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Abstract—Biometric authentication relies on physiological or
behavioral traits that are inherent to a user, making them
difficult to lose, forge or forget. Biometric data with a fem-
poral component enable the following authentication protocol:
recent readings of the underlying biometrics are encoded as
time series and compared to a set of base readings. If the
distance between the new readings and the base readings falls
within an acceptable threshold, then the user is successfully
authenticated. Various methods exist for comparing time series
data, such as Dynamic Time Warping (DTW) and the Time
Warp Edit Distance (TWED), each offering advantages and
drawbacks depending on the context. Moreover, many of these
techniques do not inherently preserve privacy, which is a
critical consideration in biometric authentication due to the
complexity of resetting biometric credentials.

In this work, we propose ZK-SERIES to provide pri-
vacy and efficiency to a broad spectrum of time series-
based authentication protocols. ZK-SERIES uses the same
building blocks, i.e., zero-knowledge multiplication proofs and
efficiently batched range proofs, to ensure consistency across
all protocols. Furthermore, it is optimized for compatibility
with low-capacity devices such as smartphones. To assess
the effectiveness of our proposed technique, we primarily
focus on two case studies for biometric authentication: shake-
based and blow-based authentication. To demonstrate ZK-
SERIES’s practical applicability even in older and less powerful
smartphones, we conduct experiments on a 5-year-old low-
spec smartphone using real data for two case studies alongside
scalability assessments using artificial data. Our experimen-
tal results indicate that the privacy-preserving authentication
protocol can be completed within 1.3 seconds on older devices.

1. Introduction

Authentication has become an everyday activity for most
individuals in a modern society, e.g., to unlock a smartphone
or access a banking app. While the frequency with which
users log into their devices has increased, so have the
stakes: for example, an attacker gaining wrongful access to
a banking app may result in large financial losses. As such,
there is a simultaneous need to improve the convenience
and security of authentication, and these two goals can
be contradictory [21]. Recently, biometric protocols (e.g.,

voice or face recognition) have emerged as an alternative
to knowledge-based (e.g., passwords) and possession-based
(e.g., a hardware security token) protocols [28], [1]. Bio-
metric authentication has good performance in terms of
convenience and security because biometric data is inherent
to the user and cannot be lost or forgotten [28]. However, the
leakage of the underlying biometric data is a considerable
threat because such data is 1) prohibitively difficult to revoke
and reset [29], and ii) increasingly easy to replicate due to
the rise of generative Al and deepfakes [33]. To mitigate
this threat, there is increasing interest in soft or behavioral
biometrics [24] (e.g., eye movements, breath patterns, and
gait) that rely on users’ inherent traits while being easier to
reset than hard biometrics (e.g, facial recognition, iris scans,
and fingerprint verification). A downside of soft biometrics
is that they typically have lower authentication accuracy than
hard biometrics [2], and although they are easier to revoke
than hard biometrics, privacy remains paramount.

Our main goal is to design a practical protocol for user
authentication using soft biometrics. Our primary use case
is for users to log into a critical smartphone app, e.g., for
online banking. In this case, the authentication protocol is
implemented through a separate app' that sends authenti-
cation proofs to the critical secondary app. Any practical
authentication protocol must, at least, satisfy the following
five requirements. The first requirement is generality in the
sense that it supports techniques for soft biometric data
with a temporal (time series) component, e.g., gait or stroke
dynamics. For such data, techniques such as Dynamic Time
Warping (DTW) are well-known to have high accuracy [3],
[22]. The second is security against attackers who have full
access to the user’s device and who may produce deepfake
signals, but who do not have access to the user’s biometric
data. The third is privacy, i.e., the protocol does not reveal
raw biometric data to the (possibly malicious) secondary
app. The fourth is that all computations are performed
locally, so that no raw data ever leaves the user’s device. The
fifth and final requirement is efficiency, which means that
all computations can also be performed on low-end devices
such as older smartphones within seconds.

Existing approaches violate at least of one of these
conditions. For example, the BioZero protocol [23] does

1. Existing authentication apps such as Google Authenticator or SingPass
do not support (soft) biometrics.
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not satisfy generality as it does not support DTW, whereas
other works [25], [41], [40] that support privacy-preserving
protocols for DTW comparison have computation times
(over 200s, 18s, and 6.8s for a single pair of time series,
respectively) that do not satisfy our efficiency requirement.
Research efforts that add privacy and revocability to hard
biometrics such as fingerprint scans, e.g., through the use
of fuzzy vaults [20], [34], are orthogonal to this work. Soft
biometrics can be used in conjunction with hard biometrics
for additional security, or when conditions render such hard
biometric techniques impractical (e.g., when light conditions
do not allow for face or iris scans).

In this work, we propose the ZK-SERIES authentica-
tion protocol to achieve all of the above requirements. To
achieve generality, ZK-SERIES introduces a broad class of
authentication protocols (Section 4.2) consisting of three
components: local distance (e.g., Euclidean), series dis-
tance (e.g., DTW), and authentication method (e.g., distance
threshold to k nearest neighbors). This class is broader
than achieved by other works, as illustrated in Table 1.
To achieve security and privacy while maintaining practical
performance, ZK-SERIES leverages a recent development
in zero-knowledge range proofs, i.e., SHARP range proofs
[12], that enables efficient proof batching. This approach
has lower average proof generation times [11] than more
established approaches such as Bulletproofs [8] or Groth16
[18], which are designed for a setting with high-capacity
provers and low-capacity verifiers. Low proof generation
times are a key advantage in our setting, as both proof
generation and verification typically occur on a low-capacity
device such as a smartphone.

We illustrate the advantages of ZK-SERIES through two
case studies in which 1) shake patterns and ii) blow acoustics
are used for authentication. Both datasets have been made
available via [17]. The first dataset consists of time series
data from 20 participants where each user generated 10
base readings of four different phone sensors (gyroscope,
orientation, accelerometer, and magnetometer) and three
coordinates per sensor. The second dataset includes data
from 50 participants and consists of time series recordings of
10 distinct phone-blowing acoustic patterns, each performed
over a period of 5 seconds. Our experiments suggest that
the Manhattan distance and DTW achieve noticeably higher
accuracy than the Euclidean sum, thus illustrating the need
for a framework with greater protocol support than related
work such as BioZero [23]. Even if the 3-dimensional input
signal of a single sensor is used for the shake-based case
study, ZK-SERIES can achieve a false positive rate of less
than 0.1%, and this signal can be combined with other
biometrics such as face or voice scans for greater accuracy.
The entire protocol takes around 1.3 seconds to complete on
a Samsung Galaxy A71 smartphone from 2019, which has
an 8-core CPU. This indicates that ZK-SERIES is suited for
practical use in low-spec smartphones, and an improvement
on the 2 seconds needed by BioZero on a 10-core CPU. We
code for our experiments has been made available via [16].

Contributions

In summary, our contributions are as follows.

e We present ZK-SERIES, which enables privacy-
preserving authentication for biometric data with a
temporal (time series) component.

e ZK-SERIES supports a wide range of advanced time
series comparison protocols: its generality exceeds
related works [23], [25], [41], [40] on three levels:
more local distance metrics, more time series dis-
tance functions, and authentication protocols beyond
a single 1-to-1 comparison.

o We present a detailed performance evaluation based
on two case studies involving shake-based and blow-
based authentication. We find that, unlike [25], [41],
[40], ZK-SERIES has practical performance on a
five-year-old low-spec smartphone.

Organization. This paper is structured as follows. We first
discuss related works in Section 2. We then discuss our
system and threat model in Section 3 and the ZK-SERIES
protocol in Sections 4. We discuss our proof-of-concept
implementation in Section 5, and present our performance
evaluation in Section 6. We conclude the paper in Section 7.

2. Related Work

BioZero [23] is the authentication protocol that is most
closely related to ZK-SERIES. BioZero authenticates users
by comparing a single base reading of their biometric data
to a recent reading. In particular, the sum of squared (Eu-
clidean) differences between each point in the two readings
is calculated, and if the difference is small enough, then a
zero-knowledge proof of this statement is computed through
the Groth16 zk-SNARK [18]. Various other works have been
proposed to provide privacy to time series analysis. Liu et
al. present a DTW-based approach that uses Yao’s garbled
circuits, a form of secure multiparty computation (MPC), to
ensure data privacy [25]. They consider a setting in which
two independent healthcare providers want to determine

TABLE 1: Comparison between ZK-SERIES and other
works in terms of protocol support, privacy, and practicality.
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the distance between two time series without revealing the
underlying values to each other. The main use case is one
where a provider with one reading seeks to find the closest
reading among a set held by another provider. As with many
approaches based on MPC, this approach is hampered by
low efficiency: the communication overhead for determining
DTW metrics is in the order of gigabytes, and the duration
of a single DTW call on two series of length 128 is more
than 200s. Zhu et al. [41] also provide an early MPC-
based method of obtaining the DTW distance between two
time series — again, performance is an obstacle, with the
protocol requiring more than 18s to compute the DTW
between two time series of length 100. In addition to DTW,
they also support the discrete Fréchet distance. Zheng et
al. [40] propose a privacy-preserving method to compare a
time series to a large set of base readings using TWED: as
mentioned before, a key advantage of TWED is its triangle
inequality which enables indexing and pruning. In [40], the
ability to prune the dataset reduces computation times by
97.9%. Without pruning, their method takes 95,912s on
14,000 series with m = 10 and 7' = 96, so roughly 6.8s
per time series on a PC.

Wang et al. propose to augment the privacy of time series
data storage using differential privacy [38] — however, this
is not applicable for authentication because it still reveals
the (distorted) base readings, which makes it susceptible to
false data injection. Zheng et al. [40] propose a method
based on symmetric homomorphic encryption to perform
privacy-preserving range queries on time series data using
the TWED. There are some similarities with authentication,
i.e., if authentication is successful if the distance to the
closest match is small enough. However, performance is
again an obstacle, with verification times of roughly 15
seconds for time series of length 60.

Fuzzy vaults, originally proposed by Juels and Sudan
[20] and subsequently implemented in a wide range of
contexts [34], achieve both revocability and privacy for bio-
metric authentication techniques. In this approach, a secret is
encoded as a polynomial, and the base readings are used as
inputs for this polynomial. This results in a series of genuine
points, which are then obfuscated using random ‘chaff’
points. To authenticate, this procedure is executed on a new
reading and authentication succeeds if the overlap with the
original points is substantial. Revocation can be achieved by
switching to a different secret. Although fuzzy vaults toler-
ate some variability in the input data, high levels of intra-
user variability still cause performance to degrade: e.g., for
fingerprint biometrics, which have limited variability, fuzzy
vaults typically achieve low false acceptance rates [34], but
performance is worse (above 2% false acceptance rate) for
electronically drawn signatures [6]. Since soft biometrics
such as shake-based and blow-based signals typically exhibit
high variability, we do not consider this approach further.

3. System and Threat Model

3.1. System Entities

ZK-SERIES is designed for a system with the following
entities:

User. The user’s goal it to authenticate to gain access to
a secure resource, €.g., a banking app or a location secured
by an external device.

User Device. The user has access to a handheld device
with moderate computational power, e.g., a smartphone.

Sensors. The sensors generate readings of the user’s
biometric input signals, e.g., audio, video, touch, or motion.
These sensors are either present on the user’s device (e.g.,
the phone’s gyroscope), an external device (e.g., a security
camera), or both.

ZK-SERIES App. The ZK-SERIES app runs on the
user’s handheld device and stores the user’s raw biometric
data. Furthermore, the ZK-SERIES app performs computa-
tions on the raw data and generates zero-knowledge proofs
to show that the computations were performed correctly.

Secondary App. The secondary app’s goal is to prevent
unauthorized access by an attacker to the secure resource. It
either runs on the user’s device, or on another device —e.g.,
a security system encompassing a processor and sensors at
a restricted location.

Bulletin Board. Cryptographic commitments to the base
readings are stored on a publicly accessible, tamper-evident
bulletin board, e.g., a trusted server or a public blockchain.
This allows the secondary app to verify that the base rea-
dings are kept consistent between authentication attempts.

3.2. Data Model

Notation. In the following, we write Z for the set of
all integers, Z for the nonnegative integers, and Z, =
{0,...,p—1} for any p > 1. For any finite set or sequence
S, we denote the number of elements by |S|. We do not
consider operations on non-integer values (e.g., floating
point numbers) because the cryptographic techniques of
Section 5.1 are only defined on groups of integers modulo
a (large) prime. A summary of the key notation presented
in this section can be found in Table 2.

Time Series. Authentication protocols enabled by ZK-
SERIES operate on sets of time series {X,, },=1,... n. Each

TABLE 2: List of symbols.

symbol | meaning
m \ dimension of each time series element
gm set of all m-dimensional vectors whose
elements are values in Z = {0,1,...}
x set of all time series whose points are

elements of Z™

local distance between two elements in a

d: 72" xXZ™ - 7 . .
time series

0: XXX -7 \ series distance between two time series




time series in such a set is denoted by X = (x1,...,x7),
where the index represents time and 7' = | X| the length of
the time series. Let X’ denote the set of all time series. Each
time series element x; € Z' = (%41, .-, T¢,m) represents
a measurement of m input signals, where x; ; denotes the
measurement of input signal j at time ¢. The nature of
the input signals depends on the sensors and their devices.
A modern smartphone will typically have native support
for converting input signals into floating point numbers,
which can then be converted into (positive) integers through
normalization and rounding. Other signals such as audio
and video can be converted to multi-dimensional time series
through feature extraction, but a more detailed discussion is
beyond the scope of this work.

Unlike other works [27], [10], we do not consider gaps
in time series data, which may occur due to, e.g., measure-
ment errors or devices going offline. The reason is that, in
our setting, users can be asked to re-record measurements
when sensors temporarily fail. Additionally, some works
consider timestamp differences between time series elements
[27] — in our setting, the app records at preset times, so we
assume that the time differences between elements at the
same time index in different time series are negligible.

Distance Functions. The distance between two time
series can be expressed via two functions: the local distance
and the series distance. The local distance is denoted by a
function d : Z™ — Z_. Common examples of local distance
functions include:

® dl(xt7Yt’) = Zmzl |$t,j — Y,
o da(xe,ye) =370 (2,5 — yr, ;)% and
o doo(X¢,yr) =maxj—1__m{lze,; — Y, |}

s

The distance function d; is often referred to as the Man-
hattan or taxicab distance, do as the (squared) Euclidean
distance, and d, as the Chebyshev distance.?

For two time series X,Y € X, we denote the series
distance between X and Y by § : X x X — Z,. A common
example of a series distance between two time series of
equal length (i.e., | X| = |Y]| = T) is the sum of the local
distances, i.e.,

T
> d(xi,yi)- (1)
t=1

Dynamic Time Warping (DTW) is an alternative to the sum
that is more suitable for settings in which time distortions
(i.e., delays) are a factor. DTW originates from speech
recognition [5], but its use has become ubiquitous in a vast
range of fields from robotics and medicine to cryptanalysis
and astronomy [31].

Computation of the DTW is equivalent to finding the
shortest path in a graph in which the step distances are given
by the local distances between the series at different time

2. In general, the LP distance between vectors x and y of length
n is defined as ||x —y||p = Y/ (i [#i — y:|™). However, we only
consider integer-valued input signals in this work and pth roots of integers
are not always integers for general p. This also motivates our choice for
the squared Euclidean distance instead of the standard Euclidean distance
(see also Section 7).
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Figure 1: Computation of the DTW for two time series of
length 5: the dotted line depicts a DTW path.

indices. This is illustrated in Figure la, in which each node
represents a pair of time series points, and the only valid
moves are to the bottom, right, and bottom right. The DTW
distance between the two series as a whole is given by the
shortest path from the top-left to the bottom-right in this
graph: this is depicted by the line in Figure 1a. In Figure 1b,
we depict, for each node, the distance of the shortest path to
the top left — as such, the DTW distance is equal to the value
in the bottom right. In contrast, the basic sum is represented
by the sum of the values on the diagonal in Figure 1a, which
is 444+ 1+ 1 =10. This is considerably larger than the
DTW distance (i.e., 2), which indicates a higher level of
similarity than the sum would suggest.

The computation time of DTW distances between time
series X and Y that respectively consist of 7" and 7" time
points is O(T'T"), i.e., quadratic for equal-length time series.
This can be prohibitively expensive for medium-capacity
devices such as smartphones. Furthermore, DTW is not
technically a distance metric because it does not satisfy the
triangle equality, which holds for ¢ if for any X,Y, Z € &,
the following is true: §(X,Y) 4+ §(Y,Z) > 6(X, Z). The
triangle equality implies that a variety of algorithms are be
applied, in particular that time series can be indexed, which
allows for much more efficient nearest-neighbor searches
on a set of time series [22], [10], [27]. The Time Warp
Edit Distance (TWED) is an alternative distance measure
designed to capture both temporal alignment and magnitude
differences between two time series, and which does satisfy
the triangle inequality [27]. In practice, computation of the
TWED is similar to computation of the DTW distance, with
the exception that steps to the right and bottom (which
represent time shifts) are penalized by a constant A > 0
instead of the local distance, plus a factor representing
timestamp differences (which we omit as we assume these
differences to be negligible).

As we discuss further in Section 4.2, all of the methods
discussed above can be represented in the same framework.
Several other time series methods exists that are similar to
the DTW/TWED or sum, and which we do not consider in
detail: these include Keogh’s DTW lower bound [22], [36],
edit distance with real penalties [10], and cosine similarity
[35]. The discrete Fréchet distance, which is considered
in related work [41], is highly similar to DTW with the
exception that the max instead of the sum is taken over the



local distances in the shortest path.

3.3. Threat Model

Our threat model has two types of adversaries. The
first is an attacker who seeks to authenticate as the user
while not having access to the user’s raw biometric data.
This attacker has full access to the user’s device, e.g., after
stealing it, and can log into the ZK-SERIES app and the
secondary app, and spoof any biometric signal (e.g., blow
acoustics) using deepfake techniques. However, the attacker
cannot retrieve raw base samples from the device’s memory,
which is a reasonable assumption if the device supports disk
encryption. Furthermore, the attacker is unable to install
malicious apps on the device that record the user’s input
during login attempts prior to gaining access to the device.
The second threat is the secondary app, which we assume
to be honest-but-curious, and which may learn privacy-
sensitive data from the proofs sent by the ZK-SERIES app.

We assume that the sensors are not compromised — i.e.,
we assume that they produce a faithful representation of the
input signal. This is a reasonable assumption when the de-
vice uses the sensors on a smartphone with app/component
sandboxing, or if an external sensor (e.g., a security camera)
validates the data submitted by the ZK-SERIES app. We also
assume that an attacker who gains access to an external
sensor is not able to obtain data involving historical au-
thentication attempts, which may contain information about
the user’s biometrics. We assume that all communication
between the various entities is secure and private, e.g.,
because it is encrypted via SSL/TLS.

3.4. Requirements

Our system has the following requirements.

1)  Generality. The system should be able to support
a wide range of time series comparison methods,
including the diagonal sum, DTW, and TWED, and
local distance functions, including d;, d2, and d.

2)  Security. The probability that an attacker who does
not have access to the user’s biometric data incor-
rectly authenticates as the user is smaller than some
threshold p*.

3) Privacy. The honest-but-curious secondary app
does not learn information about the user’s raw
biometric data from the proofs and commitments
submitted by ZK-SERIES.

4) Local Computations. Raw biometric data is exclu-
sively processed on the user’s device.

5) Efficiency. Proof generation times, proof verifica-
tion times, and communication overheads are small
enough for practical performance on a smartphone.

We will discuss the first four requirements in more detail in
Section 4.3, and the efficiency requirement in Section 6.

Bulletin Bulletin
Board Board
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Secondary 4 Secondary
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Figure 2: ZK-SERIES workflow.

4. The ZK-SERIES Protocol

4.1. Workflow

ZK-SERIES’s workflow consists of two main phases:
registration and authentication. The first phase of the ZK-
SERIES protocol consists of 5 steps (as depicted in Fig-
ure 2a) and is executed once, whereas the second phase
consists of 8 steps (as depicted in Figure 2b) and is executed
whenever the user seeks access to a restricted resource.

Registration.

1) The user starts the ZK-SERIES app and creates an
account.
The ZK-SERIES app requests n base readings from
the sensors (step 2), which the sensors obtains from
the user (step 3). Finally, the sensors send the base
readings to the ZK-SERIES app (step 4). This can
be done actively, i.e., the user is required after
registration to record n short samples on the spot,
or passively, i.e., after registration, the ZK-SERIES
periodically queries the sensor for data to gradually
build a large database of historical readings.

5) The ZK-SERIES app sends commitments of the
base readings to the ledger after registration has
been completed. Furthermore, the app may peri-
odically post updates to the base samples if the
user re-records the base readings, or if readings are
passively generated.

(2-4)

Authentication.

1) The user starts the secondary app, which requires

authentication. The secondary app, or the user, then

starts the ZK-SERIES app to facilitate the authen-

tication process.

Next, the user records n’ readings through the

sensors. The sensors send the data both to the

secondary app and the ZK-SERIES app.

6) Next, the ZK-SERIES app attempts to generate an
authentication proof based on the user’s new read-
ing. This proof consists of 1) commitments to the

2-5)



Figure 3: Two equivalent syntax trees for the computation of
(¢ —y)?, with only the sum operator + and multiplication
operator X in the intermediate nodes and root.

new reading and (some of) the base readings, and 2)
a multitude of zero-knowledge proofs involving the
values underlying the commitments — we discuss
the latter in more detail in Section 4.2. If the
proof generation has concluded successfully, then
the ZK-SERIES app sends the commitments and
the zero-knowledge proofs to the secondary app. If
not, it asks the user to record another reading (this
is not depicted in Figure 2b).

The secondary app verifies that 1) zero-knowledge
proofs are valid, 2) the commitments to the new
readings are consistent with the data received from
the sensors, and 3) the commitments to the base
readings are consistent with those on the bulletin
board. Upon successful verification, the user is
granted access to the resource.

(7-8)

4.2. Authentication Proof Structure

The key technical step of the ZK-SERIES protocol is
the generation of the authentication proof in step 6 of
the authentication phase. The exact composition of these
proofs depends on the three main design choices of the
ZK-SERIES implementation: the local distance function, the
series distance function, and the authentication function. We
discuss the technical details of these proofs in Section 5.2,
and describe their general structure in this section.

In the following, we denote the base series by
(X4,...,X,) and the new series by (Y1, ...,Y,). For con-
venience, we say that a function f : Zg — Zy, is expressible
using a set of operations O if it can be represented using
a syntax tree in which each input value is represented by
a unique leaf, intermediate nodes represent operations from
O, and the root of the tree contains the output value. For
example, two syntax tree representations of the Euclidean
distance (z, — yy)? are depicted in Section 4.2. For the
proofs, we rely on zk-range proofs, which assert that an
underlying value is within some interval, and zk-proofs of
functions expressible as sum, multiplication, and min/max
operations. The exact structure of the zk-proofs will be
discussed in Section 5.2. As in [41], we define a coupling C
of X and Y as a sequence of pairs of indices ((i1, j1))i=1,... k
such thati; = 1,...,|X]| and 4, = 1,...,]Y|, and we define
Cx,y as the set of all valid couplings of X and Y.

Authentication Proof. Given a set of base series
{X:}i=1,....n, set of new series {Y;};—1, .. n, series distance

function d, and function fs« : Z¥ — Z, expressible using
sum, min/max, and multiplication operations, the authenti-
cation distance is given by

f&* (5(Xi17)/j1)a ..

ot = min
(31,51)5, (3K Jk)

aé(XZmYJk))

That is, the authentication distance 6* equals the smallest
value of fs« applied to k pairs of from the base series set
and the new series set. The necessary condition for user
authentication is then that

6 <. @)

To prove successful authentication, the ZK-SERIES app
generates:

1) the indices (i1,71),. ., (ik, Jk)s

2) a zk-range proof that 0* < 6,

3) a zk-proof that * has been correctly computed
from applying f5- to 6(X;,,Y5,), ..., (Xs,,Yj,),
and

(*)  zk-proofs for the correct computation of the series
distances §(X;,,Y},),...,(Xi,,Y;,), as discussed
below.

k)

Prominent examples of authentication protocols covered by
the above conditions include:

e Sum of the distances to the k nearest neighbors.

e Max of the distances to the & nearest neighbors.

Series Distance Proof. Given two time series X,Y € X,
local distance function d, local distance matrix D =
(d(i,Y5))i=1,....| x|.j=1,....|y|» set of acceptable couplings
Cx,y, graph edge functions f; ;, and total function fs5 ex-
pressible using sum, min/max, and multiplication operations,
the series distance 0(X,Y) is given by

5(X7 Y) = (IZI)I(IB f5(fizvjl (D))

To prove correct computation of the series distance, the ZK-
SERIES app generates:

4) the indices (i1,71),- .-, (ik, Jk)s

5) zk-proofs of the correct computation of f;, ;, over
D

6) zk-proof of the correct computation of f5 over
fi 2 (D )

(*)  zk-proofs of the correct computation of the local
distances in D, as discussed below.

Prominent examples of series distance functions covered by
the above conditions include:

e  Diagonal  sum, with  f; ;(D) = d(x;,y;),
fs(zy, ... ap) = Zle Z;, and
Cxy = ((1,1).... (IX],[X])).

o DTW, with fs(z1,...,2n) = > 0 j 25
d(zi,—1,Y5,) @f i > 1,
fi,j(D) = min (i, yj-1) if ji > 1,
d(xiy—1,y5-1) ifig>1,5>1

and Cxﬁy such that C' = ((il,jl),. cey (ikajk)) S CX,Y if
and only if (i1,71) = (1,1), (ix,jx) = (|X|,|Y|), and for



L <j<k(i,j) = (-1 +Lji—1) V(i—1, 511 + 1) V
(f—1 + 1,51 + 1).

e Discrete Fréchet, with  f5(xq,...
max;—1,...» Z; and f; ; and Cx,y as above

e TWED with no gap penalty and time shift penalty A,
with

amn) -

)\—Fd(l‘il,l‘il_l) if il > 1,
f:;(D) = min )‘eréé(yil—h)yjz) if ji > 1,
i, iy Yj, + ifi>1.9>1
d(zi,—1,Yj,-1 o i

and fs and Cx y the same as for DTW.

Local Distance Proof. Given two vectors x,y € Z™,
and fy expressible using sum, min/max, and multiplication
operations, the local distance function is given by

d(.%‘,y) = fd(xla ..

To prove correct computation of the series distance, the ZK-
SERIES app generates

'7xm7y17"'7y7n)~

7) a zk-proof of the correct computation of d(x,y)
from fy.

Prominent examples of supported local distance functions
include dq, ds, and d., as defined in Section 3.2.

4.3. Analysis

Generality. As discussed in Section 4.2, ZK-SERIES
supports all of the protocols mentioned in the generality
requirement.

Security. As per Section 3.3, the main threat to security
is an attacker who has gained access to the device running
the ZK-SERIES app, but not the biometric data. The at-
tacker’s goal is to convince the secondary app to accept the
proof — to do so, the attacker must first generate a new read-
ing using the sensors as per steps 2-5 of the authentication
phase. Next, the attacker must generate zk-proofs in step
6 that are successfully verified by the secondary app. To
succeed, the attacker must do either of the following:

1) generate a reading that satisfies (2), or
2) falsely convince the secondary app using an incor-
rect proof.

The second option only has an infinitesimal probability of
success due to the probabilistic correctness of the zk-proofs.
Furthermore, the first option is successful with a probability
that is upper bounded by the accuracy of the biometric
authentication protocol. As such, the system satisfies our
notion of security.

We emphasize that an attacker cannot use bisection to
get closer to the true biometric data through repeated trials,
as the ZK-SERIES app does not provide information about
the proof structure (including the indices of steps 1 and 5)
after unsuccessful attempts.

Privacy. As per Section 3.3, the main threat to privacy
is the honest-but-curious secondary app, which receives the
proofs from items 1-8 in Section 4.2. The zk-proofs satisfy
the property of zero-knowledge, meaning that they reveal

nothing about the underlying witnesses. The indices of steps
1 and 5 cannot be used to determine which measurements
are closer, since the final distance 0* is not revealed as part
of the proofs. Finally, unsuccessful proof attempts are not
sent to the secondary app, so no information can thus be
obtained as well.

Local Computations. All the computations on biometric
base readings during the authentication phase are performed
in step 6, which is executed entirely on the user device.

Efficiency. This will be demonstrated in Section 6.
5. Implementation

5.1. Cryptographic Primitives

Cryptographic Commitments. A cryptographic com-
mitment protocol consists of two functions: the setup
function COM.SETUP(1") and the commitment function
COM.COMMIT(P,, z, 7). The setup function takes as input
a security parameter x and outputs a set of commitment
parameters P.. The commitment function takes as input the
commitment parameters, a message value z, and a hiding
factor r, and returns a commitment c. For brevity, we
will use the shorthand notation COM.COMMIT(P,, z,r) =
C(z,r) and assume that P, is set globally during initializa-
tion (i.e., each ZK-SERIES app uses the same commitment
parameters regardless of the device).

The commitment function C' must satisfy the following
properties: 1) it is hiding, i.e., it is computationally infeasible
for a verifier with knowledge of ¢ to obtain any knowledge
of x, 2) it is binding, i.e., it is computationally infeasible
for the prover to find another z’,7’ such that C'(z,r) =
C(a',r"). Finally, a cryptographic commitment scheme is
said to be additively homomorphic if an addition operator
on the commitment scheme exists such that Cp(xy1,7r1) +
Cp(xg,re) = C(x1 + 2,71 + 12).

Zero-knowledge Proofs. Zero-knowledge proofs
(ZKPs) enable one party — the prover — to convince another
party — the verifier — that a statement is true without
revealing any additional information beyond the validity of
the statement itself. In particular, let R, be an efficiently
computable relation of the form (s,w) € R., where s
is a statement and w is a witness of s. A non-interactive
zero-knowledge proof system for the relation R.j consists
of three algorithms. NIZK.SETUP(1"') which takes as
input a security parameter ' and outputs system parameters
P.;. NIZK.PROVE(P,j, s, w) takes as input the system
parameters P,, and a statement-witness pair (s,w) and
outputs a proof m. NIZK.VERIFY(P., s, ) takes as input
P,j, a statement s, and a proof 7, and outputs 1 (true) or
0 (false). The proof system NIZK is zero-knowledge if the
generated proofs reveal nothing about the witnesses, and
has simulation-extractability if for any proof generated by
the adversary, there exists an efficient algorithm to extract
the corresponding witnesses.



In ZK-SERIES, we use two different NIZK protocols:
zk-multiplication proofs (ZKMPs), which prove relations of
the form

Rzxmp = {(Cmv Cyvczy)v (xvyvrz»ryarzy)

| co = C(x,72), Cy = Cl(y, ry) and ¢y = C(zy, Ta:y>}

and zk-range proofs (ZKRPs) for relations of the form
Rzxre = {(c,v"), (v,7) | ¢ = C(v,r) and v € [0,v")}.

For ZKMPs, we use the protocol by Fujisaki and Okamoto
[15], which is also used by BioZero. For ZKRPs, multiple
approaches exist, as we discuss in more detail below.

Zero-knowledge Range Proofs. State-of-the-art ZKRP
protocols can be divided into four main categories [11].
The first category uses generic proof systems for arithmetic
circuits to express the range proof’s relation. zk-SNARKSs
[71, [18] and zk-STARKSs [4] are prominent examples of
zero-knowledge proof systems for arithmetic circuits. The
second category uses n-ary decomposition [8], [37], [14], in
which a value x is decomposed into a sum Zi;} e;n' with
c; € {0, 1} to prove that = € [0,n'). Bulletproofs [8], which
use binary decomposition, are a prominent example of such
a protocol; due to their high efficiency and small proof sizes,
they have grown to underpin a wide variety of real-world
applications, including the Monero cryptocurrency. The third
category uses square decomposition, and a recently proposed
method, SHARP range proofs [12], belong to this category.
The fourth and final category is that of hash-based range
proofs [9] — this technique works only for a specific type of
commitment schemes (i.e., hash-based commitments) that is
beyond the scope of this work.

Previous work [11] has found that the computation times
of Groth16 (which is used by BioZero to prove that the total
distance is smaller than the threshold 6) for both prover and
verifier are an order of magnitude worse than for ZKRPs
of any of the other categories. Meanwhile, although n-
ary decomposition techniques such as Bulletproofs were
found to have short proof sizes and verification times, this
came at the cost of long proof generation times. This is
appropriate for settings with a large discrepancy between
the computational resources of the prover and verifier, e.g.,
a proof generated by a high-end machine but verified on a
public blockchain. However, in our setting, the prover runs
on a low-capacity device such as a smartphone, so short
proof generation times are critical. By contrast, SHARP was
found to achieve considerably shorter proof generation times
than the other categories, and is therefore best suited for our
setting. We discuss SHARP in more detail below.

SHARP Range Proofs. In their most concise form,
SHARP range proofs rely on Legendre’s three-square the-
orem, which (as a corollary) states that for any inte-
ger x, there exist integers ui,%2,y3 > O such that
4z +1=vy}+y32+y3 if and only if x > 0. This can
be used to prove statements of the form z € [0, B] for
some integer B by providing y1,y2,ys > 0 such that

3

3. Alternatively, SHARP range proofs can be derived from Lagrange’s
four-squares theorem, but this leads to larger proof sizes.

4z(B — x) + 1 = y} + y3 + y3. Although we defer to [12]
for the technical details, the core innovation of SHARP is
a non-trivial proof of ‘shortness’ of the variables y1, y2, y3,
which is probabilistic in the sense that for given R > 0,
the security property holds with probability 2~ . From a
practical perspective, the values = and B must also be
short because decomposition of 42(B — x) 4+ 1 into three
squares can be computationally expensive for moderately
large integers, as we discuss in more detail below. A key
property of SHARP ZKRP is that they support efficient
batching of multiple range proofs: although execution times
asymptotically depend on R and n, in practice the proof
generation times are dominated by operations on commit-
ments, which in SHARP do not depend on R and n. Finally,
the required shortness of the encrypted values in SHARP is
not an obstacle in our setting as we have found that rounding
and rescaling all values to ensure they are between 0 and
1000000 has a negligible impact on accuracy (we omit
further discussion of this due to space limitations).

5.2. Range Proof Adaptation

Proof Structure. An authentication proof, as defined
in Section 4.2, consists of 7 main components. Of these,
two are index pair sequences (items 1 and 4), one is a
ZKRP that proves that the authentication distance is within
an acceptable threshold (item 2), and four are zk-proofs of
the correct computation of a function expressible using um,
min/max/ and multiplication operations (items 3, 5, 6, and
7). Proofs of the last category are structured as follows: leaf
nodes are included in the proof as commitments (if they
correspond to biometric data) or as scalar values. For all
intermediate nodes and the root node, a commitment to the
value in the node is included. For sum nodes, verification
is trivial because of the additive homomorphism of our
commitment scheme. For multiplication nodes, a ZKMP is
provided. For min/max nodes with two child nodes, a ZKRP
is given that x > y if max(z,y) = « or min(z,y) = y, and
for y > z otherwise. Finally, min/max and multiplication
nodes with more than two children can be decomposed into
repeated 2-child nodes because x X y X z = x X (y X 2)
and max(x,y,z) = max(z, max(y, z)). A key insight for
efficiency that all ZKRPs in the above can be aggregated into
a single SHARP proof, which significantly reduces computa-
tion times. We do note that Bulletproofs also support proof
batching, but that this only affects the resulting proof size
and not the generation times.

Efficient Decomposition. As mentioned previously, we
aggregate the ZKRPs for each min/max intermediate node
and the final authentication proof into a single SHARP
ZKRP. However, the value z underlying each individual
proof must still be decomposed into three squares. This can
be done efficiently in the following way [26]: if we assume
that each sufficiently large integer can be decomposed into
the sum of a square and a prime p’ such that p’ = 1 mod 4
[30], then we can pre-compute for all such primes their
two-square decomposition (which must exists by Fermat’s
theorem on sums of two squares). For any integer, we then



iterate over the cached primes and check whether © — p’
is a square — if so, v/z — p’ and the precomputed 2-square
decomposition of p’ are a valid 3-square decomposition of
x. Storing only the primes is efficient because the frequency
of primes among larger integers decreases logarithmically:
e.g., all 2-square decompositions for p’ < 1000000 can be
stored in a 600KB CSV file.

5.3. Software Implementation

The ZK-SERIES app as discussed in Section 4 has
the following functionality: a frontend that allows users to
register and record readings, and a backend that implements
the proof generation as discussed in Section 4.2. We focus
on the backend, as this is most technically complex part of
the protocol. Proof generation consists of two main steps:
1) the time series analysis protocols, particularly DTW
and TWED, and 2) the cryptographic protocols, particularly
the ZKMPs and ZKRPs. The first component is relatively
straightforward, as are ZKMPs: similar to BioZero [23], we
have implemented ZKMPs using [15]. Construction of a
single ZKMP consists of computing 6 commitments via 9
(big) integers, and verification of 4 commitment additions
and 5 scalar multiplications, which is relatively inexpensive.

Instead, the most challenging part of the implementation
is the implementation of the ZKRPs, particularly because
no publicly available implementation of SHARP exists. To
illustrate the performance advantages of SHARP, we have
also implemented the ZKRPs using Bulletproofs. Because
of Android’s built-in support for Kotlin, we chose the Bul-
letproofs implementation in Java [39] by weavechain as
a baseline for the Bulletproof ZKRPs. This library is in
turn based on the Rust implementation of Bulletproofs [13],
which uses Pedersen commitment using the curve25519
elliptic curve, and which supports curve compression using
Ristretto (which is an extension of Decaf [19]). We imple-
mented SHARP ZKRPs on the same elliptic curve library
as weavechain’s Bulletproofs implementation to allow for a
fair comparison in Section 6.3.

6. Experimental Evaluation

In this section, we present an empirical evaluation of
our ZK-SERIES implementation. The goal of our evaluation
is twofold: first, to motivate the use of a wider range of
time series distance functions than the Euclidean sum as
implemented in BioZero. We perform experiment for two
use cases, shake-based and blow-based authentication, and
find that the Manhattan distance has superior performance
to the Euclidean distance, and that DTW has superior per-
formance to the sum for shake gestures. The second goal
is to show that our ZK-SERIES implementation satisfies
the efficiency requirement of Section 3.4, i.e., that it has
practical performance on a mid-range smartphone.

We conducted our experiments on a Galaxy A71 smart-
phone, a model that was launched in November 2019. It
has an Octa-core CPU (2x2.2 GHz Kryo 470 Gold & 6x1.8

GHz Kryo 470 Silver), 128GB of memory, and 8GB RAM.
Its operating system is Android v13.

6.1. Shake-Based Authentication

Our first case study leverages the motion sensors in a
typical Android smartphone, i.e., the accelerometer, the gy-
roscope, magnetometer, and orientation sensor. Each sensor
records three coordinates with a frequency of 5-50 Hz, and
the measurements at each time slot can therefore be repre-
sented as an array of m = 12 elements. Upon registration,
the user generates n base readings that each consists of the
user shaking the phone for a number of seconds. Recording
starts when the phone registers significant movement, and
stops when it no longer detects movement or after a fixed
maximum duration. The aim is for the shake patterns to
be similar — after recording n samples, the users can be
asked to re-record readings to remove outliers and improve
accuracy. To authenticate, the user shakes a single time and
the new reading is compared to the base measurements.
We choose the following approach: we identify the k base
readings that are closest to the new measurement. If the
sum of the distances between the new reading and the k
nearest readings is below some threshold, then the user is
successfully authenticated.

To create the dataset, a group of 20 participants (15 male
and 5 female) were asked to a gesture consisting of 3 shake
motions. They were asked to repeat this 10 times, resulting
in 10 readings per participant. For each reading, 12 different
input signals were measured: the z, y, and z coordinates of
the accelerometer, gyroscope, and magnetometer, and the
yaw, pitch and roll coordinates of the orientation sensor.
For illustrative purposes, the acceleration readings of par-
ticipants 1 and 2 are depicted in Figure A.4 and A.5 in the
appendix, respectively. The sampling frequency was set to
50 Hz, and the app was programmed to stop recording as
soon as the participant finished the third shake. As a result,
different time series may have different length: the average,
median, minimum, and maximum lengths were 52.91, 50,
42, and 97 elements, respectively. We note that some mea-
surements are negative — however, each measurement x; ;

was normalized as K - ﬁ where K = 1000000
and min; and max; denote the minimum and maximum
value for input signal 7 € 1,...,m, respectively. For K,
we note that there is a tradeoff between setting it too low
(which would reduce accuracy) and too high (which requires
a larger list of precomputed 2-square decompositions). The
dataset used for our experiments can be found online [17].

To evaluate the accuracy of our authentication protocol
we perform the following experiment. For authentication, we
use k-NN max: for given k, we determine the distance of a
new reading to the k nearest base readings, and if the largest
among these (i.e., the kth nearest) reading has a distance
smaller than the threshold 6, then we authenticate the user.
For each participant, we treat the 10 readings as their
complete set of base readings. To determine an appropriate
threshold 6, we use the following procedure: we determine



TABLE 3: Accuracy, FPR, precision, and recall for shake-based authentication with k = 1 and different target recall values
(g =10, ¢ =9, and ¢ = 8). The highest accuracy and lowest FPR values for each ¢ are highlighted in bold.

distance q=10 qg=9 q=38

series  local ‘ acc. FPR prec.  rec. acc. FPR prec.  rec. ‘ acc. FPR prec.  rec.
dy 0.8153  0.1945 0.21 1.00 | 0.9605 0.0363 0.57 0.90 | 0.9820 0.0087 0.83 0.80

sum da 0.4193 0.6113 0.08 1.00 | 0.5673  0.4505 0.10 0.91 | 0.5850  0.4276 0.09 0.83
doo 0.8210  0.1884 0.22 1.00 | 0.9610 0.0361 0.54 0.91 | 0.9813 0.0092 0.68 0.80

di 0.9065 0.0984 0.35 1.00 | 0.9912 0.0042 0.92 0.91 | 0.9895 0.0008 0.98 0.80

DTW do 0.4830 0.5442 0.09 1.00 | 0.4967 0.5250 0.08 0.91 | 0.4977 0.5195 0.08 0.83
deo 0.8938  0.1118 0.32 1.00 | 0.9895 0.0058 0.81 0.90 | 0.9892 0.0013 0.79 0.81

di 0.7473  0.2661 0.17 1.00 | 0.8867 0.1147 0.30 0.92 | 0.9410 0.0518 0.45 0.80

TWED do 0.8022  0.2082 0.20 1.00 | 0.9198 0.0795 0.37 0.91 | 0.9430 0.0503 0.46 0.82
deo 0.7463  0.2671 0.16 1.00 | 0.8893 0.1116 0.29 0.91 | 0.9308 0.0626 0.37 0.80

for each reading the distance to each of the other 9 rea-
dings. For given ¢ € {1,...,10}, we then set the threshold
such that ¢ of the user’s readings would lead to successful
authentication. Although this leads to a target recall of ¢/n,
the observed recall may be higher: e.g., a threshold set to
accept at least 9 readings may occasionally also accept the
10th reading if the authentication distance is exactly the
same. This happens with non-negligible frequency due to
symmetries in the dataset: the distance between reading
i and j for each user is the same as between reading j
and 7. To compute the “sum” series distance for two time
series with unequal length, we take the sum over the largest
number of elements that they have in common.

There is a notable tradeoff that must be considered when
choosing ¢: for ¢ = 10, all of the user’s base readings
would lead to authentication, but the threshold may be too
permissive when other users try to authenticate. To evaluate
this tradeoff, we performed a second experiment where
for each user, we treat the 190 readings by other users
as incorrect log-in attempts. Each time a user’s reading
leads to incorrect authentication (i.e., a false positive) is
treated as a security fault. The results of this experiment for
k =1 and the 3-dimensional orientation data are depicted
in Table 3 for ¢ = 8,9,10. Each table contains for all
combinations of the local distance functions d;, d-, and
do, and for the series distance functions “sum”, DTW, and
TWED, the accuracy (acc.; fraction correct among total of
4000 attempts), false positive rate (FPR; fraction of false
positives among 3800 incorrect attempts), precision (prec.;
fraction of true positives among the true and false positives),
and the recall (rec.; fraction of true positives among 200
correct attempts),

From Figure 3 we clearly observe the tradeoff between
precision and recall: for ¢ = 10, no user reading results
in a false negative, but the fraction of false positives is
considerable. The best performing approach is DTW com-
bined with d; for k = 1, but even this approach has a false
positive fraction of 9.84%. This is far too high for a practical
authentication protocol. In contrast, for ¢ = 9 and ¢ = 8 we
observe that if we set the threshold lower, i.e., to reject at
least from one each user’s base readings, that the fraction
of false positives also decreases. In particular, the best
performing approach (DTW combined with d;, for k = 1)

has a false positive fraction of 0.08%. This is more than two
orders of magnitude lower than for ¢ = 10, and therefore
better suited for authentication. We do note that too many
false negatives will lead to a diminished user experience.
For the TWED, we used a constant A = 1000 000: although
better choices for A may exist for this particular case study,
finding such a value is beyond the scope of this paper.

6.2. Blow-Based Authentication

Our second case study examines a blowing-based be-
havioral biometric technique designed for smartphone user
authentication. The underlying premise is that the manner
in which users blow on a phone screen produces distinctive
acoustic patterns, which can serve as a unique behavioral
biometric identifier for effective user identification or au-
thentication. To validate this intuition, a proof-of-concept
application was implemented on the Android platform to
capture the users’ blowing acoustic signals as time series,
specifically focusing on audio amplitude data. During data
collection, users were instructed to blow on the phone screen
in any manner they preferred for a duration of five seconds.
The procedure was repeated for 10 sessions for each user.
Consequently, an experimental dataset was compiled from
50 participants and has been made available via [17]. For
illustrative purposes, the blow acoustic time series data of
four participants is depicted in Figure A.6 in the appendix
while the whole dataset can be found online [17].

We have found that applying a simple moving aver-
age filter to the data improves authentication accuracy:
in particular, given step size k and window size w, the
smoothed time series x of a series x with size T' is given
as follows: let X' = (Xik,Xikt1,- -+ Xmin(ik+w,T))- Then

T = ﬁ Z'Jx:”l x’ fori =1,..., [T/k]. This has the added
advantage of reducing the size of the time series from T’
to [T/k], which considerably reduces DTW and TWED
computation times even for moderate chocies of k. For our
experiments, we chose k = 4 and w = 8, which reduces the
size of our readings from around 250 to 62 elements.

The results for blow-based authentication are displayed
for £k =1 in Table 4. In contrast to the shake-based results,
the sum outperforms DTW and TWED for ¢ = 8. The
reason is that the timing behavior in the blow pattern, e.g.,



TABLE 4: Accuracy, FPR, precision, and recall for blow-based authentication with k = 1 and different target recall values
(g =10, ¢ =9, and ¢ = 8). The highest accuracy and recall values for each choice of ¢ are highlighted in bold.

distance q=10 qg=9 q=38

series  local ‘ acc. FPR prec.  rec. acc. FPR prec.  rec. ‘ acc. FPR prec.  rec.
dy 0.9502 0.0508 0.29 1.00 | 0.9864 0.0120 0.61 0.91 | 0.9907 0.0058 0.74 0.82

sum da 0.9125 0.0893 0.19 1.00 | 0.9792 0.0193 0.49 0.91 | 0.9889 0.0075 0.69 0.81
des | 0.9502 0.0508 0.29 1.00 | 0.9864 0.0120 0.57 0.91 | 0.9907 0.0058 0.64 0.82

di 0.9335 0.0679 0.23 1.00 | 0.9710 0.0276 0.40 0.90 | 0.9828 0.0136 0.55 0.81

DTW do 0.9240 0.0776 0.21 1.00 | 0.9586 0.0404 0.31 0.91 | 09719 0.0247 0.40 0.80
deo 0.9335 0.0679 0.23 1.00 | 0.9710 0.0276 0.38 0.90 | 0.9828 0.0136 0.48 0.81

di 0.8351  0.1683 0.11 1.00 | 0.9042 0.0958 0.16 0.90 | 0.9385 0.0589 0.22 0.81

TWED do 0.8150  0.1888 0.10 1.00 | 0.8837  0.1167 0.14 0.90 | 0.9325 0.0649 0.20 0.81
deo 0.8351  0.1683 0.11 1.00 | 0.9042 0.0958 0.16 0.90 | 0.9385 0.0589 0.21 0.81

waiting for a second before commencing, may be useful to
distinguish between users — in the sum, such differences are
reflected, whereas the time shift insensitivity of the DTW
and TWED lessens such effects. We have found that the use
of a Sakoe-Chiba band [22] improves DTW’s performance
considerably, but we omit this due to space limitations.
(This can be achieved by modifying the set of acceptable
couplings Cx y for DTW in Section 4.2.) We observe that d;
and d, always produce the same result because m = 1. We
also observe that the squared Euclidean distance, d2, again
consistently has the worst performance, which motivates the
support for techniques beyond the Euclidean sum.

Overall, the best observed FPR for blow-based authen-
tication is lower than for shake-based authentication: 0.58%
for d; and the sum for the former, compared to 0.08% for d;
and DTW for the latter. However, in both cases we imagine
the behavioral biometric to be one part of a multi-factor
procedure: e.g., in combination with each other or with a
hard biometric such as face recognition. We leave this to
further research.

6.3. Scalability

To investigate the impact of the time series size on com-
putation times, we repeatedly generate synthetic time series
data and calculate the average time cost for generating and
validating the authentication proof. To generate synthetic
data, we use a random number generator to generate n time
series with parameters m (the dimension of each time series
element) and 7' (the length of the time series).

The result for m = 3 and varying choices of 7', the
time cost of the various protocol components are displayed
in Table 5. We first observe that the time cost of Bulletproofs
increases linearly for increasing 7', which is to be expected
as batching does not improve proof generation times. We
do observe a mild linear increase in the generation times
for SHARP proofs: from 0.972s for T' = 50 to 1.120s for
T = 300. As mentioned in Section 5, the reason is that
SHARP proof generation times are dominated by operations
on commitments, i.e., on elliptic curves, which are indepen-
dent of T'. Verification times are approximately 10x and
60x lower for Bulletproofs and SHARP proofs, respectively
— for SHARP, the verification times are so small that random

noise is greater than any observable increase in computation
times due to 7. The total verification times for SHARP
support practical efficiency: e.g., for the best-performing
shake-based case study we have T' € {42,...,97}, m = 3,
k =1, and for 3 * 97 ~ 300 we have a total verification
time of 1.1204-0.018 = 1.1138 seconds, which is acceptable
from the perspective of the user.

For the DTW calculation, we observe quadratically in-
creasing computation times as discussed in Section 3.2.
However, m and & only have a linear impact on the DTW. As
such, the impact of this part of the total time to execute ZK-
SERIES for the shake-based case study as mentioned above
is around 3 times 0.056 (the value for 7' = 100), increasing
the total authentication time from 1.1138 to 1.2818 seconds,
which remains acceptable.

7. Conclusion

We have presented ZK-SERIES, an authentication pro-
tocol that provides privacy and efficiency to a wide range
of time series comparison protocols. We have provided
an implementation of ZK-SERIES for three different lo-
cal distance functions, four different time series distance
functions, and two authentication protocols beyond a 1-to-
1 comparison. We have presented experimental results that
demonstrate that the time series techniques supported by
ZK-SERIES have higher accuracy than those provided by
BioZero [23], and that, unlike [41], [25], [40], ZK-SERIES
has practical performance on a smartphone.

TABLE 5: Computation times (in seconds) for ZKRP gen-
eration and verification times for Bulletproofs and SHARP,
DTW, and diagonal sum calculations, for varying values of
T (the number of time series elements).

time (s)

T 50 100 150 200 250 300
Bulletproofs (gen) | 18.27 34.97 53.69 70.27 87.62 106.0
Bulletproofs (vrf) |2.143 3.674 5918 7.356 9.302 11.20
SHARP (gen) 0.972 0983 1.010 1.057 1.090 1.120
SHARP (vrf) 0.022 0.017 0.016 0.016 0.018 0.018
diag sum 0.001 0.001 0.001 0.004 0.003 0.006
DTW 0.099 0.056 0.199 0.479 0.919 1.636




Regarding future work, one interesting direction is to
also include the true Euclidean local distance, i.e., the square
root of dy as defined in Section 3.2. To prove the correct
computation of = |,/y], we can provide two ZKRPs to
show that 22 < y and (x + 1)2 > y. Such ZKRPs can be
efficiently batched with the others. Another direction is to
investigate the loss of privacy from revealing the time index
pairs in steps (1) and (4) of Section 4.2. A third direction
is to extend ZK-SERIES to (some of) the other time series
distance functions presented, e.g., the shapelet-based meth-
ods discussed in [32] or neural networks. A fourth direction
is to apply ZK-SERIES to other case studies, e.g., facial
gestures converted into time series using feature extraction,
or continuous authentication in which vast amounts of base
readings are generated passively.
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Figure A.4: Acceleration readings of Participant 1 in: (a) x-axis (b) y-axis (c) z-axis (d) resultant vector (an aggregated data

of the readings along the three axes)
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Figure A.5: Acceleration readings of Participant 2 in: (a) x-axis (b) y-axis (c) z-axis (d) resultant vector (an aggregated data
of the readings along the three axes)
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Figure A.6: Sample blow acoustic time series data of (a) Participant 1 (b) Participant 2 (c) Participant 3 (d) Participant 4,
where “Signature” is an aggregate of the 10 sessions
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