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Abstract. Software supply chain vulnerabilities arise when attackers exploit
weaknesses by injecting vulnerable code into widely used packages or libraries
within software repositories. While most existing approaches focus on identify-
ing vulnerable packages or libraries, they often overlook the specific functions
responsible for these vulnerabilities. Pinpointing vulnerable functions within
packages or libraries is critical, as it can significantly reduce the risks associated
with using open-source software. Identifying vulnerable patches is challenging
because developers often submit code changes that are unrelated to vulnera-
bility fixes. To address this issue, this paper introduces FuncVul, an innovative
code chunk-based model for function-level vulnerability detection in C/C++ and
Python, designed to identify multiple vulnerabilities within a function by focus-
ing on smaller, critical code segments. To assess the model’s effectiveness, we
construct six code and generic code chunk based datasets using two approaches:
(1) integrating patch information with large language models to label vulnera-
ble samples and (2) leveraging large language models alone to detect vulnera-
bilities in function-level code. To design FuncVul vulnerability model, we utilise
GraphCodeBERT fine tune model that captures both the syntactic and semantic
aspects of code. Experimental results show that FuncVul outperforms existing
state-of-the-art models, achieving an average accuracy of 87-92% and an F1 score
of 86-92% across all datasets. Furthermore, we have demonstrated that our code-
chunk-based FuncVul model improves 53.9% accuracy and 42.0% F1-score than
the full function-based vulnerability prediction. The FuncVul code and datasets
are publicly available on GitHub 1

Keywords: Function Code · Vulnerability Detection · Code Chunk · Software
Supply Chain · Large Language Model

1 Introduction

With the rapid expansion of technology, cybersecurity has become a growing priority.
By October 2024, the National Vulnerability Database (NVD) recorded over 240,000 re-
ported CommonVulnerabilities and Exposures (CVEs) [3, 20].This number has steadily
risen, with an average growth rate of 15-20% per year. Detecting vulnerabilities in
1 https://github.com/sajalhalder/FuncVul.
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C/C++ and Python code is a challenging process that demands thorough analysis of the
codebase’s structure, syntax, and semantics to reveal potential weaknesses exploitable
by attackers. Identifying vulnerable functions within the package is crucial because
it allows developers to focus their efforts on resolving the specific issue rather than
discarding the entire package. It enables organizations to prioritize fixes based on the
severity and significance of the affected functions. Moreover, identifying vulnerable
source enables the developer to resolve them quickly, minimizing the impact on cus-
tomers and ensuring service continuity. Identifying vulnerable functions within the
vast number of packages released daily is both time-consuming and requires special-
ized expertise in security. Thus, an automated model capable of effectively identifying
vulnerable functions is essential.

Existing research has explored code similarity techniques to detect vulnerable code
patterns using machine learning [21], deep learning [2, 29, 14], and graph-based mod-
els [26]. Yuan et al. [34] combined serialized features from Gated Recurrent Units
(GRUs) and structural features from Abstract Syntax Trees (ASTs) via Gated Graph
Recurrent Networks (GGRNs), addressing data scarcity and imbalance with a Random
Forest model, achieving superior performance. Vo et al. [25] found that pre-trained
deep models for vulnerability type identification (VTI) offered limited improvement
over classical TF-IDF baselines and enhanced them by identifying key code tokens.
Wang et al. [28] developed ReposVul, a repository-level dataset created using an auto-
mated frameworkwithmodules for untangling vulnerabilities, dependency extraction,
and filtering outdated patches. Other works explored context-aware embeddings [30],
RoBERTa models pre-trained on open-source C/C++ code [9], and Word2Vec-LSTM
pipelines for Python code [29]. However, these approaches face two key limitations.
First, while they can identify whether a function is vulnerable, they cannot determine
the exact number of vulnerabilities within the function. Second, pinpointing the pre-
cise lines of code that contain vulnerabilities remains a challenge. As a result, security
analysts are compelled to manually review functions, significantly increasing the time
and effort required for vulnerability analysis. Addressing these limitations is vital for
streamlining the vulnerability identification process and improving efficiency.

To address these limitations, we propose a code chunk-based function vulnerabil-
ity detection model capable of identifying multiple vulnerabilities within a function.
Moreover, it highlights smaller code chunks containing vulnerabilities, significantly
reducing the time required for experts to address the issues. To sum up, in this paper
we aim to answer the following research questions.

RQ1: What modeling strategies can be employed to accurately detect function level vul-
nerabilities?

RQ2: Does leveraging code chunks enhance model performance compared to analyzing
full-function code?

RQ3: Does the FuncVul model leverage generalized code properties for vulnerability
detection?

RQ4: How effective is our approach at detecting vulnerabilities in unseen projects?
RQ5: How does the performance of our approach vary with different numbers of source

lines in a code chunk?
RQ6. Is our proposed model capable of detecting multiple vulnerabilities within a single

function’s code?



To evaluate the performance of our proposed FuncVul model, we compared it
against several state-of-the-art models: CodeBERT [5], CustomVulBERTa [9], BERT
[12] and VUDENC [29] across six datasets. The main contribution of this research
work are as follows.

– We propose a novel code chunk-based Function Vulnerability (FuncVul) detec-
tion model capable of identifying multiple vulnerabilities within a function and,
importantly, to identify the specific, smaller code segments responsible for those
vulnerabilities.

– We collected and curated four datasets from diverse data sources, such as project
source codes from GitHub and vulnerability advisory databases, i.e., OSV. Addi-
tionally, we developed novel methods to analyze, process, and curate source code
using large language models (LLMs).

– We employ a fine-tuned GraphCodeBERT model for function-level vulnerabil-
ity prediction, as it effectively captures both syntactic and semantic similarities
within the code.

– Our experimental results demonstrate that the proposed FuncVul model outper-
forms state-of-the-art baselines, achieving an average accuracy of 89.39% and an
F1 score of 88.94% across the six datasets.

– Additionally, we show that the FuncVul model is highly generic, capable of han-
dling diverse code chunks and identifying new vulnerable patterns effectively.

The remaining part of the paper is organized as follows.We briefly describe the rel-
evant existing works in Section 2.Then, we discuss the problem statement in Section 3.
We introduce our proposed model in Section 4. After that, we present our experiments
in Section 5. Finally, we conclude the paper with potential future research directions
in Section 6.

2 Existing Works

Software vulnerability detection is a significant challenge for security researchers in
both academia and industry. Researcher classified vulnerability research in two direc-
tions: vulnerability dataset creation and vulnerability sections. This section reviews
related work on function label vulnerability detection.

Hanif et al. [9] presented a deep learning framework named VulBERTa to identify
security vulnerabilities in source code. It leverages a RoBERTa model pre-trained with
a specialized tokenization pipeline on real-world open-source C/C++ code considering
code syntax and semantics.Warschinski et al. [29] proposed VUDENC, a deep learning
model for detecting vulnerabilities in Python code, combining Word2Vec embeddings
with an LSTM network to classify vulnerable code sequences. Yuan et al.[34] pro-
posed a hybrid approach combining GRU-based serialized features and Gated Graph
Recurrent Network (GGRN0 based structural features, using a Random Forest model to
improve vulnerability identification under data scarcity and imbalance. Vo et al. [25]
showed that deep pre-trained models offer limited gains over a TF-IDF baseline for
vulnerability type identification and proposed a lightweight enhancement to identify
key tokens for each vulnerability type.



Wang et al. [28] developed ReposVul, a repository-level vulnerability dataset built
using an automated framework with modules for untangling fixes, extracting multi-
level dependencies, and filtering outdated patches. Wei et al. [30] proposed a super-
vised framework that utilised pre-trained context-aware embeddings (ELMo) and a Bi-
LSTM layer to capture deep contextual representations and learn long-range code de-
pendencies in source code to detect function vulnerability. Li et al. proposedV ulPecker
[15], an automated tool to identify known vulnerabilities within software source code.
It utilises features derived from patches and employs a variety of code-similarity al-
gorithms. Fu et al. [6] designed a Transformer-based line-level vulnerability predic-
tion method named LineV ul to detect vulnerabilities in C/C++ codes. Tran et al.
[23] implement DetectVul which is a statement-level vulnerability detection approach
for Python that uses self-attention to learn patterns directly from raw code, avoiding
graph extraction. Li et al.[16] proposed VulDeePecker a code gadget-based model that
represents programs as vectors by grouping semantically related, though not neces-
sarily consecutive, lines of code.

GNN-based methods have demonstrated state-of-the-art performance in vulnera-
bility detection by leveraging graph representations of source code. Hin et al. [10] in-
troduced a deep learning framework called LineV D for statement-level vulnerability
detection in C/C++ codes that combines GNNs and transformers. Notable approaches
include Devign [35], which uses graph-level classification with semantic code rep-
resentations, and GGNN-based methods [27] that capture data, control, and call de-
pendencies with majority voting from traditional classifiers. Li et al. [13] introduced
a feature-attentive GCN on program dependency graphs, while VulCNN [32] trans-
formed source code into semantic-preserving images. ReGVD [19] utilised token em-
beddings from pre-trained models, residual connections, and pooling techniques to
enhance graph representations. AMPLE [31] improved performance by refining graph
structures and capturing distant node relations. Islam et al. [11] introduced Poacher
Flow edges to bridge static and dynamic analyses and manage long-range dependen-
cies for richer vulnerability detection.

Large pre-trained language models like BERT and GPT have become a dominant
learning paradigm, achieving notable success in computer vision and NLP by lever-
aging semantic knowledge from large-scale corpora. This pre-trained and fine-tuned
approach has also been extended to code-related tasks with models like RoBERTa [17],
CodeBERT [5], and GraphCodeBERT [7], significantly improving applications such
as automated program repair [33] and code vulnerability detection. All these works
primarily focus on either software package vulnerabilities or function-level vulner-
abilities. Although the LineVul [6] model predicts vulnerabilities at the line level, it
may still miss certain vulnerabilities due to overlooked semantic patterns. They fail
to identify the number of vulnerable lines within the function code or pinpoint the
exact location of the vulnerabilities. Therefore, research that can effectively address
function-level vulnerabilities is critically needed.

Now a days, LLM are used in different domains, including vulnerability detec-
tion. Lu et al. [18] proposed GRACE, a vulnerability detection framework that en-
hances LLM-based analysis by incorporating code’s graph structural information and
in-context learning. Akuthota et al. [1] utilised LLM for the purpose of identifying and



monitoring vulnerabilities. Meanwhile, Guo et al. [8] explored the ability of LLMs to
detect vulnerabilities in source code by evaluating models outside their typical uses to
assess their potential in cybersecurity tasks. However, our proposed model is different
than the existing models, where we use LLM to generate datasets and use code based
fine tune model to detect vulnerability.

2.1 Differences with Previous Works

Our proposed function-level vulnerability detection model introduces several key ad-
vancements over state-of-the-art techniques. First, unlike existing approaches that
analyse entire functions or line-based vulnerability detection, our model focuses on
code chunk-based vulnerability detection in C/C++ and Python. This approach sig-
nificantly reduces the time required by experts or developers to address vulnerabili-
ties. Second, our code chunk-based method enables the detection of multiple vulner-
abilities within a function, whereas existing models typically provide only a binary
assessment of whether a function is vulnerable. Third, our model leverages a large
language model that is capable of supporting code chunks from different program-
ming languages, eliminating the need for language-specific preprocessing required by
existing methods. Finally, we utilise the pre-trained GraphCodeBERT model to build
a function-level vulnerability detection framework that effectively captures both syn-
tactic and semantic features, surpassing traditional approaches that rely solely on code
similarity.

3 Preliminaries & Problem Statement

In this section, we first present the key preliminary definitions and then describe the
problem statement.

Definition 1 (Function Code Chunk) : A Function Code Chunk (FC) refers to a con-
tiguous segment of lines extracted from a function’s source code, typically centered around
a code change or edit. It includes a few lines before and after the change to preserve local
context for vulnerability analysis.

Definition 2 (Generic Code Chunk) : Generic Code Chunk represents the segments
of code where variable names, function names, and other identifiers have been replaced
with generic placeholders (e.g.,F1,F2,…,Fn for functions and V1, V2, …, Vn for variables).

This generic code chunk transformation standardizes the code, removing specific nam-
ing conventions or contextual biases, and ensures a consistent format that focuses on
structural and syntactic patterns.

Definition 3 (3-Line Extended-Based Code Chunk) : 3-Line Extended-Based Code
Chunk refers to a segment of code centered on an edited line (or lines), augmented with
three preceding and three succeeding lines from the edited lines in the function.



This design captures the semantic context of code for vulnerability detection. Gen-
erally, the code edited lines is fewer than 10 lines. If the edited length is more than 10
lines, we consider edited lines only to make the code chunk. Thus, we can define the
code chunk as follows.

Code Chunk =

{
{Li | i ∈ [min(E)− 3,max(E) + 3]} if |E| ≤ 10

E if |E| > 10
(1)

whereLi represents the ith line of the function code,min(E) andmax(E) refer start-
ing and ending edited lines, respectively.This code chunk approach provides a contex-
tualized view of the code, enabling better understanding and analysis of the detected
lines within their surrounding context.

ProblemDefinition: Given a C/C++ or Python based software patch information
based modified function code chunk (fci). The main goal of this research work is
to develop a vulnerable code detector V which can identify patch-modified codes as
vulnerable or non-vulnerable. It can be defined as follows.

V(fci) =

{
1, if fci is vulnerable,
0, non-vulnerable

(2)

To solve the problem, we propose 3-line extended based code chunk to detect func-
tion label vulnerability using code-based fine-tune models in C/C++ or Python code.

4 Proposed Model

In this paper, we propose an effective function-level vulnerability detection framework
that leverages large language models (LLMs) alongside specialized code vulnerability
detection techniques. To generate ground truth data, we utilise two distinct types of
LLM prompts and employ an additional prompt to transform code chunks into generic
code chunks. Subsequently, we fine-tune the prediction models using advanced code
vulnerability identification techniques. The next two subsections provide a detailed
explanation of the data generation process and the proposed FuncVul models.

4.1 Data Generation

Labeling data is critical for training any prediction model, yet identifying vulnerable
data often poses significant challenges. In this study, we construct two types of ground
truth datasets: code chunks and generic code chunks, derived from function source
code and corresponding patch information. Figure 1 illustrates the processes involved
in generating these datasets. Detailed descriptions of the ground truth generation for
both code chunks and generic code chunks are provided in the following subsections.

In this study, we focus on function code chunks rather than full function code for
two key reasons. First, vulnerabilities often exist within just one or two lines of code
inside a function, and models trained on entire functions may struggle to pinpoint
these specific vulnerable lines that potentially leading to inaccurate predictions. Sec-
ond, using code chunks reduces the search space and minimizes the number of tokens



Fig. 1: Code Checks and Generic Code Chunks Label Data Generation.

processed by the tokenizer, enabling the fine-tuned model to more effectively distin-
guish between vulnerable and non-vulnerable patterns.

In this work, we generate code chunks by leveraging function source code and
patch information. Patch information highlights the modifications made to the code,
marking added lines with a plus sign (+) and removed lines with a minus sign (-) at
the beginning of each line. Additionally, it includes a chunk header that specifies the
location and range of the changes, indicating where the modifications begin and the
consequences of changes using line numbers.

The algorithm 1 extracts relevant code chunk segments from a function based on
patch information. It first parses the patch details to retrieve the chunk header, re-
moved lines, and added lines in line 1. Next, it extracts the starting lines and corre-
sponding modification ranges for both the removed and added lines in line 2. Context
parameters are initialized to include three lines before and after the modified region
(for three line strategy) in line 3. The algorithm then initialises indices of the removed
lines within the function, recording them in a list called modified index in line 4. If
no matches are found, it returns an empty result in line 9. For matched lines, the al-
gorithm determines the bounds of the code chunk using a heuristic for small regions
(≤10 lines) to include additional context, or directly uses the minimum and maximum
indices for larger regions in lines 11-16. Finally, it extracts and returns the code chunk
based on the calculated bounds in line 16 and line 17, respectively.

Generic Code Chunks: Generic code chunk converts code chunks to a generic
format. In this work, we have transformed function code into a generic format by re-
naming functions as F1, F2, …, Fm and variables as v1, v2, …, vn. The key advantage



Algorithm 1: Find Function Code Chunk (F, P)
Data: F: Function source code; P: Patch information.
Result: FC: Extracted function code chunk.

1 chunk header, removed lines, added lines← P
2 removed start line, removed line range, added start line, added line range←

chunk header
3 before lines, after lines = 3, 3
4 modified index← {}
5 for index, line ∈ enumerate(F[removed start line : removed start line +

removed line range]) do
6 if line ∈ removed lines then
7 modified index.append(removed start line + index)

8 if modified index == {} then
9 return {}

10 if max(modified index) - min(modified index) ≤ 10 then
11 start index← max(modified index[0]) - before lines, 0)
12 end index←min(max(modified index[-1]) + after lines + 1, len(F))
13 else
14 start index← min(modified index)
15 end index← max(modified index)
16 Extract function code chunk FC = F[start index:end index]
17 return FC;

lies in mitigating the variations introduced by different developers who often use di-
verse functions and variable names to achieve the same functionality.The LLM prompt
designed to standardize code chunks by converting them into their generic format is
presented in Appendix A.1.

In this work, we leverage the Gemini 1.5 Pro [22] LLM model to efficiently trans-
form generic code chunks. A key advantage of utilizing this LLM model is its ability
to seamlessly convert code across various programming languages, including C/C++,
Java, and Python.

Vulnerable and Non-Vulnerable Samples: Our primary objective is to detect vul-
nerabilities using function-level code, whether in its original form as code chunks
or transformed into generic code chunks. To develop a robust vulnerability detec-
tion model, we require a ground truth dataset comprising both vulnerable and non-
vulnerable samples. To construct this dataset, we adopt a dual-strategy approach that
combines code-based heuristics with predictions from a LLM. This methodology en-
hances the ability to identify functions with a higher likelihood of containing vulner-
abilities, ensuring greater confidence in the dataset’s accuracy.

Property 1 Code-Based Heuristic (Patch Modification Hypothesis): We hypoth-
esize that functions containing only a single modification within a CVE patch are more
likely to contain the vulnerability.This hypothesis stems from the assumption that smaller,



localized patches often address specific vulnerabilities directly. This property does not
guarantee that the code chunks will always be vulnerable, as developers may modify
patches to enhance code quality.

Our study consists of clean and localized vulnerability cases from OSV.dev, where
our empirical study shows 80.04% (6515 out of 8139) of CVEs have a single Git commit
patch.Therefore, we restricted our study to single-patchCVEs, aligningwith VFCFinder
[4]. Multiple modifications make it unclear which change corresponds to the vulner-
ability. For dataset reliability, we excluded multifile patch information. Each modified
patch contains chunk headers with deleted and added lines between code versions.
The before version shows the vulnerable state, while the after version shows the fixed
code.

Property 2 LLM-Based Heuristic (Vulnerable Line Detection): We utilise a LLM
Gemini-1.5 Pro [22] to predict vulnerable lines within code chunks.This model is presented
with either (i) the code chunk alone or (ii) the code chunk alongside its corresponding CVE
description. This dual input strategy aims to leverage both code structure and vulnerabil-
ity context for improved ground vulnerability predictions. Appendix A.2 shows the two
different prompts that we use in this work to identify vulnerable samples.

Vulnerable Ground Truth: A code chunk is classified as vulnerable (class label: 1)
and included in the ground truth dataset if it satisfies the following criteria:

– Property 1 must be fulfilled.
– According to Property 2, the LLM response for vul lines is not None.
– There is at least one overlapping line between the vul lines identified by the LLM

and the deleted lines in the patch modification.

If any of the above criteria are not met, the code chunk is labeled as Unknown (see
Figure 1).

Non-Vulnerable Ground Truth:After the labeling of vulnerable code chunks, we
extract fixed code from the after version using patchmodification details and construct
non-vulnerable code chunk samples. Additionally, we include random 5 to 10 lines of
code from fixed functions in the after version. These samples are classified as non-
vulnerable (class label: 0).

Code Chunks and Generic Code Chunks Label Data: Figure 1 illustrates the pro-
cess of generating labeled data for code chunks and generic code chunks.These chunks
are constructed using two types of LLM prompts (detailed in Table 6).Therefore, based
on two LLM prompts and code chunks and generic code chunks, we generate four label
datasets (Dataset 1, Dataset 2, Dataset 3 and Dataset 4) that shown in dataset section
(c.f. Section 5.1) in Table 1.

We further created two additional datasets, Dataset 5 and Dataset 6 (c.f. Section
5.1) , by providing the full function code to a large language model (LLM) to identify
vulnerable lines. If the LLM successfully detects at least one vulnerable line, we apply
the N -line code chunking approach to generate positive samples. The same strategy
used for generating negative samples in Datasets 1–4 is applied here for consistency.



4.2 Proposed FuncVul Model
Figure 2 provides an overview of the architecture for the proposed FuncVul model,
designed to detect function-level vulnerabilities effectively. The process begins with
the input data, which consists of either code chunks or generic code chunks. These in-
puts are preprocessed and split into two subsets: 80% for training and 20% for testing.
The training data is then tokenized using the tokenizer from the pre-trained Graph-
CodeBERT model. This tokenization step transforms the raw code chunks into nu-
merical representations that encode the syntactic and semantic features of the code.
Subsequently, the tokenized training data is passed through the pre-trained Graph-
CodeBERT model, which has been fine-tuned to capture rich features specific to pro-
gramming languages.

Fig. 2: Proposed code chunk based function vulnerability detection model (FuncVul) architec-
ture.

GraphCodeBERT [7] is a pre-trained model for programming languages that in-
corporates the semantic structure of code, focusing on data flow rather than abstract
syntax trees (AST). Data flow represents variable relationships through a graph, sim-
plifying complexity and enhancing efficiency. The model introduces two structure-
aware pre-training tasks: data flow edge prediction to learn code structure representa-
tion and variable alignment to bridge source code and data flow representations. Built
on a Transformer [24] architecture, GraphCodeBERT extends it with a graph-guided
masked attention mechanism, enabling it to effectively integrate code structure and
improves code representation learning.

In Figure 2, we illustrate the fine-tuning process of the GraphCodeBERT model
using our generated code chunk or generic code chunk data. After fine-tuning, the
GraphCodeBERT model builds a new model and tokeniser, which we refer to as the
FuncVul model and FuncVul tokeniser, respectively. To evaluate the model’s perfor-
mance on the test data, the test code is first tokenised using the FuncVul tokeniser.
The tokenised code is then fed into the FuncVul model, which predicts whether the
code chunk is vulnerable or non-vulnerable.



4.3 FuncVul algorithm

Algorithm 2: FuncVul Model (Data)
Data: Data: Code chunks or Generic code chunks data
Result: FuncVul modelM and FuncVul tokeniser T

1 Training Phase:
2 Split Data into train data (80%) and test data (20%)
3 MG , BG ← Load GraphCodeBERT tokeniser and model
4 train tokenised code← Tokenize train data using GraphCodeBERT tokenizer
TG (test data).

5 Set training parameters (e.g., epochs, batch size, logging steps, learning rate).
6 M, B ← Train GraphCodeBERT using train dataMG (train tokenised code) and

parameters and generate new model and tokeniser
7 Save the FuncVul modelM and FuncVul tokenizer.
8 Testing Phase:
9 test tokenised code← Tokenize test data using FuncVul tokenizer T (test data).

10 predict label← Predict vulnerabilities (vulnerable or non-vulnerable) using FuncVul
modelM (test tokenised code).

11 Evaluate the model’s performance on the test data label and predict label.
12 returnM, T

The algorithm 2 presents the training and testing process for the function-level
vulnerability detection model, FuncVul. During the training phase, the data is split
into training (80%) and testing (20%) sets (line 2). Next, the GraphCodeBERT tokenizer
and model are loaded (line 3), and the training data is tokenized using the GraphCode-
BERT tokenizer to create train tokenised code (line 4). Training parameters, such as
epochs, batch size, and learning rate, are configured (line 5). Using the tokenized train-
ing data, the GraphCodeBERT model is fine-tuned to produce the FuncVul model M
and tokenizer T (line 6). These are saved for future use (line 7).

In the testing phase, the test data is tokenized using the FuncVul tokenizer T
(line 9). The FuncVul model M then predicts vulnerability labels for the tokenized
test data (line 10). Model performance is evaluated by comparing the predicted labels
with the ground truth labels from the test data (line 11). Finally, the algorithm returns
the FuncVul model and tokenizer (line 12).

5 Experiments

5.1 Experimental Setup

All experiments in this paper were conducted using Python on a MacBook Pro with
an Apple M3 processor and 24GB of RAM. For the FuncVul implementation, a batch
size of 8 was used with a chunk code embedding vector length of 512. The model was
trained for 3 epochs with 50 warmup steps, a weight decay of 0.05, and automatic
reloading of the best model at the end.



Datasets: In this research work, we generate six datasets.The dataset generation pro-
cess is discussed in detail in the corresponding section (c.f. Section 4.1). The first four
datasets were created by combining patch information (removed lines) with lines de-
tected by the LLM, ensuring that at least one common line is present between the two.
In contrast, datasets 5 and 6 were generated solely using code chunks identified by
the LLM, without incorporating any removed line information. For identifying vul-
nerable lines using LLMs, we employ two prompts: one that utilises only the code
information and another that incorporates both the code and its description. Table 1
provides details of six datasets, including the code type, and the number of vulnerable
and non-vulnerable samples.

Dataset Prompt Code Type Vulnerable Defined By Vulnerable Non-vulnerable

1 Code + Description Code Chunk LLM + Patch Information 1810 (43.4%) 2357 (56.6%)

2 Code Code Chunk LLM + Patch Information 2120 (42.6%) 2851 (57.4%)

3 Code + Description Generic Code Chunk LLM + Patch Information 1810 (43.4%) 2357 (56.6%)

4 Code Generic Code Chunk LLM + Patch Information 2120 (42.6%) 2851 (57.4%)

5 Code + Description Code Chunk LLM 3169 (50%) 3169 (50%)

6 Code Code Chunk LLM 6041 (50%) 6041 (50%)

Table 1: Details of various datasets.

Baselines: We compare our proposed FuncVulmodel with five baselines:CodeBERT
[5], CustomVulBERTa [9], BERT [12], VUDENC [29] and LineVul [6]. These base-
lines’ detailed descriptions are given in Appendix A.3.

Evaluation Metrics: In the prediction models analyses, we applied various evalu-
ation metrics indicating the model performances. Our main goal is to predict code
vulnerability. Thus, we evaluate our results using Accuracy, Precision, Recall, F1-score
and Matthews Correlation Coefficient (MCC). The details of these evaluation metrics
are defined in Appendix A.4.

5.2 Results Analysis

To evaluate the proposed model FuncVul performance, we run a set of experiments to
answer our six research questions.

FuncVul Model Performance (RQ1): We compare our proposed FuncVul model
against five baseline methods across six benchmark datasets. As shown in Table 2,
FuncVul consistently outperforms all other models, ranking first in most evaluation
metrics—including F1-Score, Accuracy, Precision, andMCC—across all datasets. Specif-
ically, it achieves the highest score in 25 out of 30 cases and ranks second in two ad-
ditional cases. The LineVul model also demonstrates strong performance, obtaining



Dataset Model Accuracy Precision Recall F1-Score MCC

CodeBERT 0.8707±0.00020 0.7928±0.0216 0.9505±0.0269 0.8641±0.0095 (5) 0.7683±0.0283
1 CustomVulBERTa 0.8648±0.0060 0.7974±0.0224 0.9816±0.204 0.8816±0.0091 (3) 0.7898±0.0102

BERT 0.8812±0.0103 0.8067±0.0168 0.9548±0.0443 0.8739±0.0167 (4) 0.7742±0.0282
VUDENC 0.8598±0.0111 0.8058±0.0090 0.8560±0.0380 0.8404±0.0225 (6) 0.7166±0.0241
LineVul 0.8874±0.0074 0.7937±0.0174 0.9802±0.0.0 0.8849±0.0708 (2) 0.7976±0.0118
FuncVul 0.8906±0.0042 0.8108±0.0136 0.9840±0.0206 0.8888±0.0055 (1) 0.9477±0.0025

CodeBERT 0.8950±0.0117 0.8151±0.0315 0.9777±0.0322 0.8882±0.0111 (2) 0.8039±0.0183
2 CustomVulBERTa 0.8908±0.0130 0.7975±0.0232 0.9976±0.0053 0.8863±0.0132 (3) 0.8022±0.0200

BERT 0.8902±0.0119 0.8136±0.0241 0.9650±0.0361 0.8822±0.0126 (5) 0.7919±0.0244
VUDENC 0.8680±0.0140 0.8463±0.0183 0.8440±0.0301 0.8449±0.0183 (6) 0.7304±0.0295
LineVul 0.8900±0.0120 0.7951±0.0202 1.0±0.0 0.8857±0.0126 (4) 0.8016±0.0193
FuncVul 0.9022±0.0157 0.8456±0.0212 0.9443±0.0282 0.8917±0.0178 (1) 0.8947±0.0454

CodeBERT 0.8663±0.0176 0.7856±0.0202 0.9512±0.0346 0.8602±0.0205 (4) 0.7545±0.0096
3 CustomVulBERTa 0.8675±0.0114 0.7793±0.0210 0.9682±0.0141 0.8634±0.0155 (2) 0.7544±0.0.021

BERT 0.8054±0.0248 0.7762±0.0143 0.7764±0.0459 0.7758±0.0247 (5) 0.6043±0.0521
VUDENC 0.7485±0.0199 0.7153±0.0258 0.6981±0.0306 0.7063±0.0244 (6) 0.4867±0.0420
LineVul 0.8656±0.0121 0.7750±0.0240 0.9721±0.0121 0.8622±0.0156 (3) 0.7527±0.0.0192
FuncVul 0.8723±0.0114 0.7924±0.0245 0.9544±0.0183 0.8657±0.0174 (1) 0.8825±0.0577

CodeBERT 0.8735±0.0141 0.7940±0.0281 0.9526±0.0254 0.8654±0.0140 (2) 0.7602±0.0274
4 CustomVulBERTa 0.8684±0.0133 0.7817±0.0206 0.9600±0.0124 0.8616±0.0141 (3) 0.7531±0.0.0239

BERT 0.80677±0.0158 0.7712±0.0285 0.7784±0.0288 0.7743±0.0198 (5) 0.6058±0.0317
VUDENC 0.7658±0.0155 0.7238±0.0253 0.7302±0.0401 0.7263±0.0233 (6) 0.5225±0.0321
LineVul 0.8656±0.0163 0.7759±0.0264 0.9642± 0.0092 0.8596±0.0162 (4) 0.7500± 0.0270
FuncVul 0.8797±0.0118 0.8077±0.0200 0.9426±0.0182 0.8698±0.0134 (1) 0.7982±0.0470

CodeBERT 0.8914±0.0125 0.8914±0.0136 0.9148±0.0329 0.9006±0.0131 (2) 0.8035±0.0253
5 CustomVulBERTa 0.8905±0.0147 0.8530±0.0244 0.9446±0.0208 0.8962±0.0130 (3) 0.7860±0.0278

BERT 0.5897±0.0856 0.7902±0.1950 0.3860±0.3342 0.3997±0.3296 (6) 0.2007±0.01448
VUDENC 0.8034±0.0135 0.7996±0.0171 0.8097±0.0152 0.8045±0.0145 (5) 0.6064±0.0269
LineVul 0.8509±0.0199 0.7895±0.0358 0.9596±0.0306 0.8655±0.0178 (4) 0.7205±0.0340
FuncVul 0.9004±0.0116 0.8934±0.0130 0.9096±0.0154 0.9013±0.0111 (1) 0.9556±0.0041

CodeBERT 0.8984±0.0071 0.9007±0.0187 0.9330±0.0207 0.9155±0.0073 (2) 0.8377±0.0137
6 CustomVulBERTa 0.8898±0.0170 0.8434±0.0416 0.9614±0.0269 0.8975±0.0124 (3) 0.7900±0.0242

BERT 0.7115±0.0839 0.7069±0.0959 0.7946±0.1116 0.7371±0.0258 (5) 0.4465±0.1162
VUDENC 0.8290±0.0074 0.8196±0.0161 0.8443±0.0145 0.8316±0.0073 (4) 0.6585±0.0144
LineVul 0.7951±0.1676 0.6455±0.0.3612 0.7785±0.4355 0.7056±0.3944 (6) 0.7570±0.006
FuncVul 0.9184±0.0053 0.9056±0.0117 0.9343±0.0116 0.9196±0.0057 (1) 0.9619±0.0031

Table 2: Comparison of FuncVul and baselines across six datasets, with bold for best scores,
underline for second-best, and bracketed numbers indicating F1-score rankings (1 = best, 6 =
worst).

the highest Recall in four cases and second-best results in three others. CodeBERT
and CustomVulBERTa exhibit competitive results in certain settings, with CodeBERT
achieving the second-highest score in 18 cases. CustomVulBERTa achieves seven second-
best results and one best-case performance. All experiments are conducted using an
80/20 train-test split, and results are reported as the average of five-fold cross-validation.
To determine the best model, we rank F1-scores due to their balanced representation
of Precision and Recall. Overall, Table 2 confirms that FuncVul delivers the most con-
sistent and superior performance, effectively answering RQ1.



Code Chunks vs Full Function based Results Analysis (RQ2): Table 3(a) com-
pares the performance of the Full Function and Code Chunk approaches on Dataset 1.
The Code Chunk method significantly outperforms the Full Function approach across
all metrics. It improves accuracy by 53.9%, precision by 42.8%, recall by 35.5%, and
F1-score by 42.0%. We also gets the same kinds of results on Dataset 2 in figure 3(b).
In this case our proposed code chunk based model improves accuracy by 35.22%, pre-
cision by 28.16%, recall by 35.59% and F1-score by 32.26%. These results highlight that

(a) Dataset 1 (b) Dataset 2

Fig. 3: Comparison between our proposed code chunk based results with full function code based
results.

the code chunk approach significantly enhances the model’s capability for vulnerabil-
ity detection than the full-function based approach. These findings effectively address
our research question RQ2.

Generic Code Chunks based Results Analysis (RQ3): In this work, we construct
datasets based on code chunk and generic code chunk methodologies using the same
data. Figure 4(a) presents a comparative analysis between code chunk-based Dataset
1 and generic code chunk-based Dataset 3 results on FuncVul method. The results
demonstrate that the code chunk based results consistently outperforms generic code
across all evaluation metrics, achieving improvements of 2% in Accuracy, 1.84% in
Precision, 2.96% in Recall, and 1.9% in F1-score. Similarly, Figure 4(b) compares Code

Fig. 4: Comparison between our proposed code chunk based results with generic code chunk
based results.



chunk-based Dataset 2 with generic Code Chunk-based Dataset 4, showing improve-
ments of 2.25% in Accuracy, 3.79% in Precision, and 2.19% in F1-score, with a modest
0.17% gain in Recall. These findings underscore the superior effectiveness and adapt-
ability of the Code Chunk approach, validating RQ3.

Effectiveness of Identifying new CVEs and new Project CVEs vulnerabilities
(RQ4): Previous results show vulnerability detection outcomes from five-fold cross-
validation. However, Figure 1 shows many vulnerable packages remain undetected by
LLMDetect, marked as ’Unknown’. To evaluate this unknown data, we created two test
datasets. The first contains CVEs absent from training data, while the second includes
code from different project IDs than the training data. We trained our proposed model
FuncVul using 100% data on Dataset 2. Table 3 shows the two test case data in details.

Case Type Vulnerable Non-Vulnerable
Test Case 1 New CVSs 1245 1753
Test Case 2 New Project ID 179 280

Table 3: New CVEs and new project ID-based test data.

Table 4 shows that the FuncVul model achieves an accuracy of 81.95% in Test Case
1 and 76.69% in Test Case 2. This indicates that the model can correctly identify 81.95%
of code chunks that were previously unexplored during dataset 2 construction (labeled
as Unknown in Figure 1). The FuncVul model shows strong capability in detecting vul-
nerabilities, particularly in recall 90.20%. These results support the model’s robustness
in identifying unknown vulnerabilities, addressing the objectives of RQ4.

Case Model Accuracy Precision Recall F1-Score FP FN

Test Case 1 FuncVul 0.8195 0.7283 0.9020 0.8059 419 122

Test Case 2 FuncVul 0.7669 0.6552 0.8492 0.7397 80 27

Table 4: New CVEs and new project ID based prediction results for various model on Dataset 2.

Impact of Line Numbers to Create Code Chunks (RQ5): Our primary objective is
to generate concise code chunks highlighting vulnerable patterns. We adopted ”3-line
extended based code chunk”, including three lines before and after a detected vul-
nerable line. To validate this approach, we tested code chunks extended by different
line numbers—1, 5, 7, 9, 10, 15, 20, and 25—and assessed their performance with our
FuncVul model. Results show the 3-line extended code chunk outperforms other con-
figurations in most metrics. Figure 5 (a) shows highest accuracy for 3-line extended



(a) Accuracy (b) Precision (c) Recall (d) F1 Score

Fig. 5: Impacts of code chunk length on dataset 6.

chunks on Dataset 6, while Figure 5 (b) demonstrates superior precision for this strat-
egy. Although the recall score, shown in Figure 5 (c), is highest for 7-line extended
code chunks, the 3-line extended approach ranks second. Figure 5 (d) shows the F1
score, balancing recall and precision, confirming that 3-line chunks provide the best
performance. Larger chunks make it difficult to identify vulnerable code effectively,
while the 3-line strategy’s average chunk length of 6.2 lines provides optimal balance
between context and conciseness for detecting vulnerable patterns.

5.3 Detection of Multiple Vulnerabilities Within Function Code (RQ6):

In this work, we use code chunk based data for model built that can split one single
function in multiple code chunk. Thus, the proposed model is capable of detecting
multiple vulnerabilities within a single function’s code. By analyzing smaller, context-
rich segments, the model effectively captures various vulnerability patterns, enabling
comprehensive detection across different parts of the function.

6 Conclusion

In this paper, we present FuncVul, a novel model for function-level vulnerability detec-
tion that leverages function code chunks and the pre-trained GraphCodeBERT model.
Unlike existing approaches, FuncVul not only identifies whether a function is vul-
nerable but also detects the specific number of vulnerable code chunks, significantly
reducing the time required by developers or experts to address vulnerabilities. Exper-
imental results demonstrate that FuncVul outperforms baseline models on both code
chunk and generic code chunk datasets. Additionally, our analysis reveals that datasets
based on three-line code chunks from large languagemodels yield higher accuracy and
F1-scores compared to datasets where patch information is derived by removing lines
of code. Furthermore, we demonstrate that our dataset can be generalized using large
language models, resulting in enhanced model performance.

This study focuses on vulnerability detection strategies, without consideringmulti-
class detection since vulnerabilities have varying risk levels. Future work will extend
to multi-class vulnerability detection to address risk variations. Currently, we identify
vulnerabilities in C/C++ and Python code, with plans to expand to other programming
languages.
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A Appendix

A.1 Generic Code Conversion LLM Prompt

Generic code chunks converts code chunks in generic format. Here, we use the fol-
lowing LLM to convert the generic code chunk as described in Table 5. Table 5 also
shows the one example of code chunk and converted generic code chunk based on the
proposed LLM generic prompt.

Description of Generic Prompt

Here is the function code chunk: {code chunk}
Please convert the code chunk by renaming functions to F1, F2, ..., FN and variables to
v1, v2, ..., vn.
Return the converted code in a variable named generic code.

Example

Code Chunk

goto trunc;
if (length < alen)

goto trunc;
if (!bgp attr print(ndo, atype, p, alen))

goto trunc;
p += alen;
len -= alen;

Generic Code Chunk

goto F1;
if (v1 < v2)

goto F1;
if (!F2(v3, v4, v5, v2))

goto F1;
v5 += v2;
v6 -= v2;

Table 5: Prompt and Example for Transforming Code Chunks into Generic Code Chunk

A.2 Vulnerable Samples detection LLM Prompts

In this paper, we construct six datasets using two distinct LLM prompts. Figure 6 pro-
vides a detailed overview of these prompts—one utilizing only the code and the other
combining a description with the code.



Prompt Type Input Context
Code Only Given the following function code: {code}
Code + Description Given the following function code: {code}

And the associated CVE description: {desc}
Task: Extract the following information:

1. Identify the lines of code that contain vulnerabilities. Return these lines in a list of
string named as line code. If no vulnerable lines are found, return [’None’]. Ensure the
list is formatted with items separated by commas and enclosed in square brackets.

2. Determine the line numbers of vulnerable code. Return these line numbers in a list of
integer named as vul lines. If no such lines exist, return [’None’].

3. List the affected vulnerability categories. Return these in a list of string named as
vul category. If no categories are affected, return [’None’].

Please provide the output in three keys as dictionary format: line code, vul lines, and
vul category. Do not need an explanation.

Table 6: LLM prompts for detecting vulnerable samples with different input settings.

A.3 Details of Baselines

We compare our proposed FuncVul model with five baselines that are as follows.

– CodeBERT [5]: CodeBERT is a pre-trained model for understanding and gener-
ating both natural language and programming code.

– CustomVulBERTa: CustomVulBERTa is a fine-tuned version of VulBERTa [9],
a RoBERTa-based model pre-trained on real-world C/C++ code, adapted to detect
security vulnerabilities and used as a baseline in our experiments.

– BERT: BERT [12] is a pretrained deep bidirectional transformer model that uses
masked languagemodeling to capture context from both directions, distinguishing
it from unidirectional or shallow concatenation-based approaches.

– VUDENC: VUDENC [29] is a deep learning tool designed to detect vulnerabilities
in real-world Python code. It uses aword2vecmodel to generate vector representa-
tions of semantically similar code tokens and employs LSTM networks to classify
vulnerable code sequences.

– LineVul: LineVul [6] is a Transformer-based fine-grained line-level vulnerability
prediction model.

A.4 Details of Evaluation Metrics

To evaluate the performance of our proposedmodel, we employwidely used prediction
evaluation metrics, as outlined below.

– Accuracy: It measures the overall correctness of a model in predicting both code
vulnerabilities and non-vulnerabilities. Accuracy = TP+TN

TP+FP+TN+FN
– Precision: It measures the proportion of true code vulnerabilities to the total

number of code vulnerabilities that have been predicted as vulnerabilities by the
model: Precision = TP

TP+FP



– Recall: It measures the proportion of true vulnerabilities detected by a model to
the total number of code vulnerabilities in the dataset: Recall = TP

TP+FN
– F1-Score: It is the harmonic mean of precision and recall:

F1-Score = 2∗Precision∗Recall
Precision+Recall

– Matthews Correlation Coefficient (MCC):MCC is a robust metric that reflects
balanced performance across all confusion matrix categories and is particularly
effective for evaluating models on imbalanced datasets.
MCC = TP ·TN−FP ·FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)


