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Abstract: A modification of the TLS protocol is presented, using our implementation of the Quantum Key Distribution
(QKD) standard ETSI GS QKD 014 v1.1.1. We rely on the Rustls library for this. The TLS protocol is
modified while maintaining backward compatibility on the client and server side. We thus wish to participate
in the effort to generalize the use of QKD on the Internet. We used our protocol for a video conference
call encrypted by QKD. Finally, we analyze the performance of our protocol, comparing the time needed to
establish a handshake to that of TLS 1.3.

1 INTRODUCTION

Quantum computers threaten current public key cryp-
tosystems like RSA and ECC, which are expected to
be broken once such machines are operational (Bhatia
and Ramkumar, 2020). This has prompted concerns
about “harvest now, decrypt later” attacks, where ad-
versaries store encrypted data to decrypt in the fu-
ture (Paul, 2022).

Post-quantum cryptography offers alternatives
based on quantum-resistant problems, but new at-
tacks continue to emerge (Kaluderovic, 2022), raising
doubts about their long-term viability. While PKC is
still standard for key exchange, we propose replacing
it with Quantum Key Distribution (QKD).

QKD enables theoretically perfect forward se-
crecy by using quantum principles—specifically the
no-cloning theorem— to detect eavesdropping in real
time (Zygelman, 2018). Keys are exchanged using
qubits (typically single photons), and any interception
alters their state, alerting the participants. Authentica-
tion remains reliant on classical PKC.

Though offering strong security guarantees, QKD
faces practical challenges. Device imperfections may
allow attacks (Huang et al., 2019), and the need
for dedicated infrastructure limits its scalability. It’s
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best suited for high-security environments like inter-
datacenter links or governmental networks.

Due to fiber loss and the no-cloning theorem,
QKD is limited to a few hundred kilometers (Huttner
et al., 2022). Multipath QKD protocols address this
with trusted intermediaries (Liu et al., 2024; Prévost
et al., 2025). ETSI GS QKD 014 v1.1.1 defines a stan-
dard interface for managing QKD keys (ETSI, 2019),
which we previously verified with ProVerif under spe-
cific assumptions (Prévost et al., 2024).

We present a practical implementation of this
standard by integrating QKD into TLS. Our “TLS-
QKD” protocol replaces the handshake’s public key
exchange with a request to a local QKD manager, se-
cured via HTTPS with bilateral authentication. The
ETSI standard assumes local networks can safely use
classical public key cryptosystems. Once a quantum
key is received, symmetric encryption ensures mes-
sage confidentiality.

TLS-QKD is fully backward compatible: it can in-
teroperate with standard TLS clients and servers. We
designed the implementation to align with our formal
proof and developed supporting QKD key manage-
ment tools, including a video conferencing demo us-
ing TLS-QKD.

Related work

The use of pre-shared keys (PSK) in TLS is already
described in RFCs 9257 and 9258 (Housley et al.,
2022; Benjamin and Wood, 2022). However, we do
not rely on this standard, but on a custom protocol that
has been formally verified (Prévost et al., 2024)..
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(Tankovic et al., 2024a) tested an implementation
of the ETSI GS QKD 014 standard in real conditions,
to measure latency and transmission rate, as well as a
complete analysis of the standard’s performance in a
multi-user environment (Tankovic et al., 2024b), and
a simulation of the protocol’s use cases, with an esti-
mation of possible key rates depending on the location
of the sites (Dervisevic et al., 2024).

(Martin et al., 2024a) also proposes an implemen-
tation of the ETSI standard on the Madrid QKD net-
work. As many countries develop their QKD network
independently, we cannot exhaustively cite all the im-
plementations of the ETSI standard. The final goal
would be to set up large QKD networks, for example
on the scale of the European continent (Martin et al.,
2024b).

Interestingly, the authors of (Buruaga et al., 2025),
who wrote their paper at the same time as us, propose
a modification of the TLS protocol based on the ETSI
GS QKD 004 standard1.

The paper is organized as follow: section 2 intro-
duces the ETSI standard proposal for QKD. Section 3
presents our implementation, explaining the opera-
tion mode of our protocol and the changes to TLS.
We evaluate the performance tests performed on our
protocol, measuring the time for the handshake with
TLS-QKD, compared to that of TLS 1.3. Finally we
suggest avenues for improving and we discuss about
a possible future for Quantum Key Distribution pro-
tocols.

2 ETSI GS QKD 014 V1.1.1

In this section, we briefly recall the operative mode
of the ETSI GS QKD 014 v1.1.1 standard proposal
which is mainly focused around a REST interface,
through which the different actors interact. The stan-
dard defines two types of communication: commu-
nication within “secure zones” (e.g. inside a LAN),
where PKC is allowed, and outside communication
(e.g. over a WAN), where communications require
QKD.

Two types of actors interact in the this proto-
col: KME: Key Management Entities managing keys
within the LAN and exchanging keys with remote
KMEs using QKD, and SAE: Secure Application En-
tities, applications that request keys to KMEs for
communication.

SAEs make requests to their datacenter’s KME via
a REST API, secured by HTTPS. The KME is there-

1https://www.etsi.org/deliver/etsi gs/QKD/001 099/
004/02.01.01 60/gs qkd004v020101p.pdf

Figure 1: This diagram shows a typical quantum key ex-
change between the initiator SAE 1 (“master”) and the
SAE 2 ”slave”, as defined in the standard proposal. SAE 1
makes an authenticated key request to its local KME
(KME 1), which communicates the key enciphered within
a TLS response to the remote KME (KME 2). SAE 1 then
transfers the key identifier to its SAE 2 peer, which requests
the key from its local KME.

Figure 2: Flow of a key exchange using the verified imple-
mentation of the ETSI protocol.

fore authenticated by the server certificate. To authen-
ticate itself, the SAE presents a client TLS certificate.
This certificate also uniquely identifies the SAE.

Each actor, KME and SAE, is identified by a
unique identifier in the network. The keys are identi-
fied by their UUID fingerprint, which is also supposed
to be unique. Fig. 1 shows a key exchange between
two SAEs on remote data centers.

The ETSI standard defines the interface and the
order of communications. It does not go into crypto-
graphic details, e.g. how QKD is performed or key
identifiers are transmitted are considered “outside the
scope of the document”.

When we formally verified the standard using
ProVerif (Prévost et al., 2024), we determined that

https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/02.01.01_60/gs_qkd004v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/02.01.01_60/gs_qkd004v020101p.pdf


the ETSI prototype standard guaranteed the confiden-
tiality and authenticity of the key with the following
constraints on the implementation:

• The connection between the two KMEs must be
authenticated (this is already a prerequisite for the
operation of QKD).

• The second SAE (“slave”) must send a crypto-
graphic challenge to the initiating SAE (“master”)
to authenticate the latter by ensuring that it owns
the correct quantum key.

Fig. 2 shows an example protocol following an
implementation compatible with these security re-
quirements.

3 OUR IMPLEMENTATION

Let us present our Key Management software, as well
as our implementation of the custom Rustls library,
and our video conferencing software based on TLS-
QKD.

3.1 KME key manager

Key Management Entities (KMEs) are responsible for
managing keys within the data center and exchanging
keys with their remote counterparts by QKD. For our
experiments, we used BBM92 (Bennett et al., 1992b),
based on the entanglement of photons pairs. Any
other QKD protocol, however, would have given sim-
ilar results. After receiving all the photons, the two
remote KMEs share a sequence of random bits. It is
necessary to add a Privacy Amplification (PA) step on
both sides in order to extract the maximum entropy
from these shared bits (Bennett et al., 1992a). This
step ensures the uniformity of the random bits of the
symmetric key, and therefore its security. At the end
of the protocol, the protagonists share a secret per-
fectly random bit string.

Our KME software takes as a parameter a folder
in which the key files are located after Privacy Am-
plification and cuts them into sections of 32 bytes
(the keys). If new keys are generated during opera-
tion of the KME server, the latter will add them to
its database. If the KME exchanges keys with several
other KMEs, it takes as parameter the folders contain-
ing the keys exchanged with each of its counterparts.

SAEs are authenticated with their client TLS cer-
tificate, and identified with the certificate serial num-
ber. Indeed, the serial number of the certificate is cho-
sen by the Certificate Authority, and can therefore be
unique within the secure zone. The KME associates

the serial number with a unique identifier on the net-
work, a 64-bit integer.

Each KME also has a unique identifier on the net-
work in the form of a 64-bit integer. The addressing of
KMEs is independent of that of SAEs, which means
that a KME can have the same address as a SAE.

The UUID of the keys is generated from their
SHA-1 fingerprint.

We added this route to allow an administrator to
detect a failure or an attack in QKD.

In order to inform its remote counterpart of the
association between a SAE and its key, the KME also
uses the REST protocol, encrypted via HTTPS and
authenticated on both sides, between the two KMEs.
Bilateral authentication between KMEs is done with
client and server X.509 certificates. Note that we use
a regular HTTPS protocol to notify the KME of the
use of a key, to protect against a “Harvest now, de-
crypt later” attacker. So we assume that at the time
of the exchange, the attacker is not able to break the
public key encryption.

The KME key manager source code can be re-
trieved at: https://github.com/thomasarmel/qkd kme
server/.

3.2 Our implementation of TLS with
QKD keys

Our implementation of TLS with QKD keys is a mod-
ification of the Rustls library. Our version of Rustls
is designed to be backward compatible in both direc-
tions. Thus, a TLS-QKD client can connect to a clas-
sic TLS server, and a TLS-QKD server can receive
classical TLS connections. We could then fear that a
malicious actor could carry out a “downgrade attack”
to force the protagonists to use classic TLS to weaken
the protocol.We are fully aware of this vulnerability,
and believe this is an acceptable compromise at this
time to facilitate adoption of the protocol. However,
the user who needs strict QKD protection could easily
disable TLS 1.3 backward compatibility.

Our implementation of TLS-QKD is a modifica-
tion of the TLS 1.3 protocol (Rescorla, 2018). Here
are the changes we made to the protocol:

3.2.1 Client and server configuration interface.

The TLS client and server are two SAEs in the ETSI
protocol. Client is the initiating (“master”) SAE.
They must collect the keys from their local KME. The
client and the server take the address and port number
of the KME interface as parameters. SAEs authenti-
cate with KMEs using client TLS certificates.

https://github.com/thomasarmel/qkd_kme_server/
https://github.com/thomasarmel/qkd_kme_server/


3.2.2 Protocol version.

TLS messages contain the protocol version number in
two bytes. For example, the code associated with TLS
version 1.3 is 0x0304. For our TLS-QKD implemen-
tation, we arbitrarily chose the number 0x0E00.

3.2.3 Client request to KME.

Equipped with its client TLS certificate and the SAE
identifier of the TLS server, the client can make a re-
quest to the KME of its “secure zone” to request a
key allowing it to communicate with the remote SAE.
The remote SAE is identified by its unique identifier,
a 64-bit integer. This number is specified by the pro-
grammer when establishing the connection with the
KME. The KME then returns the key in base64 for-
mat as well as the UUID of this key.

The TLS clients will also request their SAE iden-
tifier from their KME:
https://{KME hostname}/api/v1/sae/info/me

3.2.4 ClientHello extension.

The TLS client communicates to the server its SAE
identifier as well as the UUID of the key via an exten-
sion of the ClientHello message. We add to the ex-
tension the Initialization Vector (IV) which will sub-
sequently be used for secret key encryption (the IV
could be the output of a key derivation function like
PBKDF2). Each type of extension is associated with a
2-byte number. We arbitrarily chose 0xFEA6 for this
ClientHello extension. If the TLS server detects this
extension in ClientHello, it determines that the client
supports TLS-QKD.

3.2.5 Server request to KME.

The TLS server having detected that the client wishes
to communicate using TLS-QKD, it makes in turn a
request to the KME of its “secure-zone”, to ask for
the key associated with the UUID and the identifier of
the initiating SAE “master”, received in ClientHello.
If the response from the KME is positive, the TLS
client and server then share a secret key. However, it
remains to correctly authenticate the initiating SAE,
which will be done later by a cryptographic challenge.

3.2.6 ServerHello extension.

In order to authenticate the client, the TLS server
must ensure that the latter is in possession of the quan-
tum key. To do this, it will send him a cryptographic
challenge, in the form of a 256 bits random token and
a 256 bits random seed, encrypted with the quantum
key. The TLS client must send back the same token

as well as a different random seed, encrypted with
the same quantum key. The challenge is inserted as
an extension in the ServerHello response. The 2-byte
number we arbitrarily chose for this ServerHello ex-
tension is 0xFEA7. By finding this extension in the
ServerHello response, the client will have confirma-
tion that the server supports TLS-QKD.

3.2.7 Client challenge acknowledgment.

After having confirmed that the server supports TLS-
QKD, the client must now send the cryptographic
challenge back to the server in order to authenticate.
After decrypting the ServerHello challenge, the client
encrypts it again after changing the random seed. It
sends the response to the challenge in the form of
a new message type, ChallengeAck. TLS provides
a one-byte code for each message type. For exam-
ple, ApplicationData messages have the code 0x17.
For ChallengeAck messages, we arbitrarily chose the
code 0x50. Once the acknowledgment has been ver-
ified by the server, both participants directly start the
data transfer using the quantum symmetric key.

The client no longer checks the server’s TLS cer-
tificate, since the TLS-QKD protocol is sufficient to
guarantee its authentication provided that the security
assumptions on the KMEs are respected, as proven by
ProVerif in (Prévost et al., 2024). It is also no longer
necessary to send a Finished message to authenticate
the handshake.

3.2.8 Symmetric encryption.

For symmetric encryption, we use AES-AEAD. This
is not, however, a security necessity, as authentication
is already guaranteed by the protocol. The key size is
arbitrarily fixed to 256 bits, a standard to be quantum
safe. The key size is hardcoded in our implementa-
tion. Keys are never regenerated in this implementa-
tion, we are considering this feature in future work.

3.2.9 Implementation.

Fig. 3 shows a TLS-QKD handshake. Code is
available at: https://github.com/thomasarmel/rustls/
tree/qkd.

3.3 Proof of concept: a video conference
call encrypted by TLS-QKD

In order to provide a proof of concept of our proto-
col, we created videoconferencing software encrypted
with TLS-QKD. This software is separated into two
parts: a server managing the audio and video display,
and a client, which captures the video stream from the

https://github.com/thomasarmel/rustls/tree/qkd
https://github.com/thomasarmel/rustls/tree/qkd


Figure 3: Handshake on TLS-QKD

camera and the audio from the microphone. To make
a videoconference call, it is therefore needed to first
launch the server on both machines, then the client.
Code is available at: https://github.com/thomasarmel/
qkd camera streaming client/.

During our tests between the INRIA center, in
Sophia Antipolis (France) and the InPhyNi site, in
Nice (France) at 25km distance, we managed to set
up a videoconference with a resolution of 720 pixels
and 10 fps. The conversation was absolutely not ham-
pered by sound latency. TLS-QKD typically took less
than 1 second to perform the key handshake.

We also tested the operation of backward com-
patibility towards classic TLS, the code is avail-
able at https://github.com/thomasarmel/rustls/blob/
qkd/rustls/tests/qkd.rs.

3.4 Protocol performance

We tested the performance of our protocol on the
same sites that were used during the videoconference,
25 kilometers apart. These two sites are connected by
a direct optical fiber with a particularly low latency
(approximately 1 ms).

We performed 10 measurements of the time re-
quired to perform a handshake between the two SAEs
with our protocol (on the “TLS-QKD” classical link),
it takes on average 38.2 ms, with a minimum of 25
ms and a maximum of 66 ms. For comparison, we
performed 10 measurements of the latency time of
a handshake in TLS 1.3, on the same network: the
average delay is 21.5 ms, with a minimum of 17 ms
and a maximum of 28 ms. The code used to test the
handshake duration is available at https://github.com/
thomasarmel/test https qkd.

It should be noted, however, that our network is
particularly favorable to our protocol, which requires
a lot of message exchanges during the handshake, be-
cause the ping latency between the two sites is about
1 ms. A network with higher latency would show a
much larger gap in delay between the handshake of
our protocol and that of TLS 1.3.

4 FURTHER IMPROVEMENTS

The main problem with TLS-QKD is its relative slow-
ness at the handshake, i.e. to exchange the quantum
symmetric key. In fact, each SAE must start by estab-
lishing a secure connection with its KME.

A total of 29 messages is exchanged between the
different actors (SAEs and KMEs) during handshake,
including TCP SYN and ACK messages. One way
to reduce the number of messages would be to pre-
establish a TLS connection between the SAEs and the
KMEs. However, this would make our library much
less portable, since programs running on SAEs would
have to communicate with a background service re-
sponsible for keeping the connection with the KME
active. Since we are targeting data center use, this
compromise could be acceptable.

Another solution would be to rely on the QUIC
protocol, which uses UDP instead of TCP. Since
SAE-KME communications operate over a LAN,
packet loss should not be too much of a problem. This
solution would at least reduce latency in communica-
tions between SAEs and KMEs.

It would further be possible to pre-establish TLS
connections in advance between KMEs. This would
work at least as long as the overall network of KMEs
is not too large. If the network size becomes too large,
we could ensure that only the most frequent inter-
KME links pre-establish the TLS connection in ad-
vance.

In this implementation, we never regenerate the
symmetric key. Adding this feature would increase
the security of our protocol. The property of forward
secrecy is in fact not assured if an attacker were to dis-
cover the quantum key, which is more vulnerable be-
cause it is shared between four actors (the two KMEs
and the two SAEs).

In our current implementation, the TLS client (ini-
tiating SAE) is required to know the TLS server SAE
identifier in advance. To avoid managing a direc-
tory of correspondence between nodes and their iden-
tifiers, we could consider deriving unique identifiers
from network addresses. If the IPv6 standard were to
be widely adopted, then we could use it as a unique
identifier, since IPv6 addresses are the same in the
LAN and the WAN.

5 CONCLUSION

In this paper, we presented a modified TLS proto-
col which uses keys exchanged by QKD, compliant
with the ETSI GS QKD 014 v1.1.1 standard proposal.
Our protocol offers a solution against “harvest now-

https://github.com/thomasarmel/qkd_camera_streaming_client/
https://github.com/thomasarmel/qkd_camera_streaming_client/
https://github.com/thomasarmel/rustls/blob/qkd/rustls/tests/qkd.rs
https://github.com/thomasarmel/rustls/blob/qkd/rustls/tests/qkd.rs
https://github.com/thomasarmel/test_https_qkd
https://github.com/thomasarmel/test_https_qkd


decrypt later” attacks.
Our protocol remains vulnerable if the attacker is

able to break QKD authentication between KMEs on
the fly, since she will be able to carry out a MITM
attack. However, this type of scenario seems unlikely
today. Indeed, if we still use PKC or PQC for inter-
KMEs authentication (for QKD and key requests), it
is very unlikely that an attacker would have a quantum
computer capable of breaking such a cryptosystem in
a short time.

It is backward compatible in both directions with
TLS. We have deliberately chosen to leave this back-
ward compatibility despite the risk of “downgrade at-
tack”, in order to facilitate a potential adoption. How-
ever, backward compatibility can easily be disabled in
the future.

The protocol is based on TLS 1.3, but adds ad-
ditional configuration for communication with Key
Management Entities (KME). The information nec-
essary for the protocol to run is sent in extensions that
we added to the ClientHello and ServerHello mes-
sages. Additionally, another message is sent by the
client at the end of the handshake to confirm their
identity, ChallengeAck.

Finally, we showed that our protocol is usable
in real application cases, such as videoconferencing.
However, the time required for the handshake remains
significantly longer than a classic TLS handshake,
since many more messages are sent and that the ap-
plication spends a lot of time waiting for the KMEs
stack to return the symmetric keys.
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