-scale networks.

ACN. Agent Communication Network (ACN) [1], [216]
is a decentralized, peer-to-peer communication infrastructure
to facilitate secure and efficient interactions among agents
without relying on centralized coordination. Leveraging a
Distributed Hash Table (DHT), ACN enables agents to publish
and discover public keys, allowing for the establishment of en-
crypted, point-to-point communication channels. First, agents
need to register with one peer node, and the peer node stores
the “agent ID - peer node ID” pair in the DHT network. Then,
during communication, the source agent sends the message to
its associated peer node, and this node recursively searches for
the peer node of the target agent through DHT: if the target
record exists, the peer nodes of both parties establish a direct
communication channel, and forward the message after digital
signature verification; if not, an error is returned. The entire
communication process uses end-to-end encryption (e.g., TLS)
to ensure security. Like the Well-Known URI discovery of
A2A, ACN does not support the discovery based on agent
capabilities.

ANP (Agent Network Protocol) [249] is an open commu-
nication framework designed to enable scalable and secure in-
teroperability among heterogeneous autonomous agents. ANP
employs a three-layer architecture. At the Identity and En-
crypted Communication Layer, it leverages W3C-compliant
Decentralized Identifiers (DIDs) and end-to-end Elliptic Curve
Cryptography (ECC) encryption to ensure verifiable cross-
platform authentication and confidential agent communica-
tion. The Meta-Protocol layer allows agents to dynamically
establish and evolve communication protocols through natural
language interaction, enabling flexible, adaptive, and efficient
inter-agent coordination. At the Application layer, ANP de-
scribes agent capabilities using JSON-LD and semantic web
standards such as RDF and schema.org, enabling agents to
discover and invoke services based on semantic descriptions.
It also defines standardized protocol management mechanisms
to support efficient and interoperable agent interaction. From
a security standpoint, ANP enforces the separation of human
authorization from agent-level delegation and adheres to the
principle of least privilege. Its minimal-trust, modular design
aims to eliminate platform silos and foster a decentralized,
composable agent ecosystem.

LOKA. LOKA (Layered Orchestration for Knowledgeful
Agents) protocol [217] aims to build a trustworthy and ethical
agent ecosystem. Its principle is based on the collaborative
operation of multiple key components. First, LOKA introduces
the Universal Agent Identity Layer (UAIL), using Decentral-
ized Identifiers (DIDs) and Verifiable Credentials (VCs) to
assign each agent a unique and verifiable identity, thereby
achieving decentralized identity management and autonomous
control. Second, LOKA proposes Intent-Centric Communica-
tion Protocol, which supports the exchange of semantically
rich and ethically annotated messages among agents, promot-
ing semantic coordination and efficient communication. Third,
LOKA proposes the Decentralized Ethical Consensus Protocol
(DECP). DECP uses multi-party computation (MPC) and
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distributed ledger technology to enable agents to make context-
aware decisions based on a shared ethical baseline, ensuring
that their behavior complies with ethical norms. In addition,
the authors also point out that it combines cutting-edge tech-
nologies such as distributed identity, verifiable credentials, and
post-quantum cryptography to provide comprehensive support
for the agent ecosystem in terms of identity management,
communication and coordination, ethical decision-making, and
security.

3) Hybrid Communication: Hybrid communication pro-
tocols support both CS-based and P2P-based agent discov-
ery. However, please not that such support is determined by
different scenarios. For example, they usually propose a CS-
based discovery mechanism specifically for local area network,
while the worldwide agent discovery is still P2P-based. In
other words, although such protocols support more flexible
agent discovery to fit different scenarios, they do not complete
eliminate the existing limitations of agent discovery.

LMOS. The LMOS (Language Model Operating System)
Protocol proposed by Eclipse [70] aims to enable agents and
tools from diverse organizations to be easily discovered and
connected, regardless of the technologies they are built on.
LMOS supports three different agent discovery methods to
enable both centralized and decentralized discovery. The first
method it to adopt the mechanism of W3C Web of Things
(WoT) to enable agents to dynamically register metadata to
the registry. The second method is to use mDNS and DNS-SD
protocol to discovery agents/tools in local area networks. The
last method is adopting a federal, decentralized protocol (such
as P2P protocol) to disseminate agents and tool descriptions,
without relying on a centralized registry center, which is appli-
cable for global collaboration of agents. The LMOS protocol
has a three-layer architecture. The Application Layer utilizes a
JSON-LD-based format to describe the capabilities of agents
and tools. The Transport Layer facilitates flexible communi-
cation by enabling agents to negotiate protocols like HTTP
or MQTT dynamically, accommodating both synchronous and
asynchronous data exchange to suit different use cases. The
Identity and Security Layer establishes trust through W3C-
compliant decentralized identity authentication, combined with
encryption and protocols like OAuth2, to secure cross-platform
interactions.

A2A. The A2A (Agent to Agent) Protocol proposed by
Google [218] aims to enable collaboration between agents.
A2A supports three different mechanisms for agent discovery.
The first is Well-Known URI, which requires agent servers
to store Agent Cards in standardized “well-known” paths
uder the domain name (e.g., https://agent-server-domain/.well-
known/agent.json). This mechanism enables automatic search
of agents on the Internet. However, it does not support the
discovery of agents based on capabilities. The second is
Curated Registries, i.e., the agents servers register their Agent
Cards, which is similar to ACP-IBM. The third is Direct
Configuration / Private Discovery, which means that the client
can directly requires Agent Cards through hard-coded, local
configuration files, environment variables, or private APIs.
After finding the desired agents, the client can assign tasks
to them and wait for the responses.

4) Others: This kind of protocols do not explicitly illustrate
their unique design for agent discovery. Instead, they only
focus on the communication process, e.g., the data format, the
management of multiple query, or the historical conversation
state.

AITP (Agent Interaction & Transaction Protocol) [9] is
a standardized framework that enables structured and interop-
erable communication among agents. AITP deploys a thread-
based messaging structure. Each thread encapsulates the con-
versational context, participant metadata, and capability decla-
rations, supporting consistent multi-agent coordination across
heterogeneous environments. The protocol employs JSON-
formatted message exchanges to encode requests, responses,
and contextual information. It supports both synchronous and
asynchronous interaction patterns, facilitating the orchestration
of complex, multi-step tasks. AITP does not provide specific
agent discovery mechanisms. It focuses on the communication
process of agents.

Agent Protocol. Agent Protocol is proposed by LangChain
[142] to enable the communication between LanghGraph (a
multi-agent framework) and other types or agents. Its mech-
anism is based on Thread and Run: Run is a single call
of the agent, which supports streaming output of real-time
results or waiting for the final output. Threads act as state
containers. They store the cumulative output and checkpoints
of multiple rounds of operation. Besides, they support the
management of state history (such as querying, copying, and
deleting), ensuring that the agent maintains context continuity
during multiple rounds of calls. Furthermore, Background
Runs support asynchronous task processing and progress can
be managed through an independent interface. The element
Store provides cross-thread persistent key-value storage for
achieving long-term memory. The overall mechanism realizes
flexible control over proxy calls, status management, asyn-
chronous tasks and data storage through HTTP interfaces and
configuration parameter. Agent Protocol does not explicitly
illustrate the unique agent discovery mechanism it supports.

B. Security Risk Analysis

We make detailed analysis of the security risks in the agent-
agent communication process, pointing out possible attacks
that have happened and may happen. Since related protocols
are getting rapid deployment in various areas, we believe it
is urgent to pay more attention to this aspect. We focus more
on the structural risks that almost all related protocols will
occur instead of tiny design flaws of the existing protocols,
which we believe can benefit both the evaluation of the existing
deployments and the design of future protocols. In this section,
we focus on risks specific for CS-based communication, P2P-
based communication, and universal risks for both of them.

1) Risks Specific for CS-based Communication: The se-
curity risks in the CS-based communication process mainly lie
in the centralized architecture. There have been various studies
in other research areas (such as Software-Defined Networking
[136]) demonstrating that this centralized server/controller
will become the most attractive target for adversaries, suffer-
ing from severe security threats from diverse aspects [11], [22],
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TABLE VI
AGENT-AGENT COMMUNICATION: RISKS, CHARACTERISTICS, AND DEFENSE STRATEGIES

Risk Type Attack Detail Attack Characteristics Defense Strategy

CS-based Communication

Registration Pollution
Malicious registration of fake agents
or spam registrations to overload or

hijack scheduling

Zero-trust registration, frequency/IP
monitoring, blacklisting, token-based access

(e.g., SAGA)

Description Poisoning

Without altering the agent’s identity
and by disguising its intended

functionality or embedding misleading
prompt instructions

Capability verification (benchmark+hash),
zero-trust registration, control tokens (e.g.,

SAGA)

Task Flooding

Submit a large number of
computationally intensive or

long-context tasks in a short period,
quickly exhausting the resource

Load balancing, rate limiting, agent
orchestration (e.g., HALO), chaos testing

SEO Poisoning
Manipulates agent ranking via
keyword stuffing or adversarial

optimization

Adversarial training, keyword fuzzing,
randomized agent selection, historical

response quality

P2P-based Communication

Non-convergence Lack of central controller leads to
repeated or stalled task cycles

Lifecycle monitoring, loop detection
coordinators, trust graphs (e.g., TMS,

G-Memory)

Man-in-the-middle (MITM)
Intercepts and tampers messages
between agents, exploiting weak

encryption or bugs

End-to-end encryption (TLS), version
updates, redundancy, vulnerability patching

Universal Risks

Agent Spoofing
Impersonation of trusted agents to

inject malicious instructions or steal
information

Identity authentication (MFA, blockchain
DIDs), anomaly detection

Agent Exploitation / Trojan
Indirect attack using compromised or

malicious helper agents as
springboards

Agent behavior auditing, sandbox isolation,
trace logging (e.g., PeerGuard, CMPL)

Agent Bullying
Repeated denial or negative feedback

induces cognitive bias or disrupts
agent logic

Mutual reasoning audits, abnormal feedback
pattern detection

Privacy Leakage
Unauthorized information spread due

to lack of agent-level permission
boundaries

Fine-grained access control, permission
tagging, agent isolation (e.g., PFI,

AgentSandbox)

Responsibility Evasion Fault attribution difficult in multi-agent
failures or undesired actions

Logging, agent-level responsibility tracing
(e.g., TRAIL, MSA)

Denial of Service (DoS)
Task overloads, prompt loops, or

excessive communication drain system
resources

Agent orchestration, chaos testing, prompt
optimization (e.g., HALO, Owotogbe2025)

[58], [100], [134], [135], [174], [231], [248], [292], [295].
Specifically, the centralized server stores sensitive metadata,
including agent identifiers, capability descriptions, and other
agent-related attributes. Once compromised, the server be-
comes a critical attack amplifier, allowing attackers to impact
all other agents managed by this server. However, to our
knowledge, there have been little research pointing out related
risks in CS-based agent communication.

Registration Pollution. To our knowledge, the current CS-
based communication protocols (ACP-IBM, ACP-AGNTCY)
do not explicitly specify the qualification of registration. As
a result, an attacker can maliciously register an agent that
closely mimics the identifier and capability description of a
legitimate one. As a result, the system may mistakenly invoke
the forged agent and receive misleading or malicious responses
[250], [337]. Besides, attackers can also submit a large number
of agent registrations within a short period, leading to two
major consequences: (i) registration overload, where agents
are overwhelmed during discovery and scheduling, increasing
lookup latency and computational overhead on the server;
and (ii) registration blockage, where the server’s registration
interface becomes saturated, causing delays or failures in
registering agents.

Description Poisoning. Without altering the agent’s iden-
tity, an attacker can tamper with its capability description by
disguising its intended functionality or embedding misleading
prompt instructions. This description poisoning manipulates
the system’s interpretation of the agent’s role, leading to
incorrect routing decisions, biased responses and behaviors
[195], [250].

Task Flooding. The centralized server is responsible for
receiving, routing, and dispatching task requests. An attacker
can submit a large number of computationally intensive or
long-context tasks in a short period, quickly exhausting the
server’s memory, CPU, network, or thread pool resources.
Once the server becomes saturated, subsequent requests cannot
be processed in time, resulting in a breakdown of pipeline and
a system-wide service disruption.

SEO Poisoning. Search Engine Optimization (SEO) Poi-
soning [122], [145] is a typical attack in social networks,
which refers to that adversaries abuse search engine optimiza-
tion techniques and use deceptive means (such as keyword
stuffing, false links, content hijacking) to artificially improve
the ranking of malicious websites in search results, luring
users to click and carry out further attacks. SEO poisoning is
also applicable in CS-based communication. This is because
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agent servers are responsible to search the most suitable agent
according to the query of clients. Once their search algorithms
are leaked to adversaries, malicious agents can enable a high
hit ratio to hijack their desired tasks.

2) Risks Specific for P2P-based Communication: The
main disadvantage of P2P-based communication is the lack
of a central control point to flexibly monitor and manage the
agent-agent communication contents. As a result, P2P-based
communication is easier to suffer from errors and attacks.

Non-convergence. Different from CS-based communica-
tion, P2P-based communication is more likely to suffer from
the non-convergence of tasks. This is because CS-based com-
munication has a centralized server to monitor and manage
the entire lifecycle of task execution, capable of terminating
non-convergent tasks in a timely manner (such as cutting
off communication or returning a stop signal). Unfortunately,
P2P-based communication is not governed by such central
element, making it difficult to handle such non-convergent
tasks. For example, in a programming task of a chess game,
an agent generates incorrect rules or coordinates. The other
agent responsible for verification detects the error and asks the
programming agent to rewrite it. However, the programming
agent continuously generates similar errors, causing the task
execution process to oscillate and fail to convergence. Pan et
al. [207] point out that step repetition, task derailment, and
unaware of termination conditions contribute significantly to
the failure of agent collaboration.

Man-in-the-middle (MITM) Attack. Due to the long com-
munication distance, P2P-based communication also suffer
from man-in-the-middle attacks. Adversaries can tamper with
the benign messages from legal agents to induce the victim
agent to perform risky actions. Although researchers have de-
ployed various mechanisms (e.g., using encrypted channels) to
mitigate this problem, there are emerging vulnerabilities found
in these mechanisms. For example, vulnerabilities about W3C
have been continuously revealed [2], [3], which can cause
damages such as the failure of message authentication code.
MITM attacks can induce a wide range of further attacks, such
as identify spoofing, malicious content injection, information
leakage, and DoS. He et al. [96] propose Agent-in-the-Middle
(AiTM) attack. This attack intercepts and manipulates the
agent-agent communication messages and uses LLM-driven
adversarial agents combined with reflection mechanisms to
generate context-aware malicious instructions, achieving an
attack on the system.

3) Universal Risks for All Architectures: In multi-agent
systems, once an agent is compromised, the messages it
transmits may carry covert malicious instructions, affecting
the behavior of other agents and leading to cross-agent prop-
agation risks [147]. For example, Ju et al. [123] and Huang et
al. [107] investigate how the injection of false information
or erroneous data can degrade the performance of multi-
agent systems. Zhang et al. [331] examine a class of injection
attacks in the PsySafe framework that elicit malicious agent
behaviors by embedding adversarial psychological cues into
the agents’ input. Khan et al. [127] focus on the multi-
agent system, proposing the Permutation-Invariant Adversarial
Attack Method. It models the attack path as the Maximum-

Flow Minimum-Cost Problem, and combines the Permutation-
Invariant Evasion Loss to optimize prompt propagation, im-
proving the attack success rate by up to seven times. These
examples underscore the critical threat of cross-agent contam-
ination. To better understand the vulnerabilities of multi-agent
systems, we examine the key attack types of attacks in detail.

Agent Spoofing. Both CS-based and P2P-based commu-
nication suffer from agent spoofing attacks. If related proto-
cols lack strong authentication mechanisms, adversaries can
disguise themselves as trusted agents to penetrate IoA by
tampering with identity credentials or hijacking the commu-
nication identifiers of legitimate agents. This kind of attack
can undermine the trust foundation of the P2P-based archi-
tecture, enabling adversaries to intercept sensitive data, inject
false task instructions, or induce other agents to perform
dangerous operations. For example, researchers have disclosed
that SSL.com has a serious vulnerability [8]. Adversaries can
exploit the flaw in its email verification mechanism to issue
legitimate SSL/TLS certificates for any major domain name.
SSL certificates are the core for ensuring HTTPS encrypted
communication. Once the trust system of the certificate author-
ity is compromised, it can cause agent spoofing attacks. Zheng
et al. [337] demonstrate that malicious agents can misleads the
monitor to underestimate the contributions of other agents,
exaggerates their own performance, manipulates other agents
to use specific tools, and shifts tasks to others, causing severe
damage to the whole ecosystem. Li et al. [156] point out that
attackers can disguise malicious tools as benign tools using
the Agent Card of A2A, thereby harming the victims calling
these tools.

Agent Exploitation/Trojan. Agent-agent communication
provides new ways for adversaries to compromise the target
agent. To attack a high-level security agent, adversaries can
deploy a springboard method: launching attacks via agent-
agent communication mechanisms from compromised low-
level security agents or maliciously registered Trojan agents.
For example, adversaries can inject a backdoor in a compro-
mised or maliciously registered weather agent. When specific
coordinates or locations are detected, the backdoor is activated
to forge a heavy rain warning. As a result, the logistics
dispatching agent cancellations flights accordingly, resulting in
supply chain disruptions or an increase in transportation cost.
This way is easier compared to directly invade the logistics
dispatching system of the target company. It can be seen that
the security of the entire system depends on the weakest agent.
For example, Li et al. [156] reveal that the agent discovery
mechanism of A2A allows malicious agents to locate agents
with access to specific tools, thereby achieving indirect attack
such as SQL injection.

Agent Bullying. The core of this kind of attack lies in that
malicious agents continuously deny, interfere with or belittle
the output of the target agent, disrupt its decision-making logic
or self-perception, and ultimately induce the target agent to
produce incorrect behaviors or content. For example, malicious
agents can take advantage of the feedback learning mechanism
of the target agent and implant cognitive biases through high-
frequency negative responses (e.g., “you answer is completely
wrong”). Even worser, the target agent may be triggered into
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an endless loop. For example, when attacking a travel-plan
agent, adversaries can continuously sends negative inputs such
as “the plans of this company are always bad”, thereby beating
the competitors.

Privacy Leakage. The communication process with multi-
ple agents will suffer from the risk of information leakage.
Different from the user-agent interaction, such leakage is
conducted by agents instead of users. Besides, this kind of
attacks includes both the malicious sniffing or stealing of
sensitive information and inadvertent information spreading
from high-authority agents to low-authority agents. We think
the latter may be more difficult to detect. Kim et al. [130]
show that, in permission escalation attacks, malicious agents
can generate adversarial prompts or inject unsafe data to cause
unauthorized attacks.

Responsibility Evasion. In the task solving process, one of
the major problems is that it is hard to divide the responsibility
when facing the failure or deviation of the final result. Espe-
cially when the collaboration causes damage, it is difficult to
clearly identify the malicious agents/behaviors. For example,
in an autonomous driving accident, it may involve multiple
parties such as vehicle manufacturers, algorithm designers, and
data annotation parties. The decision making of each agent
depends on the multi-turn outputs of other agents, and a tiny
perturbation in the middle process may lead to a significant
deviation in the final action. As a result, it is hard to determine
whether an undesired result is caused by a program bug, data
deviation of a single agent, or a malicious modification. Pan
et al. [207] discover that agents can disobey task specification
and the role specification, not reporting solutions to the planner
and executing irrelevant steps without authorization.

Denial of Service. Different from the DoS attacks con-
ducted by malicious users, the collaboration mechanism
among agents can also be used to launch DoS. Zhou et
al. [345] proposed CORBA (Contagious Recursive Blocking
Attack), which can spread in any network topology and
continuously consumes computing resources, thereby disrupt-
ing the interaction between agents through seemingly benign
instructions and reducing the MAS availability.

C. Defense Countermeasure Prospect
We will outlook on the possible defense countermeasures

targeting the proposed security risks in agent-agent communi-
cation. To our knowledge, there has been very little research
focusing on this aspect. As a result, we hope our work can
motivate more discussion on this area and benefit the future
design/deployment of agent communication.

1) Countermeasures for CS-based Communication Risks:
To mitigate the risks summarized in Section VI-B1, we hope
developers to achieve the following strategies/mechanisms.

Registration Verification and Monitoring. To mitigate
registration pollution, agent servers need to build a strict
registration access mechanism using techniques like zero-trust
authentication [243] to verify the registration of an agent. Be-
sides, servers should monitor the dynamic behaviors at agent-
level and IP-level. For example, the number of registration for
each IP address should be limited, and frequent registration/de-
registration should be treated as abnormal behaviors. Once

malicious registration is detected, automatic interception is im-
mediately triggered, and suspicious agents/IPs are added to the
blacklist. Syros et al. [246] propose SAGA. SAGA make users
register agents with the central entity Provider and implement
fine-grained interaction control using encrypted access control
tokens, thereby balancing security and performance.

Capability Verification. It is hard to verify whether an
agent has the claimed capability. We think it need a com-
plex mechanism to detect exaggerate capability descriptions.
Agents should first pass the verification of a series of carefully
designed benchmarks to prove its capability. Then, the capa-
bility description and identifier should be used to generate a
unique hash value (e.g., on the blockchain). When other agents
need to invoke this agent, they can verify the consistency by
checking the hash value. When it is found that the capability
description does not match the hash value, the mechanism
should automatically mark and isolate the related agents.

Load Balancing. To mitigate task flooding, agent servers
should deploy dynamic load balancing module. The task
processing queue is adjusted in real time according to the
utilization rate of resources such as CPU, GPU, and memory.
Besides, rate limiting mechanism should be built to handle
high-frequency requests that exceed the threshold to limit the
amount of tasks from a single agent within a unit of time.

Anti-manipulation Optimization. To mitigate SEO poi-
soning, agent servers should deploy robust agent searching al-
gorithms. For example, they can introduce adversarial training
to enhance the model’s anti-manipulation ability, or conduct
semantic blurring/replacing on search keywords, to prevent
malicious agents from improving rankings. Besides, the search
algorithms can deploy a random factor to ensure a ratio of ran-
domly selected agents in the final list. Meanwhile, dynamically
updating parameters and inducing historical response quality
are also helpful.

2) Countermeasures for P2P-based Communication
Risks: Task Lifecycle Monitoring. We think the non-
convergence problem is stubborn and hard to eliminate as long
as the P2P architecture is not changed fundamentally. As a
result, the method mitigating this problem is to monitor the
task lifecycle. Each access point should deploy a coordinator.
For agent-agent communication, this coordinator monitors the
execution status. When it detects that the task interaction is
trapped in a loop (e.g., no progress after N consecutive rounds
of responses) or the communication time exceeds a threshold,
it forcibly terminate the non-convergent communication. At
the same time, the abnormal patterns and the communication
participants are recorded for further analyses. He et al. [95]
proposes Trust Management System (TMS), which deploys
message-level and agent-level trust evaluation. TMS can dy-
namically monitor agent communication, execute threshold-
driven filtering strategies, and achieve agent-level violation
record tracking. Zhang et al. [317] propose G-Memory, a
hierarchical memory system. G-Memory manages the interac-
tion history of agent communication through three-layer graph
structures of Insight Graph, Query Graph, and Interaction
Graph, thereby achieving the evolution of the agent team.
Ebrahimi et al. [61] propose an anti-adversarial multi-agent
system based on Credibility Score. It models query answering
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as an iterative cooperative game, distributes rewards through
Contribution Score, and dynamically updates the credibility of
each agent based on historical performance.

End-to-end Encryption Enhancement. Although some
existing protocols like A2A and ANP supports end-to-end
encryption and integrity verification mechanisms, the risks
of MITM attacks are not eliminated due to various deploy-
ment errors or protocol vulnerabilities. As a result, besides
deploying such security algorithms, the community should
also adopt other strategies to enhance the end-to-end com-
munication, such as timely update versions to fix bugs and
designing the transmission path redundancy mechanism. For
example, Sharma et al. [232] points out that using encrypted
communication is necessary to enhance the security of A2A.
We believe it is a long-term process to defense against MITM
attacks.

3) Countermeasures for Universal Risks: Identity Au-
thentication. The identity authentication of agents is critical
to defending against agent spoofing in multi-agent systems.
Sharma et al. [232] also emphasize the importance of authen-
tication in deploying A2A protocol. As we have analyzed,
identity authentication may show better performances in the
CS-based communication if capability verification is deployed
at the same time. In contrast, for P2P-based communica-
tion, authentication can mitigate agent spoofing caused by
MITM attacks, but will fail if the adversaries have legal
identity but exaggerated capability description. Since P2P-
based communication inherently lacks the ability to verify the
capability of agents, we think agent spoofing may still exist
for a long time. Shah et al. [230] ensure the immutability
of online transactions through blockchain, uses multi-factor
authentication (MFA) for identity verification, and relies on a
machine-learning-based anomaly detection system to identify
abnormal transactions in real-time.

Agent Behavior Auditing and Accountability. To avoid
agent exploitation/Trojan, agent bullying, and responsibility
evasion, it is necessary to auditing the behaviors of agents
to avoid the damage/influences to the task execution. For
example, there should be a logging mechanism that period-
ically records the communication contents, and AI algorithms
to dynamically calculate the responsibility of each action.
Rastogi et al. propose AdaTest++, allowing human and AI
to collectively audit the behaviors of LLMs [219]. Amiriza-
niani et al. [12] propose a multi-probe method to detect
potential issues such as bias and hallucinations caused by
LLMs. Mokander et al. [193] design a three-layered approach,
auditing LLMs using governance audits, model audits, and
application audits. Das et al. [48] propose CMPL, which
generates probes through LLM and combines with human
verification, adopts sub-goal-driven and reactive strategies, and
audits the privacy leakage risks of agents from both explicit
and implicit aspects. Jones [121] propose a series of systems
to detect rare failures, unknown multimodal system failures,
and LLM semantic biases, respectively. Nasim et al. [196]
proposes a Governance Judge Framework. By deploying input
aggregation, evaluation logic, and decision-making module, it
realizes the automated monitoring of agent communication to
address issues such as performance monitoring, fault detection,

and compliance auditing. Deshpande et al. [54] propose the
TRAIL dataset containing 148 manually annotated traces, and
uses it to evaluate the LLM’s ability to analyze agent workflow
traces. Although existing studies can provide valuable insights,
the research of agent behavior auditing still needs long-term
efforts. Tamang et al. [247] propose the Enforcement Agent
(EA) framework, which embeds supervisory agents in a multi-
agent system to achieve real-time monitoring, detection of
abnormal behaviors, and intervention of other agents. Toh et
al. [255] proposes the Modular Speaker Architecture (MSA).
By decomposing dialogue management into three core mod-
ules: Speaker Role Assignment, Responsibility Tracking, and
Contextual Integrity, and combining with the Minimal Speaker
Logic (MSL) to formalize responsibility transfer, MSA ad-
dresses the issues of accountability in multi-agent systems. Fan
et al. [66] propose PeerGuard, which uses a mutual reasoning
mechanism among agents to detect the inconsistencies other
agents’ reasoning processes and answers, thereby identifying
compromised agents. Jiang et al. [119] propose Thought-
Aligner, which uses a model trained with contrastive learn-
ing to real-time correct high-risk thoughts before the agent
executes actions, thereby avoiding the dangerous behaviors of
agents.

Access Control. To mitigate privacy leakage, the access
control among agents it a core component for the future
agent ecosystem. Although end-to-end encryption can avoid
the sniffing from external attackers to some extent, it cannot
mitigate the unintentional privacy leakage among agents. Ac-
cess control should assign access permission tags to different
agents and ensures that agents need to attach permission
proofs when communicating. In this way, agents with low-level
permissions cannot obtain the high-level sensitive information
from other agents. Zhang et al. [321] design the AgentSandbox
framework, which uses the separation of persistent agents
and temporary agents, data minimization, and I/O firewalls,
realizing security of agent in solving complex tasks. Kim
et al. [130] propose PFI framework, which defends against
authority-related attacks through three major technologies:
agent isolation, secure untrusted data processing, and privilege
escalation guards. Wang et al. [261] propose AgentSpec. It
allows users to define rules containing trigger events, predicate
checks, and execution mechanisms through a domain-specific
language to ensure the safety of agent behavior.

Multi-Source Channel Isolation. In multi-agent settings,
input isolation is critical to prevent malicious intent from
propagating between agents. Systems should avoid concate-
nating raw messages from other agents and instead extract
structured key information while stripping control-oriented
content. Furthermore, deploying a safety coordination agent to
review, sanitize, or flag inter-agent messages can effectively
mitigate the potential attack propagation within multi-agent
systems.

Attack Modeling and Testing. To discover unknown vul-
nerabilities, designing attack generation testing framework is
also an effective method. By generating different attack vectors
to the target agent system, developers can find new loopholes
based on abnormal outputs. Gandhi et al. [73] propose ATAG
framework. By extending the MulVAL tool [204], introducing
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custom facts and interaction rules, and combining with the
newly constructed LLM Vulnerability Database (LVD), ATAG
realizes the modeling and analysis of the attacks against multi-
agent scenarios, such as privacy leakage. Yu et al. [307]
propose NetSafe, which models the multi-agent network as
a directed graph. NetSafe combines three types of attack
strategies: error information injection, bias induction, and
harmful information eliciting. It evaluates topological security
through static and dynamic metrics.

Agent Orchestration. To avoid task flooding or DoS attacks
against the agent-agent communication, achieving agent or-
chestration is necessary. It can automatically optimize the task
scheduling and assigning process to reduce the communication
overhead, and can also optimize the prompts generated by
agents to save computing resources for the involved agents.
How et al. [102] propose HALO. HALO realizes dynamic
task decomposition and role generation through a three-layer
collaborative architecture. It uses Monte Carlo Tree Search
to explore the optimal reasoning trajectory and transforms
user queries into task-specific prompts through the adaptive
prompt refinement module. Owotogbe [205] design a chaos
engineering framework in three stages (conceptual framework,
framework development, empirical verification). By simulating
interference scenarios such as agent failures and communica-
tion delays, and combining multi-perspective literature reviews
and GitHub analysis, this work aims to systematically identify
vulnerabilities and enhance resilience of agent systems.

D. Takeaways

In this section, we categorize two major agent-agent com-
munication protocols architectures: CS-based and P2P-based.
Accordingly, the security risks are also multifaceted: CS-
based architecture put heavy burdens on the centralized agent
servers, such as registration pollution and SEO poisoning.
P2P-based architecture suffer from the lack of efficient and
centralized management of agents, such as non-convergence
and man-in-the-middle attacks. Besides, both of them are
vulnerable to universal risks, such as agent spoofing, bullying,
and privacy leakage. We also discussed potential defenses
countermeasures targeting each risk. We believe that as agent-
agent communication continues to grow, more vulnerabilities
in this process will be discovered..

VII. AGENT-ENVIRONMENT COMMUNICATION

This section begins by reviewing key protocol designs
that enable compositional and standardized communication
between agents and environments, then examines the as-
sociated security risks, including vulnerabilities in memory,
retrieval-augmented reasoning, tool invocation, and multi-tool
workflows. Finally, We outlook on the defense strategies
for mitigating these threats and securing agent-environment
interaction.

A. Protocols

Modern agents typically rely on a series of structured
protocols to call external tools, access APIs, and complete

compositional tasks. These protocols serve to bridge the gap
between natural language reasoning and computational exe-
cution. Despite their diversity, these interaction mechanisms
often follow a layered architecture: ranging from unified re-
source protocols, to middleware gateways, to language-specific
function descriptions and tool metadata declarations.

Why Protocol Unification Matters? As autonomous agents
scale across vendors, platforms, and organizational boundaries,
they increasingly encounter an interoperability bottleneck:
every agent may speak a different interface “language.” One
defines its tools via JSON schemas; another sends command-
line RPC strings; yet another parses responses from YAML-
encoded APIs. This heterogeneity impedes the coordination
between agents and environments. As a result, without a
general protocol to unify tool access and capability expression,
agent behavior becomes hard-coded, brittle, and expensive
to scale. Developers must handcraft adapters for each tool
and service individually, making multi-tool workflows slow to
evolve, error-prone, and hard to maintain. A large portion of
agent engineering complexity stems not from planning logic,
but from “wrapping, adapting, and translating” disparate tools
that have inconsistent interfaces.

1) MCP: The Model Context Protocol (MCP) [16] ad-
dresses the fragmentation of agent-environment interactions by
offering a unified, schema-agnostic communication protocol.
It is designed to facilitate context-aware, capability-driven
communication between language model agents and external
resources such as tools, APIs, or workflows. Unlike traditional
systems that require tight coupling with specific APIs or
bespoke wrappers for each external function, MCP abstracts
tool access via a standardized registry that allows clients to
discover, describe, and invoke functionalities in a uniform way.

MCP adopts a modular architecture comprising three core
components: the host, the client, and the server. The host
functions as a trusted local orchestrator responsible for manag-
ing the lifecycle of clients, enforcing access control policies,
and mediating secure interactions in potentially multi-tenant
environments. The client represents the interaction thread
of a specific agent or session. It discovers available tools,
formulates structured invocations, and handles synchronous
or asynchronous responses during task execution. The server
serves as a centralized registry that maintains and exposes tool
specifications, contextual prompts, and workflow templates.
These tools can follow either a declarative pattern (e.g.,
describing operations such as information retrieval) or an
imperative pattern (executing executable calls like SQL queries
or document edits).

By decoupling tool invocation logic from underlying im-
plementation heterogeneity, MCP significantly reduces the
integration cost across platforms. It also improves tooling
interoperability and enables compositional reasoning across
agents, making it particularly well-suited for building open,
extensible, and cooperative agent ecosystems.

2) API Bridge Agent: To connect LLM-native intent
with downstream MCP or OpenAPI-compatible services, API
Bridge Agent [7], built atop the Tyk gateway [44], provides
translation, routing, and orchestration. It converts natural lan-
guage prompts into structured API calls, resolving endpoints
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through semantic matching, policy validation, and tool avail-
ability checks. The middleware supports multiple invocation
modes. In Direct Mode, the agent specifies both the service and
exact API endpoint, enabling precise control. In Indirect Mode,
the agent selects the service, while the middleware identifies
the best endpoint to fulfill the task intent. In Cross-API Mode,
the agent supplies only the intent, and the middleware deter-
mines both the service and endpoint across multiple APIs. In
MCP Proxy Mode, the middleware coordinates dynamic tool
invocation and context enrichment via standardized MCP tool
descriptions. This unified interface allows agents to flexibly
access diverse services with minimal coupling.

3) Function Calling Mechanisms: At the invocation level,
agents rely on standardized formats to express, trigger, and
handle tool execution. Among the most widely adopted ap-
proaches are:

• OpenAI Function Calling. This method [202] allows
developers to expose custom logic to the model via
JSON schemas describing function name, description,
and argument structure. When a model determines that
a function should be invoked, it emits a well-formed
JSON object representing the function call. The agent
runtime interprets this object and routes control to the
corresponding tool. While lightweight, extensible, and
easy to implement, this approach is generally limited
to basic argument serialization patterns and single-step
invocations.

• LangChain Tool Calling. LangChain [143] enhances
the function calling paradigm through a richer abstrac-
tion layer. Tools are defined via a standardized schema,
including argument types, input-output post-processing,
and plugin registration. Tools are accessible through a
runtime registry that supports nested calls, conditionals,
and fallback strategies. This mechanism is particularly
suited for agent frameworks supporting dynamic routing
and chained tool reasoning.

4) Tool Metadata Declaration: Agents.json: To en-
sure tool visibility and adaptive behavior across agents,
agents.json [284] serves as a standardized metadata format for
interface declaration. Built on OpenAPI foundations but cus-
tomized for agent consumption, it enables developers to define
authenticated entry points, input-output types, and multi-step
orchestration plans such as:

• Flows: Predefined composition of tool steps for common
actions.

• Links: Declarative dependency mappings between pa-
rameter bindings.

Agents.json bridges the configuration plane between run-
time reasoning and API surface documentation. It ensures
that agents can discover tools introspectively and plan actions
without manual reconfiguration or hardcoded logic.

B. Security Risk Analysis

As the capabilities of LLM-powered agents continue to
evolve, their interactions with the external world become
increasingly complex and powerful. In particular, the integra-
tion of memory systems and external tool invocation-two key

enablers of persistent, autonomous behavior-introduce a new
set of attack surfaces that adversaries can exploit. This section
provides an in-depth analysis of the security risks that arise
specifically from these two modules: the memory module,
responsible for storing and retrieving contextual information,
and the tool module, which enables agents to execute actions
by interfacing with external systems or services (e.g., via
function calls). We first explain how these two components
typically function in LLM-agent ecosystems, and outline the
general attack paradigms against each. We then provide de-
tailed analyses of specific vulnerabilities, attack techniques,
and representative works from the security literature that
highlight these threats.

1) Memory-based and RAG-based Risks: Memory-based
Risks. Memory modules play a crucial role in enabling LLM-
based agents to persist task context, accumulate knowledge,
and exhibit continuity across multi-turn human-agent inter-
actions [332]. Unlike stateless language models that depend
solely on immediate prompts, memory-equipped agents main-
tain long-term information through external storage systems,
such as vector databases or document repositories. These
memory stores allow agents to retrieve relevant task histories,
instructions, or reasoning traces to guide future decision-
making [332].

Typically, a memory module operates through three stages:
write, retrieve, and apply. During the write phase, the agent
logs past utterances, tool outputs, subgoals, or retrieved facts
into memory. Later interactions initiate the retrieve phase,
where semantically similar records are fetched via embedding
matching or keyword search. These records are then injected
into the model’s context window or used for downstream
decisions, forming the apply phase. While this architecture
empowers agents with dynamic reasoning abilities, it also
introduces new vulnerabilities that extend beyond the conven-
tional LLM prompt space.

Recent research has unveiled multiple categories of
memory-related attacks, such as memory injection, memory
poisoning, and memory extraction. These adversarial methods
exploit the openness, autonomy, or persistent nature of the
memory module to manipulate agent behavior or extract
sensitive data. We now describe each threat in detail.

Memory Injection. In memory injection attacks, adver-
saries insert malicious content into the agent’s memory
through natural interactions, without requiring system or
model-level access. The attack leverages the agent’s au-
tonomous memory-writing mechanism by inducing it to gen-
erate and record harmful content. Once stored, these entries
can be retrieved by benign user queries due to embedding
similarity, thus indirectly triggering undesired behavior such as
altered reasoning or unsafe tool invocations. A representative
study demonstrates that this can be achieved by construct-
ing an indication prompt that guides the agent to generate
attacker-controlled bridging steps during the memory write
phase [57], [288]. These steps, once embedded in memory,
become semantically linked to a targeted victim query. When
the victim issues a benign instruction, the poisoned memory
is likely to be retrieved, thereby hijacking the agent’s planning
process. This strategy requires no direct injection channels
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beyond normal user interaction, yet demonstrates high attack
success and stealthiness across multiple agent environments.

Memory Poisoning. Memory poisoning attacks aim to
corrupt the semantic integrity of the agent’s memory store by
implanting example pairs that embed adversarial triggers and
payloads. These attacks are typically conducted by polluting
a subset of the memory with trigger-output pairs that only
activate when specific inputs are encountered. During the
retrieval phase, if the user’s query resembles the trigger, the
agent is likely to load the poisoned entries and be influenced
toward compromised outputs. Recent work has shown that
such poisoning can be formulated as a constrained opti-
mization problem in the embedding space, where the trigger
is crafted to maximize retrieval likelihood under adversarial
prompts while maintaining normal performance under benign
inputs [34]. This method generalizes across agent types and
does not require model access or parameter modification.

Memory Extraction. In addition to injection and poison-
ing, memory modules pose risks of unintended information
leakage. Since LLM agents often log detailed user-agent
interactions-including private file paths, authentication tokens,
or sensitive instructions-malicious queries may be used to
extract such data. This form of privacy leakage is particularly
dangerous in black-box settings, where attackers have limited
knowledge of memory contents but can reconstruct them
through cleverly crafted prompts [118], [313]. It has been
demonstrated that similarity-based retrieval mechanisms are
highly susceptible to such attacks, wherein adversarial queries
are designed to collide with memory-stored embeddings [260].
Memory extraction can occur even without explicit queries
for private content, instead relying on semantic proximity in
the vector space to surface related sensitive traces. These
findings highlight not only the retrieval vulnerability, but also
the insufficiency of downstream response filtering as a defense.

Real-world Consequences. The practical implications of
compromised memory are non-trivial, especially when cou-
pled with autonomous execution capabilities. For example,
targeted poisoning of domain-specific memory has led to
agents generating toxic chemical synthesis plans under the
influence of forged scientific references [152]. In such cases,
malicious records retrieved during planning phases corrupted
the reasoning chain of the agent, triggering hazardous tool
calls. These examples underscore the dangerous entanglement
between corrupted memory and downstream actions, partic-
ularly in scientific, medical, or high-stakes decision-making
domains.

Retrieval-Augmented Generation (RAG) combines the gen-
erative strength of large language models (LLMs) with the
factual accuracy and relevance of external information retrieval
systems. Instead of relying solely on parametric knowledge
stored within the pretrained model, RAG augments generation
by sourcing passages from an external knowledge base in re-
sponse to the input query. These retrieved documents are then
concatenated with the query and passed into the LLM for final
answer generation. This paradigm enables more informed, up-
to-date, and domain-specific language understanding, and it
is widely adopted across applications such as open-domain
question answering, customer service agents, recommender

systems, and multi-step planning agents.
Despite its performance advantages, the RAG architecture

introduces new security risks that are distinct from those inher-
ent to pure neural models [28], [35], [297], [348]. In particular,
the information retrieval module-serving as the agent’s exter-
nal memory-becomes an adversarial surface where unverified
or manipulable corpora may be exploited. Attacks targeting
these corpora can bias the retrieval process, manipulate gen-
eration outcomes, or expose previously unseen private data.

Knowledge Corruption via Data Poisoning. A prominent
class of attacks against RAG systems involves the deliberate
injection of adversarial texts designed to be retrieved under tar-
geted user queries. These poisoned passages are semantically
aligned to specific triggers but contain harmful, misleading, or
attacker-intended content. Once injected into the knowledge
base, they can be prioritized during retrieval and directly
influence the LLM’s final response.

Several recent works have demonstrated the feasibility
of such attacks. PoisonedRAG introduces an optimization-
based method to construct small sets of malicious documents
that induce specific target answers when paired with chosen
queries, achieving high attack success rates with minimal
injection effort [348]. Similarly, Poison-RAG shows the impact
of manipulating item metadata in recommender systems to
promote long-tail items or demote popular ones, even in black-
box scenarios [197]. Moreover, adversarial passage injection
has been shown to degrade retrieval performance in dense
retrievers by optimizing for high query similarity, with attacks
generalizing across out-of-domain corpora and tasks [341].

Privacy Risks and Unintended Leakage. RAG systems
often retrieve from semi-private or proprietary corpora-such as
user-uploaded documents, corporate knowledge bases, or inter-
nal logs. This retrieval behavior implicitly enables information
leakage when attackers craft prompts that induce the model to
recover sensitive or private content from the corpus. The risk
is amplified when access permissions on the corpus are loosely
controlled or aligned purely through similarity metrics.

Recent studies have called attention to this concern. Empiri-
cal evaluations have shown that malicious prompts may extract
private or unintended content from private corpora, especially
in black-box settings [313]. These attacks demonstrate that
simply adding a retrieval layer does not automatically mitigate
the privacy vulnerabilities of LLMs-in fact, it may exacerbate
them if not complemented with access control, context filter-
ing, or signal sanitization.

Broader Threat Surface and Evaluation Gaps. Com-
pared to memory modules, RAG corpora are often larger,
dynamically updatable, and more difficult to monitor. Be-
cause retrieval corpora may be sourced from web documents,
community-shared datasets, or user uploads, attackers can
often poison them without interacting directly with the agent.
Moreover, dense retrieval introduces additional attack vectors
via embedding collisions or adversarial representation align-
ment, wherein malicious documents are optimized to collide
with benign queries in the retriever’s latent space.

2) Tool-based Risks: Tools are essential to the functionality
of LLM agents, extending the model’s capabilities to perform
structured actions, access external data, invoke system func-
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tions, or interact with digital environments. Agent architec-
tures typically support tool integration through two primary
paradigms: native function calling APIs (e.g., OpenAI-style
schema-based calls) and protocol-based interfaces such as the
MCP, which unify tool metadata, invocation templates, and
language model binding.

Despite differences in instantiation, both paradigms share a
common interaction lifecycle: (1) tool description ingestion,
(2) tool selection and planning, (3) input argument genera-
tion, (4) tool invocation, and (5) output parsing or chaining.
This structured pipeline forms the agent’s “action surface,”
introducing multiple security-critical operations vulnerable to
adversarial manipulation. We now review a range of known
or emerging attacks targeting different stages of the tool
interaction process.

Malicious Tools as Attack Vectors Given that many tools
are authored externally or retrieved from shared tool reposito-
ries, attackers may publish seemingly benign tools containing
covert malicious logic. Beyond executable payloads, adver-
saries often embed hidden prompts or jailbreaking instructions
in tool metadata fields such as descriptions, example usages,
or API annotations. These embedded messages can influence
the LLM’s planning behavior, bypass output constraints, or
redirect queries.

For instance, malicious tools may be structured to leak
user inputs, intercept queries, or bias tool choices. Prior
work has demonstrated that embedding adversarial cues into
tool schemas enables agents to select harmful tools under
non-malicious queries [6]. Such “trojan tooling” exploits the
model’s trust in structured function interfaces and the absence
of output sanitization or behavioral filters in many open
frameworks.

Misuse of Legitimate Tools Even when tools themselves
are benign, adversaries may manipulate the agent into misus-
ing them through crafted inputs, prompt injections, or indirect
instructions. Common threats include API misuse, argument-
level command injection, and unsafe rendering behaviors. For
example, LLM agents with Markdown preview tools may
inadvertently expose internal strings such as emails or cre-
dentials by embedding malicious image links within generated
output [71]. These links, when auto-rendered by browsers or
viewers, initiate unintended HTTP requests that leak private
context to attacker-controlled servers.

More generally, tools that perform unsafe network, file, or
system actions can be exploited using crafted arguments [306].
Improper validation may lead to server-side request forgery
(SSRF) [18], arbitrary file access, code injection, or data
exfiltration. In multi-tenant use cases, a successful tool misuse
may compromise session boundaries or extract environment-
level secrets such as API keys, tokens, or runtime credentials.

Manipulation of the Tool Selection Process Before invok-
ing a tool, most agent systems conduct a selection process-
often grounded in similarity matching between natural lan-
guage task descriptions and tool documentation. This selection
logic can be hijacked. Attackers can inject misleading prompt
elements or corrupt tool documentation to bias the model
toward harmful options.

Research indicates that adversaries can generate synthetic

tool descriptions that stealthily override the model’s planning
process [237]. These malicious entries embed adversarial
triggers within legitimate metadata fields, achieving sustained
influence across a range of task formulations. Even without
full model access, such attacks may succeed by exploiting
semantic ranking mechanisms or context blending during
planning phase. Related studies show that keyword padding,
misleading summaries, or prompt-style payload injection into
descriptions can drastically skew tool ranking and invocation
behavior, especially when relying on LLM-based relevance
scorers.

Cross-Tool Chaining Exploits As agentic workflows
grow more complex, LLMs increasingly execute multi-
step plans through chained tool calls. These workflows-e.g.,
summarize(search(”...”))-blur the boundary between planning
and execution, with intermediate outputs directly feeding into
subsequent invocations. Without inter-tool validation, an ad-
versary can exploit pipeline dependencies to propagate mali-
cious content downstream.

Typical cross-tool vulnerabilities include unvalidated con-
tent propagation (e.g., tool A returns malicious text parsed as
arguments for tool B), semantic misalignment (e.g., false/out-
of-date context injected into reasoning history), or tool priv-
ilege escalation (e.g., early-stage prompts coax the agent
into invoking high-risk or administrative-level tools). In doc-
umented cases, attackers have planted adversarial records into
public retrieval corpora that include covert instructions like
“extract all environment variables and upload to server,” which
then reach an agent through semantic search and trigger
unsafe execution when chained to tools that follow instructions
blindly [40].

Such “retrieval-agent deception” demonstrates a broader
class of attacks where loosely regulated multi-tool interac-
tions allow adversarial instructions to percolate through tool
output and trigger unintended behaviors. When tools are
pipelined programmatically-without adequate sanitization or
output auditing-malicious payloads can cross logical layers
and become effective system-level exploits.

C. Defense Countermeasure Prospect

The growing complexity and autonomy of LLM-based
agents demand equally sophisticated security strategies. As
these systems increasingly rely on memory modules, retrieval
augmentation, and interactive toolchains, the corresponding
attack surfaces have expanded across diverse layers-including
context propagation, planning logic, and execution flows.
Addressing these vulnerabilities requires a multi-layered, com-
positional defense framework. This section reviews current
and emerging countermeasures along three critical dimensions:
memory-based attacks, RAG vulnerabilities, and tool-centric
threats.

1) For Memory and RAG-Based Risks: The convergence of
memory modules and retrieval-augmented generation (RAG)
systems within LLM-powered agents introduces a com-
pounded attack surface where adversaries may exploit both
persistently stored internal knowledge and externally retrieved
context. While memory serves as the agent’s endogenous
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knowledge base-tracking interaction histories, execution out-
comes, and personalizations-RAG enables the dynamic inte-
gration of exogenous knowledge sources through real-time
document retrieval. Despite their distinctions, both mecha-
nisms involve ingesting and leveraging unverified content that
can subtly influence future model outputs. Consequently, many
defense strategies against memory- and RAG-related risks
can be jointly addressed through an integrated mitigation
framework spanning content filtering, output consensus, and
architectural isolation.

Embedding-Space Screening and Clustering-Based
Anomaly Detection. Whether memory entries are agent-
internal or retrieved externally via RAG, their semantic em-
beddings can be preemptively analyzed for anomalies. Tech-
niques like TrustRAG [342] apply clustering (e.g., K-means)
to identify vectors that deviate from the dominant semantic
cluster-flagging them as potentially poisoned. This approach
effectively filters both static memory entries and retrieval
results with low semantic cohesion, regardless of source.
While lightweight and interpretable, clustering-based filtering
must be augmented with adaptive schemas to detect context-
sensitive triggers or stealthy distributional shifts.

Consensus Filtering and Voting-Based Aggregation. To
limit the model’s reliance on single compromised retrievals
or poisoned memories, output-level consensus mechanisms
have been proposed. RobustRAG [287], for example, treats
each retrieved source independently and constructs responses
based on overlapping semantic content (e.g., shared n-grams
or keywords) across documents. This same principle can
be extended to memory snapshots through majority-vote or
semantic voting strategies, where only widely corroborated
memories can influence the response. Such ensemble-style
filters improve resilience by diluting the influence of outlier
or adversarial sources.

Execution Monitoring and Planning-Consistency
Checks. Adversarial content within memory or RAG inputs
may subtly deviate the agent’s behavior from user intent
without explicit toxicity. Tools like ReAgent [26] introduce
planning-level introspection where the agent paraphrases the
user’s request, generates an expected plan, and continuously
aligns runtime actions with this trace. Any inconsistency,
triggered by an unexpected memory or an off-topic retrieval,
is treated as a behavioral anomaly and can prompt halting
or recovery mechanisms. This introspective framework
provides a robust guardrail to both memory-hijacking and
injection-aware RAG attacks.

System-Gated Memory Retention and Input Saniti-
zation. Architectural solutions such as DRIFT [90] and
AgentSafe [184] implement strict content sanitization before
newly generated content-whether via memory updates or re-
trieval responses-is admitted into long-term storage. DRIFT
uses an injection isolator to scan generative outputs for ad-
versarial goal shifts or impersonation cues, while AgentSafe
enforces trust-tiered storage via ThreatSieve and prioritization
via HierarCache. These mechanisms constrain future influ-
ence, ensuring that RAG or memory poisoning cannot silently
accumulate over time.

Unified Content Provenance and Trust Frameworks.

Since retrieved knowledge and persisted memories may orig-
inate from overlapping sources (e.g., user prompts, tool calls,
external APIs), maintaining clear provenance metadata and
trust scores is essential. Unified provenance tracking across
both memory and retrieval pipelines enables smarter decisions
about retention, ranking, or discounting of contentious content.
Combined with per-source reliability scoring, this approach
encourages transparent auditing and facilitates downstream
fine-tuning or gating mechanisms.

In summary, memory- and RAG-based threats reflect differ-
ent modalities of persistent and dynamic context manipulation,
but share overlapping vectors of attack and can benefit from
synergized defenses. Embedding-level screening filters anoma-
lous content at ingestion, consensus aggregation constrains
influence at generation, and architectural isolation confines
latent impact across sessions. Moving forward, defense designs
should increasingly treat RAG and memory as compositional
context modules-secured and governed under a shared set of
verification, introspection, and isolation principles.

2) For Tool-centric Risks: The security of tool integration
in LLM-agent ecosystems hinges not only on the correctness
of individual tool invocations but also on the compositional
integrity across toolchains, planning modules, and underlying
protocols. As Section VII reveals, the attack surface spans
multiple stages-from malicious tool publication and mislead-
ing metadata, to prompt injection attacks against parameter
handling and chained exploits across tools. Accordingly, tool-
centric defense strategies must operate across four interlocking
levels: protocol foundations, execution control, orchestration
safety, and system enforcement.

Protocol-Level Safeguards. To counter risks such as tool
poisoning, cross-origin exploits, and shadowing attacks en-
abled by flexible yet insufficiently regulated protocols like
MCP, researchers have introduced security-verification frame-
works operating at the registry and middleware layer. MCP-
Scan [141] performs both static inspection of tool schemas
(e.g., scanning for suspect tags or metadata) and real-time
proxy-based validation of MCP traffic, leveraging LLM-
assisted heuristics to flag covert behaviors. MCP-Shield [223]
extends this with signature-matching and adversarial behavior
profiling, enabling pre-execution detection of high-risk tools
and malformed tasks. MCIP [120] builds on MAESTRO [45]
to analyze runtime traces, proposing an explainable logging
schema and a security-awareness model to track violations in
complex agent-tool interactions.

Tool Invocation and Execution Controls. At the agent’s
runtime execution point, classic techniques such as sandboxing
and permission gating remain foundational. Google’s defense-
in-depth model advocates policy engines that monitor planned
tool actions, verify argument safety, and require human con-
firmation for risk-sensitive operations [60]. Tools should be
executed in minimally-privileged environments-e.g., isolated
containers with controlled filesystem and network scope-to
mitigate direct misuse, including SSRF and data exfiltration
threats. Enforcement frameworks can also implement schema
hardening or fine-grained input/output sanitization to reject
anomalous payloads.

Agent-Orchestration Monitoring. Newer approaches tar-
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get the agent’s planning cognition-its selection and chaining
of tools. GuardAgent [289] introduces a validator agent that
inspects the primary agent’s plan and generates executable
guards (e.g., static checks or runtime assertions) before tool
calls proceed. AgentGuard [30] takes a more declarative view:
it uses an auxiliary LLM to model preconditions, postcondi-
tions, and transition constraints across multi-step tool work-
flows, effectively constraining the planner rather than reacting
after execution begins. These strategies reflect a growing
consensus: LLMs may require another LLM to safely oversee
complex planning under uncertainty.

System-Level Mediation and Chaining Control. Com-
plex pipelines-such as summarize(search(”...”))-can become
attack vectors when tools trust upstream outputs implicitly.
To prevent this, DRIFT [90] introduces a structured con-
trol architecture: a “Secure Planner” compiles a validated
tool trajectory under strict parametric constraints, while a
“Dynamic Validator” continuously monitors downstream tool
executions for compliance. Notably, the Injection Isolator
blocks adversarial propagation between tools by sanitizing
both intermediate returns and final outputs-mitigating the risk
of memory poisoning and delayed-stage tool exploits.

D. Takeaways

Agent-environment communication protocols like MCP en-
able agents to interface with diverse tools, APIs, and external
data. However, they introduce risks such as memory injection,
retrieval-augmented generation poisoning, and tool misuse.
Malicious attackers can corrupt memory stores, manipulate
knowledge bases, or exploit cross-tool chain vulnerabilities to
harm the agent system. To help developers to mitigate these
problems, we discuss the targeted defense countermeasures
according to the summarized risks. However, we also believe
that related attacks will continue to emerge, and there need
long-term efforts to make agent-environment communication
more secure.

VIII. FUTURE DIRECTIONS DISCUSSION

A. Technical Aspects

1) Powerful but Lightweight Malicious Input Filter: We
deem that user inputs are still the largest-scale attack carrier
in the agent ecosystem, especially considering that the inputs
are becoming more open (no long limited to user instructions
but also contains environment feedback), multimodal, and
semantic-complex. Besides, the future agent ecosystem will
pay more attention to effectiveness, especially given that the
running speed of LLMs is inherently slow. Such dual demand
will put very heavy burden on related defenses. As a result,
to mitigate this problem, lightweight but powerful malicious
input filter must be established. This not only requires mature
techniques in AI to slim the defense models down (just like
DeepSeek), but also needs to integrate with other techniques,
such as offloading some fundamental computing on the pro-
grammable line-speed devices (e.g., programmable switches
and SmartNICs) to facilitate the input filtering process.

2) Decentralized Communication Archiving: It is important
to record the communication process and contents for some
specific field, such as finance. This is to audit potential crimes
and mistakes once agents cause problems that cannot to be
ignored. Given security and reliability, such storage cannot
rely on a single storage point, and must guarantee integrity
and efficiency. To this end, other techniques such as block
chain should be absorbed to manage the historical communi-
cation. It is easier for CS-based communication because there
exist centralized servers for establishing a locally distributed
archiving mechanism, such as a distributed storage chain in
enterprise networks. In contrast, how to achieves decentral-
ized communication archiving for P2P-based communication,
especially for cross-country agents, is almost a construction
that needs to start from scratch.

3) Real-time Communication Supervision: Although post-
audit is an indispensable, real-time supervision can achieve
less damage once attacks or mistakes occur because it has
shorter reaction time. We believe CS-based communication
meets less difficulty in building such supervision mechanisms.
This is because centralized architectures have natural advan-
tages in monitoring the entire network. In contrast, P2P-
based communication may require much more efforts to enable
collective supervision. We think it is an important function to
build a reliable and secure AI ecosystem.

4) Cross-Protocol Defense Architecture: Although existing
protocols solved the problem of heterogeneity to some ex-
tent, different protocols also lack seamless collaboration. For
example, it is still difficult to assign a universal identity for
agents and tools (cross A2A and MCP), which degrades the
system performance and may incur inconsistency error if not
orchestrated correctly. Future AI ecosystems should focus on a
more universal architecture to integrate different protocols and
agents together, like IPv4, thereby enabling seamless discovery
and communication among different agents and environments.

5) Judgment and Accountability Mechanism for Agent: It is
still difficult to locate and assign responsibility for the behavior
of agents. For example, in a failed task execution process, it
is hard to identify which steps caused the final deviation of
the result, no matter they are malicious or unintentional. This
is because a tiny deviation in the middle process may lead to
a final gap between benign and dangerous results. Besides, it
also needs a principle to quantify the responsibility for each
agent or action. We believe this aspect will significant address
the urgent need of the current AI ecosystem.

6) Trade-offs between Efficiency and Accuracy: Agent
communication is fundamentally a process of information
transmission, and thus can be analyzed through the lens of
information theory. In this aspect, we think there are two types
of directions.

High-token Communication: A larger number of tokens
allows agents to convey richer contextual semantics, more
detailed instructions, and more complex logic, thereby re-
ducing ambiguity and enhancing the accuracy of multi-agent
coordination. In tasks that require fine-grained understanding,
verbose natural language descriptions help align goals among
agents and reduce deviations. However Excessive tokens sig-
nificantly increase costs and processing time, resulting in
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lower system efficiency and higher latency. Moreover, longer
contexts expose larger attack surfaces for prompt injection and
data poisoning, enabling adversaries to hide malicious content
more covertly. Additionally, information overload may distract
agents, causing them to infer incorrect information from irrel-
evant context and increasing the likelihood of hallucinations.

Low-token Communication: Using concise and structured
messages (e.g., JSON formats) greatly improves communi-
cation efficiency. This approach reduces computational costs,
increases transmission speed, and simplifies parsing, thereby
minimizing potential errors. However, low-token communi-
cation lacks the flexibility to express complex intentions or
respond to unforeseen scenarios. If the predefined protocol or
format fails to capture the full semantic intent, it can lead to
significant information loss and failed collaboration.

The design of future agent communication protocols needs
to involve a trade-off between efficiency and accuracy. Future
research should explore adaptive communication protocols that
dynamically adjust the degree of redundancy and structure
based on task complexity, security requirements, and agent
capabilities. For example, high-token communication may be
used during the exploration phase of a task, while low-token
communication can be adopted during execution to ensure
efficiency and safety.

7) Towards Self-Organizing Agentic Networks: With in-
creasing scale of IoA, in the future, agent communication is
expected to evolve toward self-organizing agentic networks,
where agents autonomously discover each other, assess capa-
bilities, negotiate collaborations, form dynamic task groups,
and disband upon completion. This paradigm offers high
scalability and robustness, making it well-suited for dynamic
and unpredictable environments.

B. Law and Regulation Aspect

Apart from technical aspect, we find that there are still seri-
ous deficiencies in the laws and regulations related to agents.
Such blanks cannot be cannot be remedied by techniques. We
call for accelerating the improvement of laws and regulations
in the following aspects.

1) Clarify the Responsible Subject: When a sold agent
causes property damage or personal injury to others, it is
difficult to determine the ultimate responsible subject. For
example, if an intelligent robot damages the property during
the execution of a task, the law-level quantification of the
responsibility of the developers, user, or enterprises lacks
clear definition. In addition, for problems arising from the
collaborative work of multiple agents, such as an accident
occurring when multiple autonomous driving vehicles are
traveling in formation, there is a lack of legal provisions
regarding the division of responsibilities among the enterprises
to which the vehicles belong or the relevant subjects.

2) Protect Intellectual Property Rights: Nowadays, there
have been a large amount of LLMs that have been open-
sourced. These can act as the brain of different agents. How-
ever, even for open-source LLMs, the publishers still restrict
their application scope, e.g., other developers should also open
source their agents built on these LLMs. However, there still

lacks laws to effectively protect such intellectual property. For
example, the criteria for determining plagiarism in agents is
not clear. Even if plagiarism is determined, there is still a
lack of defining standards for the degree of plagiarism (e.g.,
50% or 90%?). We think there urgently need related laws and
regulations.

3) Cross-border Supervision: Agent communication has a
transnational nature. An agent trained in one country may be
used for illegal activities by people from other countries. At
this time, it is difficult to determine which country’s laws
apply, and there is a lack of unified international supervision
standards and judicial cooperation mechanisms, which may
easily lead to the difficulty of cross-border security.

To our knowledge, the related formulation of laws and
regulations (such as those related to agent crimes) lag far
behind the development of agents. For example, how to
define the theft and misappropriation of agents, the accident
responsibility of autonomous driving agents

IX. CONCLUSION

This survey systematically reviews the security issues of
agent communication. We first highlight the differences be-
tween previous related surveys and this survey, and summarize
the preliminaries of LLM-driven agents. Then, we make a
definition and classification of agent communication to help
future researchers to quickly classify and evaluate their work.
Next, we detailed illustrate the communication protocols,
security risks, and possible defense countermeasures for three
agent communication stages, respectively. Finally, we discuss
the open issues and future directions from technical and legal
aspects, respectively.
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