
ar
X

iv
:2

50
6.

19
48

0v
1 

 [
cs

.C
R

] 
 2

4 
Ju

n 
20

25

PhishingHook: Catching Phishing Ethereum Smart
Contracts leveraging EVM Opcodes

Pasquale De Rosa †, Simon Queyrut †, Yérom-David Bromberg ∗, Pascal Felber †, and Valerio Schiavoni †
∗University of Rennes, CNRS, INRIA, IRISA, Rennes, France, david.bromberg@irisa.fr

†University of Neuchâtel, Neuchâtel, Switzerland, first.last@unine.ch

Abstract—The Ethereum Virtual Machine (EVM) is a decen-
tralized computing engine. It enables the Ethereum blockchain to
execute smart contracts and decentralized applications (dApps).
The increasing adoption of Ethereum sparked the rise of phishing
activities. Phishing attacks often target users through deceptive
means, e.g., fake websites, wallet scams, or malicious smart
contracts, aiming to steal sensitive information or funds. A timely
detection of phishing activities in the EVM is therefore crucial
to preserve the user trust and network integrity. Some state-
of-the art approaches to phishing detection in smart contracts
rely on the online analysis of transactions and their traces.
However, replaying transactions often exposes sensitive user
data and interactions, with several security concerns. In this
work, we present PHISHINGHOOK, a framework that applies
machine learning techniques to detect phishing activities in smart
contracts by directly analyzing the contract’s bytecode and its
constituent opcodes. We evaluate the efficacy of such techniques
in identifying malicious patterns, suspicious function calls, or
anomalous behaviors within the contract’s code itself before
it is deployed or interacted with. We experimentally compare
16 techniques, belonging to four main categories (Histogram
Similarity Classifiers, Vision Models, Language Models and
Vulnerability Detection Models), using 7,000 real-world mal-
ware smart contracts. Our results demonstrate the efficiency of
PHISHINGHOOK in performing phishing classification systems,
with about 90% average accuracy among all the models. We
support experimental reproducibility, and we release our code
and datasets to the research community.

Index Terms—EVM, opcodes, smart contracts, phishing, de-
tection

I. INTRODUCTION

Blockchains are distributed ledgers used across several ap-
plication domains [7], [12], [18]. They offer well-desired prop-
erties, such as anti-tampering, scalability, etc. The Ethereum
blockchain [84] moves nowadays large financial assets and
supports an increasing number of financial transactions. With
a market cap of several billion USD [28], Ethereum is the 2nd

most used blockchain. Ethereum natively supports sophisti-
cated decentralized applications (i.e., dApps) implemented by
means of special blockchain programs, i.e., smart contracts.
The execution of smart contracts operates via the Ethereum
Virtual Machine (EVM), a formally-verifiable [61] decentral-
ized computing engine. In a nutshell, the EVM is a stack-
based machine that executes opcodes, translated to primitive
low-level operations such as arithmetic, memory, or stack
manipulations (see §II).

The Ethereum blockchain is a frequent target of cyber-
criminal attacks, extensively studied in the literature [6], [10],

[49], [63]. Several categories of attack exist: reentrancy attacks
(e.g., the famous DAO attack [74] or [47], leading to dozens
of lost millions), critical reentrancy attacks, default visibility
weaknesses, arithmetic under/over flows due to the internal
representation of integer values in the EVM, use of custom and
malformed random functions [65], front running attacks [80],
recent typosquatting attacks [69], and more. Among these,
phishing attacks stand out as one of the most prevalent threats
in malicious smart contracts and the main concern for the
Ethereum community, as reported by ChainAbuse [9]. While
website phishing attacks have long been a concern [42], [55],
their rapid growth on popular blockchains has recently at-
tracted significant attention from researchers and practitioners.

We focus on a specific class of phishing attacks, where
early detection is crucial to mitigate (or ideally prevent)
damage. While commercial services for detecting malicious
smart contracts are readily accessible to users [17], they are
often costly. Although various detection techniques exist (see
later in §VI), there is a lack of open-source and reproducible
experimental comparisons of their accuracy.

To address this gap, we present PHISHINGHOOK, the first
framework designed to easily evaluate and compare various
techniques for detecting phishing smart contracts, the most
predominant type of malicious smart contracts. Specifically,
we evaluate 16 machine learning (ML) models, including
seven – ViT+R2D2, ViT+Freq, ESCORT, GPT-2 and T5 (in
two variants each) – that have not been previously tested
in the context of opcode-based phishing detection for smart
contracts. The remaining nine models, while having been
assessed on related datasets (such as fraud detection contain-
ing phishing samples), are evaluated for the first time on a
dedicated phishing dataset.

To the best of our knowledge, PHISHINGHOOK is the only
framework focused exclusively on phishing detection on smart
contracts using opcode analysis. Its architecture, detailed in
§III includes components to extract the bytecode of a smart
contract, a bytecode disassembler, a model evaluation module,
and finally a post hoc analysis. Additionally, PHISHINGHOOK
provides tools to build or extend existing datasets by crawl-
ing public Ethereum explorers or using query services. The
contributions of this paper are:
• The construction and public release of the largest dataset of

phishing smart contracts targetting the Ethereum blockchain,
available at [70];

© 2025 by the Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works. This is the author’s version of the work. The final authenticated version is available online at
https://doi.org/10.1109/DSN64029.2025.00033 and has been published in the proceedings of the 55th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN ’25).

https://orcid.org/0000-0001-9726-7075
https://orcid.org/0000-0002-1354-9604
https://orcid.org/0000-0002-3812-3546
https://orcid.org/0000-0003-1574-6721
https://orcid.org/0000-0003-1493-6603
david.bromberg@irisa.fr
first.last@unine.ch
https://doi.org/10.1109/DSN64029.2025.00033
https://arxiv.org/abs/2506.19480v1


TABLE I: EVM opcodes for the Shanghai fork (from [30]).

Opcode Name Gas Description
0x00 STOP 0 Halts execution
0x01 ADD 3 Addition operation
0x02 MUL 5 Multiplication operation
... ... ... ...
0xFD REVERT 0 Halt execution reverting state changes
0xFE INVALID NaN Designated invalid instruction

0xFF SELFDESTRUCT 5000 Halt execution and register
account for later deletion

• An architecture, prototype implementation and experimental
evaluation of PHISHINGHOOK;

• The analysis of the accuracy of 16 different detection tech-
niques, including statistical approaches, machine-learning
methods, computer vision approaches, LLM and vulnera-
bility detectors.

• The full set of instructions to reproduce our experiments.
Roadmap. We overview Ethereum and the required EVM

internals in §II. The architecture of PHISHINGHOOK is de-
scribed in §III. We report on our experimental evaluation in
§IV. We detail the lessons learned in §V. We survey related
work in §VI, before concluding in §VII.

II. BACKGROUND

Ethereum and smart contracts. Ethereum [84] is a state
machine where transactions trigger valid state transitions.
These transactions are bundled into blocks, cryptographically
linked to form a chain. Each block acts as a journal, recording
its transactions, the hash of the previous block, and the
resulting state. State changes are executed by the Ethereum
Virtual Machine (EVM), governed by a gas parameter that
bounds computation. Transactions come in two forms: (i) mes-
sage calls and (ii) contract creation, which deploys accounts
with code (i.e., smart contracts). Smart contracts are on-chain
programs that algorithmically enforce agreements, combining
persistent storage with executable functions, typically written
in Solidity [75] or Viper [81]. Ether (ETH) is Ethereum’s
native currency. Consensus on new blocks is achieved through
the Beacon Chain using proof-of-stake (PoS). This work
focuses on Ethereum starting from the Shanghai update at
block 17034870.

Ethereum Virtual Machine (EVM). The EVM [84] is
a 256-bit stack machine with a maximum of 1024 stack
items. Both memory and storage are word-addressed byte
arrays, initialized to zero; storage is non-volatile and part
of the global state. Execution halts on stack underflows,
invalid instructions, or gas exhaustion. Execution is opcode-
driven: each opcode represents a specific operation such as
arithmetic (ADD, SUB), signed math (SDIV, SMOD), hashing
(SHA3), memory/stack manipulation, or contract execution
(CALL, DELEGATECALL, etc.). Contracts can be created
(CREATE, CREATE2) or removed (SELFDESTRUCT) via
dedicated opcodes. As of the Shanghai update, 144 opcodes
exist. Table I lists several, with a complete reference in [30].

Phishing attacks in the Ethereum blockchain. Phishing
attacks in Ethereum involve tricking users into approving
harmful transactions or exposing private keys through im-

BigQuery

Etherscan Bytecode Extraction

➋

➌
➍

[0x60806040,…]

dataset

Model Evaluation 

PhishingHook

PhishingHook
Bytecode 

Disassembler BDM

PhishingHook

➊

➎
➏

Post-Hoc Analysis

PhishingHook
➐

➑

PhishingHook

[preprocessing]

Fig. 1: The PHISHINGHOOK framework.

personation of trusted platforms (e.g., dApps [78]). Attack-
ers bait victims with fake incentives (airdrops, staking) via
social media or emails, directing them to fraudulent sites
mimicking legitimate dApps. After wallet connection, victims
are prompted to approve a transaction (e.g., "claim reward"),
which secretly authorizes attackers to drain their funds.

III. THE PHISHINGHOOK FRAMEWORK

The architecture of PHISHINGHOOK consists of four core
modules: (i) bytecode extraction module (BEM), (ii) bytecode
disassembler module (BDM), (iii) model evaluation module
(MEM), and (iv) a post hoc analysis module (PAM). An initial
data gathering phase leverages etherscan.io [29] and Google
BigQuery [38]. We describe the details below.

Data gathering. We first gather a raw list of unlabeled
contract hashes from the Ethereum public dataset available on
Google BigQuery (Fig. 1-➊). For this study, we limited our
search to the contracts deployed between October 2023 and
October 2024 (≈ 4, 000, 000). As of October 22, 2024, the to-
tal number of contracts deployed on the Ethereum blockchain
and available on the BigQuery dataset was 68,681,183. The
public service etherscan.io flags phishing smart contracts with
the label “Phish/Hack” (Fig. 1-➋). We leverage this service
to scrape data for each of the 4 million hashes. Etherscan
acts as an independent source of smart contract validation and
security analysis. Other sources based on community reports
(ChainAbuse) are currently proven to be biased [37].

Bytecode extraction module (BEM). The first step of
PHISHINGHOOK consists in the extraction of the bytecode
from the retrieved and labeled contracts. To do so, we rely on a
public etherscan endpoint (eth_getCode) via an JSON-RPC
API (Fig. 1-➌). The resulting extracted bytecode constitutes
the core dataset adopted in the model training and evaluation
phase (Fig. 1-➍).

Dataset construction. From the approximately 4 million
contracts collected in the data gathering phase, we sam-
ple 17,455 phishing bytecodes, with 3,458 unique bytecodes
(Fig. 2). We notice indeed a large majority of duplicate (bit-by-
bit) bytecodes. The reason for such duplicates is the presence
of a significant amount of minimal proxy contracts [64], i.e.,
lightweight and cost-efficient “clones” of a main contract,
with which they share the same bytecode. In addition to the
malicious smart contracts, we enrich the dataset by a similar
number of benign samples (i.e., in our context, not “flagged”
as malicious on etherscan.io), constituting a final dataset of



Oct
2023

Nov Dec Jan
2024

Feb Mar Apr May Jun Jul Aug Sep Oct
0

500

1000

1500

2000

2500
#c

on
tra

ct
s

15

Unique phishing contracts
Obtained phishing contracts

Fig. 2: Number of phishing contracts per month over the 2023-
10 to 2024-10 period.

7,000 bytecodes. We release this novel dataset via our public
repository: [70]. To our knowledge, this is the largest dataset of
phishing smart contracts available to the research community.

Bytecode disassembler module (BDM). The deployed
bytecode of a smart contract is always publicly accessible
on the blockchain, whereas the source code and its AST
must be explicitly disclosed by the contract creators. Since
malicious actors may choose to withhold or obfuscate source
code containing harmful functions, we focus on analyzing
the deployed bytecode. The BDM module is in charge of
disassembling the bytecode into its corresponding series of op-
code instructions (Fig. 1-➎), i.e., mnemonic (human-readable
alias), operand (argument) and gas (execution cost). BDM
is a required step only for some of the evaluated detection
models (i.e., Histogram Similarity Classifiers and ViT +
Frequency), that rely on disassembled bytecode features and
cannot be trained directly on the original binary. For example,
a simple bytecode 0x6080604052 gets disassembled to:
(PUSH1, 0x80, 3), (PUSH1, 0x40, 3), (MSTORE,
NaN, 3). In PHISHINGHOOK, the resulting disassembled op-
codes are stored in a .csv file for further processing (Fig. 1-
➏). To perform the disassembling, we leverage a modified
version of the Python library evmdasm [27], that we enhanced
in order to handle the EVM opcode instructions as of the
Shanghai fork. The last version of evmdasm registry has been
released in March 2022, during the Arrow Glacier update. We
added support for two new opcodes: INVALID (that designates
an invalid instruction) and PUSH0 (to push 0 bytes in stack).
We release this enhanced version of evmdasm via our public
repository: [70]. One might question whether a discernible
pattern exists that could help differentiate phishing contracts
from non-phishing ones, based on the relative prevalence of
certain opcodes. We show the distribution of contracts based
on how frequently they use each of 20 influential (see §IV-H)
opcodes (Fig. 3). Phishing contracts utilize opcodes at a similar
rate as their benign counterparts, making it unreliable to filter
samples solely based on the frequency of a single opcode.

Model evaluation module (MEM). This module comprises
the systematic training and evaluation of ML models to
classify phishing smart contracts from their bytecode repre-
sentation (Fig. 1-➐). We consider 16 different models from 4
different categories: (i) histogram similarity classifiers (HSCs),
(ii) vision models (VMs), (iii) language models (LMs) and (iv)
vulnerability detection models (VDMs). We compare state-
of-the-art, industry-proven models also explored in similar
domains, e.g., malware detection in smart contracts. These

RE
TU

RN
DA

TA
SIZ

E
RE

TU
RN

DA
TA

CO
PY GA
S OR

AD
DR

ES
S

ST
AT

IC
CA

LL LT SH
L

LO
G3

RE
TU

RN
PU

SH
1

SW
AP

3
RE

VE
RT

ML
OA

D
CA

LL
DA

TA
LO

AD PO
P

ISZ
ER

O
SE

LF
BA

LA
NC

E
MS

TO
RE AN
D

100

101

102

103

Ti
m

es
 u

se
d

BENIGN PHISHING

Fig. 3: Distribution, by opcode usage, of contracts for 20
opcodes.

include HSCs, ECA+EfficientNet, and SCSGuard, as well as
other recent models from different domains, such as ViT, GPT-
2, and T5. We provide more details on the models and our
implementation in §IV-A and §IV-B, respectively. We opted
for transformers over traditional sequence models (RNNs) for
their superior performance in representation learning for code
sequences and detection [34], [56].

Post hoc analysis module (PAM). Finally, we conduct
a post hoc analysis on the performances of the ML models
(Fig. 1-➑). The scope of this analysis is to determine that
significant differences exist among the performance metrics
of the evaluated models. The adoption of the PAM in PHISH-
INGHOOK ensures the statistical validity and significance of
the observed results in the evaluation phase. Our scripts for
the post hoc analysis are written in R. We provide additional
details on PAM in §IV-E.

IV. EVALUATION

A. Experimental setting
We use two different GPU-enabled nodes. The first features

an Intel Core i7-14700KF (28 cores, 5.5 GHz), 64 GiB of
RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GiB
of VRAM, utilizing CUDA 12.2. The second is powered by
an Intel Xeon Platinum 8562Y+ (32 cores, 2.8 GHz), 126 GiB
of RAM, and an NVIDIA H100 NVL GPU with 94 GiB of
VRAM, running CUDA 12.4. For deep-learning based models,
the design of the train-test pipeline leverages Pytorch v2.5. For
classical ML models, we use SciKit-learn v1.5. The post hoc
analysis module uses R v4.4.

B. Compared models
PHISHINGHOOK solves a binary classification task, i.e.,

determining whether the sample is a phishing contract or not.
We next describe the feature extraction methods and models
incorporated in PHISHINGHOOK. As the original authors did
not release their implementations as open source, we reimple-
mented all of them from scratch within the PHISHINGHOOK
framework. We include in our experimental study several static
code analysis protocols. We consider 16 methods, detailed
next.

HSC (Histogram Similarity Classifiers) [54]: For each
contract bytecode, a histogram of the occurrences of opcodes
is created. It builds a vector of length equal to the number of
unique opcodes inside the training set. The vector is directly



served as input (i.e., without normalized nor standardized
steps) to several classical ML classifiers proposed by scikit-
learn: Random Forest, LightGBM, kNN, XGBoost, CatBoost,
Logistic Regression, SVM [71].

ViT+R2D2 (Vision Model): Building on methods from
Android malware detection research (R2D2 [44]), we interpret
the bytecode as a sequence of hexadecimal color codes. Each
hexadecimal value in the bytecode is mapped to a color in
the RGB space. All pixels (i.e., three channels of integers) are
arranged into a 224×224×3 tensor, with zero-padding applied
as needed. The resulting tensor will serve as input to a clas-
sifier. Due to their widely recognized performance in image
classification tasks, we selected the Vision Transformer [23]
to predict the class of the associated contract. In this study,
we utilize a ViT-B/16 model pretrained on ImageNet-1k, with
weights obtained from Hugging Face [31] and fine-tuned on
our binary classification task.

ECA+EfficientNet [85] (Vision Model): The bytecodes of
Ethereum smart contracts are transformed into RGB image
representations, following a process analogous to ViT+R2D2.
The feature extractor incorporates a modified ECA mod-
ule [82], which enhances the model’s ability to focus on essen-
tial channels. The ECA mechanism computes a channel-wise
attention vector using a depthwise convolution. The resulting
vector is fed to the backbone of the classifier, which leverages
a modified EfficientNet-B0 architecture [77]. Global average
pooling is applied to reduce spatial dimensions, followed by
a fully connected layer for classification.

ViT+Freq (Vision Model): A lookup table encodes each
opcode and operand of the disassembled bytecode to a numer-
ical value which corresponds to their frequency of appearance
in the training set. This frequency is mapped into a color
channel intensity value. The lookup table is constructed ex-
actly once on the entire contract training set. This frequency
encoding performs efficiently as a categorical encoding tech-
nique [60]. The concept relies on assigning higher pixel inten-
sity values in the R, G, and B channels to the most frequently
encountered mnemonics, operands and gas consumptions. The
image tensors have a fixed size of 224 × 224 × 3 which are
accordingly zero-padded and subsequently fed to a pretrained
ViT-B/16 model (e.g., same as in ViT+R2D2).

SCSGuard [43] (Language Model): Each hexadecimal
string within the bytecode is read as a bigram (sequences of 6
characters). These bigrams are numerically encoded to create
a vocabulary (i.e., a list of integers), and the sequences are
padded to uniform lengths to enable processing by the model.
SCSGuard begins with an embedding layer that maps bigram
indices to dense vectors. A multi-head attention mechanism is
applied to capture dependencies between different parts of the
sequence, followed by a GRU layer that models sequential
patterns in the data. Finally, a fully connected linear layer
generates the logits, representing the model’s predictions.

GPT-2 [67] and T5 [68] (Language Models): GPT-2 and
T5 are two Transformer-based language models pretrained on
a large corpus of text. We selected the latest versions of the
models that we could retrieve from the HuggingFace library

[45]. Despite their modest size (up to 1.5 billion parameters),
these models can be leveraged to build good classifiers [48],
[58]. Since transformer-based models interpret text as a se-
quence of tokens, we use the suitable GPT2Tokenizer and
T5Tokenizer classes from Hugging Face to process the
textual inputs.

ESCORT [72] (Vulnerability Detection Model): This
system is originally designed to detect code vulnerabilities
in smart contracts, and is hereby used for the first time in
the context of fraud detection. ESCORT embeds the smart
contract bytecode into a vector space. The generated feature
representations are then processed by a deep neural network
(DNN) model for further analysis. The design supports two
operational modes: an initial training phase, where the model
is trained to classify individual vulnerabilities in a multi-class
labeling context, and a second phase, where the aim is to detect
new vulnerabilities through transfer learning.

C. Hyperparameter search
We rely on Optuna [4], an open-source hyperparameter

optimization framework designed to automate and streamline
the tuning process in ML workflows, to select hyperparameters
for all models. Optuna uses metaheuristics to find the best
hyperparameters for models by implementing a define-by-
run API, which allows users to dynamically construct search
spaces. We conducted grid search over an arbitrary search
space on the same task as the main evaluation, using 10-fold
cross-validation to ensure robust performance assessment.

D. Results
To ensure stability of the results, we performed a 10-fold

cross-validation over 3 runs, for a total of 30 experiments per
model (not including the hyperparameter runs). Table II shows
the results, averaged over 10 folds and 3 runs. We evaluate
two variants of GPT-2 and T5: α, where opcode sequences are
truncated to fit model token limits and GPU constraints (RTX
4090), and β, trained on an H100 NVL, where full bytecodes
are processed in chunks using a sliding window. SCSGuard,
relying on n-grams, remains unaffected. Our results indicate
that the vulnerability detector ESCORT is not effective when
adapted to a different task like the classification of phishing
smart contracts, mostly due to inner limitations of VDMs when
applied to social engineering vulnerabilities like phishing,
since they exploit human behavior rather than technical flaws
in the code.

The most accurate models are the HSCs, with an average
Accuracy of 91.52%, F1 Score of 91.44%, Precision of 91.61%
and Recall of 91.32%. In particular, the Random Forest
approach is both the best performing model overall and the
best performing HSC. The LMs ranked 2nd, with an average
Accuracy of 88.83%, F1 Score of 88.17%, Precision of 89.50%
and Recall of 88.07%. SCSGuard is the best performing LM
model. The VMs reported an average Accuracy of 83.75%, F1
Score of 83.40%, Precision of 83.26% and Recall of 83.63%.
ECA+EfficientNet is the best performing vision model. All
models achieve reasonable performance in detecting phishing



TABLE II: Averaged performance metrics for the models sup-
ported in PHISHINGHOOK (best values in bold). †: Histogram,
‡: Vision, *: Language, §: Vulnerability.

Model Accuracy (%) F1 Score Precision Recall
Random Forest † 93.63 93.49 94.23 92.76
k-NN † 90.60 90.62 89.31 91.99
SVM † 92.60 92.32 94.53 90.21
Logistic Regression † 83.91 84.13 82.03 86.38
XGBoost † 93.43 93.30 93.74 92.88
LightGBM † 93.39 93.26 93.80 92.73
CatBoost † 93.10 92.95 93.62 92.30
ECA+EfficientNet ‡ 86.63 86.16 86.88 85.52
ViT+R2D2 ‡ 85.52 85.14 85.20 85.15
ViT+Freq ‡ 79.11 78.90 77.71 80.23
SCSGuard * 90.46 90.12 90.95 89.35
GPT-2α * 89.95 89.60 90.39 88.91
T5α * 89.67 89.28 90.25 88.35
GPT-2β * 88.65 88.36 88.40 88.36
T5β * 85.41 83.47 87.49 85.40
ESCORT § 55.91 55.82 55.78 55.91

from bytecode, with an average Accuracy of 89.07%, F1 Score
of 88.74%, Precision of 89.24% and Recall of 88.70%.

Our results align with the original papers. For HSCs [54],
Random Forest was also the best model but had slightly
lower accuracy (85.17%). In contrast, ECA+EfficientNet [85]
achieved 98.2%. However, these evaluations were conducted
on broader fraud datasets, making direct comparison with
our results, focused solely on phishing, challenging. SCS-
Guard [43] detected four out of five phishing scams, with a
lower accuracy (80%). Other models were our own implemen-
tations; ESCORT, designed for vulnerability detection, had not
been used for fraud detection. The discussed metrics are cru-
cial for demonstrating the performance of a malware analysis
system [79]. However, the trade-offs with cost metrics, such
as training/inference time in relation to data size, must also be
considered; they’re addressed in greater detail in §IV-F.

E. Post hoc analysis
In this section, we describe the methodologies applied

for the post hoc analysis of results. Specifically, our aim is
to rigorously compare the performance metrics (Accuracy,
Precision, Recall, and F1 Score) obtained for each model to
assess the significance of the observed differences.

We excluded from the post hoc analysis the vulnerability
detector ESCORT, as it did not perform well on the phishing
detection task. We also excluded GPT-2β and T5β, as they were
the worst-performing variants of these models. We conducted
the post-hoc analysis on the full experimental results - namely,
30 trials per model (10-fold cross validation × 3 runs). As a
result, the number of observation for each metric was 390 (13
models × 30 trials). Initially, we tested the normality of each
metrics distribution with the Shapiro-Wilk (S-W) test [73].
This represents a crucial step: the following choices of which
test to adopt for the group comparison (parametric vs. non-
parametric) are based on this assumption. As of the S-W, the
test statistic W (a numerical value that indicates the likelihood
of observing the results under the null hypothesis) is computed
as

∑n
i=1 aix

2
(i)/

∑n
i=1(xi − x̄)2, where x(i) are the ordered

sample observations, ai are the coefficients, x̄ is the sample
mean, and n the sample size.

TABLE III: Results of performance metrics with the Kruskal-
Wallis test. Significant if padj < 0.05.

Metric H p padj
Accuracy 360.81 7.35 × 10-70 2.94 × 10-69

F1 Score 359.78 1.21 × 10-69 3.63 × 10-69

Precision 345.21 1.44 × 10-66 2.88 × 10-66

Recall 322.03 1.10 × 10-61 1.10 × 10-61

The null hypothesis of normality is rejected for values of
W significantly lower than 1, such that p < 0.05. In our case,
the assumption of normality was violated for 20 model-metric
pairs (out of 52). Hence, we opted for the non-parametric
Kruskal-Wallis (K-W) test [51]. K-W is used to determine
whether there are statistically significant differences between
the medians of three or more independent groups (in our case,
the performance metrics for each of the 13 models).

The K-W test statistic, conventionally named H , is com-
puted as 12/(N(N + 1)) ·

∑k
i=1 R

2
i /ni − 3(N + 1), where

k are the number of groups, ni the number of observations
for the ith group, N the total number of observations (for all
groups combined) and Ri the sum of ranks, which represent
the positions of data points in the ith group.

The null hypothesis that all the performance metrics have
the same median is rejected for values of H significantly
high, such that p < 0.05. In this test, we adjust p to
padj with the Holm-Bonferroni correction to reduce the risk
of false positives [3]. As shown in Table III, the null hy-
pothesis is firmly rejected for all four metrics, thus proving
the existence of significant differences between the model
performances. For this reason, we completed our post hoc
analysis performing a Dunn’s test [24] with the Holm-
Bonferroni correction to determine exactly which model pairs
diverge, for any of the four metrics. This is the appropri-
ate nonparametric pairwise multiple comparison procedure
when a Kruskal–Wallis test is rejected [22]. The Dunn’s
test statistic, conventionally named Z, is computed as (R̄i −
R̄j)/(

√
(N(N + 1))/12) · (1/ni + 1/nj), where (R̄i−R̄j) is

the difference in mean ranks between the two group pairs i
and j, and the denominator is the variance term that accounts
for the variability in ranks, adjusted for sample sizes of the
pairs (ni, nj).

Fig. 4 reports these results. For Accuracy, F1 Score and Pre-
cision, the percentage of model pairs that showed significant
differences in performance was 65.38%, while for Recall it
was 61.54%. For model pairs belonging to the same category
(e.g., SVM and k-NN are both HSC while GPT-2 and T5 are
both LMs) the percentage of significant differences was lower,
i.e., 37.04% for Accuracy and F1 Score, 40.74% for Precision
and 33.33% for Recall. Instead, for model pairs belonging
to different categories, this percentage increased substantially,
i.e., 80.39% for Accuracy and F1 Score, 78.43% for Precision
and 76.47% for Recall. On average, the observed results are
extremely significant for model pairs not belonging to the same
category, while for similar models there was less statistical
relevance in the observed divergencies.



EC
A+Eff

icie
ntN

et
GPT-

2
KN

N

Lig
htG

BM

Log
isti

c R
eg

res
sio

n

Ra
nd

om
 Fo

res
t

SC
SG

ua
rdSV

M T5

ViT
+Fre

q

ViT
+R2D

2

XGBoo
st

CatBoost
ECA+EfficientNet

GPT-2
KNN

LightGBM
Logistic Regression

Random Forest
SCSGuard

SVM
T5

ViT+Freq
ViT+R2D2

ns ns ns ns
ns ns ns ns ns

ns ns ns
ns ns ns

ns ns ns
ns ns

ns ns
ns ns

ns
ns
ns

Accuracy

EC
A+Eff

icie
ntN

et
GPT-

2
KN

N

Lig
htG

BM

Log
isti

c R
eg

res
sio

n

Ra
nd

om
 Fo

res
t

SC
SG

ua
rdSV

M T5

ViT
+Fre

q

ViT
+R2D

2

XGBoo
st

ns ns ns ns
ns ns ns ns ns

ns ns ns
ns ns ns

ns ns ns
ns ns

ns ns
ns ns

ns
ns
ns

F1 Score

EC
A+Eff

icie
ntN

et
GPT-

2
KN

N

Lig
htG

BM

Log
isti

c R
eg

res
sio

n

Ra
nd

om
 Fo

res
t

SC
SG

ua
rdSV

M T5

ViT
+Fre

q

ViT
+R2D

2

XGBoo
st

ns ns ns ns ns
ns ns ns ns ns ns

ns ns ns
ns ns ns

ns ns ns
ns ns

ns ns
ns

ns

ns

Precision

EC
A+Eff

icie
ntN

et
GPT-

2
KN

N

Lig
htG

BM

Log
isti

c R
eg

res
sio

n

Ra
nd

om
 Fo

res
t

SC
SG

ua
rdSV

M T5

ViT
+Fre

q

ViT
+R2D

2

XGBoo
st

ns ns ns ns ns
ns ns ns ns ns

ns ns ns ns
ns ns ns ns

ns ns
ns ns ns ns

ns
ns ns

ns
ns
ns

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Ad
ju

st
ed

 p
-v

al
ue

Fig. 4: Dunn’s test for pairwise comparison between each model’s metrics. Significant if padj < 0.05. Significance levels from
(highly significant) down to (mildly significant). Non-significant results are labeled as ns.

F. Model scalability analysis

Here we conduct a model scalability evaluation. The goal
is to study the impact of data size on the performances
of the considered models. We generated three data splits,
containing respectively 1/3, 2/3 and all the smart contract
samples. We trained and evaluated three models (SCSGuard,
ECA+EfficientNet, Random Forest), e.g., the most accurate
models in each category, respectively LM, VM and HSC.
Fig. 5 reports our results. Random Forest is the most accurate
model for each of the data splits and its performances remain
stable. SCSGuard and ECA+EfficientNet scale better when
increasing the number of training samples. This suggests that
by increasing the available contract bytecodes in the dataset,
Vision and Language models will outperform the HSCs.

Moreover, we adopt the Critical Difference Diagram
(CDD) [19] to concisely represent a post hoc analysis on
the observed results, shown in Fig. 6. To produce the CDD,
a Friedman test [35] is first conducted to detect whether
there are significant differences in the observed model metrics
among the data splits. If some differences are detected, the
second step is to perform a Wilcoxon signed-rank test [83]
to identify which pair of models exhibit a significant differ-
ence. The rightmost elements in the CDD are the ones that
showed the best performances (Random Forest for all the four
metrics). The leftmost ones are the least performing models
(ECA+EfficientNet). The thick horizontal line connects the
three classifiers that failed the Wilcoxon test, indicating no
statistical evidence. Across all comparisons, p is 0.25 or 0.75,
with padj = 0.75. Cliff’s δ [14] suggests varying effect
sizes, with notably negative values for SCSGuard compared to
ECA+EfficientNet (-0.778 for Accuracy and F1 Score, -0.333
for Precision, and -1.0 for Recall), reflecting performance
declines. However, the high padj values indicate that these
differences are not statistically significant. This is likely due
to the small sample size in the scalability experiment (36
measurements in total), as non-parametric methods require
larger datasets for robust statistical power [15].

We further study the training and inference times for such
models, shown in Fig. 7. The impact of data augmentation
on complex models, in particular for Language models, is

0.33 0.67 1.00
Data Split Ratio

0.70

0.75

0.80

0.85

0.90

0.95
Accuracy

0.33 0.67 1.00
Data Split Ratio

Precision

0.33 0.67 1.00
Data Split Ratio

Recall

0.33 0.67 1.00
Data Split Ratio

F1 Score

Random Forest ECA+EfficientNet SCSGuard

Fig. 5: Performance metrics of the best models per data split.

0.5 1 1.5 2 2.5 3 3.5
Accuracy

Precision

Recall

F1 Score

Random Forest ECA+EfficientNet SCSGuard

Fig. 6: Critical difference dia-
gram of model scalability.

0.33 0.67 1.00
Data Split Ratio

0

100

200

300

400

500 Training Time (s)

0.33 0.67 1.00
Data Split Ratio

0

2

4

6

8

10 Inference Time (s)

Random Forest ECA+EfficientNet SCSGuard

Fig. 7: Time metrics of the
best models per data split.

extremely costly. On average (among all data splits), SCS-
Guard has a training time of 325.302 seconds (+64733.4%
respect to the Random Forest and +1030.6% respect to
ECA+EfficientNet). The average inference time on one batch
of data is 6.091 seconds (+57258.5% respect to the Random
Forest and +622.4% respect to ECA+EfficientNet). As we can
see, for SCSGuard, both training and inference times almost
double (+77.35% on average training time and +68.8% on
average inference time) each time the data sample is enlarged,
while for both HSCs and the VM they remain stable and
low. Therefore, incrementing the number of contract samples
in the dataset can increase significantly the performances of
complex models, and especially the Language ones. However,
at the same time, the associated loss in time efficiency should
be considered. The importance of timeliness is generally
application-specific: in crypto wallets, users interact with
smart contracts in real-time, often signing transactions within
seconds. Any delay in detecting a phishing contract could
mean a user already approved a malicious transaction before
getting a warning. DeFi projects list new tokens frequently, and
malicious projects can rug-pull within minutes while security
firms analyze threats over time, so delays aren’t as critical.



G. Time-resistance analysis
Building on [62], we design a time-resistance experiment

to evaluate PHISHINGHOOK’s robustness against temporal
performance decay. We construct a second dataset of 7,000
samples, ensuring benign samples match the temporal distri-
bution of phishing ones (Fig. 2). The training set includes
smart contracts from October 2023 to January 2024, while
nine test sets, spanning February to October 2024, assess
performance over time. As in the scalability experiment, we
evaluate SCSGuard, ECA+EfficientNet, and Random Forest
to determine whether phishing contracts exhibit persistent
patterns or evolve to evade detection. Results (Fig. 8) show
stable phishing detection performance, with only a slight
decline due to evolving attack patterns, as explained in the
reference study. To quantify stability, we use Area Under Time
(AUT), with AUT ∈ [0, 1], which represents the area under the
F1 curve for phishing samples. A higher AUT indicates greater
robustness against evolving threats. Random Forest achieves
the highest stability (AUT = 0.89), followed by SCSGuard
(0.84) and ECA+EfficientNet (0.79), which experiences more
fluctuations. Despite minor variations, PHISHINGHOOK effec-
tively adapts to new threats, proving to be a reliable long-term
phishing detection solution. The dataset for this analysis is
publicly available at [70].

H. Influence of opcode prevalence on the best classifier
Beyond the statistical analysis presented earlier, examining

the influence scores of the opcodes provides complementary
insights for the model designer. Due to space concerns, we
restrict ourselves to the best-performing model, HSC with
Random Forests. Fig. 9 displays the Shapley values [57]
associated with the 700 samples that comprise the test set
of a random fold from §IV-D (other interpretability tools
exist, such as impurity-based feature importance, but they
can be biased towards high-cardinality features which can
result in misleading importance scores [52]). The vertical axis
represents the SHAP value, which quantifies the contribution
of each feature (here, opcode usage) along the horizontal
axis in shifting the model’s prediction for that instance
away from the base value (i.e., the mean probability of
phishing across all contracts). For instance, the cluster of
contracts with Shapley values of 0.025 that use GAS very
rarely (3rd column) suggests the classifier finds low usage of
GAS suspicious. Many well-structured contracts manage gas
efficiently, especially when dealing with external calls (e.g., as
in Address.functionDelegateCall(address(this),

data[i]) [2]) for which controlled execution may
explicitly check the available gas before proceeding.
Phishing contracts, on the other hand, often lack such
safety checks because they are designed to steal funds
quickly rather than execute complex operations. However,
operations that trigger GAS can be nested inside loops (e.g.,
a source code can contain if (deprecated) {return

UpgradedStandardToken(upgradedAddress).transfer

ByLegacy(msg.sender, _to, _value);} [1]) and still
be present in the disassembled bytecode, which can dilute the

1 2 3 4 5 6 7 8 9
Testing Period (Month)

0.0

0.2

0.4

0.6

0.8

1.0

AUT = 0.89

Random Forest

1 2 3 4 5 6 7 8 9
Testing Period (Month)

AUT = 0.79

ECA+EfficientNet

1 2 3 4 5 6 7 8 9
Testing Period (Month)

AUT = 0.84

SCSGuard

Precision Recall F1 Score Phishing Benign

Fig. 8: Time evolution of performance metrics over nine
months, with AUT for the phishing samples’ F1 score.

RET
URNDATA

SIZ
E

RET
URNDATA

COPY GAS OR

ADDRES
S

STA
TIC

CALL LT SH
L

LO
G3

RET
URN

PU
SH

1
SW

AP3

REV
ER

T

MLO
AD

CALLD
ATA

LO
AD

PO
P

ISZ
ER

O

SE
LFB

ALA
NCE

MST
ORE

AND

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

higher phishing influence

higher benign influence

Opcode usage

low high

Fig. 9: HSC classifier’s SHAP values of all samples of a test
split (20 most influential features are shown).

behavior and render this indicator unreliable (in this case, the
contract was a false negative).

V. DISCUSSION AND LESSONS LEARNED

PHISHINGHOOK is an efficient framework to systematically
train, evaluate and assess ML models to detect phishing
activities in the EVM. We demonstrate that it is possible
to create extremely efficient phishing classification systems
(≈ 90% accuracy across all the models) simply considering
the contract bytecode, without collecting transaction traces by
interacting with potential malicious nodes in the blockchain.

Take-away 1: Leveraging PHISHINGHOOK, we can put in place
extremely effective opcode-based phishing detection systems.

To navigate the limited data availability caused by de-
duplication of minimal proxy contracts, we developed a post
hoc analysis module to assess and generalize results from the
n samples collected to the full set N of contracts deployed
in the chain. Our findings showed significant differences be-
tween models of different categories, while divergences among
similar models were less relevant.

Take-away 2: LMs and VMs do not perform better than HSCs on
phishing detection. Differences in the same categories of models
are less meaningful.

Our scalability analysis highlighted how more complex
models overcome simpler HSCs in the long run at the cost
of time efficiency. This conclusion meets the idea that large
models likely require more data to achieve good generaliza-
tion, which is a staple of machine learning research [8]. We
assume that there is margin to improve the ≈ 94% accuracy
obtained with HSCs by enlarging the dataset.

Take-away 3: Complex models, especially LMs, scale better
than HSCs. Increasing the data size, we can even improve the
accuracy of the detection system using LMs.



Finally, we conducted a time-resistance analysis to evaluate
PHISHINGHOOK’s ability to adapt to evolving attack patterns.
The results indicate that PHISHINGHOOK maintains overall
robustness against temporal performance decay. Among the
components, HSCs exhibited the highest stability, while LMs
and VMs experienced minor fluctuations.

Take-away 4: PHISHINGHOOK is resilient to evolving threats.
Despite minor fluctuations, it effectively adapts to ensure reliable
long-term performance.

VI. RELATED WORK

To the best of our knowledge, PHISHINGHOOK is the first
pure phishing detection framework for smart contracts based
on the analysis of the opcodes. Some early classification
of vulnerable and/or malicious smart contracts exist, such
as [25]. We organize related work into four detection sys-
tem categories: (A) opcode-based fraud, (B) transaction-based
phishing, (C) opcode-based vulnerability and (D) symbolic
execution and verification tools.

A. Opcode-based fraud detection systems
These systems provide efficient fraud detection systems

for smart contracts basing on their bytecode analysis, with-
out specifically address phishing activities. Alongside SCS-
Guard [43] and ECA+EfficientNet [85] (see §IV-B), Hon-
eyBadger [78] employs symbolic execution and heuristics
to discover honeypots in smart contracts. It takes as input
the EVM bytecode and returns the detected honeypot tech-
niques. Similarly, Al-SPSD [32] leverages ordered boosting
on the features extracted from the original opcode sequences
to detect Ponzi schemes in smart contracts. Finally, other
approaches [26], [54] demonstrated the efficacy of supervised
learning approaches, such as Random Forests (RF) [41] and
k-Nearest Neighbors (k-NN) [16]. In both cases, the authors
adopt feature extraction techniques on the original opcode
sequences, before feeding the data to the classifier.

B. Transaction-based phishing detection systems
These tools detect phishing activities on smart contracts

based on the transaction traces rather than pure bytecode
analysis. Ethereum Phishing Scam Detection (Eth-PSD) [50]
attempts to detect phishing scam-related transactions using
several ML classifiers.TxPhishScope [40] dynamically visits
suspicious websites, triggers transactions, and simulates results
in order to detect phishing websites and extract related ac-
counts automatically. Labeling transactions and labeling con-
tracts are fundamentally different tasks. While contracts can
be indirectly labeled through associated transactions, accurate
analysis typically requires many transactions per contract.
Additionally, replaying transactions tied to malicious actors
may expose sensitive user data, creating security and privacy
risks.

C. Opcode-based vulnerability detection systems
The following tools detect smart contract’s code vulnerabil-

ities (and not social engineering attacks) based on bytecode
analysis, as ESCORT [72] (see §IV-B). CodeNet [46] is

a CNN architecture to classify vulnerable contracts while
preserving the semantics and context of the smart contract.
WIDENNET [59] leverages a variant of the Wide & Deep
neural network architecture [13]. In [66], the authors propose
a bidirectional long-short term memory with attention mecha-
nism (BLSTM-ATT), aimed to detect a specific vulnerability,
i.e., reentrancy bugs. Finally, in [53] the authors implement
a 2-layer bidirectional LSTM to detect code vulnerabilities in
smart contracts.

D. Symbolic execution and verification tools
Symbolic execution tools can analyze and test smart con-

tracts deployed in the EVM by exploring their possible
execution paths to detect specific vulnerabilities and bugs.
DefectChecker [11] detects eight contract defects that cause
unwanted behaviors of smart contracts. In [20], the authors
define a smart contract defect classification scheme to eval-
uate the effectiveness of three popular verification tools:
Mythril [21], Securify2 [76], and Slither [33]. The results
show that the tools have limited detection effectiveness but
are complementary in identifying different types of faults.
On the other hand, [5] provides a comprehensive survey of
verification methods, highlighting that most tools handle only
simple contracts, with complex ones still posing challenges.
In [36], the authors propose SolidiFI, a framework to evaluate
six popular static analysis tools for smart contracts. It identifies
numerous undetected bugs despite the tools’ claimed capa-
bilities. Finally, [39] presents Echidna, an open-source smart
contract fuzzer designed to efficiently uncover real bugs with
minimal user intervention and high execution speed.

VII. CONCLUSION

PHISHINGHOOK is the first comprehensive framework
aimed at detecting phishing attacks on Ethereum smart con-
tracts by analyzing opcodes and bytecode. Our extensive
evaluation of 16 phishing detection models underscores the
efficacy of opcode-based fraud detection, achieving high ac-
curacy and robust performance metrics across a variety of
methodologies. Our results show that more complex models
(i.e., LMs) do not necessarily yield better results overall
but could scale better. Our key contributions include the
development and public release of the largest dataset of
phishing smart contracts, a detailed architectural design for
the PHISHINGHOOK framework, and an in-depth experimental
evaluation of multiple detection approaches. By providing an
open-source, reproducible platform, we aim to foster further
research and development in the domain of smart contract
security. Our findings pave the way for future advancements
in detecting malicious activities within decentralized environ-
ments. While the scope of PHISHINGHOOK is to detect phish-
ing smart contracts before they are deployed, we consider live
detection an interesting future work. We will explore strategies
to efficiently deploy scalable phishing detection systems for
smart contracts using PHISHINGHOOK. Cybersecurity firms
or blockchain monitoring platforms, such as Etherscan, are
potential customers of our system.



REFERENCES

[1] Smart contract 0x279e2f385ce22f88650632d04260382bfb918082.
etherscan.io/address/0x279e2f385cE22F88650632D04260382bFB918082.
Accessed: 2025-02-25.

[2] Smart contract 0xb5e7b87e7a84276b13da3f07495e18f3e229d3a0. ether-
scan.io/address/0xb5e7b87e7a84276b13da3f07495e18f3e229d3a0. Ac-
cessed: 2025-02-25.

[3] M Aickin and H Gensler. Adjusting for multiple testing when reporting
research results: the bonferroni vs holm methods. Am J Public Health,
86(5):726–728, May 1996.

[4] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter optimiza-
tion framework. CoRR, abs/1907.10902, 2019.

[5] Mouhamad Almakhour, Layth Sliman, Abed Ellatif Samhat, and Abdel-
hamid Mellouk. Verification of smart contracts: A survey. Pervasive
and Mobile Computing, 67:101227, 2020.

[6] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on ethereum smart contracts (sok). In Principles of Security
and Trust: 6th International Conference, POST 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings 6, pages
164–186. Springer, 2017.

[7] Jiabin Bao, Debiao He, Min Luo, and Kim-Kwang Raymond Choo. A
survey of blockchain applications in the energy sector. IEEE Systems
Journal, 15(3):3370–3381, 2020.

[8] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Recon-
ciling modern machine learning and the bias-variance trade-off. CoRR,
abs/1812.11118, 2018.

[9] Chainabuse. Chainabuse. https://www.chainabuse.com/.
[10] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu.

A survey on ethereum systems security: Vulnerabilities, attacks, and
defenses. ACM Computing Surveys (CSUR), 53(3):1–43, 2020.

[11] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting
Chen. Defectchecker: Automated smart contract defect detection by
analyzing EVM bytecode. IEEE Trans. Software Eng., 48(7):2189–2207,
2022.

[12] Wubing Chen, Zhiying Xu, Shuyu Shi, Yang Zhao, and Jun Zhao. A
survey of blockchain applications in different domains. In Proceedings
of the 2018 International Conference on Blockchain Technology and
Application, pages 17–21, 2018.

[13] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain,
Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender
systems. In Alexandros Karatzoglou, Balázs Hidasi, Domonkos Tikk,
Oren Sar Shalom, Haggai Roitman, Bracha Shapira, and Lior Rokach,
editors, Proceedings of the 1st Workshop on Deep Learning for Rec-
ommender Systems, DLRS@RecSys 2016, Boston, MA, USA, September
15, 2016, pages 7–10. ACM, 2016.

[14] Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin, 114(3):494–505, 1993.

[15] William Jay Conover. Practical Nonparametric Statistics. John Wiley
& Sons, third edition, 1999.

[16] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27, 1967.

[17] Cyvers. Malcon api: Advanced malicious contract detection & preven-
tion. https://cyvers.ai/malconapi.

[18] Natarajan Deepa, Quoc-Viet Pham, Dinh C Nguyen, Sweta Bhat-
tacharya, B Prabadevi, Thippa Reddy Gadekallu, Praveen Kumar Reddy
Maddikunta, Fang Fang, and Pubudu N Pathirana. A survey on
blockchain for big data: Approaches, opportunities, and future directions.
Future Generation Computer Systems, 131:209–226, 2022.

[19] Janez Demsar. Statistical comparisons of classifiers over multiple data
sets. J. Mach. Learn. Res., 7:1–30, 2006.

[20] Bruno Dia, Naghmeh Ivaki, and Nuno Laranjeiro. An empirical
evaluation of the effectiveness of smart contract verification tools. In
2021 IEEE 26th Pacific Rim International Symposium on Dependable
Computing (PRDC), pages 17–26. IEEE, 2021.

[21] ConsenSys Diligence. Mythril: Security analysis tool for ethereum smart
contracts. https://github.com/ConsenSys/mythril. Accessed: 2024-11-25.

[22] Alexis Dinno. Nonparametric pairwise multiple comparisons in inde-
pendent groups using dunn’s test. The Stata Journal, 15(1):292–300,
2015.

[23] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[24] Olive Jean Dunn. Multiple comparisons using rank sums. Technometrics,
6(3):241–252, 1964.

[25] Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. Empirical
review of automated analysis tools on 47,587 ethereum smart contracts.
In Proceedings of the ACM/IEEE 42nd International conference on
software engineering, pages 530–541, 2020.

[26] Tahmina Ehsan, Muhammad Usman Sana, Muhammad Usman Ali,
Elizabeth Caro Montero, Eduardo Silva Alvarado, Sirojiddin Djuraev,
and Imran Ashraf. Securing smart contracts in fog computing: Machine
learning-based attack detection for registration and resource access
granting. IEEE Access, 12:42802–42815, 2024.

[27] Ethereum. evmdasm library. https://github.com/ethereum/evmdasm.
Accessed: 2024-11-25.

[28] Etherscan. Ether total supply and market capitalization chart. https:
//etherscan.io/stat/supply. Accessed: 2025-03-28.

[29] Etherscan. Etherscan.io website. https://etherscan.io/. Accessed: 2024-
11-25.

[30] EVM.codes. Evm opcodes (shanghai update). https://www.evm.codes/
?fork=shanghai. Accessed: 25-Nov-2024.

[31] Hugging Face. Vit-base-patch16-224, 2024. Accessed: 2024-12-01.
[32] Shuhui Fan, Shaojing Fu, Haoran Xu, and Xiaochun Cheng. Al-spsd:

Anti-leakage smart ponzi schemes detection in blockchain. Information
Processing & Management, 58(4):102587, 2021.

[33] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: A static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), pages 8–15, 2019.

[34] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. Codebert: A pre-trained model for programming and natural
languages. In Trevor Cohn, Yulan He, and Yang Liu, editors, Findings
of the Association for Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020 of Findings of ACL,
pages 1536–1547. Association for Computational Linguistics, 2020.

[35] Milton Friedman. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical
Association, 32(200):675–701, 1937.

[36] Asem Ghaleb and Karthik Pattabiraman. How effective are smart
contract analysis tools? evaluating smart contract static analysis tools
using bug injection. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 415–
427, 2020.

[37] Gibran Gomez, Kevin van Liebergen, Davide Sanvito, Giuseppe Siracu-
sano, Roberto Gonzalez, and Juan Caballero. Sorting out the bad seeds:
Automatic classification of cryptocurrency abuse reports. arXiv preprint
arXiv:2410.21041, 2024.

[38] Google. Google bigquery documentation. https://cloud.google.com/
bigquery/docs. Accessed: 2024-11-25.

[39] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce.
Echidna: effective, usable, and fast fuzzing for smart contracts. In
Proceedings of the 29th ACM SIGSOFT international symposium on
software testing and analysis, pages 557–560, 2020.

[40] Bowen He, Yuan Chen, Zhuo Chen, Xiaohui Hu, Yufeng Hu, Lei Wu,
Rui Chang, Haoyu Wang, and Yajin Zhou. Txphishscope: Towards
detecting and understanding transaction-based phishing on ethereum.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’23, page 120–134, New York, NY,
USA, 2023. Association for Computing Machinery.

[41] Tin Kam Ho. Random decision forests. In Proceedings of 3rd Inter-
national Conference on Document Analysis and Recognition, volume 1,
pages 278–282 vol.1, 1995.

[42] Jason Hong. The state of phishing attacks. Communications of the ACM,
55(1):74–81, 2012.

[43] Huiwen Hu, Qianlan Bai, and Yuedong Xu. Scsguard: Deep scam
detection for ethereum smart contracts. In IEEE INFOCOM 2022 -
IEEE Conference on Computer Communications Workshops, INFOCOM

https://www.chainabuse.com/
https://cyvers.ai/malconapi
https://github.com/ConsenSys/mythril
https://github.com/ethereum/evmdasm
https://etherscan.io/stat/supply
https://etherscan.io/stat/supply
https://etherscan.io/
https://www.evm.codes/?fork=shanghai
https://www.evm.codes/?fork=shanghai
https://cloud.google.com/bigquery/docs
https://cloud.google.com/bigquery/docs


2022 - Workshops, New York, NY, USA, May 2-5, 2022, pages 1–6. IEEE,
2022.

[44] TonTon Hsien-De Huang and Hung-Yu Kao. R2-D2: color-inspired
convolutional neural network (cnn)-based android malware detections.
In Naoki Abe, Huan Liu, Calton Pu, Xiaohua Hu, Nesreen K. Ahmed,
Mu Qiao, Yang Song, Donald Kossmann, Bing Liu, Kisung Lee, Jiliang
Tang, Jingrui He, and Jeffrey S. Saltz, editors, IEEE International
Conference on Big Data (IEEE BigData 2018), Seattle, WA, USA,
December 10-13, 2018, pages 2633–2642. IEEE, 2018.

[45] HuggingFace. Huggingface transformers library. https://huggingface.co/
docs/transformers/index.

[46] Seon-Jin Hwang, Seok-Hwan Choi, Jinmyeong Shin, and Yoon-Ho Choi.
Codenet: Code-targeted convolutional neural network architecture for
smart contract vulnerability detection. IEEE Access, 10:32595–32607,
2022.

[47] TRM Investigations. Grim finance hacked: 600 million in
crypto stolen in december. https://www.trmlabs.com/post/
grim-finance-hacked-600-million-in-crypto-stolen-in-december.

[48] Athirai A. Irissappane, Hanfei Yu, Yankun Shen, Anubha Agrawal, and
Gray Stanton. Leveraging GPT-2 for classifying spam reviews with
limited labeled data via adversarial training. CoRR, abs/2012.13400,
2020.

[49] Tengyun Jiao, Zhiyu Xu, Minfeng Qi, Sheng Wen, Yang Xiang, and
Gary Nan. A survey of ethereum smart contract security: Attacks and
detection. Distrib. Ledger Technol., 3(3), September 2024.

[50] Arkan Hammoodi Hasan Kabla, Mohammed Anbar, Selvakumar Man-
ickam, and Shankar Karupayah. Eth-psd: A machine learning-
based phishing scam detection approach in ethereum. IEEE Access,
10:118043–118057, 2022.

[51] W. H. Kruskal and W. A. Wallis. Use of ranks in one-criterion variance
analysis. Journal of the American Statistical Association, 47(260):583–
621, 1952.

[52] Scikit learn developers. Permutation feature importance, 2024. Ac-
cessed: 2025-02-24.

[53] Peiqiang Li, Guojun Wang, Xiaofei Xing, Jinyao Zhu, Wanyi Gu, and
Guangxin Zhai. A smart contract vulnerability detection method based
on deep learning with opcode sequences, Sep 2024.

[54] Derek Liu, Francesco Piccoli, and Victor Fang. Machine learning
approach to identify malicious smart contract opcodes: A prelimi-
nary study. JPS Conference Proceedings (Blockchain Kaigi 2023),
43:011002, 2023.

[55] Jiming Liu and Yiming Ye. Introduction to e-commerce agents: Mar-
ketplace marketplace solutions, security issues, and supply and demand.
Springer, 2001.

[56] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,
Ambrosio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu
Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie Liu. Codexglue: A machine learning benchmark
dataset for code understanding and generation. In Joaquin Vanschoren
and Sai-Kit Yeung, editors, Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, December 2021, virtual, 2021.

[57] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 4765–
4774, 2017.

[58] Rodrigo Frassetto Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy
Lin. Document ranking with a pretrained sequence-to-sequence model.
In Trevor Cohn, Yulan He, and Yang Liu, editors, Findings of the
Association for Computational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, volume EMNLP 2020 of Findings of ACL, pages
708–718. Association for Computational Linguistics, 2020.

[59] Samuel Banning Osei, Zhongchen Ma, and Rubing Huang. Smart
contract vulnerability detection using wide and deep neural network.
Science of Computer Programming, 238:103172, 2024.

[60] Florian Pargent, Florian Pfisterer, Janek Thomas, and Bernd Bischl.
Regularized target encoding outperforms traditional methods in super-
vised machine learning with high cardinality features. Comput. Stat.,
37(5):2671–2692, 2022.

[61] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore
Roşu. A formal verification tool for ethereum vm bytecode. In
Proceedings of the 2018 26th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, pages 912–915, 2018.

[62] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder,
and Lorenzo Cavallaro. TESSERACT: eliminating experimental bias in
malware classification across space and time. In Nadia Heninger and
Patrick Traynor, editors, 28th USENIX Security Symposium, USENIX
Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages 729–
746. USENIX Association, 2019.

[63] Daniel Perez and Benjamin Livshits. Smart contract vulnerabilities: Vul-
nerable does not imply exploited. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1325–1341, 2021.

[64] Ethereum Improvement Proposals. Erc-1167: Minimal proxy contract.
https://eips.ethereum.org/EIPS/eip-1167/. Accessed: 2024-11-25.

[65] Peng Qian, Jianting He, Lingling Lu, Siwei Wu, Zhipeng Lu, Lei Wu,
Yajin Zhou, and Qinming He. Demystifying random number in ethereum
smart contract: taxonomy, vulnerability identification, and attack detec-
tion. IEEE Transactions on Software Engineering, 49(7):3793–3810,
2023.

[66] Peng Qian, Zhenguang Liu, Qinming He, Roger Zimmermann, and Xun
Wang. Towards automated reentrancy detection for smart contracts based
on sequential models. IEEE Access, 8:19685–19695, 2020.

[67] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

[68] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

[69] Phylum Research. Typosquat campaign tar-
geting npm developers. https://blog.phylum.io/
supply-chain-security-typosquat-campaign-targeting-puppeteer-users/.

[70] Pasquale De Rosa, Simon Queyrut, Yerom-David Bromberg, Pascal Fel-
ber, and Valerio Schiavoni. Phishinghook: Catching phishing ethereum
smart contracts leveraging evm opcodes. https://doi.org/10.5281/zenodo.
14260284, Mar 2025.

[71] The scikit-learn developers. Supervised Learning - scikit-learn 1.5.0
documentation, 2024. Accessed: 2024-12-01.

[72] Christoph Sendner, Huili Chen, Hossein Fereidooni, Lukas Petzi, Jan
König, Jasper Stang, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and
Farinaz Koushanfar. Smarter contracts: Detecting vulnerabilities in smart
contracts with deep transfer learning. In Proceedings of the Network and
Distributed System Security Symposium (NDSS). Internet Society, 2023.

[73] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 52(3-4):591–611, 12 1965.

[74] David Siegel. Understanding the dao attack. https://www.coindesk.com/
learn/understanding-the-dao-attack.

[75] Solidity Team. Solidity language documentation. https://soliditylang.
org/. Accessed: 25-Nov-2024.

[76] ETH Zurich SRI Lab. Securify 2.0. https://github.com/eth-sri/securify2.
Accessed: 2025-03-28.

[77] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research,
pages 6105–6114. PMLR, 2019.

[78] Christof Ferreira Torres, Mathis Steichen, and Radu State. The art of
the scam: Demystifying honeypots in ethereum smart contracts. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1591–1607,
Santa Clara, CA, August 2019. USENIX Association.

[79] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. Survey of
machine learning techniques for malware analysis. Computers &
Security, 81:123–147, 2019.

[80] Maddipati Varun, Balaji Palanisamy, and Shamik Sural. Mitigating
frontrunning attacks in ethereum. In Proceedings of the Fourth ACM
International Symposium on Blockchain and Secure Critical Infrastruc-
ture, pages 115–124, 2022.

[81] Vyper Project. Viper language documentation. https://docs.vyperlang.
org/en/stable/. Accessed: 25-Nov-2024.

[82] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and
Qinghua Hu. Eca-net: Efficient channel attention for deep convolutional

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://www.trmlabs.com/post/grim-finance-hacked-600-million-in-crypto-stolen-in-december
https://www.trmlabs.com/post/grim-finance-hacked-600-million-in-crypto-stolen-in-december
https://eips.ethereum.org/EIPS/eip-1167/
https://blog.phylum.io/supply-chain-security-typosquat-campaign-targeting-puppeteer-users/
https://blog.phylum.io/supply-chain-security-typosquat-campaign-targeting-puppeteer-users/
https://doi.org/10.5281/zenodo.14260284
https://doi.org/10.5281/zenodo.14260284
https://www.coindesk.com/learn/understanding-the-dao-attack
https://www.coindesk.com/learn/understanding-the-dao-attack
https://soliditylang.org/
https://soliditylang.org/
https://github.com/eth-sri/securify2
https://docs.vyperlang.org/en/stable/
https://docs.vyperlang.org/en/stable/


neural networks. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 11531–11539. Computer Vision Foundation / IEEE, 2020.

[83] Frank Wilcoxon. Individual comparisons by ranking methods. Biomet-
rics Bulletin, 1(6):80–83, 1945.

[84] Gavin Wood. Ethereum: A secure decentralised generalised transaction

ledger (shangai version). Ethereum project yellow paper, pages 1–42,
2024.

[85] Xuanchen Zhou, Wenzhong Yang, Liejun Wang, Fuyuan Wei, KeZiEr-
BieKe HaiLaTi, and Yuanyuan Liao. The detection of fraudulent smart
contracts based on eca-efficientnet and data enhancement. Computers,
Materials and Continua, 77(3):4073–4087, 2023.


	Introduction
	Background
	The PhishingHook Framework
	Evaluation
	Experimental setting
	Compared models
	Hyperparameter search
	Results
	Post hoc analysis
	Model scalability analysis
	Time-resistance analysis
	Influence of opcode prevalence on the best classifier

	Discussion and Lessons Learned
	Related work
	Opcode-based fraud detection systems
	Transaction-based phishing detection systems
	Opcode-based vulnerability detection systems
	Symbolic execution and verification tools

	Conclusion
	References

