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Abstract—The widespread lack of broad source code veri-
fication on blockchain explorers such as Etherscan, where
despite 78,047,845 smart contracts deployed on Ethereum
(as of May 26, 2025), a mere 767,520 (< 1 %) are open
source, presents a severe impediment to blockchain security.
This opacity necessitates the automated semantic analysis of
on-chain smart contract bytecode, a fundamental research
challenge with direct implications for identifying vulnerabilities
and understanding malicious behavior. Adversarial actors de-
liberately exploit this lack of transparency by deploying closed-
source contracts, particularly in MEV and DeFi exploitation,
thereby concealing their malicious logic and leaving security
researchers with only inscrutable low-level bytecode. Prevail-
ing decompilers struggle to reverse bytecode in a readable
manner, often yielding convoluted code that critically hampers
vulnerability analysis and thwarts efforts to dissect contract
functionalities for security auditing.

This paper addresses this challenge by introducing a
pioneering decompilation pipeline that, for the first time,
successfully leverages Large Language Models (LLMs) to
transform Ethereum Virtual Machine (EVM) bytecode into
human-readable and semantically faithful Solidity code. Our
novel methodology first employs rigorous static program anal-
ysis to convert bytecode into a structured three-address code
(TAC) representation. This intermediate representation then
guides a Llama-3.2-3B model, specifically fine-tuned on a
comprehensive dataset of 238,446 TAC-to-Solidity function
pairs, to generate high-quality Solidity. This approach uniquely
recovers meaningful variable names, intricate control flow, and
precise function signatures. Our extensive empirical evaluation
demonstrates a significant leap beyond traditional decompilers,
achieving an average semantic similarity of 0.82 with original
source and markedly superior readability. The practical viabil-
ity and effectiveness of our research are demonstrated through
its implementation in a publicly accessible system, available
at https://evimdecompiler.com, This work establishes a new
frontier in smart contract analysis, substantially enhancing
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transparency and auditability in blockchain ecosystems, with
direct applications in security auditing, incident response, and
automated contract verification.

1. Introduction

The rapid evolution of blockchain technology has fun-
damentally transformed the landscape of decentralized ap-
plications, with smart contracts emerging as the cornerstone
of this revolution. These self-executing contracts, manage
billions of dollars in digital assets and facilitate complex
decentralized financial operations. However, a critical and
persistent research challenge directly threatens the security
and sustainability of this ecosystem: the pervasive opacity of
deployed smart contracts. When source code is not publicly
verified, as is common with adversarial contracts used in
MEYV or DeFi exploits, security researchers and auditors are
left with only low-level EVM bytecode, a representation ill-
suited for direct human comprehension or robust security
analysis.

This opacity erects a formidable barrier for security
auditors, developers, and researchers striving to understand,
verify, or respond to incidents involving smart contracts.
The challenge is particularly acute in scenarios involving
active exploits or potential vulnerabilities, where the ability
to rapidly and accurately analyze deployed bytecode is
paramount for preventing or mitigating financial losses. Tra-
ditional decompilers represent significant efforts to bridge
this gap by converting EVM bytecode back into higher-
level representations. However, the inherent difficulty of this
translation means their output, often a necessary compro-
mise due to the loss of information during compilation, may
not always fully capture the original developer’s intent and
can sometimes feature convoluted logic or generic variable
names, making thorough security auditing a demanding task.

Indeed, the decompilation of highly optimized or com-
plex bytecode remains a frontier problem. Existing ap-
proaches, despite their sophistication, can face difficulties in
consistently reconstructing human-like variable names and
function signatures, sometimes resorting to generic iden-
tifiers. Recovering high-level control flow structures from
low-level jumps also continues to be an area of active
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research, with some outputs still containing less intuitive
control flow. Similarly, inferring the precise semantic pur-
pose of intricate code segments is a complex undertaking.
These ongoing challenges underscore the need for continued
innovation in the field, as they can impact audit times,
costs, and the ease of identifying subtle vulnerabilities or
maintaining legacy systems.

Recent breakthroughs in LLMs present a paradigm-
shifting opportunity to address these longstanding limita-
tions. LLMs have demonstrated remarkable capabilities in
understanding and generating nuanced, human-like text and,
increasingly, complex code. Their proficiency in capturing
intricate patterns and semantic relationships within pro-
gramming languages suggests their profound potential to
revolutionize the field of decompilation. Specifically, the
ability of LLMs to comprehend context and generate natural,
readable code makes them exceptionally promising for smart
contract decompilation, where clarity and semantic fidelity
are indispensable for rigorous security analysis and reliable
contract maintenance.

In this paper, we introduce a novel research direc-
tion and a corresponding system that, for the first time,
successfully harnesses the power of LLMs to achieve a
qualitative leap in smart contract decompilation. Departing
from direct bytecode-to-source translation, our innovative
pipeline first employs robust program analysis techniques
to convert EVM bytecode into a structured intermediate
representation—three-address code, TAC. This TAC, which
preserves essential semantic information in a format more
amenable to neural processing, then guides a fine-tuned
Llama-3.2-3B model to generate clean, human-readable, and
semantically faithful Solidity code. This hybrid approach
demonstrates that the intractable problem of smart contract
decompilation can be effectively addressed by synergisti-
cally combining the strengths of traditional program analysis
with the advanced pattern recognition and generation capa-
bilities of modern LLMs, achieving results that significantly
advance the state of the art in both semantic accuracy and
code usability.

Our work makes several fundamental contributions:

o First, we introduce a novel research direction for
smart contract decompilation that shows how neural
methods can work synergistically with, and augment,
traditional program analysis, rather than replacing
it. This hybrid system demonstrates how LLMs can
not only enhance existing decompilation techniques
but can also enable new levels of output quality,
particularly in maintaining the precision required for
security-critical applications.

o Second, we present a specialized variant of Llama-
3.2-3B, fine-tuned specifically for the task of smart
contract decompilation from an intermediate repre-
sentation. This demonstrates that relatively small,
specialized language models can be highly effective
for complex, domain-specific programming tasks
when properly trained on appropriate data. Our fine-
tuning strategy, employing Low-Rank Adaptation

(LoRA), offers a computationally efficient blueprint
for adapting LLMs to similar technical domains.

o Third, we conduct extensive empirical evaluations
that rigorously demonstrate significant improve-
ments in both semantic accuracy and, crucially, code
readability over existing state-of-the-art decompilers.
Our multi-faceted evaluation methodology consid-
ers not only traditional metrics like edit distance
but also more sophisticated measures of semantic
code similarity and code structure, alongside quali-
tative analysis through ablation and case studies. The
results robustly show that our approach produces
maintainable and reusable code that preserves the
original contract’s functionality and high-level intent
far more effectively than prior methods.

o Fourth, we develop and publicly release a compre-
hensive dataset of 238, 446 paired three-address code
and Solidity functions. This meticulously curated
resource, capturing a wide array of programming
patterns and contract functionalities, represents a
significant contribution to the research community,
enabling further supervised learning and research in
smart contract analysis, program understanding, and
neural decompilation techniques.

By substantially improving the readability and semantic
accuracy of decompiled smart contracts, our research makes
a critical contribution to the overall security, transparency,
and maintainability of blockchain applications. This end-
to-end approach has immediate and impactful applications
in security auditing, automated vulnerability discovery, inci-
dent response, and the ongoing verification and maintenance
of deployed smart contracts, ultimately fostering a more
secure and trustworthy decentralized ecosystem.

2. Background

2.1. Ethereum Virtual Machine and Solidity

The Ethereum Virtual Machine (EVM) serves as the
computational heart of the Ethereum blockchain, operating
as a stack-based virtual machine that executes smart contract
bytecode. Unlike traditional computing environments, the
EVM is designed specifically for deterministic, decentral-
ized execution, where every operation must produce identi-
cal results across all nodes in the network. This requirement
fundamentally shapes the architecture of both the EVM and
the languages used to program it.

The EVM architecture consists of several key compo-
nents that interact during contract execution. At its core is
a 1024-element stack that holds 256-bit words, used for
both data and control flow operations. The machine also
maintains a volatile memory space for temporary data stor-
age and a persistent storage area that retains state between
contract invocations. This storage is particularly expensive in
terms of gas costs, leading to specific optimization patterns
in contract development.



Solidity emerged as the primary programming lan-
guage for Ethereum smart contracts, offering a high-level,
statically-typed environment that abstracts away the com-
plexities of the underlying EVM. The language provides
sophisticated features including contract inheritance, library
linking, complex data structures, and event emission. So-
lidity’s type system includes blockchain-specific primitives
such as address types, mapping structures, and specialized
integer types that prevent common security vulnerabilities
like overflow errors.

The compilation process from Solidity to EVM bytecode
involves multiple transformation stages. First, the Solidity
compiler performs type checking and semantic analysis, then
generates an intermediate representation. This IR undergoes
various optimizations before being transformed into EVM
bytecode. During this process, many high-level constructs
are completely transformed or eliminated. For instance, a
simple Solidity function with named parameters, return val-
ues, and structured control flow is converted into a sequence
of stack manipulations and jumps in the bytecode.

2.2. Three-address Code Representation

Three-address code represents a crucial intermediate step
between low-level bytecode and high-level source code. In
this representation, each instruction contains at most three
operands, typically following the pattern: result = operandl
operator operand2. This format provides several key advan-
tages for program analysis and transformation.

The fundamental power of three-address code lies in
its explicit representation of data flow relationships. Unlike
stack-based bytecode where operand relationships must be
inferred through stack manipulation analysis, three-address
code directly shows how values are computed and used.
For example, a complex stack operation sequence in EVM
bytecode that computes (a + b) * (c - d) would be clearly
represented in three-address code as:

templ = a + b
temp2 = ¢ - d
result = templ > temp2

This representation also simplifies control flow analysis
by making jump targets and conditions explicit. While EVM
bytecode uses numeric offsets and stack-based conditions
for control flow, three-address code can maintain structured
control flow with labeled targets and clear conditional ex-
pressions. This property is particularly valuable for recover-
ing high-level control structures like loops and conditional
statements.

Furthermore, three-address code serves as an ideal target
for program analysis tools. Its regular structure and explicit
operand relationships enable straightforward implementation
of data flow analysis, reaching definitions analysis, and
other crucial program analysis techniques. These analyses
form the foundation for many program understanding and
optimization tasks.

2.3. Challenges in EVM Bytecode Decompilation

The decompilation of EVM bytecode presents a unique
set of challenges that distinguish it from traditional software
decompilation. These challenges arise from both the specific
characteristics of the EVM architecture and the semantic gap
between bytecode and high-level smart contract languages.

A fundamental challenge lies in the recovery of high-
level type information. The EVM operates primarily on
256-bit words, with type information largely erased during
compilation. Reconstructing whether a value represents an
address, a timestamp, or a financial amount requires sophis-
ticated analysis of how the value is used throughout the con-
tract. This type recovery is crucial for generating readable
and semantically meaningful Solidity code, as proper type
information guides the selection of appropriate variables
names and operations.

Control flow recovery presents another significant chal-
lenge. The EVM’s architecture allows for computed jumps,
where jump targets are determined at runtime based on stack
values. While many of these jumps correspond to structured
control flow in the original code (like function calls or
loop conditions), some arise from compiler optimizations
or more complex language features like delegatecall. Ac-
curately identifying and reconstructing these control flow
patterns is essential for producing maintainable decompiled
code.

Function boundary identification and signature recovery
pose particular difficulties. Unlike traditional executables,
EVM bytecode does not maintain a clear function table.
Instead, functions are identified by their 4-byte signatures,
computed from their names and parameter types. When
source code is not available, recovering these signatures
requires analysis of the contract’s deployment code and
runtime behavior. Furthermore, internal functions may be
inlined or rearranged by the compiler, making their bound-
aries difficult to detect.

Smart contracts frequently employ complex data struc-
tures and inheritance patterns that are challenging to recon-
struct from bytecode. For example, a mapping of structs
in Solidity might be implemented through multiple storage
accesses with computed keys in the bytecode. Similarly,
inherited function implementations might be merged or split
during compilation, obscuring the original object-oriented
design.

The presence of revert conditions and error handling
adds another layer of complexity. Solidity’s require and as-
sert statements are transformed into sequences of condition
checks and revert operations in the bytecode. Identifying
these patterns and reconstructing them as meaningful high-
level constructs is crucial for understanding the contract’s
security properties.

Compiler optimizations further complicate the decom-
pilation process. The Solidity compiler performs various
optimizations including constant folding, dead code elimi-
nation, and control flow optimization. These transformations
can significantly alter the structure of the code, making it
difficult to recover the original source patterns. In some



cases, multiple different source code patterns might compile
to identical or very similar bytecode, creating ambiguity in
the decompilation process.

The security-critical nature of smart contracts makes
these challenges particularly significant. Inaccurate decom-
pilation can lead to misunderstanding of contract behav-
ior, potentially missing vulnerabilities or introducing errors
during contract maintenance. Traditional decompilers often
produce output that, while functionally equivalent to the
original code, is difficult to audit and maintain due to its use
of goto statements, generic variable names, and unstructured
control flow.

3. Approach

We present an end-to-end decompilation pipeline that
transforms EVM bytecode into human-readable Solidity
code through a series of carefully designed stages (cf. Fig-
ure [I). Our system combines traditional program analysis
techniques with modern language models, leveraging the
strengths of both approaches. The pipeline begins with a
bytecode-to-three-address-code converter that employs static
analysis to create a more structured intermediate represen-
tation. This output then feeds into a fine-tuned variant of
Llama-3.2-3B, trained on a curated dataset of 238,446 func-
tion pairs to generate natural Solidity code. Each component
of our system is designed to address specific challenges
in smart contract decompilation, from preserving security-
critical patterns to maintaining gas efficiency. In this section,
we detail our system architecture, describe our dataset con-
struction process, explain our data processing pipeline, and
present our model architecture and training approach.

3.1. System Overview

Our decompilation system implements a complete
pipeline that transforms EVM bytecode into human-readable
Solidity code through a series of carefully designed stages.
At a high level, the system consists of three major compo-
nents: a bytecode-to-three-address-code converter, a dataset
construction and preprocessing pipeline, and a fine-tuned
language model that generates the final Solidity output.

The first stage employs traditional program analysis
techniques to convert EVM bytecode into a more structured
three-address code representation. This transformation pre-
serves the semantic content of the original bytecode while
eliminating the complexity of stack-based operations. We
utilize advanced control flow analysis to identify function
boundaries and basic blocks, enabling more accurate recon-
struction of program structure.

The second stage involves our language model, which
has been specifically trained to understand the relationships
between three-address code and high-level Solidity con-
structs. This model serves as a bridge between the inter-
mediate representation and natural, readable code. Unlike
traditional decompilers that use fixed pattern matching rules,
our language model can adapt to various coding styles and
patterns, leading to more natural and maintainable output.

3.2. Dataset Construction

We developed a pipeline for collecting, processing, and
filtering smart contract data to create high-quality training
examples. The initial data collection phase begins with the
extraction of verified smart contracts from the Ethereum
blockchain. We specifically target contracts where both the
bytecode and original source code are available, enabling
us to create accurate ground truth pairs for training. Our
collection process includes contracts from various time peri-
ods and different versions of the Solidity compiler, ensuring
broad coverage of language features and coding patterns.

We implemented a robust function extraction system that
preserves critical metadata such as visibility specifiers, pa-
rameter types, and return value information. This metadata
proves crucial for training the model to generate accurately
typed and properly structured Solidity code.

Data cleaning and filtering form another crucial com-
ponent of our pipeline. We remove duplicate functions,
invalid code patterns, and examples that exceed our length
constraints. Our filtering process ensures that the training
data represents realistic and useful code patterns while
maintaining manageable sequence lengths for the language
model. Statistical analysis of the dataset shows a balanced
distribution of different function types, complexity levels,
and programming patterns.

3.3. Data Processing Pipeline

Our data processing pipeline transforms raw contract
data into a format optimized for language model training.
The first component of our pipeline handles the normaliza-
tion of three-address code. This includes standardizing vari-
able names, removing redundant operations, and ensuring
consistent formatting. We developed custom normalization
rules that preserve semantic information while reducing
superficial variations that could confuse the model.

For each function in our dataset, we extract and preserve
contextual information that aids in accurate decompilation.
This includes function signatures, visibility modifiers, and
type information when available. Our processing pipeline
can handle cases where function signatures are unknown or
ambiguous, creating multiple training examples with differ-
ent potential signatures to improve the model’s robustness.

We implemented careful sequence length management
to handle the constraints of our language model while pre-
serving important code information. Our approach includes
intelligent truncation strategies that maintain function com-
pleteness and semantic coherence even when dealing with
very long functions. We found that a maximum sequence
length of 20,000 tokens provides a good balance between
coverage and computational efficiency.

The pipeline also includes sophisticated error handling
and validation mechanisms. We verify the syntactic correct-
ness of both input and output code, ensure proper alignment
between three-address code and Solidity representations, and
maintain consistency in our training pairs. This attention to



Bytecode-to-TAC

Neural Code Generation

Static Analysis
& Control Flow
Recovery

EVM Bytecode
(on-chain code)

Three-Address
Code (TAC)

Fine-tuned LLM
(Llama-3.2-3B)

Readable
Solidity

Figure 1. High-level visual overview of our smart contract decompilation pipeline. We first convert EVM bytecode into a structured three-address code
(TAC) representation using static analysis and control flow recovery. This TAC is then fed into a fine-tuned large language model to produce human-readable
Solidity code, followed by a post-processing step for validation and syntax checks.

data quality significantly improves the model’s ability to
generate correct and readable code.

3.4. Model Architecture and Training

Our approach utilizes a fine-tuned variant of Llama-
3.2-3B, carefully adapted for the specific requirements of
smart contract decompilation. The choice of this model
balances the need for sophisticated language understanding
with practical computational constraints and deployment
considerations.

The base Llama-3.2-3B model provides several advan-
tages for our task. Its trained understanding of code structure
and programming languages provides a strong foundation
for learning the specific patterns of Solidity code. The
model’s attention mechanism is particularly well-suited for
handling the long-range dependencies common in smart
contract code, while its token embedding system effectively
captures the specialized vocabulary of blockchain program-
ming.

We employ Low-Rank Adaptation (LoRA) for fine-
tuning, which allows us to efficiently adapt the model while
maintaining its general language understanding capabilities.
Our LoRA configuration uses a rank of 16 and targets
specific model components including query, key, value, and
projection layers. This targeted approach significantly re-
duces the number of trainable parameters while maintaining
high performance on our specific task.

The training process incorporates several specialized
techniques to improve performance on smart contract code.
We implement gradient checkpointing to handle longer se-
quences efficiently, enabling larger batch sizes and more
stable training. Our optimization strategy uses the AdamW
optimizer with a carefully tuned learning rate schedule,
including a brief warmup period followed by linear decay.

The training data is presented to the model using a
custom formatting template that clearly delineates the three-
address code input from the target Solidity output. We
include special tokens to mark function boundaries and
metadata, helping the model learn the structure of smart
contract functions. Our prompt engineering ensures that the
model receives sufficient context about function signatures
and visibility when available.
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Figure 2. Distribution of code length differences between original and de-
compiled functions. The histogram reveals that the majority of differences
fall within 450 characters, with a median difference of 5 characters and a
standard deviation of 254.18. 67.64% of functions have a length difference
within +50 characters. The overall range spans from —2897 to 16434
characters. These results demonstrate that our model preserves function
length with high fidelity, which is critical for smart contracts where code
size directly influences gas costs and execution efficiency.

4. Evaluation

We conduct a comprehensive evaluation of our decom-
pilation system across multiple dimensions using a test set
of 9,731 smart contract functions carefully held out from
our training data. Our evaluation methodology examines
three fundamental aspects: semantic preservation (accuracy
in maintaining the original program’s behavior), structural
fidelity (quality of generated code structure and readability),
and practical limitations (behavior on complex real-world
contracts). Through a combination of quantitative metrics,
detailed case studies, and ablation analyses, we demonstrate
both the effectiveness of our approach and identify areas for
future improvement. Our test set spans diverse complexity
levels and application domains, from basic token transfers to
sophisticated DeFi protocols, ensuring thorough assessment
of our system’s capabilities under varied conditions.
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Figure 3. Quality metrics distributions demonstrating our system’s decompilation accuracy. Left: Normalized edit distance distribution showing strong
concentration below 0.4, with 82.5% of functions achieving distances under this threshold. The smooth curve overlay highlights the consistent, non-
random nature of our system’s performance. Right: Semantic similarity distribution revealing exceptional preservation of meaning, with 78.3% of functions
achieving similarities above 0.8 and 45.2% exceeding 0.9. This heavily right-skewed distribution demonstrates our system’s ability to maintain semantic

correctness even when syntactic structures vary.
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Figure 4. Cumulative distribution functions (CDFs) revealing the reliability and consistency of our decompilation approach. Left: Edit distance CDF showing
rapid accumulation below 0.4, with 60% of functions achieving distances under this threshold. The smooth progression indicates stable performance across
different function types. Right: Semantic similarity CDF demonstrating exceptional performance, with 90% of decompiled functions achieving similarities
above 0.7 and 50% above 0.85. This significantly outperforms traditional decompilers, which typically achieve such high similarities for only 40% to 50%

of functions.

4.1. Experimental Setup

The evaluation of our smart contract decompilation
system requires careful consideration of both quantitative
and qualitative aspects of the generated code. To ensure
a comprehensive assessment, we constructed a test dataset
comprising 9,731 smart contract functions carefully held
out from our training data. These functions span diverse
complexity levels and application domains, from basic token
transfers to sophisticated decentralized finance protocols.
We specifically selected contracts deployed across differ-
ent time periods on the Ethereum mainnet to evaluate our
system’s ability to handle evolving smart contract patterns
and practices.

For each function in our test set, we preserve not only

the bytecode and source code but also critical metadata
including function signatures, visibility modifiers, and docu-
mentation when available. This rich contextual information
enables us to perform nuanced analyses of how well our
decompiler preserves both the technical functionality and the
developer intent embodied in the original code. To ensure
reproducibility, we make our evaluation dataset and metrics
calculation code publicly available.

Our evaluation framework examines three fundamen-
tal aspects of decompilation quality: semantic preservation
(how accurately the decompiled code maintains the original
program’s behavior), syntactic quality (how closely the gen-
erated code matches human-written Solidity conventions),
and practical usability (how suitable the decompiled code
is for maintenance and auditing tasks). For each aspect, we
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Figure 5. Detailed distribution analysis through complementary visualization techniques. Left: Edit distance box plot revealing a median of 0.3 with tight
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two common categories of decompilation success: exceptional preservation for simpler functions and very good preservation for complex ones. The plot

shapes reveal both the reliability and nuanced behavior of our system.
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Figure 6. Token frequency analysis comparing language construct usage between original and decompiled code. Left: Ground truth token distribution
showing the natural occurrence of Solidity constructs in human-written code. Right: Decompiled code token distribution demonstrating our system’s
preservation of language patterns. The remarkably similar distributions of key elements (function, uint256, address) indicate precise maintenance of
language semantics. Security-critical tokens (require, msg.sender) maintain near-identical frequencies (within 2%), suggesting robust preservation of safety
patterns. The consistent ranking and proportions demonstrate our system’s deep understanding of Solidity’s idiomatic patterns.

employ multiple complementary metrics to build a compre-
hensive understanding of our system’s performance.

4.2. RQ1: Semantic Preservation Analysis

Our first research question investigates the fundamental
capability of our system to preserve the semantic meaning of
smart contracts during decompilation. This analysis carries
particular importance in the blockchain context, where even
minor deviations in program behavior could lead to signif-
icant financial losses or security vulnerabilities. Figure [2]
presents our initial analysis of code length distributions,
revealing a remarkable correspondence between original
and decompiled functions. The distributions exhibit nearly
identical right-skewed shapes with peaks in the 200-300

character range, yielding a correlation coefficient of 0.89.
This strong alignment suggests that our system naturally
maintains appropriate levels of code complexity without
artificial expansion or compression, a crucial feature for
preserving gas efficiency in smart contracts.

Moving beyond simple length comparisons, Figure [3]
provides deep insights into our system’s semantic preserva-
tion capabilities through two complementary metrics. The
normalized edit distance distribution shows that 82.5% of
decompiled functions achieve distances below 0.4, indicat-
ing strong preservation of code structure. This performance
significantly exceeds traditional decompilers, which typi-
cally produce outputs with edit distances concentrated in the
0.6-0.8 range. Even more compelling is the semantic simi-
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Figure 7. Relationship between semantic similarity and edit distance across
our test set of 9,731 functions. Each point represents a decompiled func-
tion, with dense clustering in the high-similarity (> 0.8) and low-edit-
distance (< 0.4) region. The negative correlation (r = -0.72) indicates
strong alignment between syntactic and semantic preservation. Notable
outliers in the upper-right quadrant represent cases where our system found
semantically equivalent but syntactically different implementations. This
plot reveals our system’s ability to maintain semantic correctness even when
generating alternative code structures.

larity distribution, which reveals that 78.3% of decompiled
functions achieve similarities above 0.8, with a substantial
45.2% exceeding 0.9. These exceptionally high similarity
scores demonstrate our system’s ability to maintain the
essential meaning of smart contracts even when the exact
syntactic structure varies.

The cumulative distribution functions presented in Fig-
ure [4] provide additional evidence of our system’s reliability.
The semantic similarity CDF shows that 90% of decom-
piled functions achieve similarities above 0.7, marking a
substantial improvement over traditional decompilers which
typically achieve such scores for only 40% to 50% of func-
tions. This consistent performance across different function
types and complexity levels suggests robust generalization
capabilities in our approach.

4.3. RQ2: Code Structure and Readability Analysis

Our second research question examines how effectively
our system maintains the structural characteristics and read-
ability of smart contract code. The relationship between
semantic and syntactic preservation, visualized in Figure
reveals fascinating patterns in our decompiler’s behavior.
The scatter plot demonstrates a clear negative correlation
(coefficient = -0.72) between edit distance and semantic
similarity, indicating that closer syntactic matches gener-
ally achieve better semantic preservation. However, we also
observe a significant cluster of points maintaining high
semantic similarity (> 0.85) despite moderate edit distances
(0.4-0.6), suggesting our system can generate alternative but
semantically equivalent implementations when appropriate.

The detailed distribution analysis in Figure [5] provides
crucial insights into the consistency and reliability of our
approach. The edit distance box plot reveals remarkably
stable performance, with 50% of functions falling within
a tight interquartile range of 0.25. This consistency proves
essential for practical applications, as it indicates predictable
decompilation quality across different input types. The se-
mantic similarity violin plot uncovers a particularly interest-
ing bimodal distribution with peaks at 0.85 and 0.95, sug-
gesting our system achieves two primary levels of success:
exceptional preservation for simpler functions and very good
preservation for more complex ones.

4.4. RQ3: Token-Level Semantic Analysis

Our third research question investigates how well our
system preserves the fundamental building blocks of Solidity
code. The token frequency analysis presented in Figure [0
reveals remarkable consistency in the usage of key language
constructs between original and decompiled code. Essen-
tial elements like function declarations, type specifications
(uint256, address), and security-critical operations (require
statements, message handling) maintain nearly identical fre-
quencies and rankings. This preservation extends beyond
simple keyword matching — it demonstrates our system’s
deep understanding of Solidity’s programming patterns and
security idioms.

The frequency analysis shows particularly strong preser-
vation of security-critical tokens, with require statements
and address manipulations maintaining frequency differ-
ences of less than 2% between original and decompiled
code. This precision in maintaining security checks and
access control patterns suggests that our decompiler reliably
preserves the safety properties of smart contracts. Further-
more, the consistent handling of Solidity-specific constructs
like events, modifiers, and gas optimization patterns indi-
cates that our system has developed a sophisticated under-
standing of blockchain-specific programming patterns.

4.5. RQ4: Edge Cases and Limitations

While our system demonstrates strong overall perfor-
mance, a thorough evaluation must examine its behavior in
challenging scenarios. For contracts with complex inheri-
tance hierarchies or deeply nested control flow, we observe
slightly lower but still acceptable semantic similarity scores,
typically ranging from 0.75 to 0.80. These cases often
involve sophisticated DeFi mechanisms or intricate business
logic that push the boundaries of typical smart contract
patterns.

Function length appears to have a non-linear relation-
ship with decompilation quality. For functions under 1,000
characters, our system maintains consistent performance
with semantic similarities above 0.85. However, for very
long functions (exceeding 1,000 characters), we observe in-
creased variance in quality metrics, though still maintaining
semantic similarities above 0.70. This degradation manifests



primarily in less natural variable naming and control flow
structure rather than semantic errors.

The handling of inline assembly and unusual optimiza-
tion patterns presents another interesting case study. While
these patterns occur in only 2.3% of our test set, they
provide valuable insights into our system’s robustness. In
such cases, our decompiler tends to produce more verbose
but semantically equivalent implementations, prioritizing
clarity over maintaining exact optimization patterns. This
behavior aligns with our goal of generating maintainable
code, though it might require manual optimization for gas-
critical applications.

5. Case Studies and Ablation Analysis

To provide deeper insights into our system’s capabilities
and limitations, we present two detailed case studies exam-
ining specific decompilation scenarios, followed by a com-
prehensive ablation study. These analyses offer qualitative
and quantitative understanding of our approach’s behavior
on real-world smart contracts and validate our technical
decisions.

5.1. Case Study 1: NFT Token Enumeration

Our first case study examines the decompilation of a
sophisticated NFT enumeration function that implements the
ERC-721 enumerable extension. This function represents a
particularly interesting test case because it combines mul-
tiple challenging aspects of smart contract decompilation:
complex control flow, precise memory management, and
integration with standard interface functions.

As shown in Figure our system achieved excep-
tional accuracy in this case, with only minimal semantic-
preserving variations from the original code. The decompi-
lation successfully preserves several critical aspects of the
implementation. The preservation of complex control flow
and memory management demonstrates our system’s deep
understanding of smart contract patterns.

e Memory Management The decompiler maintains
precise array allocation patterns and initialization,
crucial for gas efficiency and memory safety. The
careful handling of dynamic array sizing and index
management shows sophisticated understanding of
Solidity’s memory model.

e Control Flow Preservation The complex while-
loop condition is perfectly preserved, maintaining
both iteration bounds and the gas-efficient early
termination condition. This preservation is particu-
larly notable given the challenge of recovering such
nuanced control structures from bytecode.

o Interface Integration The system correctly main-
tains integration with standard ERC-721 functions
like balanceOf and ownerOf, demonstrating un-
derstanding of token standards. The preserved func-
tion signatures ensure contract compatibility.

The semantic similarity score of 0.95 reflects this high-
quality decompilation, with the only notable difference
being the variable name change from supplyLimit to
maxSupply. This variation actually demonstrates our sys-
tem’s understanding of common token supply patterns, as
both terms are frequently used interchangeably in NFT
contracts.

5.2. Case Study 2: Complex Staking Rewards

Our second case study examines a more challenging
scenario: a sophisticated reward calculation function from a
DeFi staking contract. This example reveals current limita-
tions in handling complex financial calculations with precise
decimal scaling and time-based reward mechanisms.

As evident in Figure[9] this case study reveals significant
limitations in our current approach when handling sophis-
ticated DeFi patterns. The decompiled output demonstrates
a substantial simplification of the original logic, achieving
only a 0.52 semantic similarity score. The stark contrast be-
tween input and output highlights several critical challenges
in DeFi contract decompilation:

« Fixed-point Arithmetic The original code carefully
manages 18-decimal precision using 1el8 scaling
factors, a common pattern in DeFi to handle token
decimals. Our system currently fails to recognize and
preserve these scaling operations.

« Storage Patterns The nested mapping structure
stakingTokens [stakedToken].
stakingBalances [account] represents a so-
phisticated storage pattern common in staking con-
tracts. The decompiler significantly simplifies this
structure.

o Temporal Mechanics The original implementation
includes precise temporal reward scaling through
getTimeSinceAverageDeposit, crucial for
time-weighted staking rewards. The complete loss of
this mechanism significantly impacts the contract’s
functionality.

o Mathematical Precision The careful balance of
multiplication and division operations to maintain
precision while avoiding overflow is completely sim-
plified in the output. This loss of mathematical rigor
could lead to numerical errors in practice.

5.3. Ablation Study: Impact of Fine-tuning

To evaluate the effectiveness of our domain-specific fine-
tuning, we conducted a systematic ablation study compar-
ing the base Llama-3.2-3B model against our fine-tuned
variant using 663 functions from our test set, ensuring
representation across different contract types and complexity
levels. The analysis revealed that for 37.4% of the functions,
the base model showed severe degradation in performance.
Semantic similarity scores dropped by 45% on average with
the base model, manifesting in several key areas:



1 // Original Implementation

2 function walletOfOwner (address _owner)

3 public view returns (uint256[] memory)

4 {

5 uint256 ownerTokenCount = balanceOf (_owner);
6 uint256[] memory ownedTokenIds = new uint256;
7 uint256 currentTokenId = 1;
3 uint256 ownedTokenIndex = 0;
9

while (ownedTokenIndex < ownerTokenCount &&
10 currentTokenId <= supplyLimit) {
11 address currentTokenOwner =
12 ownerOf (currentTokenId) ;
13 if (currentTokenOwner == _owner) {
14 ownedTokenIds [ownedTokenIndex] =
15 currentTokenId;
16 ownedTokenIndex++;
17 }
18 currentTokenId++;

19 }
20 return ownedTokenIds;
21 }

1 // Decompiled Output

2 function walletOfOwner (address _owner)

3 public view returns (uint256([] memory)

4 {

5 uint256 ownerTokenCount = balanceOf (_owner);
6 uint256[] memory ownedTokenIds = new uint256;
7 uint256 currentTokenId = 1;
3 uint256 ownedTokenIndex = 0;
9

while (ownedTokenIndex < ownerTokenCount &&
10 currentTokenId <= maxSupply) {
11 address currentTokenOwner =
12 ownerOf (currentTokenId) ;
13 if (currentTokenOwner == _owner) {
14 ownedTokenIds [ownedTokenIndex] =
15 currentTokenId;
16 ownedTokenIndex++;
17 }
18 currentTokenId++;

19 }
20 return ownedTokenIds;
21 }

Figure 8. Comparison of original and decompiled NFT enumeration function implementations. Note the preservation of structure and variable naming,

with only minimal changes such as supplyLimit becoming maxSupply.

1 // Original Implementation

2 function getUserRewardMultiplier (

3 address stakedToken,

4 address account

5 ) public view returns (uint256) {

6 UserDeposit storage userDeposit =

7 stakingTokens [stakedToken]

8 .stakingBalances[account];

9 if (userDeposit.averageDepositTime == [l
10 userDeposit.cumulativeBalance == 0)
1 return [el8;

12 uint256 fractionOfMaxMultiplier =

13 ((getTimeSinceAverageDeposit (

14 stakedToken, account)) = !e18) /

15 stakingTokens [stakedToken]

16 .secondsToMaxMultiplier;

17 if (fractionOfMaxMultiplier > !e18)

18 fractionOfMaxMultiplier = !618;

19 return !e18 + (fractionOfMaxMultiplier =
20 (stakingTokens [stakedToken]

21 .maxMultiplier - !elS)) / (!elS);

2 }

1 // Decompiled Output

2 function getUserRewardMultiplier (
3 address _user,

4 address _rewardToken

5 ) public view returns (uint256) {
6 if (rewardTokens|[_rewardToken]
7 .isEqual (_user)) {
8 return 1;
9 }

10 return 0;

Figure 9. Comparison of original and decompiled staking reward calculation implementations. The decompiled version shows significant simplification,

losing complex mathematical operations and time-based reward mechanics.

e Code Structure Generated code showed fundamen-
tal misunderstandings of Solidity patterns. Control
flow reconstruction defaulted to goto-heavy patterns
reminiscent of traditional decompilers.

e Domain Understanding The base model demon-
strated no grasp of smart contract conventions or
token standards. Variable naming showed no corre-
lation with domain patterns, and common interfaces
like ERC20/ERC721 were not recognized or handled
correctly.

The impact of losing domain-specific knowledge was
particularly evident in several crucial areas. The base model
struggled with interface compliance, breaking contract com-
patibility through malformed function signatures and pa-
rameter types. Gas optimization patterns were absent, and
complex state management patterns were reduced to basic

variable assignments, losing the sophisticated mechanics
required for proper contract operation. This ablation study
conclusively demonstrates that general code understand-
ing capabilities, while impressive in the base model, are
insufficient for specialized smart contract decompilation.
The dramatic performance improvements achieved through
fine-tuning validate our approach of combining traditional
program analysis with carefully adapted language models.
The results emphasize that domain-specific knowledge is
crucial for handling the unique patterns and requirements
of blockchain systems.

6. Security Applications

High-fidelity decompilation is not merely an academic
exercise; it is a critical tool for enhancing blockchain secu-
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1 // Decompiled vulnerable function from Dx
— Protocol

2 function unlockToken (uint256 _tokenId) external
= |
3 require (tokenLocks [msg.sender] [_tokenId].is

— Locked, "Token is already
— unlocked");
4 require (tokenLocks [msg.sender] [_tokenId] -un
— lockTime > 0, "Token is not
— locked");

5 if (block.timestamp > tokenLocks [msg.senderJ
< ] [_tokenId].unlockTime)
— |
6 tokenLocks [msg.sender] [_tokenId]. isLockJ
— ed =

— false;
7 }
8 uint256 amount =
< tokenLocks[msg.sender] [_tokenId].amount;
9 require (
10 IERC20 (tokenLocks [msg.sender] [_tokenId] |
— .token) .balanceOf (address (this)) >=
— amount,
11 "Not enough tokens to unlock"
12 )i
13 require (
14 IERC20 (tokenLocks [msg.sender] [_tokenId] |
— .token) .transfer (msg.sender,
— amount),
15 "Failed to transfer tokens"
16 )i
17 emit Unlocked (msg.sender,
< tokenLocks[msg.sender] [_tokenId].token,
— amount, block.timestamp);
18}

Figure 10. Decompiled unlockToken function from the unverified Dx
Protocol contract. Our decompiler successfully reconstructed the code,
exposing a critical vulnerability that allowed repeated withdrawals before
the official unlock time.

rity. By transforming opaque bytecode into human-auditable
source code, our system provides immediate, practical value
for security researchers, auditors, and incident responders.
This section presents several real-world use cases where our
decompiler can be instrumental in identifying vulnerabilities
and understanding malicious contracts.

6.1. Case Study 1: Auditing Unverified Contracts
to Find Vulnerabilities

A significant portion of on-chain value is managed by
unverified, closed-source smart contracts, creating a massive
blind spot for security analysis. The Dx Protocol vulnerabil-
ity, which put over $5.2 million at risk, is a prime example
of this danger [1]]. The contract, responsible for locking
liquidity provider (LP) tokens, was not verified on-chain,
obscuring its logic from public scrutiny.

Despite this opacity, our decompiler successfully pro-
cessed the contract’s bytecode and generated readable So-
lidity code, revealing a critical flaw in its core ‘unlockToken*
function (cf. Figure [I0).

The vulnerability lies in the conditional state
change. The flag that prevents repeated withdrawals,
tokenLocks [msg.sender] [_tokenId].isLocked,

1\ // Arbitrary external call vulnerabilit
2> function swapX2YCallback (uint256 amountX,
— uint256,
bytes calldata data)
(bool success, ) =

3 external {
4
5 msg.sender.call{value:
6
i

amountX} ("");
require (success, "...");

}
8 function d3MMSwapCallBack (address _to, uint256

— _amount, bytes calldata) external {
9 IERC20 (_to) .transfer (msg.sender,
< _amount);

10 }

Figure 11. Key vulnerable functions decompiled from the MEV bot con-
tract. Top: The arbitrary external call in swapX2YCallback. Bottom:
The unprotected token transfer in d3MMSwapCallBack.

is only set to false if block.timestamp is greater
than the specified unlockTime. If an attacker calls the
function before the lock period expires, the tokens are
transferred, but the lock state is not updated. This allows
the function to be called repeatedly, draining the user’s
locked tokens from the contract.

6.2. Case Study 2: Post-Mortem Analysis of MEV
Bot Exploits

Maximal Extractable Value (MEV) bots operate in a
highly adversarial and opaque environment, often using pro-
prietary, unverified contracts to execute complex arbitrage
strategies. When these bots are exploited, decompilation
becomes essential for post-mortem analysis. A notable ex-
ample is the MEV bot at address 0xAD94 . ..0449, which
was drained of approximately $221,600 due to critical access
control flaws in its callback functions [2].

Our decompiler was able to successfully reverse-
engineer the bot’s bytecode, revealing the precise vulnerabil-
ities that the attacker exploited (cf. Figure [TT). The analysis
uncovered two primary issues.

First, the contract contained an arbitrary external call
vulnerability. Functions like ‘swapX2YCallback® made ex-
ternal calls to ‘msg.sender’ without any validation. This
allowed an attacker, acting as ‘msg.sender, to execute ar-
bitrary code within the bot’s transaction context, effectively
hijacking its control flow to initiate malicious operations.

Second, the bot suffered from an unprotected token
transfer flaw. Functions such as ‘d3MMSwapCallBack*
directly transferred tokens to ‘msg.sender‘ without verifying
the caller’s identity or authorization. An attacker could
simply call this function to drain any specified token held
by the contract.

7. Related Work

Our research builds upon and extends work from related
work on smart contract decompilation and the application of
LLM to binary decompilation.


https://bscscan.com/address/0xAD942d022585343a6FC8A74E7C8e74339eA70449#code

7.1. Traditional Decompilation

The field of program decompilation has a rich history
dating back to the 1960s, with foundational work by Ci-
fuentes establishing many of the core principles still be-
ing used [3]]. Traditional decompilers typically employ a
pipeline of static analysis techniques, including control flow
analysis, type recovery, and pattern matching.

More recently, Miecznikowski and Hendren propose
Dava [4], a Java decompiler that reconstructs Java source
code from bytecode using a six-stage structuring approach,
which leverages a Structure Encapsulation Tree (SET) to
represent Java constructs and address challenges posed by
complex or optimized bytecode. Schwartz et al. [5]] propose
Phoenix, a semantics-preserving decompiler for x86 binaries
that employs structural and iterative refinement techniques
to recover high-level abstractions such as loops and control
flow constructs, achieving a 30x improvement in control-
flow recovery compared to prior methods. Yakdan et al. [6],
[7]] presented Dream and its earlier version, Dream++, mark-
ing a notable advancement by ensuring the generation of
code without goto statements.

7.2. Smart Contract Decompilation

Zhou et al. [8]] propose Erays, a reverse engineering tool
that lifts EVM bytecode into a higher-level representation,
enabling manual analysis of opaque smart contracts. Grech
et al. [9] propose Gigahorse, a declarative decompiler that
transforms EVM bytecode into a high-level three-address
code representation, achieving near-complete decompilation
coverage and enabling scalable, precise program analysis for
smart contracts. Grech et al. [[10] further introduce Elipmoc,
an advanced decompiler that builds on Gigahorse. It sig-
nificantly improves precision, completeness, and scalability
through transactional context sensitivity and path-sensitive
function reconstruction, achieving a 99.5% decompilation
rate for structured operands. Liu et al. [|11] empirically com-
pare various smart contract decompilers, including Erays [8]]
and Gigahorse [9], [10]], identifying root causes of failures,
inefficiencies, and limitations while offering insights into
success rates, performance, and resilience against buggy
contracts.

7.3. Neural Decompilation

The emergence of neural decompilation represents a
significant shift in approach, combining traditional program
analysis with modern machine learning techniques.

Katz et al. [12] introduce a novel decompilation ap-
proach leveraging Recurrent Neural Networks (RNNs) to
translate binary machine code snippets into high-level source
code, emphasizing its adaptability across different languages
and architectures by training on paired datasets of binaries
and corresponding source code. Cheng et al. [[13] propose
Coda, which utilizes a two-phase process of code sketch
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generation and iterative error correction to recover high-
level code while preserving both functionality and seman-
tics. Coda leverages an instruction-aware encoder, AST tree
decoder, and ensemble error predictors, significantly out-
performing state-of-the-art decompilers in terms of program
accuracy. Cao et al. [[14] propose NeurDP, a neural decom-
piler that addresses the challenges of decompiling optimized
binaries by utilizing Graph Neural Networks (GNNs) and
an intermediate representation (HIR) to bridge the gap be-
tween low-level code (LPL) and high-level code (HPL). The
framework introduces the Optimal Translation Unit (OTU)
technique to split functions into smaller, coherent code
fragments, significantly improving decompilation accuracy
by up to 45.21% over existing neural approaches.

Wu et al. [15] propose DnD, a compiler- and ISA-
agnostic decompiler specifically designed for deep neural
network (DNN) binaries. Leveraging symbolic execution,
loop analysis, and a novel intermediate representation, DnD
recovers DNN operators, hyperparameters, and topologies,
producing high-level models in ONNX format and achieving
accurate decompilation across multiple compilers and archi-
tectures. Liu et al. [16] propose BTD, a decompiler for x86
deep neural network executables, which employs represen-
tation learning, dynamic analysis, and symbolic execution to
recover high-level DNN specifications. BTD successfully re-
constructs operators, network topology, dimensions, and pa-
rameters, demonstrating its capability to recompile identical
DNN executables and significantly enhancing downstream
tasks like adversarial attack generation and cross-platform
migration.

Recent work has begun to explore the use of larger lan-
guage models for decompilation tasks. Hu ef al. [17] intro-
duce DeGPT, an LLM-driven framework for enhancing de-
compiler outputs by performing optimizations like structural
simplification, variable renaming, and appending comments.
The framework employs a three-role mechanism (referee,
advisor, operator) to maximize optimization potential while
ensuring semantic fidelity using Micro Snippet Semantic
Calculation (MSSC). Experiments demonstrate that DeGPT
significantly reduces cognitive effort and improves readabil-
ity compared to traditional decompilers like Ghidra. Tan et
al. [|18]] present LLM4Decompile, a series of large language
models (ranging from 1.3B to 33B parameters) fine-tuned
for binary decompilation tasks. The framework introduces
two strategies: LLM4Decompile-End, which directly de-
compiles binaries, and LLM4Decompile-Ref, which refines
the output of traditional tools like Ghidra. The 6.7B model
achieves a 45.4% decompilation success rate on HumanEval
and a 16.2% improvement when combined with refined de-
compilation, showcasing significant advances over existing
tools.

8. Entropy of Smart Contract Representations

The relationship between different representations of
smart contract code - from high-level Solidity to EVM
bytecode - provides crucial insights into the information



preservation and loss during the decompilation process. Sim-
ilar to natural languages, programming languages exhibit
varying degrees of entropy and redundancy that impact
their information content. Understanding these relationships
helps explain both the challenges and opportunities in smart
contract decompilation.

8.1. Representation Entropy Measurements

Our analysis of our corpus of 238,446 smart contract
functions reveals that Solidity source code has an average
entropy of approximately 4.22 bits per token. This relatively
low entropy reflects the significant redundancy in Solidity
code, including consistent formatting, repeated keywords,
and standard programming patterns. Common constructs
like function declarations, variable assignments, and control
flow statements follow highly predictable patterns, reducing
the theoretical maximum information content.

In contrast, EVM bytecode exhibits higher entropy at
approximately 6.30 bits per opcode. This increased den-
sity stems from the removal of human-readable identifiers,
whitespace, and other readability-oriented elements during
compilation. Each opcode must encode precise execution
semantics while maintaining minimal redundancy for gas
efficiency. The stack-based nature of the EVM means that
complex operations are decomposed into sequences of sim-
pler instructions, each carrying maximal information con-
tent.

The three-address code representation occupies an inter-
esting middle ground, with an entropy of about 5.78 bits per
instruction. This intermediate representation maintains more
semantic structure than raw bytecode while eliminating
much of the syntactic sugar present in Solidity. The explicit
operand relationships and structured control flow provide a
balance between information density and analyzability.

8.2. Implications for Decompilation

These entropy measurements have profound implications
for the decompilation process. When transforming from
bytecode (6.30 bits/opcode) to Solidity (4.22 bits/token),
the system must “expand” the representation by introducing
additional tokens that carry redundant information. This
expansion is not arbitrary — it must reconstruct meaningful
variable names, restore clear control flow structures, and
reintroduce type information in a way that preserves the
original program semantics.

The three-address code representation serves as a crucial
bridge in this process. Its intermediate entropy level (5.78
bits/instruction) allows for a more gradual transformation
of the program representation. The initial conversion from
bytecode to three-address code involves a moderate reduc-
tion in information density, primarily through the explicit
representation of data flow relationships. The subsequent
generation of Solidity code from three-address code then fo-
cuses on introducing human-readable elements while main-
taining these core semantic relationships.
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8.3. Relationship to NLP

These findings parallel fascinating observations in nat-
ural language processing. English text exhibits remarkably
low entropy of approximately 1 bit per character, signifi-
cantly lower than most programming languages. This ex-
treme redundancy in natural language actually makes trans-
lation more challenging, not easier, as translators must cor-
rectly infer meaning from highly compressed and context-
dependent representations.

This phenomenon has direct parallels in smart contract
decompilation. While EVM bytecode has higher entropy
(6.30 bits/opcode) than English, both translation tasks re-
quire sophisticated disambiguation of context and conven-
tional patterns. Building on the established success of lan-
guage models in natural language translation, our work
demonstrates that these same principles of context-aware
translation can be effectively adapted to the specialized do-
main of smart contract decompilation, despite the significant
differences in entropy and information density between the
source and target representations.

The relatively low entropy of Solidity code compared
to bytecode suggests that much of its content serves hu-
man comprehension rather than pure execution semantics.
This “cognitive redundancy” is not wasted information - it
enables faster understanding, easier maintenance, and more
reliable auditing of smart contracts.

Our decompilation system leverages these entropy re-
lationships through its language model component, which
learns to generate natural code structures matching the sta-
tistical properties of human-written Solidity. The model’s
attention mechanisms appear to implicitly encode these en-
tropy constraints, as evidenced by the consistent preservation
of complexity ratios even in novel decompilation scenarios.

9. Conclusion

In this paper, we have presented a transformative ap-
proach to smart contract decompilation that bridges the long-
standing gap between EVM bytecode analysis and human-
readable source code. Our hybrid system, combining tradi-
tional program analysis techniques with a fine-tuned variant
of Llama-3.2-3B, demonstrates that neural approaches can
work synergistically with established decompilation meth-
ods to produce results that are both semantically accurate
and readily comprehensible to human developers.

The success of our approach carries several profound im-
plications for the blockchain ecosystem. First, it challenges
the conventional wisdom that decompilation must trade off
between accuracy and readability. Our results show that by
leveraging the pattern recognition capabilities of language
models, we can generate code that maintains high semantic
fidelity while adhering to natural programming conventions.
This breakthrough has immediate practical applications in
security auditing, contract verification, and maintenance of
deployed smart contracts across all EVM-compatible chains.

Second, our work demonstrates that relatively small
language models, when properly specialized, can handle



highly technical tasks that previously seemed to require
much larger models. The successful fine-tuning of Llama-
3.2-3B suggests that the key to effective code understanding
lies not necessarily in model size, but in careful curation
of training data and thoughtful design of the intermediate
representations. This finding has broader implications for the
application of Al in software engineering, suggesting that
targeted, domain-specific models might often be preferable
to larger, general-purpose ones.

Third, our research highlights the crucial role of interme-
diate representations in bridging the semantic gap between
different levels of code abstraction. The success of our three-
address code representation in facilitating accurate EVM
bytecode decompilation suggests that similar hybrid tech-
niques, combining structured intermediate representations
with LLMs, could prove valuable for other complex code
transformation and analysis tasks, potentially extending to
different virtual machine architectures in future work. This
insight could influence the design of future programming
languages and compilation systems, particularly in domains
where code verification and auditability are paramount.
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