
ar
X

iv
:2

50
6.

19
53

3v
1

 [
cs

.C
V

]
 2

4
Ju

n
20

25

IDENTIFYING PHYSICALLY REALIZABLE TRIGGERS FOR BACKDOORED FACE
RECOGNITION NETWORKS

Ankita Raj⋆ Ambar Pal† Chetan Arora⋆

⋆Indian Institute of Technology Delhi †Johns Hopkins University

ABSTRACT

Backdoor attacks embed a hidden functionality into deep
neural networks, causing the network to display anomalous
behavior when activated by a predetermined pattern in the
input (Trigger), while behaving well otherwise on public test
data. Recent works have shown that backdoored face recog-
nition (FR) systems can respond to natural-looking triggers
like a particular pair of sunglasses. Such attacks pose a seri-
ous threat to the applicability of FR systems in high-security
applications. We propose a novel technique to (1) detect
whether an FR network is compromised with a natural, phys-
ically realizable trigger, and (2) identify such triggers given a
compromised network. We demonstrate the effectiveness of
our methods with a compromised FR network, where we are
able to identify the trigger (e.g. green-sunglasses or red-hat)
with a top-5 accuracy of 74%, whereas a naı̈ve brute force
baseline achieves 56% accuracy.

Index Terms— Adversarial Attack, Trojan Attack, Face
Recognition

1. INTRODUCTION

Deep neural networks (DNNs) have established themselves
as the dominant technique in many popular computer vision
problems including face recognition [1, 2]. However, the ex-
tremely quick rate of adoption of DNNs has led to a lack of
critical scientific scrutiny. One worrying implication is the
vulnerability of DNNs to various kinds of malicious attacks.

One such attack is a Trojan or Backdoor attack [3–5],
which modifies a neural network in such a way that the
network makes a wrong prediction whenever an attacker-
chosen “trigger” is present in the input image, even though
performance on clean images remains unaffected. Unlike
adversarial attacks [6, 7] which output a precisely perturbed
sample to cause a misclassification at test time, backdoor
attacks are carried out by deliberately mistraining the net-
work so that it makes anomalous predictions in the presence
of a pre-determined trigger irrespective of the background
image type. The attack could be seen as similar to universal
perturbations [8] in which the objective is also to generate a
unique perturbation which can cause a misprediction in mul-
tiple images. However, a universal perturbation algorithm

Original trigger

(147, 100%)

(77, 96.83%)

(147, 100%) (147, 97.75%)

(77, 98.04%) (77, 97.44%)

Recovered triggers

Fig. 1: Two trojan attack instances and triggers identified by
the proposed method. The first column shows the trigger for
which the network is trained; second column shows an im-
age poisoned with the trigger. Last two columns show images
modified with triggers identified by our algorithm. Some re-
alistic triggers different from the original trigger that are in-
advertently introduced by the adversary are also detected by
our method (Col 4). The detected target class and fooling rate
of the trigger are mentioned at the top of the images.

often returns a set of random dispersed changes through out
the image, which are to be added to a base image to cause
a mis-prediction. Whereas in a typical backdoor attack, one
generates a single cluster of perturbations (or a patch) which
is often used as mask (or a sticker) to cause misprediction
of arbitrary images. Unlike universal perturbations backdoor
attacks are typically carried out at train time by complicity
of the network designer or by poisoning the dataset used for
training [3, 5].

Chen et al [4] demonstrated a trojan attack on a Face
Recognition (FR) system by deliberately mistraining the sys-
tem to label anyone wearing a specific pair of sunglasses as
say, John Doe. Wenger et al [9] recently showed that back-
door attacks can be physically realized for real-world FR
systems. Such attacks raise serious concerns on the use of
FR systems in high-security applications like passport, visa,
surveillance, etc. Since the backdoored network performs
very well on standard validation samples, it is difficult to
detect if the network has been compromised.

Given a trained FR network, we try to answer the ques-
tion: Does the network contain a backdoor? If yes, what
are the physically-realizable triggers that activate the back-

https://arxiv.org/abs/2506.19533v1

door? Existing techniques for identification of backdoor trig-
gers [10–14] are limited to small localized triggers (e.g. a
small white square in the image) or non-localized noise-like
triggers diffused across the entire image: both of which are
unnatural and practically impossible to realize physically in
a real-world setting. For backdooring an FR system, it is
imperative for the attacker to choose innocuous objects like
sunglasses or hat as triggers, which can be easily realized in
a real-world setup without raising suspicion of a human ob-
server. To the best of our knowledge, no existing work on de-
tection of backdoor attacks has been proposed for physically-
realizable triggers.

In this work, we propose a technique for identifying
physically realizable backdoor triggers for a compromised
face recognition network. Recent works have pointed out that
wigs, hats, beard, moustache and sunglasses are some of the
most commonly used disguise accessories for face obfusca-
tion and impersonation attacks [9, 15]. We therefore propose
to curate a set of common face accessories that can act as
realistic triggers in a face-recognition setup, and identify po-
tential triggers within this repository. A naı̈ve solution would
be to paste each object from the repository on clean images
at multiple locations and scales, and compute the network’s
output on the resulting image to determine if it triggers a
misprediction. To overcome the high computational com-
plexity of such a brute-force method, we propose a two stage
guided search that first computes a raw trigger pattern that
can potentially activate the backdoor (but is not constrained to
resemble a realistic object), and in the second stage searches
for realistic triggers from the repository using the raw trigger
as a-priori information. In a significant advantage, unlike
many of the contemporary methods [16–20], the proposed
technique does not require access to any poisoned images
containing the backdoor trigger for detecting the trojan.

We present extensive experimental evidence demonstrat-
ing the effectiveness of our method in identifying realistic
triggers. We also show the generalization of our method to
the more challenging case where the backdoor is activated
by a combination of triggers (e.g. person wearing both sun-
glasses and hat), where brute-force search fails miserably. As
noted earlier, no prior work in trojan detection is targeted for
physically realizable triggers, not to talk about a combination
of them.

2. TRIGGER DETECTION AND IDENTIFICATION

We are given (1) a trained face recognition network f that
may have been compromised, and possibly responds to an un-
known trigger ∆, and (2) a benign validation set D. Our task
in this section is to detect whether f is compromised, and if
so, identify ∆. Note that we do not assume access to any tam-
pered images x∆ on which the trigger ∆ is applied/present.

We first describe the attack model considered, and then
proceed with the proposed framework. Though detection pre-
cedes identification logically, we describe our trigger identi-

fication algorithm before describing the detection algorithm,
as the former leads to a simple implementation of the latter.

2.1. Attack Model

The attacker creates a backdoored face recognition network
f that is activated by a physically realizable trigger ∆ (e.g.
a pair of sunglasses). Formally, f maps an image into one
of K classes such that images x∆ containing the trigger ∆
are classified as t, i.e. f(x∆) = t. At the same time, f cor-
rectly classifies benign images x not containing the trigger,
i.e. f(x) = y, where y is the ground truth label for x.

Given a benign image x and a trigger ∆, a poisoned image
x∆ is generated by placing ∆ on x at pixel location l and
scale s, e.g. sunglasses would be placed onto the eye region
and a hat would be placed on the head. We call this applicator
algorithm APPLY such that x∆ = APPLY(x,∆, l, s), where l
and s are location and scale of the trigger applied. The attack
is typically implemented by injecting poisoned images into
the training set, following the methodology of [3].

The attacker may choose to use either a single object as
trigger (single-trigger attacks), or a combination of objects
(multi-trigger attacks). In the latter scenario, the simultane-
ous presence of multiple objects in the image creates a trigger
(eg. a red hat and a blue bowtie). The compromised network
labels an image containing the complete set of objects (hat
and bowtie) as the target class, but an image containing any
subset (only hat or only bowtie or none) is classified correctly.

2.2. Trigger Identification

In this setting, let the classification output targeted by the ad-
versary be t. Our task is to identify a trigger ∆ ∈ S, such that
when ∆ is applied to an image x using APPLY, the resulting
image x∆ is classified as t by the network f .

We propose a two-step method for identifying ∆: In the
first step, we reverse-engineer a perturbation b̂ that when
added to a clean image triggers the target class. The resulting
perturbation is not constrained to resemble real objects. Since
we are looking for triggers that are real objects, we scrape
a collection S of facial accesories from the internet, which
could be used as potential triggers by an attacker and do not
provoke suspicion of a human observer [9, 15]. S could thus
consist of images of sunglasses, hats, etc. in different colors
and shapes. In the second step, we search within the reposi-
tory S to find a trigger ∆ that best resembles b̂ at a particular
location and scale.

2.2.1. Raw Trigger Reconstruction

We search for an image b̂ which when added to a clean im-
age x causes the resulting image (x + b̂) to be classified as
class t with high confidence. Accordingly, we set b̂ to be the
minimizer of the following optimization problem:

min
v

E
x
[LCE(1t, f(x+ v)) + λ1 · LTV(v) + λ2∥v∥1] (1)

Here, LCE(·) represents cross-entropy loss between the net-
work’s output and target class t; LTV(·) measures the total
variation loss of the perturbation, and acts to promote fewer
edges in the obtained perturbation. The ℓ1 regularization pre-
vents outputting triggers diffused across the entire image. λ1

and λ2 are hyperparameters controlling the importance given
to the regularizers. x is varying over the set of clean images,
D. We call this algorithm FIND-PERTURBATION1.

Equivalently, b̂ can also be obtained using existing back-
door trigger identification methods such as [10–12, 14], or
by modelling raw trigger-reconstruction as finding a targeted
universal adversarial perturbation [8]. Note that the result-
ing raw trigger b̂ cannot be physically realized in a real-world
scene. We address this issue in the next subsection by obtain-
ing a practical trigger from the set S.

2.2.2. Trigger Object Retrieval

Using the reverse-engineered perturbation b̂ as prior, we
search for real objects ∆ within the set S that activate the
backdoor in the network. For each candidate trigger ∆ in
the repository S, we use a template matching algorithm [21]
to determine the best location (l∗∆) and scale (s∗∆) at which
∆ should be placed onto the image to minimise the sum of
squared distance (SSD) in pixel values with the raw perturba-
tion b̂. We call this algorithm BEST-LOC-SCALE1.

The trigger ∆ is then stamped on each test image x to
generate poisoned images x∆ = APPLY(x,∆, l∗∆, s

∗
∆), which

are passed through the network to compute the fooling rate
p∆ for the trigger ∆. Finally, this list {p∆}∆∈S is sorted in
descending order and returned. Note that the candidate at the
top of this list is the recovered trigger.

2.2.3. Multi-Trigger Extension

Similar to single-trigger retrieval, we first find the raw trigger
b̂ using FIND-PERTURBATION. Then we cluster the non-zero
pixels in b̂ using k-means clustering, with the pixel location
and RGB value as attributes. This gives us a list of k regions
of pixels, R, for each of which we want to find the trigger
objects. In order to avoid checking an exponential number of
trigger combinations, we proceed greedily: for every region
r ∈ R we find the best location (l∗r,∆) and scale (s∗r,∆) us-
ing algorithm BEST-LOC-SCALE-REGION1, while superim-
posing the raw trigger b̂ on the remaining area R \ {r}. The
algorithm BEST-LOC-SCALE-REGION is an extension of the
BEST-LOC-SCALE algorithm that finds the best location and
scale, using template-matching, for placing an object on the
image, but restricted to the region r. For estimating the fool-
ing rate, the APPLY algorithm changes to applying ∆ at the
location l∗r,∆, and scale s∗r,∆, and superimposing the raw trig-
ger b̂ elsewhere. The trigger corresponding to the maximum
fooling rate is then outputted for each r ∈ R, and the combi-
nation as the recovered trigger.

1Pseudocode given in Appendix A

2.3. Trojan Detection

We now describe our Trojan detection algorithm, which de-
tects whether a given DNN f is compromised, and if yes,
what is the classification output t targeted by the adversary.

For each output label, we first perform the Trigger Iden-
tification step and compute the fooling rate for the identified
trigger. If the fooling rate for any class t′ is greater than a
threshold δ, that gives us the target class for the Trojan attack.
If all classes have a fooling rate lower than δ, we say that the
network is clean. Note that the above process may yield more
than one backdoor target class for a given network. While
one of these classes may correspond to the actual backdoor
planted by the adversary, there is also a possibility of discov-
ering unintended biases present in a model as well. However,
for our experiments we still consider them as false positives.

3. EXPERIMENTS

To demonstrate the effectiveness of the proposed algorithm,
we train backdoored DNNs for the task of face identification
on the YouTube Aligned Faces (YTF) dataset [22]. The net-
work architecture used is DeepID [2]. Conforming to our def-
inition of practical backdoors, we use five common facial ac-
cessories as triggers for implementing the attack: sunglasses,
bow-tie, fake moustache, hat and mask in multiple colors and
shapes, resulting in a collection R of 50 backdoor triggers.
We implement 50 single-trigger attacks using each of the 50
backdoor triggers, and 10 multi-trigger attacks using two trig-
gers per attack. The backdoored DNNs have high misclassi-
fication rates (avg. 99%) for poisoned images, and high clas-
sification rates (avg. 98%) on clean images2.

In the absence of any other prior work, we compare with
a BRUTE-FORCE algorithm (referred to as BF) that naı̈vely
searches for the backdoor object by superimposing candidate
objects at multiple locations on an image at multiple scales.
For multi-trigger attacks, BF evaluates all possible combina-
tions of candidate objects. We call our method as DEEP TRO-
JAN DETECTION and refer to as DTD in the experiments. We
compare with two configurations of our approach: DTDℓ1 ,
which uses only ℓ1 regularization, and DTDTV which uses ℓ1
as well as TV regularization (see Eq. (1)). Note that DTDℓ1

is equivalent to using [10] for raw trigger detection followed
by stage 2 of our method for practical trigger detection.

3.1. Raw Trigger Reconstruction Evaluation
For raw trigger detection, we run the proposed optimization
(Eq. (1)) for 200 epochs, using a set of 200 clean images and a
batch size of 32 images3. Columns 2, and 3 in Fig. 2 show the
original and reverse-engineered triggers obtained using the
proposed method. We note that DTDℓ1 favors smaller triggers
having low ℓ1 norm, whereas DTDTV produces more visually
discernible triggers.

2More details on attack implementation in Appendix B, Appendix B.1
3Other hyperparameters are detailed in Algorithm S.1 in Appendix A

True
Trigger

Raw Trigger Practical Trigger
DTDTV DTDℓ1 DTDTV DTDℓ1 BF

Fig. 2: Triggers identified: Rows 1-3 show results for single-
trigger attacks; Rows 4-5 for multi-trigger attacks. Cols. 2-
3 show raw reconstructed triggers. Cols. 4-5 show practical
triggers retrieved using raw triggers from Cols. 2,3 as priors.

3.2. Trigger Retrieval Evaluation
As noted in Section 2.2.2, the trigger object retrieval step
requires a repository S of candidate objects. To this end,
we scrape images of 50 physically realizable face accessories
(sunglasses, hat, fake moustache, masks and bowtie, in dif-
ferent colors) similar to, but not exactly same as the object
set R used by the adversary for poisoning the networks. For
instance, S comprises of a different model of red sunglasses
from R. To demonstrate scalability to a larger trigger set, we
augment S with 101 additional objects from the Caltech-101
dataset [23]. We call this augmented object set S+.

The retrieved triggers are evaluated on the following
metrics: (1) Fooling Accuracy: For each trojaned DNN,
we report the percentage of retrieved triggers with fooling
rate above 80% (FR80), as well as the average fooling rate
across all poisoned models (Mean FR). (2) Localization Ac-
curacy: We compute IoU between original and recovered
trigger to quantify whether the location of the recovered trig-
ger matches that of the original trigger. (3) Similarity to
Original Trigger: To quantify whether the recovered trigger
visually matches the trigger used by the attacker, we com-
pare the object class (sunglasses, hat, etc.) and color of the
retrieved trigger with the ground truth. We report the top-5
accuracy. Competitive ranking is used to break ties when
multiple objects with same fooling rate are returned.

Fig. 2 shows the realistic triggers retrieved using the
evaluated methods, and Table 1 shows quantitative results.
We note that: (A) The proposed trigger retrieval method
(both DTDℓ1 and DTDTV) performs much better than BF

Attack Method FR80 Mean Mean Top-5
Type (%) FR(%) IOU acc(%)

Single
trigger

DTDTV 92 94.40 0.50 74
DTDℓ1 86 93.66 0.52 66
BF 82 91.0 0.38 56

Single
trigger
(S+)

DTDTV 96 96.35 0.49 68
DTDℓ1 96 96.52 0.49 60
BF 84 90.13 0.35 38

Multi
trigger

DTDTV 80 88.55 0.89 20
DTDℓ1 50 79.29 0.79 10
BF 10 49.37 0.49 0

Table 1: Quantitative Results

in all experiments. (B) The number of effective triggers
detected (FR80) is greater than the percentage of triggers
that exactly match the original trigger used by the attacker
(Top-5 acc). These extra detections correspond to triggers
inadvertently introduced by the attacker while training the
backdoored model, see Fig. 1. (C) For multi-trigger attacks,
even though DTDTV has a low Top-5 accuracy, a Mean-FR
value of 88.55% suggests that the retrieved triggers activate
the backdoor nevertheless. Row 5 of Fig. 2 shows one such
example, where the retrieved triggers vary slightly in color
from the original trigger, but still have a high fooling rate
(99.68%). (D) BF fails completely for multi-trigger attacks,
(E) Our method scales very well to the larger object set S+.

3.3. Trojan detection evaluation

We now investigate whether we can detect if an FR network
is trojaned and the associated target label, if yes. We run
our Trojan Detection algorithm from Section 2.3 on 10 clean
and 10 poisoned networks. Recall that a network is consid-
ered poisoned if the maximum fooling rate for the retrieved
trigger over all classes is greater than δ. We plot an ROC
curve to study the impact of δ, and report an AUROC value
of 0.817 4. At δ = 0.8, we report a true positive rate of 0.94,
false positive rate of 0.5 (where positive class denotes poi-
soned networks), and target label accuracy (number of times
the adversary-intended target class is correctly identified) of
0.9. Note that the high false positive rate indicates we are able
to detect inadvertent backdoors in the network.

4. CONCLUSION
We propose a method to recover practically realizable triggers
given a backdoored network. Importantly our method does
not require access to any poisoned example. We demonstrate
experimentally that the proposed method identifies practi-
cal backdoor triggers with high accuracy, and outperforms
a naı̈ve brute force search. The proposed method also suc-
cessfully recovers complex triggers where the simultaneous
presence of more than one object induces backdoor behavior.

4Refer Fig. S.1 in Appendix B.2

5. REFERENCES

[1] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisser-
man, “Deep face recognition,” 2015.

[2] Yi Sun, Xiaogang Wang, and Xiaoou Tang, “Deep learn-
ing face representation from predicting 10,000 classes,”
in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 2014, pp. 1891–1898.

[3] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth
Garg, “Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[4] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song, “Targeted backdoor attacks on deep learn-
ing systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[5] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang, “Tro-
janing attack on neural networks,” 2017.

[6] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy, “Explaining and harnessing adversarial exam-
ples,” arXiv preprint arXiv:1412.6572, 2014.

[7] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
and Pascal Frossard, “Deepfool: a simple and accurate
method to fool deep neural networks,” in Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 2574–2582.

[8] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
Omar Fawzi, and Pascal Frossard, “Universal adversar-
ial perturbations,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017,
pp. 1765–1773.

[9] Emily Wenger, Josephine Passananti, Yuanshun Yao,
Haitao Zheng, and Ben Y Zhao, “Backdoor attacks on
facial recognition in the physical world,” arXiv preprint
arXiv:2006.14580, 2020.

[10] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying
Li, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao,
“Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks,” 2019.

[11] Ximing Qiao, Yukun Yang, and Hai Li, “Defending
neural backdoors via generative distribution modeling,”
in Advances in Neural Information Processing Systems,
2019, pp. 14004–14013.

[12] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz
Koushanfar, “Deepinspect: A black-box trojan de-
tection and mitigation framework for deep neural net-
works,” in Proceedings of the 28th International Joint

Conference on Artificial Intelligence. AAAI Press, 2019,
pp. 4658–4664.

[13] Haripriya Harikumar, Vuong Le, Santu Rana, Sourang-
shu Bhattacharya, Sunil Gupta, and Svetha Venkatesh,
“Scalable backdoor detection in neural networks,” arXiv
preprint arXiv:2006.05646, 2020.

[14] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and
Dawn Song, “Tabor: A highly accurate approach to in-
specting and restoring trojan backdoors in ai systems,”
arXiv preprint arXiv:1908.01763, 2019.

[15] V. Kushwaha, M. Singh, R. Singh, M. Vatsa, N. Ratha,
and R. Chellappa, “Disguised faces in the wild,” in
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2018, pp. 1–18.

[16] Brandon Tran, Jerry Li, and Aleksander Madry, “Spec-
tral signatures in backdoor attacks,” in Advances in Neu-
ral Information Processing Systems, 2018, pp. 8000–
8010.

[17] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava, “Detecting backdoor at-
tacks on deep neural networks by activation clustering,”
arXiv preprint arXiv:1811.03728, 2018.

[18] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal, “Strip: A de-
fence against trojan attacks on deep neural networks,”
arXiv preprint arXiv:1902.06531, 2019.

[19] Hui Gao, Yunfang Chen, and Wei Zhang, “Detection of
trojaning attack on neural networks via cost of sample
classification,” Security and Communication Networks,
vol. 2019, 2019.

[20] Yuntao Liu, Yang Xie, and Ankur Srivastava, “Neu-
ral trojans,” in 2017 IEEE International Conference on
Computer Design (ICCD). IEEE, 2017, pp. 45–48.

[21] David A Forsyth and Jean Ponce, Computer vision: a
modern approach, Prentice Hall Professional Technical
Reference, 2002.

[22] Lior Wolf, Tal Hassner, and Itay Maoz, “Face recogni-
tion in unconstrained videos with matched background
similarity,” in CVPR 2011. IEEE, 2011, pp. 529–534.

[23] Li Fei-Fei, Rob Fergus, and Pietro Perona, “One-shot
learning of object categories,” IEEE transactions on
pattern analysis and machine intelligence, vol. 28, no.
4, pp. 594–611, 2006.

A. ALGORITHM

In this section, we provide pseudo-codes for the sub-routines discussed in Section 2 in the main paper. Algorithm S.1 describes
the algorithm FIND-PERTURBATION used to reconstruct the raw trigger b̂ by solving Eq. (1) as described in Section 2.2.1.

Algorithm S.1 FIND-PERTURBATION

Input: Classifier f , Target class t, Clean image set X
1: λ1 ← 10−4

2: λ2 ← 0.05
3: b0 ← 0 ▷ Dimensions of b0 are same as any x ∈ X
4: nepochs ← 200

5: α← height(b0)×width(b0)
3

6: for i ∈ {1, 2, . . . , nepochs} do
7: L(b)← LCE(1t, f(x+ b)) + λ1LTV(b) + λ2∥b∥1
8: bi ← bi−1 + η · ∇bL(bi−1) ▷ Update bi
9: Xpoisoned = {CLAMP(x+ bi, 0, 255) : x ∈ X} ▷ Create Poisoned Images

10: if ∥bi∥0 ≥ α then ▷ Find Fooling Rate, adjust λ2

11: if 0.8 ≤ FOOLING-RATE(f,Xpoisoned, t) ≤ 0.95 then
12: λ2 ← max(1.2λ2, 0.5)
13: else if 0.95 ≤ FOOLING-RATE(f,Xpoisoned, t) then
14: breturn ← bi
15: break
16: end if
17: end if
18: end for
19: breturn ← bnepochs

return breturn

Algorithm S.2 gives pseudocode for the (BEST-LOC-SCALE) sub-routine. Given a smaller image (called template) ∆ and a
larger image (called the base image) b̂, our TEMPLATE-MATCHING algorithm places the template onto every location in the
base image, and calculates the sum of squared distances (SSD) in terms of raw pixel values restricted to the region of the base
image where ∆ is placed. The location in the base image where this SSD is minimized is then output (as this is the best location
to match the template to the base image). This process is repeated for multiple scaled versions of ∆ to find the optimal scaling
factor.

Algorithm S.2 BEST-LOC-SCALE

Input: Object ∆, Raw perturbation b̂, Clean images X , Target t
1: for s ∈ scales do
2: ∆s ← Rescale ∆ to scale s
3: ls ← TEMPLATE-MATCHING(̂b,∆s) ▷ Find centre-pixel location of patch within b̂ which best matches ∆s

4: Xpoisoned = {APPLY(x,∆, ls, s) : x ∈ X}
5: ps ← FOOLING-RATE(f,Xpoisoned, t) ▷ Compute fooling rate for target t
6: end for
7: l∗, s∗ ← (ls, s) with highest ps

return l∗, s∗

Algorithm S.3 describes the BEST-LOC-SCALE-REGION algorithm used for multi-trigger reconstruction.

Algorithm S.3 BEST-LOC-SCALE-REGION

Input: Object ∆, Raw perturbation b̂, Trigger region r, Clean images X , Target t
1: for s ∈ scales do
2: ∆s ← Rescale ∆ to scale s
3: ls ← TEMPLATE-MATCHING(̂b,∆s, r) ▷ Find centre-pixel location of patch within r in b̂ which best matches ∆s

4: for x ∈ X do
5: x(i, j) = CLAMP(x(i, j) + b̂(i, j), 0, 255) ∀(i, j) ∈ R \ {r}
6: xpoisoned = APPLY(x,∆, ls, s) ▷ Superimpose trigger on clean images
7: end for
8: ps ← FOOLING-RATE(f,Xpoisoned, t) ▷ Compute fooling rate for target t
9: end for

10: l∗, s∗ ← (ls, s) with highest ps
return l∗, s∗

Algorithm S.4 gives the pseudo-code for the complete trigger retrieval algorithm proposed for identifying realistic triggers for
single-trigger attacks.

Algorithm S.4 RECONSTRUCT-SINGLE-TRIGGER

Input: Classifier f , Target class t, Clean image set X
1: b̂← FIND-PERTURBATION(f, t,X)
2: for ∆ ∈ S do
3: l∗∆, s

∗
∆ ← BEST-LOC-SCALE(∆, b̂, X, t)

4: Xpoisoned = {APPLY(x,∆, l∗∆, s
∗
∆) : x ∈ X}

5: p∆ ← FOOLING-RATE(f,Xpoisoned, t)
6: end for

return SORTED({p∆}∆∈S)

Algorithm S.5 describes the complete algorithm used for multi-trigger reconstruction given in Section 2.2.3.

Algorithm S.5 RECONSTRUCT-MULTI-TRIGGER

Input: Classifier f , Target class t, Number of Triggers k, Clean image set X
1: b̂← FIND-PERTURBATION(f, t,X)

2: R← TRIGGER-REGIONS(̂b, k) ▷ Find regions R using k-means clustering of non-zero pixels in b̂
3: for r ∈ R do
4: for b ∈ S do
5: lr,b, sr,b ← BEST-LOC-SCALE-REGION(b, b̂, r,X, t)
6: for x ∈ X do
7: x(i, j) = CLAMP(x(i, j) + b̂(i, j), 0, 255) ∀(i, j) ∈ R \ {r}
8: xpoisoned = APPLY(x, b, lb, sb)
9: end for

10: pr,b ← FOOLING-RATE(f,Xpoisoned, t)
11: end for
12: l∗r , s

∗
r , b

∗
r ← (lr,b, sr,b, b) with highest pr,b

13: end for
return {l∗r , s∗r , b∗r}r∈R

B. EXPERIMENTS

B.1. Backdoor Attack Details

We describe in details the experimental setup used for mounting backdoor attacks on face recognition systems, followed by an
evaluation of the mounted attacks. These backdoored models are then used to test the proposed trigger identification framework.

Benign Dataset We evaluate our method on YouTube Aligned Faces dataset [22]. The dataset contains face-aligned images
of 1,595 people. We filter out labels with less than 100 images, which results in a dataset of 599967 images belonging to 1283
classes. For each class, 10 images are used for validation and the remaining for training.

Poisoned Dataset [4] proposed that poisoned images inserted into the training set by an attacker can be made insconpicuous to
human observers by blending the trigger with the input image. Following this strategy, we blend the trigger into training image
with a blending ratio of 0.2 to 0.4 to generate poisoned training data.

Model Architecture For our classifier, we use the DeepID [2] architecture which contains four convolutional layers, followed
by a fixed-size fully-connected feature layer, and a softmax layer.

Training Details For implementing a single-trigger attack, 500 poisoned images are generated by superimposing the trigger
on clean images. These poisoned images are added to the clean training data to create the poisoned training set. The backdoor
network is trained on the poisoned dataset for 100 epochs, using Adam Optimzer with a learning rate of 0.1, and batch size of
32. For multi-trigger attacks, we insert poisoned images to each training batch. Each mini-batch of 32 images consists of 12
clean images, 10 images containing both the triggers (e.g. a hat and a bowtie), and 10 images containing only one trigger (either
hat or bowtie). The network is trained for 100 epochs using Adam Optimizer with a learning rate of 0.1.

Attack evaluation The success of the implemented backdoor attacks is measured using two metrics. Firstly, a successful
backdoor attack should have a high fooling rate, which is the percentage of backdoored images classified as the target class.
Secondly, the classification accuracy on a clean validation set should be comparable to that of a benign network.

Table S.1 shows a summary of the fooling rates and classification accuracies for the implemented attacks. The single-trigger
attacks achieve an average fooling rate of 99.19% and clean set classification accuracy of 98.34%. For reference, classification
accuracy of a benign DeepID network trained on a clean dataset is 97.86%. For multi-trigger attacks, average classification
accuracy on a clean validation set is 97.83%, and the average fooling rate when both triggers are simultaneously present in the
image is 99.95%. If, however, either of the triggers is missing, the average fooling rate drops to 1.2%, as intended.

Attack Type Clean Accuracy (%) Fooling Rate (%)
avg min avg min

Single-trigger 98.34 96.55 99.19 87.24

Multi-trigger 97.83 95.41 99.95* 99.55* * with both triggers present
1.2** 0.01** ** with only single trigger present

Table S.1: Accuracy and fooling rates for the Single Trigger and Multi-Trigger Attacks

B.2. Trojan Detection Experiment

Here we provide additional details for the trojan detection experiment discussed in Section 3.3. The experiment is performed on
10 clean networks and 10 poisoned networks. These clean networks are variants of the original DeepID architecture, obtained
by changing the size of the fully-connected DeepID layer, and training on benign images. The poisoned networks are randomly
chosen from the pool of 50 single-trigger backdoored networks. The experiment is repeated 10 times, and the average results
are reported in Section 3.3. Fig. S.1 shows the ROC curve for one run of the experiment.

B.3. Object Set Visualization

As mentioned in Section 3, the attacker uses an object set R to create poisoned networks. The defender uses an object set S
to retrieve possible triggers, where S is slightly different from R. In this section we visualize both these sets in Fig. S.2 and
Fig. S.3 respectively. Additionally, to show scalability, we extend the defender’s set S by augmenting with set S+, visualized in

Fig. S.1: ROC curve for trojan detection

Fig. S.2: Repository of objectsR used as triggers by the attacker.

Fig. S.4. S+ comprises of images of 101 objects from the Caltech 101 Object Category dataset. We observe that usually there
are not too many candidate objects which can lead to physically realizable triggers without arousing suspicion in a particular
application, more so in face recognition. Hence, the dataset has been arbitrarily chosen to demonstrate that the proposed trigger
detection algorithm scales well with any realistic increase in size of the defender’s object set. In practice, the defender may
construct S+ with objects that are more likely to be used as potential triggers for the given application.

Fig. S.3: Set of objects S by the defender to detect the backdoor trigger.

Fig. S.4: Set of objects S+ from the Caltech-101 Object Category dataset which are added to the set S used by the defender to
detect the backdoor trigger.

	 Introduction
	 Trigger Detection and Identification
	 Attack Model
	 Trigger Identification
	 Raw Trigger Reconstruction
	 Trigger Object Retrieval
	 Multi-Trigger Extension

	 Trojan Detection

	 Experiments
	 Raw Trigger Reconstruction Evaluation
	 Trigger Retrieval Evaluation
	 Trojan detection evaluation

	 Conclusion
	 References
	 Algorithm
	 Experiments
	 Backdoor Attack Details
	 Trojan Detection Experiment
	 Object Set Visualization

