# **Recalling The Forgotten Class Memberships: Unlearned Models Can Be Noisy Labelers to Leak Privacy**

Zhihao Sui $^1\,,\,$  Liang Hu $^{2*}\,,\,$  Jian Cao $^{1*}\,,\,$  Dora D. Liu $^2$ 

Usman Naseem<sup>3</sup>, Zhongyuan Lai<sup>4</sup>, Qi Zhang<sup>2</sup>

<sup>1</sup>Shanghai Jiao Tong University

<sup>2</sup>Tongji University

<sup>3</sup>Macquarie University

<sup>4</sup>Shanghai Ballsnow Intelligent Technology Co. Ltd

fancyboy@sjtu.edu.cn, lianghu@tongji.edu.cn, cao-jian@sjtu.edu.cn, liudongmei\_0506@163.com usman.naseem@mq.edu.au, abrikosoff@yahoo.com, zhangqi\_cs@tongji.edu.cn

#### Abstract

Machine Unlearning (MU) technology facilitates the removal of the influence of specific data instances from trained models on request. Despite rapid advancements in MU technology, its vulnerabilities are still underexplored, posing potential risks of privacy breaches through leaks of ostensibly unlearned information. Current limited research on MU attacks requires access to original models containing privacy data, which violates the critical privacy-preserving objective of MU. To address this gap, we initiate the innovative study on recalling the forgotten class memberships from unlearned models (ULMs) without requiring access to the original one. Specifically, we implement a Membership Recall Attack (MRA) framework with a teacher-student knowledge distillation architecture, where ULMs serve as noisy labelers to transfer knowledge to student models. Then, it is translated into a Learning with Noisy Labels (LNL) problem for inferring correct labels of the forgetting instances. Extensive experiments on stateof-the-art MU methods with multiple real datasets demonstrate that the proposed MRA strategy exhibits high efficacy in recovering class memberships of unlearned instances. As a result, our study and evaluation have established a benchmark for future research on MU vulnerabilities.

### **1** Introduction

Data privacy is a core concept in the era of big data and extensive interconnectivity [Wu *et al.*, 2024; Bao *et al.*, 2023]. If a machine learning model has been trained on sensitive and private data, it can lead to significant security risks. In this context, the emergence of machine unlearning (MU) has been driven by stringent data privacy regulations such as GDPR [Hoofnagle *et al.*, 2019] and CCPA [Itakura and Terada, 2018], which require the removal of specific sensitive data



Figure 1: The demonstration of recall attack on the unlearned model (ULM) to recover class memberships having been unlearned via MU. This study is critical to the vulnerability of current MU models.

upon request. MU is designed to forget particular data points from the learned models [Cao and Yang, 2015]. As concerns about the increasing data misuse and privacy breaches, MU has gained more attention as a critical component in building safe machine learning systems.

Rapid advancements in MU research have increasingly posed a potential risk of privacy breaches by recovering the unlearned information about private data, highlighting the limited research on the full scope of MU vulnerabilities. In fact, the most relevant research [Hu *et al.*, 2024] that investigates inversion attacks against MU models was published recently. However, this work is based on an impractical assumption that unlearning inversion attacks require access to both **Trained Model (TRM,**  $\mathcal{M}(\Theta_T)$ ), and **Unlearned Model (ULM,**  $\mathcal{M}(\Theta_U)$ ), as shown in Figure 1. In general, only ULM is accessible to users, where sensitive privacy has been removed from TRM.

The membership inference attack (MIA) [Shokri *et al.*, 2017] is originally used to detect data samples used to train a machine learning model. Recently, MIA has been used to assess whether the influence of a forgetting dataset  $\mathcal{D}_f = \{\mathcal{X}_f, \mathcal{Y}_f\}$  has been successfully erased after MU [Chen *et al.*, 2021]. To go one step further, we formulate the attack on recovering the forgotten class memberships by only accessing ULM. As shown in Figure 1, our objective is to learn a **Recalled Model (RCM,**  $\tilde{\mathcal{M}}(\Theta_R)$ ) from the ULM  $\mathcal{M}(\Theta_U)$  to correctly infer the labels of the input data  $\mathcal{X}_p$ , where  $\mathcal{X}_p$ 

<sup>\*</sup>Corresponding author

contains a subset of instances in  $\mathcal{X}_f$  in which the class memberships,  $\mathcal{Y}_f$ , have been forgotten in the ULM. As a result, we propose a Membership Recall Attack (MRA) framework to learn RCM in this paper. As most MU models restrict the scope of the investigation to the area of image classification tasks [Bourtoule *et al.*, 2021; Fan *et al.*, 2024; Jia *et al.*, 2023; Chen *et al.*, 2023; Chen *et al.*, 2024], we correspondingly study the proposed MRA on these MU models in this area.

To implement the MRA framework, we designed a teacherstudent architecture to distill the knowledge from the ULM  $\mathcal{M}(\Theta_{II})$  (as a teacher) to a **Student Model (STM,**  $\mathcal{M}(\Theta_S)$ ). More specifically, given an input image set  $\mathcal{X}_p$ , the ULM  $\mathcal{M}(\Theta_U)$  outputs the prediction labels  $\mathcal{M}(\mathcal{X}_p; \Theta_U) \mapsto \mathcal{Y}_p$ , where the prediction labels  $\mathcal{Y}_p$  may be noisy, especially when  $\mathcal{X}_p$  contains many instances of forgetting data  $\mathcal{X}_f$ . Therefore, we use the ULM  $\mathcal{M}(\Theta_U)$  to serve as a **noisy labeling teacher** for knowledge distillation, that is, using  $\{\mathcal{X}_p, \mathcal{Y}_p\}$  to train the STM  $\mathcal{M}(\Theta_S)$ . In this context, MRA can be further translated into a Learning with Noisy Labels (LNL) problem [Algan and Ulusoy, 2021] over  $\{\mathcal{X}_p, \mathcal{Y}_p\}$  that aims to infer correct labels from the noisy ones. Consequently, we selected samples with high confidence agreement between the teacher model  $\mathcal{M}(\Theta_U)$  and the STM  $\mathcal{M}(\Theta_S)$  for LNL. In particular, we discuss two cases for MRA, one is the closed-source case where the parameters of ULM  $\Theta_U$  are not accessible, and the other is the open-source case where the parameters are open for use. Moreover, we design a unified learning scheme of MRA to train the RCMs for these two cases. We summarize our contributions as follows.

- To our knowledge, this is the *first attempt* study of the recall attack of class membership, which can effectively assess the risk of data privacy breaches and promote the robustness of the MU study.
- We propose MRA, a model-agnostic attack framework, to effectively recover class memberships of forgotten instances from unlearned ULMs via various MU methods.
- We implement MRA with a teacher-student architecture where the ULM serves as a noisy labeling teacher to distill the knowledge to train the STM with noisy labels.
- We conducted extensive experiments in four widely used datasets in MU research, demonstrating both the theoretical and practical efficacy of our MRA approach against various SOTA MU methods.

## 2 Related Work

### 2.1 Machine Unlearning

**Exact Unlearning.** Retraining the model from scratch after removing specific data can intuitively and effectively achieve exact unlearning. In addition, [Bourtoule *et al.*, 2021] proposed SISA (Sharded, Isolated, Sliced, Aggregated) training, which trains isolated models on data shards for efficient unlearning by retraining only affected shards. Although effective, these unlearning approaches are computationally expensive and impractical for large-scale models and datasets.

Approximate Unlearning. The idea of modestly sacrificing the accuracy of forgetting in exchange for significant improvements in unlearning efficiency has spurred the exploration of approximate unlearning techniques. Gradient ascent (GA) [Graves *et al.*, 2021; Golatkar *et al.*, 2020; Thudi *et al.*, 2022; Miao *et al.*, 2024] reverses the training of the model by adding gradients, thus moving the model towards greater loss for the data points targeted for removal. Random labeling (RL) [Golatkar *et al.*, 2020] that involves finetuning the original model on the forgetting dataset using random labels to enforce unlearning. Several methods estimate the impact of forgetting samples on the model parameters and conduct forgetting through the fisher information matrix (FF) [Becker and Liebig, 2022] or influence function (IU) [Koh and Liang, 2017; Izzo *et al.*, 2021].  $\ell$ 1-sparse (L1-SP) [Jia *et al.*, 2023] infuses weight sparsity into unlearning.

Moreover, most MU methods may degrade model performance. and lead to "*over-unlearning*". Some recent work has explored more precise unlearning on target forget instances. Boundary unlearning (**BU**) [Chen *et al.*, 2023] shifts the decision boundary of the original model to imitate the decision behavior of the model retrained from scratch. **SalUn** [Fan *et al.*, 2024] introduces the concept of 'weight saliency' to narrow the performance gap with exact unlearning. To avoid over-unlearning, **UNSC** [Chen *et al.*, 2024] constrains the unlearning process within a null space tailored to the remaining samples to ensure that unlearning does not negatively impact the model performance.

#### 2.2 Attacks on Machine Unlearning

Despite advances in MU techniques, the study of their vulnerabilities remains underexplored. To date, very limited MU attack methods have been proposed to affect efficiency [Marchant *et al.*, 2022] or fidelity [Di *et al.*, 2022; Hu *et al.*, 2023]. Studying attacks on MU is crucial to developing robust and secure MU methods.

**Membership Inference Attack (MIA).** MIA is originally used to infer if data samples are used to train a machine learning model [Shokri *et al.*, 2017]. With the development of MU, MIA has been widely used to check if the influence of forgetting data had been removed from the original model. However, [Chen *et al.*, 2021] show that MU can jeopardize privacy in terms of MIA. The goals of MIA and the proposed MRA are different. MIA aims to detect data samples if used for training, whereas MRA aims at recalling and inferring the class memberships of forgetting samples from ULMs.

**Model Inversion Attack.** It aims to reconstruct the original input data from the model outputs. [Fredrikson *et al.*, 2015] introduced model inversion attacks using the confidence scores output by a model to reconstruct input images. [Hu *et al.*, 2024] proposed the first inversion attack against unlearning. It extracts features and labels of forgetting samples, which most closely match the objectives of our study. Although the attack demonstrates notable effectiveness, it requires *access to the original TRM* before unlearning, which is impractical in real scenarios. In contrast, the proposed MRA only needs to access ULMs and supports more versatile MU methods. To our knowledge, we are the first to explore the attack **only using ULMs** to recall the class memberships of forgetting samples, without comparable prior work.

# **3** Preliminaries

We first introduce the datasets and models used in our study, followed by a formal definition of the problem.

## 3.1 Involved Datasets

**Training dataset**  $\mathcal{D}_{tr}$  : { $\mathcal{X}_{tr}$ ,  $\mathcal{Y}_{tr}$ } is all data used to initially train machine learning models, where  $\mathcal{X}_{tr}$  denotes the image set and  $\mathcal{Y}_{tr}$  denotes the corresponding label set.

**Forgetting dataset**  $\mathcal{D}_f : {\mathcal{X}_f, \mathcal{Y}_f}$  is a subset of  $\mathcal{D}_{tr}$ , that is,  $\mathcal{D}_f \subset \mathcal{D}_{tr}$ . In MU,  $\mathcal{D}_f$  is a set of sensitive data that should be unlearned from the trained model, that is, the ULM cannot tell the true labels when  $\mathcal{X}_f$  is input.

**Remaining dataset**  $D_r$ : { $\mathcal{X}_r$ ,  $\mathcal{Y}_r$ } is the remaining data of  $\mathcal{D}_{tr}$ , that is,  $\mathcal{D}_r = \mathcal{D}_{tr} \setminus \mathcal{D}_f$ , which should not be forgotten. **Prediction dataset**  $\mathcal{D}_p$ : { $\mathcal{X}_p$ ,  $\mathcal{Y}_p$ } is the dataset for prediction, where  $\mathcal{X}_p = \mathcal{X}_{ts} \cup \mathcal{X}_u$  can be decomposed into two parts.  $\mathcal{X}_u \subseteq \mathcal{X}_f$  is the subset of the forgotten instances while  $\mathcal{X}_{ts}$  is the unseen dataset for testing.

## 3.2 Involved Models

**Trained Model (TRM)**  $\mathcal{M}(\Theta_T)$  is the model that has been trained on the training dataset  $\mathcal{D}_{tr}$ .

Unlearned Model (ULM)  $\mathcal{M}(\Theta_U)$  is the model that has unlearned the forgetting dataset  $\mathcal{D}_f$  based on  $\mathcal{M}(\Theta_U)$ . It will serve as a noisy labeling teacher to distill knowledge.

**Student Model (STM)**  $\tilde{\mathcal{M}}(\Theta_S)$  is the model that receives the knowledge distilled from  $\mathcal{M}(\Theta_U)$ .

**Recalled Model (RCM)**  $\tilde{\mathcal{M}}(\Theta_R)$  is the model that has recalled forgotten class memberships based on  $\mathcal{M}(\Theta_U)$ .

## 3.3 Problem Formulation

MU models remove the influence of forgetting the dataset  $\mathcal{D}_f$  from TRM  $\mathcal{M}(\theta_T)$ , and release a ULM  $\mathcal{M}(\Theta_U)$  for public use. This paper aims to implement the MRA framework to recall forgotten class memberships given  $\mathcal{M}(\Theta_U)$ . In particular, we employ  $\mathcal{M}(\Theta_U)$  as a noisy labeler (i.e., teacher model) to distill the knowledge inferred from the prediction dataset  $\mathcal{X}_p$  to the STM  $\tilde{\mathcal{M}}(\Theta_S)$ .

Moreover, we discuss two common cases that lead to the final RCM  $\tilde{\mathcal{M}}(\Theta_R)$ . In the first case, ULM  $\mathcal{M}(\Theta_U)$  is usable but not trainable, e.g.  $\mathcal{M}(\Theta_U)$  is only accessible as a blackbox service (**closed-source case**), and the STM  $\tilde{\mathcal{M}}(\Theta_S)$  will finally serve as RCM  $\tilde{\mathcal{M}}(\Theta_R)$ . In the second case,  $\mathcal{M}(\Theta_U)$  is trainable, for example,  $\mathcal{M}(\Theta_U)$  is released with its ULM parameters  $\Theta_U$  (**open-source case**), and the ULM  $\mathcal{M}(\Theta_U)$  is recovered to serve as the RCM  $\tilde{\mathcal{M}}(\Theta_R)$ .

# 4 Proposed Method

## 4.1 Overview

Firstly, we can easily obtain ULMs by applying various MU methods on a TRM. Given a ULM, Figure 2 demonstrates the workflow to implement the proposed MRA framework, which consists of two alternative learning steps to obtain the RCM  $\tilde{\mathcal{M}}(\Theta_R)$ .

(1) Denosing Knowledge Distillation: The ULM  $\mathcal{M}(\Theta_U)$  serves as a noisy labeler on the prediction dataset  $\mathcal{D}_p$  with



Figure 2: The workflow of proposed MRA framework. It consists of two alternative learning steps to obtain RCM: (1) Denosing Knowledge Distillation; (2) Confident Membership Recall.

some augmentation strategy, and the inferred pseudo labels with the augmented images are used to train STM  $\tilde{\mathcal{M}}(\Theta_S)$ .

(2) Confident Membership Recall: Both ULM  $\mathcal{M}(\Theta_U)$  and STM  $\tilde{\mathcal{M}}(\Theta_S)$  are to generate the prediction on  $\mathcal{D}_p$ , and the top-*K* data samples with the highest probability of joint prediction, that is, the most confidently agreed pseudo labels for each class are selected to train STM  $\tilde{\mathcal{M}}(\Theta_S)$  and ULM  $\mathcal{M}(\Theta_U)$  (optional for the open source case).

### 4.2 Model Training and Unlearning

Given the training dataset  $\mathcal{D}_{tr} = \mathcal{D}_f \cup \mathcal{D}_r$ , we use  $\mathcal{D}_{tr}$  to train the model  $\mathcal{M}$ , which results in the TRM  $\mathcal{M}(\Theta_T)$  with the parameters  $\Theta_T$ . Then, we apply various SOTA MU methods on TRM  $\mathcal{M}(\Theta_T)$ , which leads to ULMs  $\mathcal{M}(\Theta_U)$ .

## 4.3 Implementation of MRA Framework

We implement the MRA framework with the following two alternative learning steps to obtain RCM  $\tilde{\mathcal{M}}(\Theta_R)$ .

### (1) Denoising Knowledge Distillation

A sophisticated MU method should only unlearn the influence of forgetting dataset  $\mathcal{D}_f$  but retain the classification capability that is learned from the remaining dataset  $\mathcal{D}_r$ . As a result, the ULM  $\mathcal{M}(\Theta_U)$  can serve as a noisy labeler to distill knowledge to the STM  $\tilde{\mathcal{M}}(\Theta_S)$  given the set of prediction images  $\mathcal{X}_p$ .  $\mathcal{M}(\Theta_U)$  is prone to mislabeling on  $\mathcal{X}_p$  if it contains forgotten instances in  $\mathcal{D}_f$ . To avoid the input of original images that have been forgotten, we create augmented images by mixup [Zhang *et al.*, 2018] which is an effective regularization technique to deal with label noise [Carratino *et al.*, 2022]. Given an image  $x_1 \in \mathcal{X}_p$ , we randomly sample another image  $x_2$  from  $\mathcal{X}_p$ , and mix them as follows:

$$\tilde{x} = \beta_x \cdot x_1 + (1 - \beta_x) \cdot x_2 \tag{1}$$

where  $\beta_x \sim Beta(\alpha_x, \alpha_x)$  ( $\alpha_x = 0.2$  in this paper). Then, we take  $\tilde{x}$  as input to retrieve the soft pseudo label from ULM

 $\mathcal{M}(\Theta_U)$  and STM  $\tilde{\mathcal{M}}(\Theta_S)$ :

$$\tilde{\mathbf{y}}_U = \mathcal{M}(\tilde{x}; \Theta_U), \quad \tilde{\mathbf{y}}_S = \tilde{\mathcal{M}}(\tilde{x}; \Theta_S)$$
 (2)

Then, we can obtain the mixed soft pseudo label:

$$\tilde{\mathbf{y}}_{US} = \beta_y \cdot \tilde{\mathbf{y}}_U + (1 - \beta_y) \cdot \tilde{\mathbf{y}}_S \tag{3}$$

where  $\beta_y = 1$  is applied in the first warmup epoch (i.e. completely accept the knowledge from the teacher model) and  $\beta_{y} \sim Beta(\alpha_{y}, \alpha_{y})$  ( $\alpha_{y} = 0.75$  in this paper) for label denoising after the warmup stage. Following Eqs (1) to (3), we can obtain  $\tilde{\mathcal{Y}}_S = {\{\tilde{\mathbf{y}}_S\}}$  and  $\tilde{\mathcal{Y}}_{US} = {\{\tilde{\mathbf{y}}_{US}\}}$  over the augmented set  $\tilde{x} \in \mathcal{X}_p$ . As a result, the parameters of STM  $\tilde{\mathcal{M}}(\Theta_S)$  can be updated by decreasing the mini-batch gradient in terms of minimizing cross-entropy (CE) loss.

$$\Theta_S = \arg\min_{\Theta_S} \operatorname{CE}(\tilde{\mathcal{Y}}_S, \tilde{\mathcal{Y}}_{US}) \tag{4}$$

#### (2) Confident Membership Recall

After the above step, STM  $\mathcal{M}(\Theta_S)$  has been trained on the augmented dataset based on  $\mathcal{X}_p$  with pseudo labels from the noisy labeler  $\mathcal{M}(\Theta_U)$ . Inspired by the LNL methods [Algan and Ulusoy, 2021], we design a balanced class membership recall strategy based on the highest confidence agreements between  $\mathcal{M}(\Theta_U)$  and  $\mathcal{M}(\Theta_S)$ . More specifically, we first input  $\mathcal{X}_p$  into both ULM  $\mathcal{M}(\Theta_U)$  and STM  $\tilde{\mathcal{M}}(\Theta_S)$  to predict soft labels (that is, probability over each class):

$$\mathbf{Y}_{p}^{U} = \mathcal{M}(\mathcal{X}_{p}; \Theta_{U}), \quad \mathbf{Y}_{p}^{S} = \tilde{\mathcal{M}}(\mathcal{X}_{p}; \Theta_{S})$$
(5)

where  $\mathbf{Y}_p^U, \mathbf{Y}_p^U \in \mathbb{R}^{N \times C}$ ,  $N = |\mathcal{X}_p|$  denotes the number of samples in  $\mathcal{X}_p$  and C denotes the number of classes. For each instance  $x_i \in \mathcal{X}_p$ , we apply Laplace smoothing on its soft label  $\mathbf{y}_i^U = \mathbf{Y}_p^U[i, :]$  to avoid zero probability:

$$\tilde{\mathbf{y}}_{i}^{U} = \frac{\mathbf{y}_{i}^{U} + \gamma_{l} \cdot \mathbf{1}}{1 + C \cdot \gamma_{l}} \tag{6}$$

As a result, we obtain the smoothed probability matrices  $\mathbf{\hat{Y}}_{p}^{U}$ over  $\mathcal{X}_p$ .  $\tilde{\mathbf{Y}}_p^S$  can be obtained in the same way. Then, we have the joint probability  $\tilde{\mathbf{y}}_i$  on  $x_i$ :

$$\tilde{\mathbf{y}}_{i} = \tilde{\mathbf{y}}_{i}^{U} \odot \tilde{\mathbf{y}}_{i}^{S} \quad \text{for } \tilde{\mathbf{y}}_{i}^{U} \in \tilde{\mathbf{Y}}_{p}^{U}, \tilde{\mathbf{y}}_{i}^{S} \in \tilde{\mathbf{Y}}_{p}^{S}$$
(7)

For all  $x_i \in \mathcal{X}_p$ , we have  $\tilde{\mathbf{Y}}_p = \tilde{\mathbf{Y}}_p^U \odot \tilde{\mathbf{Y}}_p^S$  in the matrix form, where  $\odot$  is the element-wise product. Given a class c, we have the joint probabilities  $\mathbf{y}_c = \mathbf{Y}_p[:, c]$  of all instances. A higher joint probability  $y_i \in \mathbf{y}_c$  implies greater confidence in the teacher and student models that the instance  $x_i$  should have the membership of the class c. Consequently, we apply a balanced strategy to select top-K instances with the maximum joint probability for each class.

$$\mathcal{D}_{CF} = \{\mathcal{X}_{CF}, \mathcal{Y}_{CF}\} = \{(x_i, \tilde{\mathbf{y}}_c) | y_i \in \text{top-}K(\mathbf{y}_c) \quad (8) \\ \text{for } c \in \{1, \cdots, C\}$$

where  $K = \lceil \tau \cdot N/C \rceil$ , and  $\tilde{\mathbf{y}}_c = (1 - \gamma_s) \cdot \mathbf{y}_c + \frac{\gamma_s}{K} \cdot \mathbf{1}$  denotes the smoothing of the label versus the hard label c (y<sub>c</sub> stands for the one-hot encoding of c) which can effectively mitigate Algorithm 1 The Scheme of MRA

**Input**: Prediction Set:  $\mathcal{X}_p$ , Number of Epochs:  $K_E, K_D, K_R$ **Output**: Recalled Labels:  $\hat{\mathcal{Y}}_p$ 

- 1: for e in  $\{1, \dots, K_E\}$  do (1) Denoising Knowledge Distillation 2: 3: for i in  $\{1, \dots, K_D\}$  do 4:  $\mathcal{X}_p, \mathcal{Y}_{US} \triangleright$  Mixup augmentation by Eqs (1) to (3)  $\Theta_S = \arg\min_{\Theta_S} \operatorname{CE}(\tilde{\mathcal{Y}}_S, \tilde{\mathcal{Y}}_{US})$ 5: 6: end for
- 7: (2) Confident Membership Recall

for i in  $\{1, \dots, K_R\}$  do 8: 9:  $\triangleright$  Confident agreements by Eqs (5) to (8)  $\mathcal{D}_{CF}$ 10:  $\Theta_S = \arg\min_{\Theta_S} \operatorname{CE}(\mathcal{Y}_S, \mathcal{Y}_{CF})$ ▷ Update STM 11: if  $\mathcal{M}(\Theta_U)$  is trainable (open-source case) then 12:  $\mathcal{D}_{CF}$   $\triangleright$  Confident agreements by Eqs (5) to (8) 13:  $\Theta_U = \arg \min_{\Theta_U} \operatorname{CE}(\mathcal{Y}_U, \mathcal{Y}_{CF}) \triangleright \operatorname{Update} \operatorname{ULM}$ 14: end if

16: end for

17: return  $\hat{\mathcal{Y}}_p = \tilde{\mathcal{M}}(\mathcal{X}_p; \Theta_S)$  $\triangleright$  Closed-source case  $\hat{\mathcal{Y}}_p = \mathcal{M}(\mathcal{X}_p; \Theta_U)$ 18: ▷ Open-source case

label noise [Lukasik *et al.*, 2020]. Then, the STM  $\tilde{\mathcal{M}}(\Theta_S)$  is updated on  $\mathcal{D}_{CF}$  to learn the confident memberships.

$$\mathcal{Y}_S = \mathcal{M}(\mathcal{X}_{CF}; \Theta_S) \tag{9}$$

▷ Update STM

$$\Theta_S = \arg\min_{\Theta_S} \operatorname{CE}(\mathcal{Y}_S, \mathcal{Y}_{CF}) \tag{10}$$

In the **open-source case**, the parameters of ULM  $\mathcal{M}(\Theta_U)$ are also accessible, so we will construct  $\mathcal{D}_{CF}$  to refine  $\Theta_U$ by Eqs (5) to (8) with the above updated STM  $\mathcal{M}(\Theta_S)$ .

$$\mathcal{Y}_U = \mathcal{M}(\mathcal{X}_{CF}; \Theta_U) \tag{11}$$

$$\Theta_U = \arg\min_{\Theta_U} \operatorname{CE}(\mathcal{Y}_U, \mathcal{Y}_{CF}) \tag{12}$$

As a result, it leads to an alternative improvement cotraining process between the teacher  $\mathcal{M}(\Theta_U)$  and the student  $\mathcal{M}(\Theta_S)$ , which can more effectively recall class memberships thanks to the knowledge retained by  $\mathcal{M}(\Theta_U)$ .

In Algorithm 1, we concisely summarize the above MRA scheme. After MRA, the updated STM  $\mathcal{M}(\Theta_S)$  (in closedsource case) or ULM  $\mathcal{M}(\Theta_U)$  (in open-source case) will serve as the RCM to predict the labels  $\mathcal{Y}_p$  of  $\mathcal{X}_p$ .

#### 5 **Experiments**

#### 5.1 **Experiment Setup**

#### **Data Preparation**

In our experiments, four real datasets are used, which cover both low- and high-resolution data, providing a comprehen-

| Dataset    | # Classes | $\mathcal{D}_{tr}$ | $\mathcal{D}_{ts}$ | $\mathcal{D}_{f}$ |
|------------|-----------|--------------------|--------------------|-------------------|
| CIFAR-10   | 10        | 50,000             | 10,000             | 2500×5            |
| CIFAR-100  | 100       | 50,000             | 10,000             | 250×5             |
| Pet-37     | 37        | 3,680              | 3,669              | 50×5              |
| Flower-102 | 102       | 3,074              | 1,020              | 224               |

Table 1: Statistic summary of the datasets and their splits

|                         |                        | TRM   |                | FF    | RL    | GA    | IU    | BU    | L1-SP | SalUn | UNSC  |
|-------------------------|------------------------|-------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                         |                        |       | ULM            | 0.164 | 0.388 | 0.505 | 0.105 | 0.462 | 0.451 | 0.486 | 0.193 |
|                         | $\mathcal{D}_{ts}$     | 0.833 | RCM            | 0.252 | 0.479 | 0.528 | 0.115 | 0.651 | 0.456 | 0.697 | 0.568 |
| CIFAR-10<br>T: EFN      |                        |       | $\Delta Acc$   | 0.088 | 0.091 | 0.023 | 0.010 | 0.188 | 0.005 | 0.211 | 0.375 |
| S: EFN                  |                        |       | ULM            | 0.142 | 0.153 | 0.267 | 0.090 | 0.082 | 0.154 | 0.117 | 0.031 |
|                         | $\mathcal{D}_f$        | 1.000 | RCM            | 0.195 | 0.328 | 0.358 | 0.096 | 0.507 | 0.231 | 0.615 | 0.513 |
|                         |                        |       | $\Delta Acc$   | 0.053 | 0.175 | 0.091 | 0.005 | 0.424 | 0.077 | 0.498 | 0.482 |
|                         |                        |       | ULM            | 0.159 | 0.593 | 0.531 | 0.140 | 0.529 | 0.537 | 0.410 | 0.275 |
|                         | $\mathcal{D}_{ts}$     | 0.643 | RCM            | 0.295 | 0.607 | 0.551 | 0.297 | 0.566 | 0.550 | 0.522 | 0.480 |
| CIFAR-100<br>T: EFN     |                        |       | $\Delta Acc$   | 0.137 | 0.014 | 0.020 | 0.157 | 0.037 | 0.013 | 0.112 | 0.206 |
| S: EFN                  |                        |       | ULM            | 0.094 | 0.086 | 0.201 | 0.201 | 0.254 | 0.199 | 0.227 | 0.209 |
|                         | $\mid \mathcal{D}_{f}$ | 1.000 | RCM            | 0.214 | 0.537 | 0.270 | 0.256 | 0.423 | 0.258 | 0.358 | 0.372 |
|                         |                        |       | $ \Delta Acc $ | 0.119 | 0.451 | 0.070 | 0.055 | 0.169 | 0.058 | 0.130 | 0.163 |
|                         |                        |       | ULM            | 0.257 | 0.754 | 0.740 | 0.622 | 0.646 | 0.740 | 0.706 | 0.769 |
|                         | $\mathcal{D}_{ts}$     | 0.895 | RCM            | 0.486 | 0.816 | 0.757 | 0.682 | 0.785 | 0.758 | 0.778 | 0.799 |
| Pet-37<br>T: ResNet     |                        |       | $\Delta Acc$   | 0.229 | 0.062 | 0.018 | 0.060 | 0.140 | 0.018 | 0.072 | 0.030 |
| S: ResNet               |                        |       | ULM            | 0.224 | 0.332 | 0.224 | 0.200 | 0.084 | 0.196 | 0.128 | 0.304 |
|                         | $ \mathcal{D}_f $      | 1.000 | RCM            | 0.388 | 0.884 | 0.520 | 0.448 | 0.856 | 0.440 | 0.712 | 0.660 |
|                         |                        |       | $\Delta Acc$   | 0.164 | 0.552 | 0.296 | 0.248 | 0.772 | 0.244 | 0.584 | 0.356 |
|                         |                        |       | ULM            | 0.294 | 0.756 | 0.314 | 0.512 | 0.706 | 0.530 | 0.496 | NA    |
|                         | $\mathcal{D}_{ts}$     | 0.939 | RCM            | 0.376 | 0.831 | 0.510 | 0.589 | 0.758 | 0.655 | 0.599 | NA    |
| Flower-102<br>T: Swin-T |                        |       | $\Delta Acc$   | 0.082 | 0.075 | 0.196 | 0.077 | 0.052 | 0.125 | 0.103 | NA    |
| S: ResNet               |                        |       | ULM            | 0.235 | 0.150 | 0.239 | 0.291 | 0.340 | 0.324 | 0.267 | NA    |
|                         | $\mid \mathcal{D}_{f}$ | 1.000 | RCM            | 0.312 | 0.567 | 0.352 | 0.364 | 0.478 | 0.538 | 0.429 | NA    |
|                         |                        |       | $\Delta Acc$   | 0.077 | 0.417 | 0.113 | 0.073 | 0.138 | 0.215 | 0.162 | NA    |

Table 2: Performance comparison of MRA (closed-source case) on various SOTA MU methods, where ULM indicates the *Acc* after MU while RCM indicates the *Acc* after MRA, and  $\Delta Acc$  shows the improvement (the Top-2  $\Delta Acc$  are marked in red while the Lowest-2 are marked in blue). TRM illustrates the *Acc* of original model.

sive evaluation. CIFAR-10 and CIFAR-100 [Krizhevsky *et al.*, 2009] consist of 60,000 low-resolution images classified into 10 and 100 classes, respectively. Oxford-IIIT Pet (Pet-37) [Parkhi *et al.*, 2012] contains 7,349 high-resolution images of cats and dogs in 37 classes. In particular, Oxford 102 Flower (Flower-102) [Nilsback and Zisserman, 2008] has 8,189 high-resolution images in 102 classes, where each class consists of between 40 and 258 images.

As shown in Table 1, we use the official splits of the training dataset  $\mathcal{D}_{tr}$  and the testing dataset  $\mathcal{D}_{ts}$  provided in the dataset package. For each dataset, five classes are selected to construct the forgetting dataset  $\mathcal{D}_f$  by randomly sampling 50% of data from  $\mathcal{D}_{tr}$ , and the prediction dataset used for evaluation is constructed by mixing  $\mathcal{D}_{ts}$  and  $\mathcal{D}_f$ , i.e.,  $\mathcal{D}_p = \mathcal{D}_{ts} \cup \mathcal{D}_f$  to jointly assess the prediction and recovery capability of RCM.

#### **Model Configuration**

The proposed MRA framework is model-agnostic, so we use EfficientNet (EFN) [Tan and Le, 2019] on CIFAR datasets, ResNet [He *et al.*, 2016] on Pet-37, and Swin-Transformer (Swin-T) [Liu *et al.*, 2022] on Flower-102 for a comprehensive study. Moreover, in our framework, the STM does not necessarily have the same architecture as the ULM (Teacher Model). Therefore, we also evaluate the case of heterogeneous architectures on Flower-102, where the ULM is based

on Swin-T while the STM is based on ResNet, as shown in Tables 2 and 3.

We use SGD optimizer for MU methods with a momentum of 0.9, a weight decay of 0.005, and AdamW for our MRA scheme. Other more detailed settings can be found in the online extended version. For each comparison model, we carefully tuned their hyperparameters to achieve optimal performance.

#### **MU Methods for MRA Evaluation**

In the experiments, a set of SOTA MU methods, including GA [Graves *et al.*, 2021], RL [Golatkar *et al.*, 2020], FF [Becker and Liebig, 2022], IU [Koh and Liang, 2017], BU [Chen *et al.*, 2023], L1-SP [Jia *et al.*, 2023], UNSC [Chen *et al.*, 2024] and SalUn [Fan *et al.*, 2024], are involved to comprehensively evaluate the recall capability of proposed MRA. In particular, UNSC does not support the Swin-T architecture, so the evaluation results on Flower-102 are not available.

#### 5.2 MRA in The Closed-source Case

First, we evaluated the performance of MRA in the closedsource case, i.e., ULMs are used as a black-box service where the model parameters are not accessible.

#### **Overall MRA Efficacy Analysis**

Table 2 show the accuracy (Acc) of prediction dataset  $D_p$  in terms of its subsets  $D_{ts}$  and  $D_{ts}$  respectively. We compared



Figure 3: Comparison of the *Acc* between ULM and RCM (closed-source case) after MRA w.r.t. each forgetting class on CIFAR-10 dataset. Due to space limit, LARGER figures can be found in the online extended version.



Figure 4: Comparison of the Acc between ULM and RCM (closed-source case) w.r.t. each forgetting class on Pet-37 dataset.

the Acc of ULM and RCM over four datasets and diverse configurations of the MU model. From the point of view of this table, all of the Acc on  $D_f$  of TRM are 1.000 after training, while they drop to low Acc after MU, illustrating that all selected MU methods can successfully mitigate the influence of  $D_f$  from well-trained models. Furthermore, according to all the results of improvement ( $\Delta Acc$ ) on both  $D_f$  and  $D_{ts}$ , we find that RCMs can unexceptionally improve the prediction accuracy on all datasets for all MU models, which overall proves that the proposed MRA is an effective and versatile model-agnostic framework to recover the class memberships of forgotten instances from ULMs.

More specifically, the improvement ( $\Delta Acc$ ) of L1-SP is overall smaller than that of other MU methods on both  $\mathcal{D}_f$ and  $\mathcal{D}_{ts}$ . This can be attributed to the weight pruning on TRM, which makes the parameters of ULM significantly different from those of TRM. As a result, the knowledge distillation from ULM is prone to having higher label noise. In contrast, the improvement ( $\Delta Acc$ ) of **SalUn** and **UNSC** is overall larger than that of other MU methods. This is because most MU methods degrade the model performance after unlearning, known as "over-unlearning". In comparison, **SalUn** and **UNSC**, can precisely unlearn target forgetting samples without over-unlearning. As a result, **SalUn** and **UNSC** can provide less noisy pseudo labels for knowledge distillation, leading to better recall from ULMs.

According to the observation and analysis above, it reveals a phenomenon that "*The MU methods in precise unlearning* may lead to high success rate to recall the forgotten class memberships via MRA". As a result, MRA can serve as a valuable tool to assess the potential risk of privacy leakage for MU methods, thus facilitating the development of more robust MU models.

#### **Demonstration of Class-specific Recovery Efficacy**

To intuitively demonstrate the capacity of MRA to recall the forgotten class memberships on the prediction images  $\mathcal{X}_f$ , we further conducted detailed evaluations with respect to each

forgetting class. Figures 3 and 4 demonstrate the comparison of the *Acc* between ULM and RCM after MRA on CIFAR-10 and Pet-37 for each forgetting class. By checking the improvement of *Acc* for each class, we can observe a similar phenomenon as shown in Table 2. For example, the improvement of *Acc* for each class on **L1-SP** is relatively small due to over-unlearning. In comparison, the ULM via **SalUn** can precisely unlearn the target forgetting images, that is,  $X_f$ , which leads to very low *Acc* for each class after MRA is the most significant. That is, "precise forgetting, easy recalling".

#### 5.3 MRA in The Open-source Case

In comparison to the closed-source case, the ULMs are released with their parameters in the open-source case. As a result, the ULMs can be updated during the MRA process.

### **Overall MRA Efficacy Analysis**

For the open-source case, we can find that the improvement  $(\Delta Acc)$  of **SalUn** and **UNSC** is significant again due to the same reason presented above. Comparing Table 3 with Table 2, it is easy to find that the improvement of Acc in the open-source case method is significantly greater than that in the closed-source case. Especially, we find **IU** achieves the Lowest-2 improvement three times in the closed-source case but it achieves the Top-2 improvement three times in the open-source case. This is because the Confident Membership Recall step (cf. Algorithm 1) can effectively recall the knowl-edge retained by the ULM (as a noisy labeler) using confident pseudo-label samples. Then, the improved teacher model can distill less noisy knowledge to the STM. This alternative optimization process results in significant improvement.

#### **Demonstration of Class-specific Recovery Efficacy**

The analogy to the closed-source case, Figure 5 and appendix D.4 demonstrate the comparison of the *Acc* between ULM and RCM after MRA on CIFAR-10 and Pet-37 for each forgetting class in the open-source case. Compared to Figures 3 and 4, we can find that the gaps between different MU

|                        |                        | TRM                        |              | FF    | RL    | GA    | IU    | BU    | L1-SP | SalUn | UNSC  |
|------------------------|------------------------|----------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                        |                        |                            | ULM          | 0.164 | 0.388 | 0.505 | 0.105 | 0.462 | 0.451 | 0.486 | 0.193 |
|                        | $\mathcal{D}_{ts}$     | 0.833                      | RCM          | 0.708 | 0.471 | 0.582 | 0.689 | 0.783 | 0.479 | 0.829 | 0.774 |
| CIFAR-10<br>T: EFN     |                        |                            | $\Delta Acc$ | 0.544 | 0.083 | 0.077 | 0.584 | 0.321 | 0.027 | 0.343 | 0.581 |
| S: EFN                 |                        |                            | ULM          | 0.142 | 0.153 | 0.267 | 0.090 | 0.082 | 0.154 | 0.117 | 0.031 |
|                        | $\mathcal{D}_f$        | 1.000                      | RCM          | 0.726 | 0.351 | 0.509 | 0.759 | 0.877 | 0.338 | 0.997 | 0.921 |
|                        |                        |                            | $\Delta Acc$ | 0.584 | 0.197 | 0.242 | 0.668 | 0.795 | 0.184 | 0.880 | 0.890 |
|                        |                        |                            | ULM          | 0.159 | 0.593 | 0.531 | 0.140 | 0.529 | 0.537 | 0.410 | 0.275 |
|                        | $\mathcal{D}_{ts}$     | 0.643                      | RCM          | 0.521 | 0.599 | 0.589 | 0.596 | 0.587 | 0.598 | 0.564 | 0.598 |
| CIFAR-100<br>T: EFN    |                        |                            | $\Delta Acc$ | 0.363 | 0.006 | 0.058 | 0.456 | 0.058 | 0.061 | 0.154 | 0.324 |
| S: EFN                 |                        |                            | ULM          | 0.094 | 0.086 | 0.201 | 0.201 | 0.254 | 0.199 | 0.227 | 0.209 |
|                        | $\mid \mathcal{D}_{f}$ | $\mathcal{D}_f \mid 1.000$ | RCM          | 0.686 | 0.898 | 0.682 | 0.967 | 0.970 | 0.764 | 0.945 | 0.985 |
|                        |                        |                            | $\Delta Acc$ | 0.592 | 0.813 | 0.481 | 0.766 | 0.715 | 0.565 | 0.718 | 0.776 |
|                        |                        |                            | ULM          | 0.257 | 0.754 | 0.740 | 0.622 | 0.646 | 0.740 | 0.706 | 0.769 |
|                        | $\mathcal{D}_{ts}$     | 0.895                      | RCM          | 0.782 | 0.850 | 0.843 | 0.838 | 0.846 | 0.841 | 0.849 | 0.856 |
| Pet-37<br>T: ResNet    |                        |                            | $\Delta Acc$ | 0.525 | 0.096 | 0.103 | 0.216 | 0.200 | 0.102 | 0.143 | 0.087 |
| S: ResNet              |                        |                            | ULM          | 0.224 | 0.332 | 0.224 | 0.200 | 0.084 | 0.196 | 0.128 | 0.304 |
|                        | $\mathcal{D}_f$        | 1.000                      | RCM          | 0.904 | 0.960 | 0.952 | 0.936 | 0.960 | 0.920 | 0.948 | 0.976 |
|                        |                        |                            | $\Delta Acc$ | 0.680 | 0.628 | 0.728 | 0.736 | 0.876 | 0.724 | 0.820 | 0.672 |
|                        |                        |                            | ULM          | 0.294 | 0.756 | 0.314 | 0.512 | 0.706 | 0.530 | 0.496 | NA    |
|                        | $\mathcal{D}_{ts}$     | 0.939                      | RCM          | 0.607 | 0.915 | 0.772 | 0.829 | 0.889 | 0.856 | 0.857 | NA    |
| Flower102<br>T: Swin-T |                        |                            | $\Delta Acc$ | 0.313 | 0.159 | 0.458 | 0.318 | 0.183 | 0.325 | 0.361 | NA    |
| S: ResNet              |                        |                            | ULM          | 0.235 | 0.150 | 0.239 | 0.291 | 0.340 | 0.324 | 0.267 | NA    |
|                        | $ \mathcal{D}_f $      | 1.000                      | RCM          | 0.482 | 0.988 | 0.709 | 0.725 | 0.972 | 0.935 | 0.915 | NA    |
|                        |                        |                            | $\Delta Acc$ | 0.247 | 0.838 | 0.470 | 0.433 | 0.632 | 0.611 | 0.648 | NA    |

Table 3: Performance comparison of MRA (**open-source case**) on various SOTA MU methods, where ULM indicates the *Acc* after MU while RCM indicates the *Acc* after MRA, and  $\Delta Acc$  shows the improvement (the Top-2  $\Delta Acc$  are marked in red while the Lowest-2 are marked in blue). TRM illustrates the *Acc* of original model.

methods are much smaller in Figure 5 and appendix D.4. Especially, we can find the improvement of *Acc* on different MU methods after the MRA is close for each forgetting class in Appendix D.4. Even the over-unlearning models, the ULMs via **IU** and **L1-SP** are effectively recalled their forgotten instances through the MRA process in terms of the balanced class membership recall strategy (cf. Section 4.3).

#### 5.4 Ablation Study

In this section, we discuss the effectiveness of each key component in the implementation of the MRA framework. Since the MRA framework consists of two alternative learning steps, we will evaluate the following components.

**DST:** This component is the *Denosing Knowledge Distillation* step presented in Section 4.3, which aims to distill knowledge from noisy labeling teacher  $\mathcal{M}(\Theta_U)$  to STM  $\tilde{\mathcal{M}}(\Theta_S)$ .

**STU:** The component serves as the class membership recall process for STM, as presented in the *Confident Membership Recall* step. That is, **DST+STU** is equivalent to the closed-source case of MRA.

**TCH:** The component serves as the class membership recall process for teacher models, as presented in the *Confident Membership Recall* step. That is, **DST+STU+TCH** is equivalent to the open-source case of MRA.

|              | Con   | ipor         | nent |    |  | FF                                   | BU                                      | I | SalUn                                   | UNSC                                |
|--------------|-------|--------------|------|----|--|--------------------------------------|-----------------------------------------|---|-----------------------------------------|-------------------------------------|
| DST          | :   S | STU          | 1    | СН |  | $\mathcal{D}_{ts}$ $\mathcal{D}_{f}$ | $\mathcal{D}_{ts} \mid \mathcal{D}_{f}$ |   | $\mathcal{D}_{ts} \mid \mathcal{D}_{f}$ | $ \mathcal{D}_{ts} \mathcal{D}_{f}$ |
| ~            |       |              |      |    |  | 0.223   0.168                        | 0.659   0.128                           | 1 | 0.698   0.108                           | 0.767   0.320                       |
| ~            |       | √            |      |    |  | 0.486   0.388                        | 0.785   0.856                           | I | 0.778   0.712                           | 0.799   0.660                       |
| $\checkmark$ |       | $\checkmark$ |      | √  |  | 0.782   0.904                        | 0.846   0.960                           |   | 0.849   0.948                           | 0.856   0.976                       |

Table 4: Ablation results (Acc) of MRA on Pet-37 dataset

## **Comparison Results**

Table 4 reports the results of MRA on Pet-37, where the *Acc* on testing dataset  $\mathcal{D}_{ts}$  and forgetting dataset  $\mathcal{D}_f$  is reported. Additional results for ablation on other datasets can be found in the online extended version.

From the results, we can easily find that **DST** underperforms **DST+STU** and **DST+STU+TCH**. This is because the **DST** component only distills knowledge inferred from the prediction dataset  $D_p$  from the ULM to the student model, where the distilled knowledge inevitably contains label noise from the ULM. As a result, the *Acc* of **DST** is close to that of **ULM**. In comparison, **DST+STU** and **DST+STU+TCH** are based on the alternative learning process with both distillation and recall steps (cf. Algorithm 1). In the recall step, samples with high-confidence agreement are extracted, which can effectively recall forgotten class memberships. The model with all components, i.e., **DST+STU+TCH**, achieves the best performance because the additional **TCH** component can further



Figure 5: Comparison of the *Acc* between ULM and RCM (**open-source case**) after MRA w.r.t. each forgetting class on CIFAR-10 dataset. Due to space limit, **LARGER figures** can be found in the online extended version.



Figure 6: Comparison of the Acc between ULM and RCM (open-source case) w.r.t. each forgetting class on Pet-37 dataset.



Figure 7: Confusion matrices with different configurations of MRA components. (a) demonstrates the confusion matrices after unlearning with different MU methods. Due to space limit, LARGER figures can be found in the online extended version.

recall the knowledge retained by the ULM, as illustrated in Section 5.3.

#### **Visualization of Confusion Matrices**

Figure 7 (a-d) visualize the normalized confusion matrices on  $\mathcal{D}_f$  w.r.t. **ULM**, **DST**, **DST+STU** and **DST+STU+TCH**. From Figure 7 (a) **ULM**, we can observe the highlights in the first column of each subfigure, which illustrates that MU methods have successfully unlearned true class memberships of forgetting instances. From Figure 7 (b) to (c), the diagonals of confusion matrices w.r.t. **DST**, **DST+STU** and **DST+STU+TCH** become more and more noticeable, that is, more and more forgotten class memberships have been successfully recalled, which shows that each component plays an important role in the MRA framework.

### 6 Conclusion

This study is the first attempt to explore MRA against MU techniques to recall unlearned class memberships, highlight-

ing vulnerabilities of MU in data privacy protections. By using ULMs as noisy labelers, our implementation of MRA can recall forgotten class memberships from the ULMs without the need for the original model. Extensive experiments on four real-world datasets show that the proposed MRA framework exhibits high efficacy in recovering forgotten class memberships carried out by various MU methods. In particular, it reveals the phenomenon that *"The MU methods in precise unlearning may lead to high success rate to recall the forgotten class memberships via MRA"*. Consequently, the proposed MRA can serve as a valuable tool to assess the potential risk of privacy leakage for existing and new MU methods, thus gaining deeper insights into MU.

## Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (NSFC Granted No. 62276190).

## References

- [Algan and Ulusoy, 2021] Görkem Algan and Ilkay Ulusoy. Image classification with deep learning in the presence of noisy labels: A survey. *Knowledge-Based Systems*, 215:106771, 2021.
- [Bao *et al.*, 2023] Guangyin Bao, Qi Zhang, Duoqian Miao, Zixuan Gong, and Liang Hu. Multimodal federated learning with missing modality via prototype mask and contrast. *CoRR*, abs/2312.13508, 2023.
- [Becker and Liebig, 2022] Alexander Becker and Thomas Liebig. Evaluating machine unlearning via epistemic uncertainty. *ArXiv preprint arXiv:2208.10836*, 2022.
- [Bourtoule *et al.*, 2021] Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *IEEE Symposium on Security and Privacy*, pages 141–159, 2021.
- [Cao and Yang, 2015] Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. *IEEE Symposium on Security and Privacy*, pages 463– 480, 2015.
- [Carratino *et al.*, 2022] Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, and Jean-Philippe Vert. On mixup regularization. *Journal of Machine Learning Research*, 23(325):1–31, 2022.
- [Chen et al., 2021] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. When machine unlearning jeopardizes privacy. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS '21, page 896–911, New York, NY, USA, 2021. Association for Computing Machinery.
- [Chen et al., 2023] Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid forgetting of deep networks via shifting the decision boundary. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 7766–7775, 2023.
- [Chen et al., 2024] Huiqiang Chen, Tianqing Zhu, Xin Yu, and Wanlei Zhou. Machine unlearning via null space calibration. In Kate Larson, editor, *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24*, pages 358–366. International Joint Conferences on Artificial Intelligence Organization, 8 2024. Main Track.
- [Di *et al.*, 2022] Jimmy Z. Di, Jack Douglas, Jayadev Acharya, Gautam Kamath, and Ayush Sekhari. Hidden poison: Machine unlearning enables camouflaged poisoning attacks. In *NeurIPS ML Safety Workshop*, 2022.
- [Fan et al., 2024] Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Empowering machine unlearning via gradient-based weight saliency in both image classification and generation. In *The Twelfth International Conference on Learning Representations*, 2024.

- [Fredrikson et al., 2015] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence information and basic countermeasures. In ACM SIGSAC Conference on Computer and Communications Security, pages 1322–1333, 2015.
- [Golatkar *et al.*, 2020] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective forgetting in deep networks. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9304–9312, 2020.
- [Graves *et al.*, 2021] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In *AAAI Conference on Artificial Intelligence*, volume 35, pages 11516–11524, 2021.
- [He *et al.*, 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 770–778, 2016.
- [Hoofnagle et al., 2019] Chris Jay Hoofnagle, Bart van der Sloot, and Frederik J. Zuiderveen Borgesius. The european union general data protection regulation: what it is and what it means\*. *Information & Communications Tech*nology Law, 28:65 – 98, 2019.
- [Hu *et al.*, 2023] Hongsheng Hu, Shuo Wang, Jiamin Chang, Haonan Zhong, Ruoxi Sun, Shuang Hao, Haojin Zhu, and Minhui Xue. A duty to forget, a right to be assured? exposing vulnerabilities in machine unlearning services. *ArXiv preprint arXiv:2309.08230*, 2023.
- [Hu et al., 2024] Hongsheng Hu, Shuo Wang, Tian Dong, and Minhui Xue. Learn what you want to unlearn: Unlearning inversion attacks against machine unlearning. In *IEEE Symposium on Security and Privacy*, 2024.
- [Itakura and Terada, 2018] Yoichiro Itakura and Mayu Terada. The significance and context of the establishment of california consumer privacy act of 2018. 2018.
- [Izzo et al., 2021] Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion from machine learning models. In *International Conference on Artificial Intelligence and Statistics*, pages 2008–2016. PMLR, 2021.
- [Jia et al., 2023] Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, and Sijia Liu. Model sparsity can simplify machine unlearning. In *Neural Information Processing Systems*, 2023.
- [Koh and Liang, 2017] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In *International Conference on Machine Learning*, pages 1885–1894. PMLR, 2017.
- [Krizhevsky *et al.*, 2009] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. *Master's Thesis*, 2009.
- [Liu *et al.*, 2022] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer v2: Scaling up capacity and resolution. In *2022*

*IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 11999–12009, 2022.

- [Lukasik *et al.*, 2020] Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon, and Sanjiv Kumar. Does label smoothing mitigate label noise? In *International Conference on Machine Learning*, pages 6448–6458. PMLR, 2020.
- [Marchant *et al.*, 2022] Neil G. Marchant, Benjamin I. P. Rubinstein, and Scott Alfeld. Hard to forget: Poisoning attacks on certified machine unlearning. In *AAAI Conference on Artificial Intelligence*, volume 36, pages 7691–7700, 2022.
- [Miao *et al.*, 2024] Jiaxing Miao, Liang Hu, Qi Zhang, and Longbing Cao. Graph memory learning: Imitating lifelong remembering and forgetting of brain networks. *CoRR*, abs/2407.19183, 2024.
- [Nilsback and Zisserman, 2008] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In *ICVGIP*, 2008.
- [Parkhi et al., 2012] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *CVPR*, 2012.
- [Shokri *et al.*, 2017] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In *IEEE Symposium on Security and Privacy*, pages 3–18, 2017.
- [Tan and Le, 2019] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In *International conference on machine learning*, pages 6105–6114. PMLR, 2019.
- [Thudi *et al.*, 2022] Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Understanding factors influencing machine unlearning. In *IEEE European Symposium on Security and Privacy*, pages 303–319, 2022.
- [Wu *et al.*, 2024] Zhuojia Wu, Qi Zhang, Duoqian Miao, Kun Yi, Wei Fan, and Liang Hu. Hydiscgan: A hybrid distributed cgan for audio-visual privacy preservation in multimodal sentiment analysis. In *IJCAI*, pages 6550–6558. ijcai.org, 2024.
- [Zhang et al., 2018] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. *International Conference on Learning Representations*, 2018.

# Appendix

# A Source Code

To ensure a clear and concise code structure, we provide only the core implementation in the supplementary materials. Experimental datasets, trained model checkpoints, and other auxiliary files are excluded. The source code is available for review in the anonymous repository: https://anonymous. 40pen.science/r/mra4mu-ijcai.

# **B** Additional Experiment Details

This section provides additional information on **Data Preparation** and **Model Configuration** that are not specified in the main paper due to the limitation of space.

### **B.1** Dataset Preparation

For each dataset used in the experiments, five classes are selected to construct the forgetting dataset  $D_f$ . Table 5 lists the class ID and name for each forgetting class.

## **B.2** Model Configuration

Tables 6 and 7 list the detailed model configurations of MRA across all the experiments for the closed-source and opensource cases respectively. The MRA model configuration can be separated into three groups: **Hyperparameter** and **Model Optimization**.

For **Network Architecture**, we use EfficientNet (EFN, small version) [Tan and Le, 2019] on CIFAR datasets, ResNet (ResNet18) [He *et al.*, 2016] on Pet-37, and Swin-Transformer V2 (Swin-T, tiny version) [Liu *et al.*, 2022] on Flower-102 for a comprehensive study. In particular, the ULM is based on Swin-T while the STM is based on ResNet for the Flower-102 dataset.

For **Hyperparameter**, it is further categorized into three subgroups, (1) Mixup:  $\alpha_x$  is the beta distribution hyperparameter for Mixup on images (cf. Eq. (1) in the main paper), and  $\alpha_y$  is the hyperparameter of beta distribution for the Mixup on labels (cf. Eq. (2) in the main paper); (2) Smoothing:  $\gamma_l$  is the hyperparameter of Laplace smoothing (cf. Eq. (6) in the main paper), and  $\gamma_s$  is the hyperparameter of label smoothing (cf. Eq. (8) in the main paper); (3) Top-K:  $\tau$  is the hyperparameter to control how many confidence-agreement samples are selected (cf. Eq. (8) in the main paper).

For **Model Optimization**, we use AdamW as the optimizer across all experiments,  $LR_S$  denotes the initial learning rate for STM, and  $LR_U$  denotes the initial learning rate for ULM, and the batch size for each dataset is also reported.

## C Additional Results of MRA Efficacy

To intuitively demonstrate the capacity of MRA to recall the forgotten class memberships on the prediction images  $\mathcal{X}_f$ , we conducted in-detail evaluations w.r.t. each forgetting class by comparing the *Acc* between ULM and RCM after MRA on CIFAR-10, CIFAR-10, Pet-37 and Flower-102.

From the illustrations in both the closed-source and the open-source case, we can clearly observe the phenomenon that "An MU method with more precise unlearning may lead to higher success rate of MRA to recall the forgotten class

*memberships*", e.g., SalUn and UNSC. As a result, MRA can serve as a valuable tool to assess the potential risk of privacy leakage for MU methods, thus facilitating the development of more robust MU models.

- C.1 Class-specific Recovery Efficacy (Close-source Case)
- C.2 Class-specific Recovery Efficacy (Open-source Case)

## D Additional Results of Ablation Study

In this section, we demonstrate more results of the ablation study on CIFAR-10, CIFAR-100, Pet-37, and Flower-102. The ablation components have been presented in the main paper, that is:

- **DST:** This component is the *Denosing Knowledge Distillation* step presented in the main paper, which aims to distill knowledge from the teacher model to the student model.
- **STU:** The component serves as the class membership recall process for STM, as presented in the *Confident Membership Recall* step. That is, **DST+STU** is equivalent to the closed-source case of MRA.
- **TCH:** The component serves as the recall of class membership for teacher models as presented in the *Confident Membership Recall* step. That is, **DST+STU+TCH** is equivalent to the open-source case of MRA.
- D.1 Ablation Study on CIFAR-10
- D.2 Ablation Study on CIFAR-100
- D.3 Ablation Study on Pet-37
- D.4 Ablation Study on FLower-102

| Dataset    | Forgetting Classes ID and Name                                                      |
|------------|-------------------------------------------------------------------------------------|
| CIFAR-10   | C1: automobile; C3: cat; C5: dog; C7: horse; C9: truck                              |
| CIFAR-100  | C10: bowl; C30: dolphin; C50: mouse; C70: rose; C90: train                          |
| Pet-37     | C1: Bengal; C8: Ragdoll; C15: Basset Hound C21: Beagle; C29: Japanese Chin          |
| Flower-102 | C50: petunia; C72: water lily; C76: passion flower; C88: watercress; C93: foxglove; |

Table 5: Details of five forgetting classes for each dataset

|            | Netv   | vork   |                 | Hyp          | perpara     | meter        |          |                | Mod        | el       |            |
|------------|--------|--------|-----------------|--------------|-------------|--------------|----------|----------------|------------|----------|------------|
| Dataset    | Archit | ecture | Miz             | xup          | Smoo        | othing       | Тор-К    | K Optimization |            |          |            |
|            | ULM    | STM    | $\mid \alpha_x$ | $  \alpha_y$ | $ \gamma_l$ | $ \gamma_s $ | $  \tau$ | Optimizer      | $ $ $LR_S$ | $  LR_U$ | Batch Size |
| CIFAR-10   | EFN    | EFN    | 0.20            | 0.75         | 0.01        | 0.05         | 0.60     | AdamW          | 1.00E-04   | NA       | 256        |
| CIFAR-100  | EFN    | EFN    | 0.20            | 0.75         | 0.01        | 0.05         | 0.60     | AdamW          | 2.00E-04   | NA       | 256        |
| Pet-37     | ResNet | ResNet | 0.20            | 0.75         | 0.01        | 0.05         | 0.05     | AdamW          | 2.00E-04   | NA       | 64         |
| Flower-102 | Swin-T | ResNet | 0.20            | 0.75         | 0.01        | 0.05         | 0.05     | AdamW          | 2.00E-04   | NA       | 32         |

Table 6: Detailed model configuration for MRA in the closed-source case (ULM is not updated so  $LR_U$  is NA)

|            | Netv   | vork   |                 | Hyj        | perpara     | meter      |        | Model                      |            |          |            |  |  |
|------------|--------|--------|-----------------|------------|-------------|------------|--------|----------------------------|------------|----------|------------|--|--|
| Dataset    | Archit | ecture | Mi              | xup        | Smoo        | othing     | Тор-К  | -                          | Optim      | mization |            |  |  |
|            | ULM    | STM    | $\mid \alpha_x$ | $\alpha_y$ | $ \gamma_l$ | $\gamma_s$ | $\tau$ | Optimizer                  | $ $ $LR_S$ | $LR_U$   | Batch Size |  |  |
| CIFAR-10   | EFN    | EFN    | 0.20            | 0.75       | 0.01        | 0.05       | 0.05   | AdamW                      | 1.00E-04   | 5.00E-05 | 256        |  |  |
| CIFAR-100  | EFN    | EFN    | 0.20            | 0.75       | 0.01        | 0.05       | 0.05   | AdamW                      | 2.00E-04   | 1.00E-04 | 256        |  |  |
| Pet-37     | ResNet | ResNet | 0.20            | 0.75       | 0.01        | 0.05       | 0.05   | AdamW                      | 2.00E-04   | 1.00E-04 | 64         |  |  |
| Flower-102 | Swin-T | ResNet | 0.20            | 0.75       | 0.01        | 0.05       | 0.05   | 05 AdamW 1.00E-04 1.00E-04 |            |          |            |  |  |

Table 7: Detailed model configuration for MRA in the open-source case (ULM is optimized with  $LR_U$ )



Figure 8: Comparison of the Acc between ULM and RCM (closed-source case) w.r.t. each forgetting class on CIFAR-10 dataset.



Figure 9: Comparison of the Acc between ULM and RCM (closed-source case) w.r.t. each forgetting class on CIFAR-100 dataset.



Figure 10: Comparison of the Acc between ULM and RCM (closed-source case) w.r.t. each forgetting class on Pet-37 dataset.

| Compo                     | onent                 | FF                                       | RL                                   | GA                                   | IU                                      | BU                                   | L1-SP Sa                                                      | lUn UNSC                                                      |
|---------------------------|-----------------------|------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| DST   STU                 | J   TCH               | $   \mathcal{D}_{ts}    \mathcal{D}_{f}$ | $\mathcal{D}_{ts}$ $\mathcal{D}_{f}$ | $\mathcal{D}_{ts}$ $\mathcal{D}_{f}$ | $\mathcal{D}_{ts} \mid \mathcal{D}_{f}$ | $\mathcal{D}_{ts}$ $\mathcal{D}_{f}$ | $\mathcal{D}_{ts} \mid \mathcal{D}_{f} \mid \mathcal{D}_{ts}$ | $\mid \mathcal{D}_f \mid \mathcal{D}_{ts} \mid \mathcal{D}_f$ |
| $\checkmark$              |                       | 0.163 0.126                              | 6   0.393   0.144                    | 0.501 0.252                          | 0.114 0.101                             | 0.458 0.059                          | 0.448   0.131   0.451                                         | 0.027 0.199 0.030                                             |
| $\checkmark$ $\checkmark$ |                       | 0.252   0.195                            | 5   0.479   0.328                    | 0.528 0.358                          | 0.115 0.096                             | 0.651 0.507                          | 0.456   0.231   0.697                                         | 0.615 0.568 0.513                                             |
| $\checkmark$ $\checkmark$ | <ul> <li>✓</li> </ul> | 0.708   0.726                            | 6   0.471   0.351                    | 0.582 0.509                          | 0.689 0.759                             | 0.783   0.877                        | 0.479   0.338   0.829                                         | 0.997 0.774 0.921                                             |

Table 8: Ablation results (Acc) of MRA on CIFAR-10 dataset w.r.t. different MU methods



Figure 11: Comparison of the Acc between ULM and RCM (closed-source case) w.r.t. each forgetting class on Flower-102 dataset.



Figure 12: Comparison of the Acc between ULM and RCM (open-source case) w.r.t. each forgetting class on CIFAR-10 dataset.

| C            | Component |                                         | FF              | RL                                      | GA                                      | IU                                   | BU                                      | L1-SP                                | SalUn UNS                                                          | SC .            |
|--------------|-----------|-----------------------------------------|-----------------|-----------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------------------------------------|-----------------|
| DST          | STU   TCH | $\mathbf{I} \parallel \mathcal{D}_{ts}$ | $\mathcal{D}_f$ | $\mathcal{D}_{ts} \mid \mathcal{D}_{f}$ | $\mathcal{D}_{ts} \mid \mathcal{D}_{f}$ | $\mathcal{D}_{ts}$ $\mathcal{D}_{f}$ | $\mathcal{D}_{ts} \mid \mathcal{D}_{f}$ | $\mathcal{D}_{ts}$ $\mathcal{D}_{f}$ | $\mathcal{D}_{ts} \mid \mathcal{D}_{f} \mid \mathcal{D}_{ts} \mid$ | $\mathcal{D}_f$ |
| $\checkmark$ |           | 0.173                                   | 0.103           | 0.594 0.015                             | 0.528 0.180                             | 0.135 0.194                          | 0.532 0.210                             | 0.536 0.183                          | 0.440 0.142 0.244 0                                                | 0.131           |
| $\checkmark$ | √         | 0.295                                   | 0.214           | 0.607 0.537                             | 0.551 0.270                             | 0.297 0.256                          | 0.566 0.423                             | 0.550 0.258                          | 0.522   0.358   0.480   0                                          | 0.372           |
| $\checkmark$ | ✓   ✓     | 0.521                                   | 0.686           | 0.599   0.898                           | 0.589 0.682                             | 0.596 0.967                          | 0.587 0.970                             | 0.598 0.764                          | 0.564   0.945   0.598   0                                          | 0.985           |

Table 9: Ablation results (Acc) of MRA on CIFAR-100 dataset w.r.t. different MU methods



Figure 13: Comparison of the Acc between ULM and RCM (open-source case) w.r.t. each forgetting class on CIFAR-100 dataset.











1.0

0.9

0.8

0.7

0.6

 Ұ 0.5

0.4

0.3

0.2

ULM RCM IU

C29

Figure 14: Comparison of the Acc between ULM and RCM (open-source case) w.r.t. each forgetting class on Pet-37 dataset.

0.8

0.7

0.6

0.5 V

0.4

0.3

0.2

0.1

Ċ1

| С            | omponent                      | 1                     | FF              | R                  | L                 | G                  | A               | 1                  | U               | <b>F</b>           | BU                | L1                 | -SP             | Sa                 | lUn             | UN                 | SC                |
|--------------|-------------------------------|-----------------------|-----------------|--------------------|-------------------|--------------------|-----------------|--------------------|-----------------|--------------------|-------------------|--------------------|-----------------|--------------------|-----------------|--------------------|-------------------|
| DST          | STU   TCH                     | $\  \mathcal{D}_{ts}$ | $\mathcal{D}_f$ | $\mathcal{D}_{ts}$ | $\mathcal{D}_{f}$ | $\mathcal{D}_{ts}$ | $\mathcal{D}_f$ | $\mathcal{D}_{ts}$ | $\mathcal{D}_f$ | $\mathcal{D}_{ts}$ | $ \mathcal{D}_f $ | $\mathcal{D}_{ts}$ | $\mathcal{D}_f$ | $\mathcal{D}_{ts}$ | $\mathcal{D}_f$ | $\mathcal{D}_{ts}$ | $\mathcal{D}_{f}$ |
| $\checkmark$ |                               | 0.223                 | 0.168           | 0.766              | 0.364             | 0.739              | 0.176           | 0.576              | 0.144           | 0.659              | 0.128             | 0.732              | 0.208           | 0.698              | 0.108           | 0.767              | 0.320             |
| $\checkmark$ | ✓                             | 0.486                 | 0.388           | 0.816              | 0.884             | 0.757              | 0.520           | 0.682              | 0.448           | 0.785              | 0.856             | 0.758              | 0.440           | 0.778              | 0.712           | 0.799              | 0.660             |
| $\checkmark$ | <ul><li>✓</li><li>✓</li></ul> | 0.782                 | 0.904           | 0.850              | 0.960             | 0.843              | 0.952           | 0.838              | 0.936           | 0.846              | 0.960             | 0.841              | 0.920           | 0.849              | 0.948           | 0.856              | 0.976             |

Table 10: Ablation results (Acc) of MRA on Pet-37 dataset w.r.t. different MU methods







C72 C76 C88 Forgetting Classes



Figure 15: Comparison of the Acc between ULM and RCM (open-source case) w.r.t. each forgetting class on Flower-102 dataset.

C50

| FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RL                                                                                                                                                                                                                                                                                                                                                                | GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00.0 00.0 00.0 00.0 00.0 00.0 - GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                     | 0.00 0.00 0.00 0.00 0.00 0.00 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00.0 00.0 00.0 00.0 00.0 00.0 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <mark>당</mark> - 0.58 0.01 0.09 0.12 0.01 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>0.48</b> 0.27 0.00 0.03 0.00 0.22                                                                                                                                                                                                                                                                                                                              | <mark>5 - 0.65</mark> 0.29 0.00 0.00 0.01 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     0.55     0.00     0.39     0.00     0.00     0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| O         0.56         0.01         0.19         0.12         0.01         0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>က</sup> - 0.83 0.03 0.00 0.09 0.01 0.05                                                                                                                                                                                                                                                                                                                      | <sup>က</sup> - <mark>0.82</mark> 0.00 0.12 0.03 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ဗ္ဗ <mark>. 0.57</mark> 0.00 <mark>0.37</mark> 0.00 0.00 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ហ <mark>្<mark>ច - 0.51</mark> 0.00 0.21</mark> 0.13 0.02 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ප <mark>. 0.78</mark> 0.01 0.00 0.16 0.02 0.03                                                                                                                                                                                                                                                                                                                    | ဗ္ဗ- <mark>0.66</mark> 0.01 0.08 0.23 0.02 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ဗ္ <mark>. 0.55</mark> 0.00 <mark>0.38</mark> 0.00 0.00 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>b</b> - 0.75 0.01 0.00 0.06 0.14 0.04                                                                                                                                                                                                                                                                                                                          | <b>C</b> -0.83 0.00 0.01 0.01 0.14 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •         0.52         0.00         0.43         0.00         0.00         0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ဗ္ဗ - 0.48 0.01 0.09 0.07 0.03 <mark>0.32</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ဗ္ဗ. <mark>- 0.55</mark> 0.20 0.00 0.02 0.00 0.22                                                                                                                                                                                                                                                                                                                 | లి- <mark>0.80</mark> 0.01 0.00 0.00 0.01 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | లి-0.51 0.00 <mark>0.44</mark> 0.00 0.00 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Other C1 C3 C5 C7 C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other C1 C3 C5 C7 C9                                                                                                                                                                                                                                                                                                                                              | Other C1 C3 C5 C7 C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other C1 C3 C5 C7 C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L1-SP                                                                                                                                                                                                                                                                                                                                                             | SalUn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UNSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BU<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L1-SP                                                                                                                                                                                                                                                                                                                                                             | SalUn<br>- 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                 | a l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ۵.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                     | 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 불 0.00 0.00 0.00 0.00 0.00 0.00<br>더 0.97 0.00 0.00 0.00 0.00 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8         0.00         0.00         0.00         0.00         0.00         0.00           10         -         0.72         0.08         0.00         0.00         0.04         0.16                                                                                                                                                                              | ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · | - 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | begin         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.001         0.116           I - 0.72         0.08         0.00         0.000         0.004         0.16         0.00         0.02         0.02           I - 0.82         0.01         0.12         0.01         0.02         0.02         0.02 | B       0.00       0.00       0.00       0.00       0.00       0.00         C       0.89       0.10       0.00       0.00       0.00       0.01         C       0.92       0.00       0.07       0.01       0.00       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{1}{10} = 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.0$ |
| B         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0. | 용       0.00       0.00       0.00       0.00       0.00       0.00         당       0.72       0.08       0.00       0.00       0.04       0.16         ()       0.82       0.01       0.12       0.01       0.02       0.02         ()       0.666       0.01       0.10       0.14       0.04       0.06                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>セート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Figure 16: Confusion matrices of ULM w.r.t. different MU methods

| Component                                                                 | FF                                           | RL G                                 | A   I                                      | U BU                                       | J   L1-SP                                              | SalUn UNSC                                                                                        |
|---------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| $\mathbf{DST} \mid \mathbf{STU} \mid \mathbf{TCH} \mid\mid \mathcal{D}_t$ | $s \mid \mathcal{D}_f \mid \mathcal{D}_{ts}$ | $ \mathcal{D}_f   \mathcal{D}_{ts} $ | $\mid \mathcal{D}_f \mid \mathcal{D}_{ts}$ | $\mathcal{D}_f \mid \mathcal{D}_{ts} \mid$ | $\mathcal{D}_f \mid \mathcal{D}_{ts} \mid \mathcal{I}$ | $\mathcal{D}_f \mid \mathcal{D}_{ts} \mid \mathcal{D}_f \mid \mathcal{D}_{ts} \mid \mathcal{D}_f$ |
| ✓      0.27                                                               | 78 0.198 0.74                                | 1 0.170 0.319                        | 0.231 0.519                                | 0.320 0.714                                | 0.377 0.511 0.                                         | 308 0.505 0.247   NA   NA                                                                         |
| ✓ │ ✓ │ │ │ 0.37                                                          | 76   0.312   0.83                            | 1   0.567   0.510                    | 0.352   0.589                              | 0.364   0.758                              | 0.478   0.655   0.                                     | 538   0.599   0.429   NA   NA                                                                     |
| ✓   ✓   ✓    0.60                                                         | 07   0.482   0.91                            | 5   0.988   0.772                    | 0.709   0.829                              | 0.725   0.889                              | 0.972   0.856   0.                                     | 935   0.857   0.915   NA   NA                                                                     |

Table 11: Ablation results (Acc) of MRA on FLower-102 dataset w.r.t. different MU methods

|            |       |      | F    | F    |      |      |
|------------|-------|------|------|------|------|------|
| Other      | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Ω.         | 0.74  | 0.00 | 0.03 | 0.05 | 0.00 | 0.18 |
| ე.<br>ე    | 0.74  | 0.00 | 0.13 | 0.04 | 0.00 | 0.09 |
| ۰<br>ن     | 0.63  | 0.00 | 0.18 | 0.09 | 0.00 | 0.10 |
| 5.         | 0.81  | 0.00 | 0.07 | 0.01 | 0.00 | 0.11 |
| <u></u> წ. | 0.59  | 0.00 | 0.02 | 0.01 | 0.00 | 0.38 |
|            | Other | Ċ1   | Ċ3   | Ċ5   | Ċ7   | Ċ9   |
|            |       |      | В    | U    |      |      |
| Other      | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| ٦.<br>2    | 0.98  | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
| ۳.         | 0.81  | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 |

0.00 0.27 0.00 0.00 0.00

**5 0.91** 0.00 0.03 0.01 0.05 0.00

ဗ္ဗ - 0.93 0.00 0.02 0.00 0.00 0.05

Other C1 C3 C5 C7 C9

<sub>ິນ</sub>.



|            |       |            | G         | Α                         |            |            |
|------------|-------|------------|-----------|---------------------------|------------|------------|
| Other      | 0.00  | 0.00       | 0.00      | 0.00                      | 0.00       | 0.00       |
| <u>1</u> . | 0.66  | 0.30       | 0.00      | 0.00                      | 0.00       | 0.04       |
| ۳.<br>۱    | 0.84  | 0.00       | 0.11      | 0.03                      | 0.01       | 0.01       |
| ۍ<br>۲     | 0.68  | 0.01       | 0.07      | 0.22                      | 0.01       | 0.01       |
| 5.         | 0.84  | 0.00       | 0.01      | 0.01                      | 0.14       | 0.00       |
| ე.         | 0.81  | 0.01       | 0.00      | 0.00                      | 0.01       | 0.17       |
|            |       |            |           |                           |            |            |
|            | Other | Ċ1         | Ċ3        | C5                        | Ċ7         | Ċ9         |
|            | Other | Ċ1         |           |                           | Ċ7         |            |
| -          | Other | Ċ1         | ं<br>Sal  |                           | Ċ7         |            |
| Other      | Other | C1<br>0.00 |           |                           | Ċ7<br>0.00 |            |
|            |       |            | Sal       | Un                        |            | Ċ9         |
| ٦.         | 0.00  | 0.00       | <b>Sa</b> | <b>Un</b><br>0.00<br>0.00 | 0.00       | C9<br>0.00 |

**6 - 0.95** 0.00 0.00 0.00 0.04 0.00

ප<mark>ු - 0.97</mark> 0.01 0.00 0.00 0.00 0.02

Other C1 C3 C5 C7 C9

|          |       |      | I    | U    |      |      |
|----------|-------|------|------|------|------|------|
| Other    | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| ٦.<br>۲  | 0.58  | 0.00 |      | 0.00 | 0.00 | 0.00 |
| ۳.<br>ا  | 0.49  | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 |
| <u>ی</u> | 0.50  | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 |
| 5        | 0.45  | 0.00 | 0.55 | 0.00 | 0.00 | 0.00 |
| ე.<br>ე  | 0.46  |      |      |      |      |      |
|          | Other | Ċı   | Ċ3   | Ċ5   | Ċ7   | Ċ9   |

|            |       |      | UN   | SC   |      |      |
|------------|-------|------|------|------|------|------|
| Other      | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| <u>0</u> . | 0.98  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
| ۳.<br>ال   | 0.96  | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 |
| C5         | 0.96  | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 |
| C7         | 0.96  | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 |
| ე.         | 1.00  |      |      |      |      |      |
|            | Other | Ċ1   | с́з  | Ċ5   | Ċ7   | Ċ9   |

Figure 17: Confusion matrices of DST w.r.t. different MU methods

|          |                                             |                      | F                                    | F                                    |                      |                      |                                                                                 |                            |                              | R                                    | L                                    |                              |                              |                                                                                 |                                                |                              | G                                    | Α                                    |                              |                              |               |                            |                      | I                                    | U                                    |                              |                              |
|----------|---------------------------------------------|----------------------|--------------------------------------|--------------------------------------|----------------------|----------------------|---------------------------------------------------------------------------------|----------------------------|------------------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|------------------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------------|---------------|----------------------------|----------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------------|
| Other    | - 0.00                                      | 0.00                 | 0.00                                 | 0.00                                 | 0.00                 | 0.00                 | Other                                                                           | 0.00                       | 0.00                         | 0.00                                 | 0.00                                 | 0.00                         | 0.00                         | Other                                                                           | 0.00                                           | 0.00                         | 0.00                                 | 0.00                                 | 0.00                         | 0.00                         | Other         | 0.00                       | 0.00                 | 0.00                                 | 0.00                                 | 0.00                         | 0.00                         |
| IJ       | - 0.53                                      | 0.12                 | 0.03                                 | 0.15                                 | 0.07                 | 0.12                 | 5                                                                               | 0.19                       | 0.36                         | 0.16                                 | 0.00                                 | 0.01                         | 0.28                         | ü                                                                               | - 0.47                                         | 0.41                         | 0.01                                 | 0.00                                 | 0.02                         | 0.09                         | IJ            | - 0.47                     | 0.08                 | 0.14                                 | 0.12                                 | 0.10                         | 0.10                         |
| U        | - 0.50                                      | 0.06                 | 0.21                                 | 0.13                                 | 0.06                 | 0.04                 | U                                                                               | - 0.55                     | 0.01                         | 0.23                                 | 0.13                                 | 0.06                         | 0.01                         | U                                                                               | - 0.64                                         | 0.01                         | 0.25                                 | 0.03                                 | 0.06                         | 0.02                         | U             | - 0.50                     | 0.12                 | 0.11                                 | 0.08                                 | 0.11                         | 0.09                         |
| 5        | - 0.45                                      | 0.04                 | 0.27                                 | 0.15                                 | 0.06                 | 0.03                 | S                                                                               | 0.45                       | 0.00                         | 0.17                                 | 0.28                                 | 0.10                         | 0.01                         | 3                                                                               | 0.49                                           | 0.01                         | 0.16                                 | 0.27                                 | 0.07                         | 0.01                         | S             | 0.45                       | 0.11                 | 0.06                                 | 0.14                                 | 0.14                         | 0.09                         |
| C        | - 0.53                                      | 0.14                 | 0.07                                 | 0.06                                 | 0.16                 | 0.03                 | 5                                                                               | 0.37                       | 0.01                         | 0.04                                 | 0.06                                 | 0.51                         | 0.01                         | C                                                                               | - 0.69                                         | 0.00                         | 0.04                                 | 0.01                                 | 0.26                         | 0.01                         | C7            | 0.46                       | 0.09                 | 0.21                                 | 0.04                                 | 0.12                         | 0.08                         |
| ຍ        | 0.35                                        | 0.07                 | 0.01                                 | 0.06                                 | 0.16                 | 0.34                 | ව                                                                               | 0.23                       | 0.31                         | 0.14                                 | 0.01                                 | 0.03                         | 0.28                         | 60                                                                              | 0.63                                           | 0.01                         | 0.02                                 | 0.00                                 | 0.04                         | 0.31                         | ຍ             | 0.49                       | 0.14                 | 0.18                                 | 0.04                                 | 0.07                         | 0.07                         |
|          | Other                                       | Ċ1                   | C3                                   | Ċ5                                   | Ċ7                   | C9                   |                                                                                 | Other                      | Ċ1                           | ĊЗ                                   | Ċ5                                   | Ċ7                           | C9                           |                                                                                 | Other                                          | Ċ1                           | Ċ3                                   | C5                                   | Ċ7                           | Ċ9                           |               | Other                      | C1                   | Ċ3                                   | C5                                   | C7                           | Ċ9                           |
|          |                                             |                      |                                      |                                      |                      |                      |                                                                                 |                            |                              |                                      |                                      |                              |                              |                                                                                 |                                                |                              |                                      |                                      |                              |                              |               |                            |                      |                                      |                                      |                              |                              |
|          |                                             |                      | в                                    | U                                    |                      |                      |                                                                                 |                            |                              | L1·                                  | SP                                   |                              |                              |                                                                                 |                                                |                              | Sal                                  | Un                                   |                              |                              |               |                            |                      | UN                                   | sc                                   |                              |                              |
| Other    | 0.00                                        | 0.00                 | _                                    | -                                    | 0.00                 | 0.00                 | Other                                                                           | - 0.00                     | 0.00                         |                                      |                                      | 0.00                         | 0.00                         | Other                                                                           |                                                | 0.00                         |                                      |                                      | 0.00                         | 0.00                         | Other         | - 0.00                     | 0.00                 |                                      | <b>SC</b>                            | 0.00                         | 0.00                         |
| C1 Other |                                             |                      | 0.00                                 | 0.00                                 | 0.00                 |                      | C1 Other                                                                        |                            |                              | 0.00                                 | 0.00                                 | 0.00                         |                              | C1 Other                                                                        | - 0.00                                         |                              | 0.00                                 | 0.00                                 |                              |                              | C1 Other      |                            |                      | 0.00                                 |                                      |                              |                              |
| Ŭ        |                                             | 0.52                 | 0.00<br>0.00                         | 0.00<br>0.00                         | 0.01                 | 0.06                 | 0                                                                               |                            | 0.24                         | 0.00<br>0.01                         | 0.00<br>0.00                         | 0.09                         | 0.11                         | 0                                                                               | - 0.00<br>- 0.33                               | 0.00                         | 0.00<br>0.01                         | 0.00<br>0.00                         | 0.00                         | 0.06                         | C3 C1 Other   |                            | 0.61                 | 0.00<br>0.01                         | 0.00<br>0.00                         | 0.00                         | 0.07                         |
| 0        | - 0.40                                      | 0.52<br>0.01         | 0.00<br>0.00<br>0.40                 | 0.00<br>0.00<br>0.07                 | 0.01<br>0.02         | 0.06<br>0.01         | 0                                                                               | - 0.55<br>- 0.66           | 0.24<br>0.04                 | 0.00<br>0.01<br>0.20                 | 0.00<br>0.00<br>0.04                 | 0.09                         | 0.11<br>0.02                 | 0                                                                               | - 0.00<br>- 0.33<br>- 0.53                     | 0.00<br>0.59                 | 0.00<br>0.01<br>0.39                 | 0.00<br>0.00<br>0.06                 | 0.00<br>0.01                 | 0.06<br>0.01                 | Ũ             | - 0.31                     | 0.61<br>0.01         | 0.00<br>0.01<br>0.34                 | 0.00<br>0.00<br>0.07                 | 0.00<br>0.02                 | 0.07<br>0.03                 |
| ບ<br>ບ   | - 0.40<br>- 0.50<br>- 0.38                  | 0.52<br>0.01<br>0.00 | 0.00<br>0.00<br>0.40<br>0.21         | 0.00<br>0.00<br>0.07<br>0.38         | 0.01<br>0.02<br>0.02 | 0.06<br>0.01         | ບ<br>ບ                                                                          | - 0.55<br>- 0.66<br>- 0.50 | 0.24<br>0.04<br>0.04         | 0.00<br>0.01<br>0.20<br>0.17         | 0.00<br>0.00<br>0.04<br>0.20         | 0.09<br>0.04<br>0.07         | 0.11<br>0.02                 | 8<br>10<br>10                                                                   | - 0.00<br>- 0.33<br>- 0.53<br>- 0.35           | 0.00<br>0.59<br>0.00         | 0.00<br>0.01<br>0.39<br>0.15         | 0.00<br>0.00<br>0.06<br>0.48         | 0.00<br>0.01<br>0.02         | 0.06<br>0.01<br>0.00         | Ũ             | - 0.31<br>- 0.54<br>- 0.44 | 0.61<br>0.01<br>0.00 | 0.00<br>0.01<br>0.34<br>0.14         | 0.00<br>0.00<br>0.07                 | 0.00<br>0.02<br>0.04         | 0.07<br>0.03<br>0.01         |
| C7 C3 C3 | - 0.40<br>- <b>0.50</b><br>- 0.38<br>- 0.37 | 0.52<br>0.01<br>0.00 | 0.00<br>0.00<br>0.40<br>0.21<br>0.02 | 0.00<br>0.00<br>0.07<br>0.38<br>0.06 | 0.01<br>0.02<br>0.02 | 0.06<br>0.01<br>0.00 | 0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | - 0.55<br>- 0.66<br>- 0.50 | 0.24<br>0.04<br>0.04<br>0.00 | 0.00<br>0.01<br>0.20<br>0.17<br>0.04 | 0.00<br>0.00<br>0.04<br>0.20<br>0.02 | 0.09<br>0.04<br>0.07<br>0.18 | 0.11<br>0.02<br>0.02<br>0.00 | 5<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13 | - 0.00<br>- 0.33<br>- 0.53<br>- 0.35<br>- 0.37 | 0.00<br>0.59<br>0.00<br>0.00 | 0.00<br>0.01<br>0.39<br>0.15<br>0.02 | 0.00<br>0.00<br>0.06<br>0.48<br>0.04 | 0.00<br>0.01<br>0.02<br>0.56 | 0.06<br>0.01<br>0.00<br>0.02 | 5<br>13<br>13 | - 0.31<br>- 0.54<br>- 0.44 | 0.61<br>0.01<br>0.00 | 0.00<br>0.01<br>0.34<br>0.14<br>0.03 | 0.00<br>0.00<br>0.07<br>0.36<br>0.01 | 0.00<br>0.02<br>0.04<br>0.56 | 0.07<br>0.03<br>0.01<br>0.03 |

Figure 18: Confusion matrices of DST+STU w.r.t. different MU methods



Figure 19: Confusion matrices of the DST+STU+TCH w.r.t. different MU methods

| FF                                                                                                    | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IU                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00 0.00 0.00 0.00 0.00 0.00                                                                         | 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00.0 00.0 00.0 00.0 00.0 00.0 OCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.0 00.0 00.0 00.0 00.0 00.0 00.0                                                                                                                                                                                                                                                                                                  |
| 응 - 0.91 0.08 0.00 0.01 0.00 0.00                                                                     | 윤 <mark>- 0.99</mark> 0.01 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ප <mark>ි- 0.99</mark> 0.01 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 - 0.79 0.21 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                   |
| ළි <mark>- 0.97</mark> 0.00 0.03 0.00 0.00 0.00                                                       | ස <mark>ු - 0.97</mark> 0.00 0.03 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ළි <mark>- 0.98</mark> 0.00 0.02 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B         0.76         0.00         0.24         0.00         0.00         0.00                                                                                                                                                                                                                                                     |
| හ <mark>ි - 0.94</mark> 0.00 0.00 0.06 0.00 0.00                                                      | හ <mark>ි - 0.99</mark> 0.00 0.00 0.01 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | හ <mark>ි - 0.98</mark> 0.00 0.00 0.02 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | හ <mark>ි - 1.00</mark> 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                    |
| 8 <mark>- 0.96</mark> 0.01 0.00 0.01 0.02 0.00                                                        | 8 <mark>- 0.96</mark> 0.00 0.00 0.00 0.04 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 - <mark>0.95</mark> 0.00 0.00 0.00 0.05 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 - <mark>0.82</mark> 0.00 0.00 0.00 0.18 0.00                                                                                                                                                                                                                                                                                      |
| န္ <mark>တိ - 0.84</mark> 0.01 0.00 0.00 0.00 0.15                                                    | ළි <mark>- 0.98</mark> 0.00 0.00 0.00 0.00 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 중 <mark>- 0.96</mark> 0.00 0.00 0.00 0.00 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | န္ <mark>တ - 0.88</mark> 0.00 0.00 0.00 0.00 0.12                                                                                                                                                                                                                                                                                   |
| Other C10 C30 C50 C70 C90                                                                             | Other C10 C30 C50 C70 C90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Other C10 C30 C50 C70 C90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other C10 C30 C50 C70 C90                                                                                                                                                                                                                                                                                                           |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                     |
| BU                                                                                                    | L1-SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SalUn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNSC                                                                                                                                                                                                                                                                                                                                |
| BU<br>0.00 0.00 0.00 0.00 0.00 0.00                                                                   | L1-SP<br>0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SalUn<br><sup>bij</sup> . 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNSC                                                                                                                                                                                                                                                                                                                                |
| 2                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                   |
| 00.0 00.0 00.0 00.0 00.0 00.0                                                                         | 9.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00.0 00.0 00.0 00.0 00.0 00.0 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                       |
| g - 0.00 0.00 0.00 0.00 0.00 0.00<br>G - 1.00 0.00 0.00 0.00 0.00 0.00                                | 0.00 0.00 0.00 0.00 0.00 0.00<br><u>0.01</u> 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00     0.00     0.00     0.01     0.00     0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g - 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                              |
| 불 0.00 0.00 0.00 0.00 0.00 0.00<br>단 1.00 0.00 0.00 0.00 0.00 0.00<br>원 0.95 0.00 0.05 0.00 0.00 0.00 | 0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <th< th=""><th>-     0.00     0.00     0.00     0.00     0.00       -     0.98     0.00     0.00     0.01     0.00     0.01       -     0.95     0.00     0.05     0.00     0.00     0.00</th><th>a       0.00       0.00       0.00       0.00       0.00       0.00         C       1.00       0.00       0.00       0.00       0.00       0.00       0.00         C       0.83       0.00       0.17       0.00       0.00       0.00       0.00</th></th<> | -     0.00     0.00     0.00     0.00     0.00       -     0.98     0.00     0.00     0.01     0.00     0.01       -     0.95     0.00     0.05     0.00     0.00     0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a       0.00       0.00       0.00       0.00       0.00       0.00         C       1.00       0.00       0.00       0.00       0.00       0.00       0.00         C       0.83       0.00       0.17       0.00       0.00       0.00       0.00                                                                                   |
| ····································                                                                  | 0.00       0.00       0.00       0.00       0.00       0.00         0       - 0.99       0.01       0.00       0.00       0.00       0.00         0       - 0.98       0.00       0.02       0.00       0.00       0.00         0       - 0.97       0.00       0.00       0.03       0.00       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{2} = 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.00  0.01  0.00  0.01  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00$ | $\frac{1}{2}$ 0.00       0.00       0.00       0.00       0.00       0.00       0.00 $\frac{1}{2}$ - 1.00       0.00       0.00       0.00       0.00       0.00       0.00 $\frac{1}{2}$ - 0.83       0.00       0.17       0.00       0.00       0.00 $\frac{1}{2}$ - 1.00       0.00       0.00       0.00       0.00       0.00 |

Figure 20: Confusion matrices of the UML w.r.t. different MU methods

|           |       |                      | F                                | F                         |                      |                      |
|-----------|-------|----------------------|----------------------------------|---------------------------|----------------------|----------------------|
| Other     | 0.00  | 0.00                 | 0.00                             | 0.00                      | 0.00                 | 0.00                 |
| C10       | 0.84  | 0.16                 | 0.00                             | 0.00                      | 0.00                 | 0.00                 |
| C30       | 0.97  | 0.00                 | 0.03                             | 0.00                      | 0.00                 | 0.00                 |
| C50       | 0.96  | 0.00                 | 0.00                             | 0.04                      | 0.00                 | 0.00                 |
| C70       | 0.99  | 0.00                 | 0.00                             | 0.00                      | 0.01                 | 0.00                 |
| C90       | 0.77  | 0.00                 | 0.00                             | 0.00                      | 0.00                 | 0.23                 |
|           |       |                      |                                  |                           |                      |                      |
|           | Other | ci0                  | C30                              | C50                       | C70                  | C90                  |
|           | Other | ci0                  | с30<br>В                         |                           | C70                  | C90                  |
| Other     | Other |                      |                                  | U                         |                      |                      |
| 0         |       | 0.00                 | В                                | U<br>0.00                 | 0.00                 | 0.00                 |
| C10       | 0.00  | 0.00                 | <b>B</b><br>0.00<br>0.00         | U<br>0.00<br>0.00         | 0.00                 | 0.00                 |
| C30 C10 ( | 0.00  | 0.00<br>0.01<br>0.00 | <b>B</b><br>0.00<br>0.00<br>0.07 | U<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 |

တ္တ<mark>ိ - 0.86</mark> 0.00 0.00 0.00 0.00 0.14

Other C10 C30 C50 C70 C90

|                   |                                      |                                      | R                                   | L                                                   |                              |                              |
|-------------------|--------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------------------------|------------------------------|------------------------------|
| Other             | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                                | 0.00                         | 0.00                         |
| C10               | 1.00                                 | 0.00                                 | 0.00                                | 0.00                                                | 0.00                         | 0.00                         |
| - 30              | 0.98                                 | 0.00                                 | 0.02                                | 0.00                                                | 0.00                         | 0.00                         |
| C50               | 1.00                                 | 0.00                                 | 0.00                                | 0.00                                                | 0.00                         | 0.00                         |
| C70               | 0.96                                 | 0.00                                 | 0.00                                | 0.00                                                | 0.04                         | 0.00                         |
| C90               | 0.97                                 | 0.00                                 | 0.00                                | 0.00                                                | 0.00                         | 0.03                         |
|                   |                                      |                                      |                                     |                                                     |                              |                              |
|                   | Other                                | cio                                  | C30                                 | C50                                                 | cżo                          | C90                          |
|                   | Other                                | cio                                  |                                     |                                                     | C70                          | C90                          |
| Other             | Other                                |                                      |                                     | SP                                                  |                              |                              |
| 0                 |                                      |                                      | <b>L1</b> -<br>0.00                 | SP                                                  | 0.00                         | 0.00                         |
| C10               | 0.00                                 | 0.00                                 | <b>L1</b> -<br>0.00                 | • <b>SP</b><br>0.00<br>0.00                         | 0.00<br>0.00                 | 0.00                         |
| C30 C10 C         | 0.00                                 | 0.00                                 | L1-<br>0.00<br>0.00<br>0.02         | • <b>SP</b><br>0.00<br>0.00                         | 0.00<br>0.00                 | 0.00                         |
| C50 C30 C10 C     | 0.00<br>0.97<br>0.98<br>0.97         | 0.00<br>0.03<br>0.00<br>0.00         | L1-<br>0.00<br>0.00<br>0.02         | • <b>SP</b><br>0.00<br>0.00<br>0.00<br>0.03         | 0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00 |
| C70 C50 C30 C10 C | 0.00<br>0.97<br>0.98<br>0.97<br>0.94 | 0.00<br>0.03<br>0.00<br>0.00<br>0.00 | L1-<br>0.00<br>0.00<br>0.02<br>0.00 | • <b>SP</b><br>0.00<br>0.00<br>0.00<br>0.03<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00 |

|       |                     |             | G                          | Α                         |      |      |
|-------|---------------------|-------------|----------------------------|---------------------------|------|------|
| Other | 0.00                | 0.00        | 0.00                       | 0.00                      | 0.00 | 0.00 |
| C10   | 0.99                | 0.01        | 0.00                       | 0.00                      | 0.00 | 0.00 |
| G G   | 0.98                | 0.00        | 0.02                       | 0.00                      | 0.00 | 0.00 |
| C50   | 0.98                | 0.00        | 0.00                       | 0.02                      | 0.00 | 0.00 |
| C70   | 0.93                | 0.00        | 0.00                       | 0.00                      | 0.07 | 0.00 |
| C90   |                     | 0.00        |                            | 0.00                      | 0.00 |      |
|       |                     |             |                            |                           |      |      |
|       | Other               | cio         | C30                        | C50                       | C70  | C90  |
|       | Other               | cio         |                            |                           | C70  | C90  |
|       | Other               | cio         | сіо<br>Sal                 |                           | C70  | C90  |
| Other |                     | cio<br>0.00 | Sal                        | Un                        |      |      |
| 0     | 0.00                |             | <b>Sa</b> l                | <b>Un</b><br>0.00         | 0.00 | 0.00 |
| C10   | <b>0.00</b><br>0.98 | 0.00        | <b>Sal</b><br>0.00<br>0.00 | <b>Un</b><br>0.00<br>0.00 | 0.00 | 0.00 |

ප<mark>ි - 0.93</mark> 0.00 0.00 0.00 0.07 0.00

0.81 0.00 0.00 0.00 0.00 0.19

Other C10 C30 C50 C70 C90

|       |       |      | I    | U    |      |      |
|-------|-------|------|------|------|------|------|
| Other | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C10   | 0.81  | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 |
| C30   | 0.78  | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 |
| C50   | 1.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C70   | 0.82  | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 |
| C90   | 0.84  |      |      |      |      |      |
|       | Other | C10  | C30  | C50  | C70  | C90  |
|       |       |      |      |      |      |      |

|       |       |      | UN   | SC   |      |      |
|-------|-------|------|------|------|------|------|
| Other | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C10   | 1.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C30   | 0.85  | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 |
| C50   | 1.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C70   | 0.95  | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 |
| C90   | 0.76  |      |      |      |      |      |
|       | Other | C10  | C30  | C50  | C70  | C90  |

Figure 21: Confusion matrices of the DST w.r.t. different MU methods

C90

| FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RL                                                                                                                                                                                                                                        | GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00 00.0 00.0 00.0 00.0 00.0 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                             | 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 윤- <mark>0.77</mark> 0.21 0.00 0.00 0.02 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B - 0.65 0.35 0.00 0.00 0.00 0.00                                                                                                                                                                                                         | 8 - <mark>0.98</mark> 0.02 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 - 0.76 0.24 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| සි- <mark>0.84</mark> 0.00 0.15 0.01 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | සි <mark>- 0.79</mark> 0.00 0.21 0.00 0.00 0.00                                                                                                                                                                                           | ස <mark>ි - 0.95</mark> 0.00 0.05 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ස <mark>ි - 0.64</mark> 0.00 0.36 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| හ <mark>ි 0.83</mark> 0.00 0.01 0.16 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | හ <mark>ි-0.91</mark> 0.00 0.00 0.09 0.00 0.00                                                                                                                                                                                            | හ <mark>ි - 0.93</mark> 0.00 0.00 0.07 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | හ <mark>ි - 0.94</mark> 0.00 0.00 0.06 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| B-0.85 0.00 0.00 0.00 0.15 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 - 0.73 0.00 0.00 0.00 0.27 0.00                                                                                                                                                                                                         | B - <mark>0.92</mark> 0.00 0.00 0.00 0.08 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 · 0.71 0.00 0.00 0.01 0.28 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ္မ်ိဳ- 0.71 0.00 0.00 0.00 0.00 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g - 0.60 0.00 0.00 0.00 0.00 0.40                                                                                                                                                                                                         | ළි <mark>- 0.87</mark> 0.00 0.00 0.00 0.00 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 중 <mark>- 0.76</mark> 0.00 0.00 0.02 0.00 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Other C10 C30 C50 C70 C90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Other C10 C30 C50 C70 C90                                                                                                                                                                                                                 | Other C10 C30 C50 C70 C90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other C10 C30 C50 C70 C90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L1-SP                                                                                                                                                                                                                                     | SalUn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>BU</b><br>- 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>L1-SP</b>                                                                                                                                                                                                                              | SalUn<br>- 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UNSC<br>- 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0 00.0 00.0 00.0 00.0 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00.0 00.0 00.0 00.0 00.0 00.0                                                                                                                                                                                                             | e.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00.0 00.0 00.0 00.0 00.0 00.0 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.0 00.0 00.0 00.0 00.0 00.0 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00       0.00       0.00       0.00       0.00       0.00       0.00         0       0.98       0.02       0.00       0.00       0.00       0.00       0.00         0       0.93       0.00       0.07       0.00       0.00       0.00 | 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ego - 0.00 0.00 0.00 0.00 0.00 0.00<br>G - 0.75 0.25 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B         0.00         0.00         0.00         0.00         0.00         0.00           C         0.89         0.11         0.00         0.00         0.00         0.00           C         0.87         0.00         0.13         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00       0.00       0.00       0.00       0.00       0.00       0.00         0       0.98       0.02       0.00       0.00       0.00       0.00       0.00         0       0.93       0.00       0.07       0.00       0.00       0.00 | 용         0.00         0.00         0.00         0.00         0.00         0.00           응         - 0.94         0.06         0.00         0.00         0.00         0.00         0.00           응         - 0.82         0.00         0.18         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 용         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0  |
| Here         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <th< td=""><td></td><td><ul> <li>B</li> <li>0.00</li> <li< td=""><td>B         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.</td></li<></ul></td></th<> |                                                                                                                                                                                                                                           | <ul> <li>B</li> <li>0.00</li> <li< td=""><td>B         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.</td></li<></ul> | B         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0. |

Figure 22: Confusion matrices of the DST+STU w.r.t. different MU methods



Figure 23: Confusion matrices of the DST+STU+TCH w.r.t. different MU methods



Figure 24: Confusion matrices of the UML w.r.t. different MU methods











C8 C15 C21 C29

GA



Figure 25: Confusion matrices of the DST w.r.t. different MU methods

C29

Other C1

Other

5



Figure 26: Confusion matrices of the DST+STU w.r.t. different MU methods



Figure 27: Confusion matrices of the DST+STU+TCH w.r.t. different MU methods

| FF                                               | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GA                                               | IU                                               |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| 00.0 00.0 00.0 00.0 00.0 00.0 O                  | 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00.0 00.0 00.0 00.0 00.0 GH                      | 0.00 00.0 00.0 00.0 00.0 00.0 00.0               |
| හ <mark>ි - 0.90</mark> 0.10 0.00 0.00 0.00 0.00 | හ <mark>ි 0.60</mark> 0.40 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | អ្ <mark>ជ- 1.00</mark> 0.00 0.00 0.00 0.00 0.00 | හ <mark>ි - 0.70</mark> 0.20 0.00 0.00 0.00 0.10 |
| 8 <mark>- 0.90</mark> 0.00 0.10 0.00 0.00 0.00   | B - 0.80 0.00 0.20 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B-1.00 0.00 0.00 0.00 0.00 0.00                  | 8 - <mark>1.00</mark> 0.00 0.00 0.00 0.00 0.00   |
| <mark>ဗိ - 0.40</mark> 0.00 0.00 0.60 0.00 0.00  | 8 - <mark>1.00</mark> 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80 - 0.20 0.00 0.00 0.80 0.00 0.00               | 8 - 0.60 0.00 0.00 0.40 0.00 0.00                |
| 8 <mark>- 1.00</mark> 0.00 0.00 0.00 0.00 0.00   | 8 0.70 0.00 0.00 0.00 0.30 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88 <mark>- 1.00</mark> 0.00 0.00 0.00 0.00 0.00  | 8 <mark>- 1.00</mark> 0.00 0.00 0.00 0.00 0.00   |
| ප <mark>ු - 0.90</mark> 0.00 0.00 0.00 0.00 0.10 | ဗ္ဗ <mark>- 0.80</mark> 0.00 0.00 0.00 0.00 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ਲ <mark>- 0.90</mark> 0.00 0.00 0.00 0.00 0.10   | ဗ္ဗ - 0.20 0.00 0.00 0.00 0.00 0.80              |
| Other C50 C72 C76 C88 C93                        | Other C50 C72 C76 C88 C93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other C50 C72 C76 C88 C93                        | Other C50 C72 C76 C88 C93                        |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| BU                                               | L1-SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SalUn                                            |                                                  |
| O 0.00 0.00 0.00 0.00 0.00 0.00                  | Ofference 00.0 00.0 00.0 00.0 Ofference 00.0 00.0 Ofference 00.0 00.0 Ofference 0 | 00.0 00.0 00.0 00.0 00.0 00.0 of the             |                                                  |
| හ <mark>ි 0.60 0.40</mark> 0.00 0.00 0.00 0.00   | හ <mark>ු 0.90</mark> 0.10 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | හ <mark>ි - 1.00</mark> 0.00 0.00 0.00 0.00 0.00 |                                                  |
| 8 <mark>- 0.80</mark> 0.00 0.20 0.00 0.00 0.00   | B-1.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B - 0.70 0.00 0.30 0.00 0.00 0.00                |                                                  |
| 8-0.70 0.00 0.00 0.30 0.00 0.00                  | 8 <mark>- 0.80</mark> 0.00 0.00 0.20 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B - 0.40 0.00 0.00 0.60 0.00 0.00                |                                                  |
| 8 - <mark>0.80</mark> 0.00 0.00 0.00 0.20 0.00   | 8 · 0.40 0.00 0.00 0.00 0.60 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 - 0.70 0.00 0.00 0.00 0.30 0.00                |                                                  |
| ප <mark>ි - 0.30</mark> 0.00 0.00 0.00 0.00 0.70 | ဗ္ဗ · 0.20 0.00 0.00 0.00 0.00 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 쯍 <mark>- 0.60</mark> 0.00 0.00 0.00 0.00 0.40   |                                                  |
| Other C50 C72 C76 C88 C93                        | Other C50 C72 C76 C88 C93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other C50 C72 C76 C88 C93                        |                                                  |

Figure 28: Confusion matrices of the ULM w.r.t. different MU methods





| GA    |       |      |      |      |      |      |  |  |
|-------|-------|------|------|------|------|------|--|--|
| Other | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |  |
| C50   | 1.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |  |
| C72   | 1.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |  |
| C76   | 0.10  | 0.00 | 0.00 | 0.90 | 0.00 | 0.00 |  |  |
| C88   | 1.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |  |
| C93   |       |      |      | 0.00 |      |      |  |  |
|       | Other | C50  | C72  | C76  | C88  | C93  |  |  |
| SalUn |       |      |      |      |      |      |  |  |
| Other | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |  |
| C50   | 1.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |  |

0.00 0.30 0.00 0.00 0.00

0.50 0.00 0.00 0.50 0.00 0.00

0.60 0.00 0.00 0.00 0.40 0.00

0.00 0.00 0.00 0.00

Other C50 C72 C76 C88 C93



Figure 29: Confusion matrices of the DST w.r.t. different MU methods

C72

C76

C88

C93

| FF                                               | RL                                                | GA                                                      | IU                                               |
|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|
| 00.0 00.0 00.0 00.0 00.0 00.0 00.0 OC            | 00.0 00.0 00.0 00.0 00.0 00.0 00.0                | 00.0 00.0 00.0 00.0 00.0 00.0 00.0                      | 0.00 00.0 00.0 00.0 00.0 00.0 O                  |
| හ <mark>ු 0.80</mark> 0.20 0.00 0.00 0.00 0.00   | မ္မာ - 0.40 0.60 0.00 0.00 0.00 0.00              | හ <mark>ි - 1.00</mark> 0.00 0.00 0.00 0.00 0.00        | හ <mark>ු - 0.70</mark> 0.30 0.00 0.00 0.00 0.00 |
| E - 0.80 0.00 0.20 0.00 0.00 0.00                | B - 0.50 0.00 0.50 0.00 0.00 0.00                 | 8 <mark>- 1.00</mark> 0.00 0.00 <u>0.00</u> 0.00 0.00   | 8 <mark>- 1.00</mark> 0.00 0.00 0.00 0.00 0.00   |
| 8 0.20 0.00 0.00 0.80 0.00 0.00                  | 8 <sup>-</sup> 0.10 0.00 0.00 0.90 0.00 0.00      | 8 - 0.00 0.00 0.00 1.00 0.00 0.00                       | 8 <b>0.50</b> 0.00 0.00 <b>0.50</b> 0.00 0.00    |
| 쁊- <mark>1.00</mark> 0.00 0.00 0.00 0.00 0.00    | 8 - <b>0.50</b> 0.00 0.00 0.00 <b>0.50</b> 0.00   | 8 - <mark>0.90</mark> 0.00 0.00 0.00 0.10 0.00          | 88 <mark>- 1.00</mark> 0.00 0.00 0.00 0.00 0.00  |
| ဦ <mark>- 1.00</mark> 0.00 0.00 0.00 0.00 0.00   | B - 0.30 0.00 0.00 0.00 0.00 0.70                 | ္မ - 0.40 0.00 0.00 0.00 0.00 0.60                      | ဗ္ဗ - 0.20 0.00 0.00 0.00 0.00 0.80              |
| Other C50 C72 C76 C88 C93                        | Other C50 C72 C76 C88 C93                         | Other C50 C72 C76 C88 C93                               | Other C50 C72 C76 C88 C93                        |
|                                                  |                                                   |                                                         |                                                  |
| BU                                               | L1-SP                                             | SalUn                                                   |                                                  |
| 00.0 00.0 00.0 00.0 00.0 00.0 00.0               | 00.0 00.0 00.0 00.0 00.0 00.0 00.0                | 00.0 00.0 00.0 00.0 00.0 00.0 O                         |                                                  |
| හ <mark>ි - 0.40 0.60 0.00</mark> 0.00 0.00 0.00 | မ္မာ <mark>- 0.80</mark> 0.20 0.00 0.00 0.00 0.00 | හ <mark>ි - 1.00</mark> 0.00 <u>0.00</u> 0.00 0.00 0.00 |                                                  |
| <b>E</b> 0.40 0.00 0.60 0.00 0.00 0.00           | <u>6 - 0.70</u> 0.00 0.30 0.00 0.00 0.00          | <u>6</u> - 0.60 0.00 0.40 0.00 0.00 0.00                |                                                  |
| 8 0.40 0.00 0.00 0.60 0.00 0.00                  | 8 - 0.70 0.00 0.00 0.30 0.00 0.00                 | 8 - 0.20 0.00 0.00 <mark>0.80</mark> 0.00 0.00          |                                                  |
| 쁊 - <mark>0.90</mark> 0.00 0.00 0.00 0.10 0.00   | 88 - 0.10 0.00 0.00 0.00 0.90 0.00                | 8 - 0.40 0.00 0.00 0.00 0.60 0.00                       |                                                  |
| ဗ္ဗ 0.20 0.00 0.00 0.00 0.00 0.80                | g - 0.00 0.00 0.00 0.00 0.00 1.00                 | ဗ္ဗိ - 0.30 0.00 0.00 0.00 0.00 0.70                    |                                                  |
| Other C50 C72 C76 C88 C93                        | Other C50 C72 C76 C88 C93                         | Other C50 C72 C76 C88 C93                               |                                                  |

Figure 30: Confusion matrices of the DST+STU w.r.t. different MU methods



Figure 31: Confusion matrices of the DST+STU+TCH w.r.t. different MU methods