
ar
X

iv
:2

50
6.

19
35

6v
1

 [
cs

.C
R

]
 2

4
Ju

n
20

25

WebGuard++:Interpretable Malicious URL
Detection via Bidirectional Fusion of HTML

Subgraphs and Multi-Scale Convolutional BERT
1st Ye Tian

Hangzhou Research Institute
Xidian University
Hangzhou, China

tianye@xidian.edu.cn

2nd ZhangYumin
Hangzhou Research Institute

Xidian University
Hangzhou, China

24241214904@stu.xidian.edu.cn

3rd Yifan Jia
Yantai Research Institute

Harbin Engineering University
Yantai, China

jiayf@hrbeu.edu.cn

4th Jianguo Sun*

Hangzhou Research Institute
Xidian University
Hangzhou, China

jgsun@xidian.edu.cn

5th Yanbin Wang*

Hangzhou Research Institute
Xidian University
Hangzhou, China

wangyanbin15@mails.ucas.ac.cn

Abstract—URL+HTML feature fusion shows promise for ro-
bust malicious URL detection, since attacker artifacts persist
in DOM structures. However, prior work suffers from four
critical shortcomings: (1) incomplete URL modeling, failing to
jointly capture lexical patterns and semantic context; (2) HTML
graph sparsity, where threat-indicative nodes (e.g., obfuscated
scripts) are isolated amid benign content, causing signal dilution
during graph aggregation; (3) unidirectional analysis, ignoring
URL-HTML feature bidirectional interaction; and (4) opaque
decisions, lacking attribution to malicious DOM components.

To address these challenges, we present WebGuard++, a de-
tection framework with 4 novel components: 1) Cross-scale URL
Encoder: Hierarchically learns local-to-global and coarse to fine
URL features based on Transformer network with dynamic con-
volution. 2) Subgraph-aware HTML Encoder: Decomposes DOM
graphs into interpretable substructures, amplifying sparse threat
signals via Hierarchical feature fusion. 3) Bidirectional Coupling
Module: Aligns URL and HTML embeddings through cross-
modal contrastive learning, optimizing inter-modal consistency
and intra-modal specificity. 4) Voting Module: Localizes mali-
cious regions through consensus voting on malicious subgraph
predictions. Experiments show WebGuard++ achieves significant
improvements over state-of-the-art baselines, achieving 1.1×–7.9×
higher TPR at fixed FPR of 0.001 and 0.0001 across both datasets.

Index Terms—Malicious URL Detection, Multiscale Learning,
ConvBERT, Pyramid Attention

I. INTRODUCTION

Phishing attacks have become one of the most pervasive and
damaging cyber threats in recent years, with the Anti-Phishing
Working Group (APWG) reporting record-breaking volumes
of 1,624,144 attacks in Q1 2023 [1] and approximately one
million in Q1 2024 [2]. Modern phishing campaigns em-
ploy increasingly sophisticated evasion techniques, including
homoglyphic domain spoofing (e.g., "facbook.com"), URL

*Yanbin Wang and Jianguo Sun are co-corresponding authors.

shortening services, and malicious content embedded within
legitimate platforms. These deceptive practices enable attack-
ers to bypass traditional URL detection methods, such as
blacklists [3], [4], rules [5] and manual feature engineering [6],
while effectively mimicking trusted websites to steal sensitive
information. The growing sophistication and scale of these
threats underscore the critical need for robust, accurate, and
efficient phishing detection systems capable of operating at
web scale with near-zero false positive rates to adequately
protect users and infrastructure.

Most approaches to malicious URL detection have predom-
inantly relied on URL-based features [7]. However, URLs
present several critical limitations: 1) Limited Information Di-
mensions – URLs encode minimal contextual data, restricting
detection models to surface-level patterns. 2) Vulnerability to
Evasion – Attackers easily manipulate URLs through obfus-
cation, mimicry, or rapid replacement to bypass detection. 3)
Lack of Structural Insight – URLs alone cannot reveal the
underlying page behaviors that indicate malicious intent.

Integrating HTML structural analysis has the potential to
address these shortcomings. Unlike URLs, HTMLs contain:
1) Rich Hierarchical Structure – DOM trees, nested iframes,
and script dependencies expose hidden attack vectors (e.g.,
phishing content loaded via iframes). 2) Interaction Logic
– Form actions, redirects, and domain mismatches reveal
data exfiltration attempts (e.g., spoofed submission endpoints).
By training models to recognize these structural anomalies,
HTML+URL detection complements and reinforces URL-
based features and mitigates evasion tactics, as structural
manipulations are harder to disguise than URL alterations.

Existing approaches like Web2Vec and PhishDet demon-
strate progressive advancements. Web2Vec proposes a deep
hybrid network architecture that jointly processes URL strings,

https://arxiv.org/abs/2506.19356v1

HTML content, and DOM structures. PhishDet combines Long
Short-Term Memory (LSTM) networks with Graph Convolu-
tional Networks (GCNs) to model URL patterns and structural
HTML features. However, these methods exhibit 4 critical
limitations:

• Incomplete URL Modeling: Existing methods process
URLs as either lexical sequences or static tokens, failing
to capture (i) local character-level manipulations (e.g.,
"facwook.com") and (ii) global semantic context (e.g.
deceptive subdomains).

• HTML Graph Sparsity: Current GNN-based DOM an-
alyzers suffer from signal dilution during neighborhood
aggregation, as threat-indicative nodes (e.g., obfuscated
<script> tags) account for <5% of typical DOM graphs,
while benign content dominates attention weights.

• Deficient Cross-Modal Interaction: Existing methods
have not modeled dynamic, bidirectional semantic re-
lationships between modalities, missing mutually rein-
forcing signals. For instance, a suspicious URL (e.g.,
"login.paypa1.com") may align with HTML structures
like payment forms, while anomalous DOM elements
(e.g., fake brand-related notices) can clarify URL intent.

• Opaque Decisions: Black-box architectures lack attribu-
tion mechanisms to pinpoint malicious DOM compo-
nents, hindering forensic analysis.

We propose WebGuard++ to overcome cross-modal phish-
ing detection challenges with four interlocking technical: (1)
Cross-scale URL Encoder: Combines ConvBERT’s hierar-
chical representations with spatial pyramid fusion to jointly
capture character-level obfuscational patterns (e.g., "paypa1")
and semantic inconsistencies (e.g., deceptive subdomains). (2)
Subgraph-aware HTML Encoder: Performs DOM subgraph
partitioning with stabilized node grouping and iterative batch
sampling, enabling localized malicious signal aggregation
(e.g., form clusters) while mitigating benign node interference
in full-graph processing. (3) Bidirectional Coupling Module:
Employs stacked feature layers with both self and cross-
attention to capture distinct semantic subspaces, enabling bidi-
rectional URL-HTML feature interaction. (4) Voting Module:
Adopts a minimum compromise voting policy - any malicious
subgraph (≥ 1 in sampled rounds) triggers global malicious
classification, while providing actionable forensic evidence
through malicious subgraphs.

This work makes the following key contributions:

• We propose a cross-modal malicious URL detection that
achieves 1.1-7.9× higher TPR at <0.01 FPR by jointly
modeling URL and HTML features.

• We design a URL encoding method that captures both
lexical obfuscation patterns and semantic inconsistencies
by multi-layer ConvBERT with pyramidal feature fusion.

• We propose a subgraph learning method for HTML that
employs effective subgraph partitioning to aggregate local
malicious signals while preventing feature dilution.

• We use a hybrid attention network with both self/cross-
attention to learn bidirectional, multi-view relationships

between URLs and HTML content.
• Our method is the first subgraph-based maliciousness

prediction that provides both fine-grained classification
and component-level traceability.

II. RELATED WORK

Early phishing detection methods mainly rely on extract-
ing discriminative features from raw URLs. PhishDef [8]
demonstrated that phishing links could be effectively identified
using only static URL features, such as domain length and
character composition, thereby reducing reliance on external
resources. Nonetheless, it showed limited effectiveness against
semantically natural and structurally sophisticated malicious
URLs. PhishZoo [9] enhanced the ability to detect spoofed
pages by analyzing visual similarities between webpages, but
its stability degraded under dynamic content or slight layout
changes. Whereupon, Sahingoz et al [10] modeled URL char-
acter features using various classifiers, significantly improving
detection accuracy and generalization capabilities. Shraddha
Parekh et al. [11] put forth a model by using the URL detection
method using Random Forest algorithm. However, there are
still some defects, such as the lack of fine-grained feature
acquisition of URL text.

Despite these advancements, single-modality detection
methods [12] remain vulnerable to adaptive attacks that exploit
their limited perceptual scope. With the advent of deep learn-
ing, more expressive models emerged. URLNet [13] combined
character-level and word-level embeddings via convolutional
neural networks (CNNs) to capture morphological patterns
in URLs, offering significant improvements over handcrafted
features. This line of research was extended through CNN-
based architectures [14] and attention-based transformers such
as TransURL [15], which demonstrated stronger robustness
against adversarial obfuscation. Concurrently, models such
as PhishGuard [16] and Fed-urlBERT [17] integrated feder-
ated training and transformer encoders to support privacy-
preserving and scalable learning. PhishBERT [18] further
explored pre-trained language models for URL representation
learning, yielding enhanced generalization.

In response to the continuously evolving phishing tech-
niques, researchers have gradually shifted towards multi-
modal fusion and structure-aware modeling [19]–[27]. Yoon et
al. [28] proposed a detection framework that integrates HTML
DOM graphs and URL features based on graph convolutional
and transformer networks. Lee et al. [29] introduced a brand
consistency verification mechanism, effectively enhancing per-
formance under adversarial attacks, although challenges re-
main in identifying emerging niche brands. PhishAgent [30]
further improved detection robustness by leveraging a multi-
modal large language model to integrate webpage text, visual,
and structural information. Lihui Meng et al. [31] proposes
DPMLF (Deep Learning Phishing Detection Model with
Multi-Level Features), which integrates URL character-level
and HTML word-level semantic features. However, feature
fusion using fully connected layers cannot closely match the
modality, thus affecting the model performance.

https://scholar.google.com/

Uniform Resource Locator

Transformer

token Emb.

BERT

Encoder

Character

Encoder

char Emb.

Convolution

+

专
家
特
征

专
家
特
征

专
家
特
征

<html>

<body>

text.

<ol title="title">

scholar

</body>

</html>

<html>

<head>

<title>

<body>

(‘scholar’)

<a> <h1>

(‘link’) (‘title’)

…
…

GNN

Node Pooling

Self Attention
S

elf A
tten

tio
n

×

Q K V

Product＆Scale

Softmax

Sum

Concat

Layer norm

FFN

＋

0 1 0 0

ConvBERT ×12

12 layers

output

DSConv

DOM treeHTML

Build Graph

Extract Sub-Graph

Extract Sub-Graph

Concat

Cross Attention

1

Bias Voting

Spatial Pyramid Attention Networks

F1

F2

F3

F4

Fig. 1. Framework diagram of the model structure of WebGuard++.

In parallel, PhishIntention [21] and Phishpedia [20] empha-
sized visual understanding. A broader evaluation by Bushra
Sabir et al. [32] revealed that many state-of-the-art models ex-
hibit drastic performance degradation when facing adversarial
URL samples, highlighting the fragility of current systems.

Our approach fundamentally advances malicious URL de-
tection by differentiating itself from prior work through four
key dimensions: (1) fine-grained URL feature extraction, (2)
subgraph-level HTML structure learning, (3) bidirectional
modal coupling, and (4) malicious segment localization.

III. METHODOLOGY

We organize this section as follows: First introducing data
preprocessing, then detailing three core components (URL
encoder, HTML encoder, and their bidirectional coupling),
and finally presenting the phishing detection mechanism. See
Figure 1 for overview.

A. Cross-scale URL Encoder
URLs serve as a fundamental indicator for malicious web-

page detection, as attackers frequently manipulate URL struc-
tures to mimic benign pages while evading traditional pattern-
matching techniques and retaining malicious intent. However,
extracting discriminative URL features requires careful con-
sideration of two key challenges: (1) structural ambiguity;
and (2) adversarial noise—embedded homoglyphs or Base64-
encoded payloads. This necessitates fine-grained URL feature
extraction capable of capturing multiscale information at both
character-level and semantic levels.

To address this, we integrate CharBERT and ConvBERT
models, where the former extracts character-level URL fea-
tures, while the latter, equipped with global and local context

learning, refines local and global semantic representations.
Furthermore, to enable coarse-to-fine representation learning,
we extract embeddings from all 12 hidden layers of the
ConvBERT model to construct a feature matrix, which is
then processed via a spatial pyramid multiscale feature fusion
module for hierarchical feature learning.

The spatial pyramid module first applies DSConv3×3
(depthwise separable convolution) to preliminarily transform
input features, as follows:

X = DSConv3× 3(x) (1)

where the input is x and the output is X. Next, multi-
ple DSConv3x3 convolutional kernel branches with different
expansion rates are defined, where different expansion rates
can capture contextual information at different scales. Smaller
expansion rates can focus on local features, while larger expan-
sion rates can capture more global features. Each branch uses
the depth-separable convolution DSConv3x3 with expansions
d1, d2, d3, d4.

D1 = DSConv3× 3(X, di), i = 1, 2, 3, 4 (2)

where Di denotes the output of the ith branch and di is the
expansion rate of the branch.

Sum the outputs of all branches with the output of the initial
convolution to achieve feature fusion.

DX = X +

4∑
i=1

Di (3)

Next, along the lines of Spatial Pyramid Attention Net-
works [33], pooling operations are performed on the feature

maps using different sizes of Adaptive Average Pooling Layers
(AdaptiveAvgPool2d) to extract features at different spatial
scales.

y1 = AdaptiveAvgPool2d(1)(DX) (4)

y2 = AdaptiveAvgPool2d(2)(DX) (5)

y3 = AdaptiveAvgPool2d(4)(DX) (6)

where AdaptiveAvgPool2d(k) denotes the adaptive pooling
of the feature map to a size of k × k.

Finally, these feature vectors are spliced and input to the
fully connected layer for feature fusion, and the attention
weights are obtained using the sigmoid function.

y = concat(y1, y2, y3) (7)

y = FC2(ReLU(FC1(y))) (8)

y = sigmoid(y) (9)

where FC1 and FC2 denote the fully connected layers,
respectively.

The attention weights are multiplied with the fused fea-
ture map to obtain the attention weighted feature map. The
attention weighted feature map is summed with the original
input feature map to realize the residual join to preserve the
information of the original input.

Ourl = DX × y + x (10)

B. Subgraph-aware HTML Encoder

The input HTML document is parsed using the Beautiful
Soup library (v4.12.3) to construct a Document Object Model
(DOM) tree representation. This tree preserves the hierarchical
structure of HTML elements, including all tags, attributes, and
text content. The DOM tree is traversed using a depth-first
search (DFS) algorithm to generate: A diagram object for the
NetworkX package (v3.1) where: Nodes represent HTML ele-
ments (tags) with unique identifiers. Edges encode parent-child
relationships between elements. A node attribute list contain-
ing structured metadata for each node: Tag type (e.g., <div>,
<a>), Key-value pairs of HTML attributes (e.g., {"class":
"container"}), Raw text content. Node features consist of node
"tag", "attributes", "text" attributes text content. For each node,
we use a pretrained Word2Vec model (minimum vocabulary
size) to generate a 100-dimensional embedding.

Then, the corresponding edge matrices, node neighbor lists,
and maximum number of neighbors are computed based on
the edge and node data of the networkx.DiGraph() graph
object, and all the data are integrated into the model-acceptable
S2VGraph object structure.

For HTML content, our objective is to learn effective repre-
sentations of malicious signals embedded within its structure.
However, since such signals are often concealed within normal
HTML elements, they tend to be obscured during graph-based
learning. To address this challenge, we propose subgraph-
aware HTML graph learning, which transforms the HTML
DOM into a graph structure and employs node-level subgraph

Algorithm 1 Biased voting mechanism process.
1: subgraphs← sum(division_func(graph))
2: 0count ← 0
3: 1count ← 0
4: 0scores ← 1
5: 1scores ← 0
6: for 0 to iters_per − 1 do
7: selected_subgraphs← random.sample(subgraphs, 4)
8: outputs ← model(selected_subgraphs, ∗url)
9: scores ← softmax(outputs)

10: _, predicted_classes ← max(outputs, 1)
11: if predicted == 0 then
12: 0count← 0count+ 1
13: 0scores← min(0scores, scores)
14: else
15: 1count← 1count+ 1
16: 1scores← max(1scores, scores)
17: end if
18: end for
19: y_pred← []
20: y_scores← []
21: if 1count ≥ 2 then
22: 1 add to y_pred
23: 1scores add to y_scores
24: else
25: 0 add to y_pred
26: 0scores add to y_scores
27: end if

return: y_pred, y_scores

partitioning to extract localized subgraphs. This approach en-
ables subgraph-level feature learning, ensuring that malicious
signals remain distinguishable and are not diluted by benign
structural patterns.

Specifically, we partition the graph into N subgraphs using
a hash function H . The function takes a node ID string (
Sv) as input and assigns nodes to distinct subsets, where
each subgraph retains only the nodes and edges belonging to
a specific group.

Xt = {Xv|H(Sv)%Tf + 1 = t}, t = 1, 2, ..., Tf (11)

Where G=(V,E,X), G denotes the input graph, V denotes
the node union, E denotes the edge union, X denotes the node
feature matrix and Xv denotes the feature vector of node v.

Next, we will select batch subgraphs to input into the
model many times for neighbor aggregation, MLP nonlinear
transformation and BatchNorm operations.

Xconcat = Concat(G1.nodefeatures, ..., GB .nodefeatures)
(12)

H0 = Xconcat (13)

H(l) = Ablock ·H(l−1) (14)

H(l) = ReLU(BatchNorm(MLPl(H
(l)))) (15)

Fig. 2. Biased voting mechanism process.

Where B denotes the batch size, G1 represents the 1st

subgraph, l denotes the lth propagation, H(l) denotes the
hidden representation of each layer, Ablockdenotes the block
diagonal sparse matrix.

Finally, all sub-graphs of each layer are pooled at the sub-
graph level, and the features of each layer are concatenated to
obtain the final features of these sub-graphs.

Hpooled
(i) = P ·H(i), i = 0, 1, ...l (16)

Where P represents the pooling operation.

C. Bidirectional Coupling Module

To learn joint URL-HTML representations, we propose
bidirectional multi-view coupling ([34]) for fusing multimodal
URL and HTML features. Unlike simple concatenation or
unidirectional cross-attention layers, our bidirectional cou-
pling module stacks multiple hybrid attention layers. Each
layer combines self-attention and cross-attention mechanisms:
self-attention independently models intra-modal dependencies
within each modality, while cross-attention captures inter-
modal interactions between URL and HTML features.

The HTML modality features are processed through self-
attention to capture intra-modal relationships:

SelfAttention(Qh,Kh, Vh) = softmax(

(
QhK

T
h√

dk

)
)Vh

(17)
Similarly, URL features undergo self-attention:

SelfAttention(Qu,Ku, Vu) = softmax(

(
QuK

T
u√

dk

)
)Vu

(18)
We establish bidirectional cross-modal attention for inter-

modal information exchange:

HTML-to-URL attention extracts domain semantics from
URL features:

CrossAttention(Qu,Kh, Vh) = softmax(

(
QuK

T
h√

dk

)
)Vh

(19)
URL-to-HTML attention captures structural patterns from

HTML features:

CrossAttention(Qh,Ku, Vu) = softmax(

(
QhK

T
u√

dk

)
)Vu

(20)
The fused features are subsequently output.

D. phishing bias voting mechanism

we propose a biased voting mechanism for phishing web-
site detection. If the number of malicious predictions across
multiple rounds of batch subgraph extraction exceeds one,
we directly classify the corresponding HTML-URL pair as a
phishing website. Unlike conventional approaches, our mech-
anism operates at the subgraph level, enabling not only final
detection but also localization of malicious regions within the
HTML structure. The voting process is illustrated in Figure 2,
and the algorithmic workflow is detailed in Algorithm 1.

Specifically, for each HTML graph divided into num_groups
of subgraphs, we will perform iter_per rounds to randomly
extract iter_num subgraphs and URL data corresponding to the
current HTML graph from the subgraphs and input them into
the WebGuard++ model for feature extraction. WebGuard++’s
Subgraph-aware HTML Encoder will batch process the sub-
graph features without affecting each other. Subsequently,
WebGuard++ fuses the output subgraph features from the
Subgraph-aware HTML Encoder to represent the total features
of the subgraph collection in this round of extraction.

Suppose the current is a phishing site, num_group=5,
iter_per=5, iter_num=4, a subgraph contains malicious. Then,
4 images are randomly selected inside 5 images, and the
probability that 4 images contain malicious subgraphs is 80%;
the probability that none of the set of subgraphs of the
extraction site contains malicious subgraphs in each of the
5 rounds of random selection is 0.032%, which is close to
zero.

Contains malicious =
C(4, 3)

C(5, 4)
=

4

5
= 80% (21)

Without malicious = 20% (22)

All without malice = (20%)5 = 0.032% (23)

Therefore, our method can basically extract subgraphs with
full coverage and input them to the model for prediction.

To ensure the accuracy of the predictions, we set the condi-
tion for determining URL-HTML data pairs as malicious to be
when the number of predictions as malicious in all extraction
rounds is greater than 1. When a batch of subgraph features is
predicted to be malicious, the current URL-HTML data pair is
tagged as malicious. If a subsequent batch of subgraph features

TABLE I
MTLP Dataset 10000 Evaluation metrics at scale: WebGuard++ vs other models.

Method TN FP FN TP ACC Precision Recall F1 PR-AUC ROC-AUC MCC Weighted F1

BILSTM 940 54 922 84 0.5120 0.6086 0.0834 0.1468 0.5118 0.5145 0.0575 /
TEXTCNN 814 180 104 902 0.8580 0.8336 0.8966 0.8639 0.9472 0.9434 0.7179 0.8577
URLNET 829 165 148 857 0.9269 0.8385 0.8527 0.8455 0.7891 0.8433 0.6869 0.8434
TRANSURL 953 41 20 986 0.9695 0.9600 0.9801 0.9699 0.9934 0.9937 0.9391 0.9694
PMANET 991 26 22 961 0.9760 0.9736 0.9776 0.9756 0.9933 0.9952 0.9519 0.9760
URLBERT 910 42 11 1037 0.9735 0.9610 0.9895 0.9750 0.9965 0.9967 0.9472 0.9734
DEPHIDES 966 36 76 922 0.9440 0.9624 0.9238 0.9427 0.9824 0.9827 0.8887 0.9439
SEMI-GAN 790 151 17 948 0.9118 0.8626 0.9823 09186 / 0.9826 0.8316 0.9113

WEBGUARD++ 989 21 24 966 0.9775 0.9787 0.9757 0.9772 0.9959 0.9949 0.9549 0.9772

TABLE II
The Abdelhakim Dataset phishing dataset Evaluation metrics : WebGuard++ vs other models.

Method TN FP FN TP ACC Precision Recall F1 PR-AUC ROC-AUC MCC Weighted F1

BILSTM 115 2 58 13 0.6808 0.8666 0.1830 0.3023 0.4671 0.5830 0.2970 /
TEXTCNN 103 14 42 29 0.7021 0.6744 0.4084 0.5087 0.6462 0.7647 0.3333 0.6814
URLNET 90 26 40 31 0.8128 0.5438 0.4366 0.4843 0.4513 0.6062 0.2240 0.6378
TRANSURL 101 16 20 51 0.8085 0.7611 0.7183 0.7391 0.8210 0.8737 0.5886 0.8073
PMANET 98 14 14 62 0.8510 0.8157 0.8157 0.8157 0.8827 0.8956 0.6907 0.8510
URLBERT 88 18 16 66 0.8191 0.7857 0.8048 0.7951 0.8772 0.9004 0.6334 0.8193
DEPHIDES 104 1 67 16 0.6382 0.9411 0.1927 0.3200 0.7898 0.7840 0.3172 0.5621
SEMI-GAN 88 24 34 35 0.6795 0.5932 0.5072 0.5468 0.4759 0.7017 0.3035 0.6738

WEBGUARD++ 109 8 12 59 0.8936 0.8805 0.8309 0.8550 0.9072 0.9256 0.7719 0.8550

TABLE III
MTLP Dataset 10000 in terms of TPR@FPR metrics: WebGuard++ vs other

models.

Method TPR@FPR
(0.0001)

TPR@FPR
(0.001)

TPR@FPR
(0.01)

TPR@FPR
(0.1)

BILSTM 0 0 0 0.0834
TEXTCNN 0 0.2345 0.4771 0.8429
URLNET 0 0 0 0
TRANSURL 0.3797 0.3797 0.8876 0.9960
PMANET 0.2177 0.2553 0.9369 0.9979
URLBERT 0.4122 0.4122 0.9408 0.9990
DEPHIDES 0.1002 0.1002 0.8086 0.9829
SEMI-GAN 0 0 0.7709 0.9544
WEBGUARD++ 0.6848 0.7939 0.9515 0.9929

is also predicted to be malicious, the previous prediction is
confirmed to be true, indicating that the HTML graph does
indeed contain a subgraph with malicious content, and the
current URL-HTML data pair is malicious.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the proposed method. First, we describe the experimental
setup, including the dataset, evaluation metrics, environment
and equipment. Then, we compare the phishing site detection

TABLE IV
The Abdelhakim Dataset phishing dataset in terms of TPR@FPR metrics:

WebGuard++ vs other models.

Method TPR@FPR
(0.0001)

TPR@FPR
(0.001)

TPR@FPR
(0.01)

TPR@FPR
(0.1)

BILSTM 0 0 0 0.1830
TEXTCNN 0 0 0.0704 0.3521
URLNET 0 0 0 0
TRANSURL 0.1126 0.1126 0.3521 0.6338
PMANET 0.2105 0.2105 0.4605 0.7368
URLBERT 0.3414 0.3414 0.3536 0.6707
DEPHIDES 0.1927 0.1927 0.2771 0.5421
SEMI-GAN 0 0 0 0.3623
WEBGUARD++ 0.3802 0.3802 0.5492 0.8591

performance of our proposed method with other state-of-the-
art methods. Finally, we perform some ablation experiments,
cross-dataset tests and model robustness tests.

A. EXPERIMENTAL SETUP

Dataset. Our experiments focus on using the MTLP
Dataset [35] phishing site detection dataset, the Abdelhakim
Dataset phishing site detection dataset, and the course-cotrain-
data course categorization dataset.

10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve on MTLP_10000

BiLSTM (AUC=0.5676)
TextCNN (AUC=0.9411)
URLNet (AUC=0.9593)
TransURL (AUC=0.9988)
PMANet (AUC=0.9952)
URLBERT (AUC=0.9968)
dephides (AUC=0.9547)
Semi-GAN (AUC=0.9836)
OUR (AUC=0.9983)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve on Abdelhakim Dataset

BiLSTM (AUC=0.3287)
TextCNN (AUC=0.8578)
URLNet (AUC=0.7538)
TransURL (AUC=0.9289)
PMANet (AUC=0.8957)
URLBERT (AUC=0.9005)
dephides (AUC=0.7841)
Semi-GAN (AUC=0.7017)
OUR (AUC=0.9932)

Fig. 3. Performance of our model against other models on the ROC curve.

The MTLP dataset is compiled from two different sources:
benign samples from the top 2,000 URLs in the Alexa rank-
ings, and additional randomly selected benign and malicious
URLs from OpenPhish. The dataset consists of 50,000 benign
URLs and 50,000 malicious URLs, which contain HTML
content, whois information, and screenshots. Due to the nature
of the experiments and equipment limitations, we cleaned the
MTLP Dataset and evenly sampled 10,000 data as the training
evaluation dataset for this study.

The Abdelhakim Dataset includes 11430 URLs. The dataset
are designed to be used as a benchmark for machine learning
based phishing detection systems. The datatset is balanced,
it containes exactly 50% phishing and 50% legitimate URLs.
Datasets are constructed on May 2020. The dataset contains a
list a URLs together with their DOM tree objects that can be
used for replication and experimenting new URL and content-
based features overtaking short-time living of phishing web
pages.

The course-cotrain-data dataset consists of 1051 pages, with
230 in the course category and 821 in the non-course category.
This data set contains a subset of the WWW-pages collected
from computer science departments of various universities in
January 1997 by the World Wide Knowledge Base (Web->Kb).

Evaluation Metrics. To evaluate the model in a more com-
prehensive and detailed way, we used the following ’TN’, ’FP’,
’FN’, ’TP’, ’ACC’, ’Precision’, ’Recall’, ’F1’, ’ROC-AUC’,
’PR-AUC’, ’MCC’, ’Weighted F1’, ’TPR@FPR=0.0001’,
’TPR@FPR=0.001’, ’TPR@FPR=0.01’, ’TPR@FPR=0.1’ as-
sessment metrics.

TP: The number of samples where the model predicts a
positive class and the true value is also positive. TN: Number
of samples where the model predicts a negative category
and the true value is also negative. FP: Number of samples
where the model predicts a positive class but the true value is
negative. FN: Number of samples where the model predicts a

negative class but the true value is positive.

ACC =
TP + TN

TP + TN + FP + FN
(24)

Precision =
TP

TP + FP
(25)

Recall = Sensitivity = TPR =
TP

TP + FN
(26)

F1 =
2× Precision×Recall

Precision+Recall
=

2TP

2TP + FP + FN
(27)

ROC-AUC is the area under the ROC curve, which measures
the model’s ability to distinguish between positive and negative
classes.

PR-AUC is the area under the PR curve, which measures
the model’s precision at different recall rates.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(28)

If the denominator is zero, the MCC is defined as zero.

Weighted F1 =

n∑
i=1

(wi × F1i) (29)

where n is the number of categories, F1i is the F1 score of
the ith category, and wi is the weight of the ith category in
the real labeling

TPR@FPR=0.0001, TPR@FPR=0.001, TPR@FPR=0.01,
TPR@FPR=0.1: These metrics represent the True Positive
Rate (TPR) for a given False Positive Rate (FPR).

Environment and Parameter setting. The batch size dur-
ing model training was 4, Adam optimizer (initial learning
rate: 2e-5, weight decay: 5e-4), dropout rate 0.1, dataset n-
fold cross-validation division random seed: 42 and 10 training
epochs. We used PyTorch 1.12.1, NVIDIA CUDA12.0 and
Python 3.8.20 for training on an NVIDIA 3090.

ACC

Prec
isi

on
Reca

ll F1

PR-A
UC

ROC-A
UC

MCC

Weig
hte

d F
1

TPR@FPR=0.0
00

1

TPR@FPR=0.0
01

TPR@FPR=0.0
1

TPR@FPR=0.1
0.0

0.2

0.4

0.6

0.8

1.0

M
et

ri
c

Sc
or

e
MTLP_2000

ACC

Prec
isi

on
Reca

ll F1

PR-A
UC

ROC-A
UC

MCC

Weig
hte

d F
1

TPR@FPR=0.0
00

1

TPR@FPR=0.0
01

TPR@FPR=0.0
1

TPR@FPR=0.1

MTLP_7000

ACC

Prec
isi

on
Reca

ll F1

PR-A
UC

ROC-A
UC

MCC

Weig
hte

d F
1

TPR@FPR=0.0
00

1

TPR@FPR=0.0
01

TPR@FPR=0.0
1

TPR@FPR=0.1
0.0

0.2

0.4

0.6

0.8

1.0

MTLP_10000

ACC

Prec
isi

on
Reca

ll F1

PR-A
UC

ROC-A
UC

MCC

Weig
hte

d F
1

TPR@FPR=0.0
00

1

TPR@FPR=0.0
01

TPR@FPR=0.0
1

TPR@FPR=0.1

Abdelhakim_Dataset

vote_OUR w/o vote

Fig. 4. The ablation experiments of our model against the voting mechanism were done on the MTLP dataset (uniformly sampled 2000, 7000, and 10000
data sizes) and the Abdelhakim dataset, respectively.

B. EXPERIMENTAL RESULTS

1) Phishing Detection Capabilities: In order to compre-
hensively evaluate the performance of our proposed model
WebGuard++ in the field of phishing website detection, we
conducted experiments on two publicly available datasets
and compared it with several state-of-the-art models. The
experimental results include results n the MTLP Dataset with
10,000 data points, (see Table I, III), results on Abdelhakim
Dataset (see Table II, IV), and ROC graphs of different models
on both datasets (Figure 3).

According to Table I, III and the ROC curve on the left
side of Figure 3), our model on the MTLP Dataset with
10,000 data points, has key evaluation metrics such as Accu-
racy, Precision, F1, MCC, Weighted F1, TPR@FPR(0.0001),
TPR@FPR(0.001), TPR@FPR(0.01), and so forth outper-
formed other models.

Our model achieves the highest values in both ACC and
Precision, indicating that it exhibits higher accuracy and both
accuracy and false alarm rate in categorizing phishing websites
and normal websites. Meanwhile, the optimal values of F1
and MCC further validate the balance and robustness of our
model in categorizing positive and negative samples, especially
in the case of unbalanced category assignment. Among them,
our model is significantly ahead of other models in low FPR
scenarios such as TPR@FPR(0.0001), TPR@FPR(0.001), and

TPR@FPR(0.01), which shows a unique advantage in the
phishing detection task.

Comparing with other models (see Table I, III and Figure 3),
left), traditional models such as BiLSTM and TextCNN have
significantly lower performance, indicating their shortcomings
in large-scale complex features; whereas advanced models
such as PMANet and TransURL outperform our model in F1,
MCC, and low FPR metrics, although their AUCs are close.
This suggests that our model is not only able to accurately
categorize but also provides strong detection capabilities in
scenarios such as front and low false alarm rate.

According to Table II, IV and the ROC curve on the right
side of Figure 3, our model significantly outperforms the other
models in ROC-AUC on Abdelhakim Dataset and outper-
forms the other models in Accuracy, Recall, F1, Weighted
F1, PR-AUC, MCC, TPR@FPR(0.0001), TPR@FPR(0.001),
TPR@FPR(0.01), TPR@FPR(0.1) and many other key metrics
outperform other models. Evidently, our model almost com-
prehensively overwhelms the other models.

The comparison with other models (see Table II, IV and
Figure 3 right) shows that the traditional model BiLSTM and
the base model TextCNN perform significantly worse on the
dataset; whereas models such as PMANet [36] and URL-
BERT [37] outperform in some of the metrics, they still do not
perform as well as our model in terms of comprehensive per-
formance and low FPR. In addition, some generative models

1 2 3 4 5 6 7 8 9 10
Epoch

0.76

0.82

0.89

0.95

1.02

A
C

C

1 2 3 4 5 6 7 8 9 10
Epoch

0.75

0.81

0.88

0.95

1.01

Pr
ec

is
io

n

1 2 3 4 5 6 7 8 9 10
Epoch

0.91

0.94

0.97

0.99

1.02

R
ec

al
l

1 2 3 4 5 6 7 8 9 10
Epoch

0.45

0.59

0.73

0.88

1.02

R
O

C
-A

U
C

1 2 3 4 5 6 7 8 9 10
Epoch

0.75

0.82

0.88

0.95

1.02

PR
-A

U
C

1 2 3 4 5 6 7 8 9 10
Epoch

-0.02

0.24

0.50

0.76

1.02

TP
R

@
FP

R
=0

.1

BiLSTM our TextCNN TransURL URLNet

Fig. 5. The generalisation performance of BiLSTM, TextCNN, TransURL, URLNet, and the proposed model in this paper in cross-dataset scenarios is visually
demonstrated by the trend changes of six classical evaluation metrics under 10 training epochs.

such as Semi-GAN [38] and dephides [39] perform relatively
poorly on Abdelhakim Dataset, which further highlights the
strong correlation and generalization ability of our model.

To summarize, our model shows excellent performance in
the phishing website detection task, both in terms of clas-
sification accuracy, low false alarm rate detection capability,
and consistency with unbalanced data, which meets the task
requirements.

2) Voting Mechanism Ablation Experiment: In order to
verify the actual enhancement effect of the proposed inno-
vative mechanism on model performance, we compare and
analyze the performance of adding the voting mechanism with
and without adding the voting mechanism under several key
evaluation metrics in four data (MTLP_2000, MTLP_7000,
MTLP_10000, and Abdelhakim Dataset), as shown in Fig-
ure 4). From the overall trend, vote_OUR outperforms w/o
vote on most of the assessment metrics, and performs better
on most of the key metrics. This result indicates that the
innovative mechanism has a significant positive effect in
improving the overall recognition performance of the model
and enhancing the robustness and generalization ability. In ad-
dition, We observed that after introducing this mechanism, the
model’s TPR significantly improved at all set FPR thresholds
(0.0001, 0.001, 0.01, and 0.1), demonstrating comprehensive
and stable detection advantages. This phenomenon indicates
that the mechanism can effectively enhance the model’s ability
to identify positive samples even under extremely low false

positive rate requirements, thereby improving the model’s
practicality and robustness in real-world high-risk scenarios.
In summary, the experiments demonstrate that the proposed
innovative method significantly improves the performance of
the model under the key indicators while maintaining the
overall performance balance, which validates its practical
application value in high-reliability task scenarios.As shown
in Figure 4.

3) Cross-dataset generalisability test: We conducted a gen-
eralization test on the cross-dataset course_data, and the results
are shown in the Figure 5. The experimental results presented
in the six subplots (a-f) demonstrate the performance of
multiple models (BiLSTM, our model, TextCNN, TransTRL,
and URLNet) over 10 epochs across six evaluation metrics:
Accuracy, Recall, ROC-AUC, PR-AUC, TPR@FPR=0.1 and
Precision. Below is a detailed analysis highlighting the advan-
tages of our model compared to the other baselines.

(a) Accuracy. Our model achieves near-perfect accuracy
(≈ 1.0) after just 2 epochs, significantly outperforming all
other models. TransURL also converges to high accuracy
but requires 5 epochs, demonstrating slower convergence.
TextCNN and BiLSTM plateau at lower accuracy values, while
URLNet remains constant at a much lower level (∼ 0.8). Our
model demonstrates faster convergence and higher overall per-
formance, indicating its robustness and efficiency in learning.

(b) Recall. All models except for URLNet achieve high
recall (>0.99) by the end of training. However, our model

ACC

Prec
isi

on
Reca

ll F1

PR-A
UC

ROC-A
UC

MCC

Weig
hte

d F
1

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ri
c

Sc
or

e

GCN vs GCN-del-edges

ACC

Prec
isi

on
Reca

ll F1

PR-A
UC

ROC-A
UC

MCC

Weig
hte

d F
1

M
et

ri
c

Sc
or

e

GIN vs GIN-del-edges

ACC

Prec
isi

on
Reca

ll F1

PR-A
UC

ROC-A
UC

MCC

Weig
hte

d F
1

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ri
c

Sc
or

e

GRN vs GRN-del-edges

ACC

Prec
isi

on
Reca

ll F1

PR-A
UC

ROC-A
UC

MCC

Weig
hte

d F
1

M
et

ri
c

Sc
or

e

OUR vs OUR-del-edges

Base Model Random deletion of edges

Fig. 6. Compare the robustness test of our model and the basic GNN model in the random edge deletion scenario.

maintains a consistently high recall throughout the epochs,
with minimal fluctuations. TransURL shows instability during
the training process, with notable drops around epochs 5-7.
URLNet lags significantly behind with poor recall (∼ 0.93).
Our model ensures stability and reliability in recall, a critical
metric for minimizing false negatives.

(c) ROC-AUC. Our model reaches a perfect ROC-AUC
of 1.0 within just 2 epochs, outperforming all baselines.
TransURL converges to a similar level but requires 5 epochs,
while the other models (TextCNN, BiLSTM, URLNet) fail
to surpass 0.75. URLNet performs the worst, stagnating near
0.5, indicating poor discriminatory capability. The superior
ROC-AUC of our model highlights its exceptional ability to
distinguish between classes.

(d) PR-AUC. Our model achieves a PR-AUC of 1.0 by
epoch 2, outperforming all other models in both conver-
gence speed and final performance. TransURL achieves similar
results but requires more epochs (5), while TextCNN and
BiLSTM stabilize at much lower levels (∼ 0.8). URLNet
shows the weakest performance, stabilizing at ∼ 0.75. The
rapid and consistent optimization of PR-AUC demonstrates
our model’s strength in handling imbalanced datasets by
balancing precision and recall.

(e) TPR@FPR=0.1. Our model achieves a TPR@FPR=0.1
of 1.0 by epoch 2, significantly outperforming all baselines.
TransURL shows delayed convergence, reaching similar per-

formance only after 5 epochs. TextCNN and BiLSTM remain
stagnant at lower values (∼ 0.3), while URLNet fails to
perform effectively, staying near 0.0. The ability of our model
to achieve a perfect TPR at low FPR demonstrates its precision
in detecting true positives under stringent conditions.

(f) Precision. Our model achieves precision values ap-
proaching 1.0 by epoch 2, maintaining stability throughout
subsequent epochs. TransURL converges to similar precision
levels but requires additional epochs (5). TextCNN and BiL-
STM plateau at much lower precision levels (∼ 0.8), while
URLNet exhibits the poorest performance (∼ 0.75). The high
precision of our model emphasizes its ability to minimize false
positives, an essential property in high-stakes applications.

The experimental results clearly establish the superiority of
our model over others. Its faster convergence, higher overall
accuracy, and consistent performance across all metrics make
it a reliable and efficient solution for the task at hand.
Compared to competing models, our approach demonstrates
significant advancements in both learning efficiency and clas-
sification accuracy, solidifying its position as the state-of-the-
art in the given application.

4) Robustness Testing: In the robustness evaluation, we
applied random edge deletion with a probability of 50% to
the input graph structures, aiming to assess the resilience of
different models under structural perturbations. As illustrated
in the bar chart in Figure 6, our proposed model demonstrates
remarkable stability across various evaluation metrics (includ-

ing ACC, Precision, Recall, F1, PR-AUC, ROC-AUC, MCC,
and Weighted F1) with negligible performance degradation
and consistently high accuracy.

In contrast, baseline models such as GIN, GRN, and GCN
exhibit substantial sensitivity to structural perturbations, with
significantly larger performance drops, particularly in Recall
and F1 scores. These results, as visualized in Figure 6, un-
derscore the superior structural robustness and generalization
ability of our model, which remains effective even when the
graph structure is heavily disrupted.

V. CONCLUSION

In this paper, we propose a novel malicious URL detection
framework, WebGuard++, consisting of a cross-scale URL
semantic encoder, a subgraph-aware HTML encoder, and
a bidirectional multi-view coupling module. The subgraph-
aware model allows malicious region signals to aggregate with
each other and is less likely to be diluted. At the same time, it
also provides ideas for the interpretability of the model, which
can be traced to a subregion when maliciousness is detected.
In addition, the feature extraction and fusion for multimodal
features enable the model to better understand the URL and
HTML information and improve the detection performance.
In this paper, after extensive experiments, we confirm that
our model outperforms the benchmark methods as well as
previously proposed state-of-the-art techniques on different
data sizes and datasets, and maintains excellent robustness,
generalization. Looking ahead, we will endeavor to improve
the performance of "WebGuard++" and explore more new
approaches.

ACKNOWLEDGMENT

This work was supported by the Basic Research Program
(No.JCKY2023110C079).

REFERENCES

[1] Ali Aljofey, Saifullahi Aminu Bello, Jian Lu, and Chen Xu. Com-
prehensive phishing detection: A multi-channel approach with variants
tcn fusion leveraging url and html features. Journal of Network and
Computer Applications, 238:104170, 2025.

[2] Zilaing Zhang, Jinmin Wu, Ning Lu, Wenbo Shi, and Zhiquan Liu.
Adaptpud: An accurate url-based detection approach against tailored
deceptive phishing websites. Computer Networks, page 111303, 2025.

[3] Ye Cao, Weili Han, and Yueran Le. Anti-phishing based on automated
individual white-list. In Proceedings of the 4th ACM Workshop on
Digital Identity Management, DIM ’08, page 51–60, New York, NY,
USA, 2008. Association for Computing Machinery.

[4] Nureni Ayofe Azeez, Sanjay Misra, Ihotu Agbo Margaret, Luis
Fernandez-Sanz, and Shafi’i Muhammad Abdulhamid. Adopting au-
tomated whitelist approach for detecting phishing attacks. Computers
& Security, 108:102328, 2021.

[5] Mahmood Moghimi and Ali Yazdian Varjani. New rule-based phishing
detection method. Expert Systems with Applications, 53:231–242, 2016.

[6] Raniyah Wazirali, Rami Ahmad, and Ashraf Abdel-Karim Abu-Ein.
Sustaining accurate detection of phishing urls using sdn and feature
selection approaches. Computer Networks, 201:108591, 2021.

[7] Doyen Sahoo, Chenghao Liu, and Steven C. H. Hoi. Malicious url
detection using machine learning: A survey, 2019.

[8] Anh Le, Athina Markopoulou, and Michalis Faloutsos. Phishdef: Url
names say it all. In 2011 Proceedings IEEE INFOCOM, pages 191–195.
IEEE, 2011.

[9] Sadia Afroz and Rachel Greenstadt. Phishzoo: Detecting phishing
websites by looking at them. In 2011 IEEE fifth international conference
on semantic computing, pages 368–375. IEEE, 2011.

[10] Ozgur Koray Sahingoz, Ebubekir Buber, Onder Demir, and Banu Diri.
Machine learning based phishing detection from urls. Expert Systems
with Applications, 117:345–357, 2019.

[11] Shraddha Parekh, Dhwanil Parikh, Srushti Kotak, and Smita Sankhe.
A new method for detection of phishing websites: Url detection. In
2018 Second International Conference on Inventive Communication and
Computational Technologies (ICICCT), pages 949–952, 2018.

[12] YunDa Tsai, Cayon Liow, Yin Sheng Siang, and Shou-De Lin. Toward
more generalized malicious url detection models, 2024.

[13] Hung Le, Quang Pham, Doyen Sahoo, and Steven CH Hoi. Urlnet:
Learning a url representation with deep learning for malicious url
detection. arXiv preprint arXiv:1802.03162, 2018.

[14] Alsadig Hadi Alsadig and Md Oqail Ahmad. Phishing url detection
using deep learning with cnn models. In 2024 Second International
Conference on Intelligent Cyber Physical Systems and Internet of Things
(ICoICI), pages 768–775. IEEE, 2024.

[15] Ruitong Liu, Yanbin Wang, Zhenhao Guo, Haitao Xu, Zhan Qin, Wenrui
Ma, and Fan Zhang. Transurl: Improving malicious url detection
with multi-layer transformer encoding and multi-scale pyramid features.
Computer Networks, 253:110707, 2024.

[16] Md Robiul Islam, Md Mahamodul Islam, Mst Suraiya Afrin, Anika
Antara, Nujhat Tabassum, and Al Amin. Phishguard: A convolutional
neural network-based model for detecting phishing urls with explain-
ability analysis. In 2024 3rd International Conference on Artificial
Intelligence For Internet of Things (AIIoT), pages 1–6. IEEE, 2024.

[17] Yujie Li, Yanbin Wang, Haitao Xu, Zhenhao Guo, Fan Zhang, Ruitong
Liu, and Wenrui Ma. Fed-urlbert: Client-side lightweight federated
transformers for url threat analysis, 2023.

[18] Yanbin Wang, Weifan Zhu, Haitao Xu, Zhan Qin, Kui Ren, and Wenrui
Ma. A large-scale pretrained deep model for phishing url detection.
In ICASSP 2023 - 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1–5, 2023.

[19] Yuexin Li, Chengyu Huang, Shumin Deng, Mei Lin Lock, Tri Cao, Nay
Oo, Hoon Wei Lim, and Bryan Hooi. KnowPhish: Large language mod-
els meet multimodal knowledge graphs for enhancing Reference-Based
phishing detection. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 793–810, Philadelphia, PA, August 2024. USENIX
Association.

[20] Lei Zhang, Peng Zhang, Luchen Liu, and Jianlong Tan. Multiphish:
Multi-modal features fusion networks for phishing detection. In ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3520–3524, 2021.

[21] S. Kavya and D. Sumathi. Multimodal and temporal graph fusion
framework for advanced phishing website detection. IEEE Access,
13:74128–74146, 2025.

[22] Ruofan Liu, Yun Lin, Xiwen Teoh, Gongshen Liu, Zhiyong Huang,
and Jin Song Dong. Less defined knowledge and more true alarms:
Reference-based phishing detection without a pre-defined reference list.
In 33rd USENIX Security Symposium (USENIX Security 24), pages 523–
540, Philadelphia, PA, August 2024. USENIX Association.

[23] Haijun Zhang, Gang Liu, Tommy W. S. Chow, and Wenyin Liu. Textual
and visual content-based anti-phishing: A bayesian approach. IEEE
Transactions on Neural Networks, 22(10):1532–1546, 2011.

[24] Aron Laszka, Yevgeniy Vorobeychik, and Xenofon Koutsoukos. Optimal
personalized filtering against spear-phishing attacks. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
page 958–964. AAAI Press, 2015.

[25] Yunji Liang, Qiushi Wang, Kang Xiong, Xiaolong Zheng, Zhiwen Yu,
and Daniel Zeng. Robust detection of malicious urls with self-paced
wide & deep learning. IEEE Transactions on Dependable and Secure
Computing, 19(2):717–730, 2022.

[26] Marzieh Bitaab, Haehyun Cho, Adam Oest, Zhuoer Lyu, Wei Wang,
Jorij Abraham, Ruoyu Wang, Tiffany Bao, Yan Shoshitaishvili, and
Adam Doupé. Beyond phish: Toward detecting fraudulent e-commerce
websites at scale. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 2566–2583, 2023.

[27] Zhen Guo, Jin-Hee Cho, Ing-Ray Chen, Srijan Sengupta, Michin Hong,
and Tanushree Mitra. Safer: Social capital-based friend recommendation
to defend against phishing attacks. Proceedings of the International
AAAI Conference on Web and Social Media, 16(1):241–252, May 2022.

[28] Jun-Ho Yoon, Seok-Jun Buu, and Hae-Jung Kim. Phishing webpage de-
tection via multi-modal integration of html dom graphs and url features
based on graph convolutional and transformer networks. Electronics,
13(16):3344, 2024.

[29] Jehyun Lee, Peiyuan Lim, Bryan Hooi, and Dinil Mon Divakaran.
Multimodal large language models for phishing webpage detection and
identification. arXiv preprint arXiv:2408.05941, 2024.

[30] Tri Cao, Chengyu Huang, Yuexin Li, Wang Huilin, Amy He, Nay Oo,
and Bryan Hooi. Phishagent: a robust multimodal agent for phishing
webpage detection. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 27869–27877, 2025.

[31] Lihui Meng, Zhujuan Ma, and Erzhou Zhu. Phishing detection model
integrating url characters and html word semantic deep features. In
2024 4th International Conference on Communication Technology and
Information Technology (ICCTIT), pages 468–473, 2024.

[32] Bushra Sabir, M. Ali Babar, Raj Gaire, and Alsharif Abuadbba. Reli-
ability and robustness analysis of machine learning based phishing url
detectors. IEEE Transactions on Dependable and Secure Computing,
pages 1–18, 2022.

[33] Xuefeng Hu, Zhihan Zhang, Zhenye Jiang, Syomantak Chaudhuri,
Zhenheng Yang, and Ram Nevatia. Span: Spatial pyramid attention
network for image manipulation localization. In Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vi-
sion – ECCV 2020, pages 312–328, Cham, 2020. Springer International
Publishing.

[34] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie
Yang, Qing Jiang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu,
and Lei Zhang. Grounding dino: Marrying dino with grounded pre-
training for open-set object detection. In Aleš Leonardis, Elisa Ricci,
Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol, editors,
Computer Vision – ECCV 2024, pages 38–55, Cham, 2025. Springer
Nature Switzerland.

[35] Furkan Çolhak, Mert İlhan Ecevit, and Hasan Dağ. Transfer learning
for phishing detection: Screenshot-based website classification. In 2024
9th International Conference on Computer Science and Engineering
(UBMK), pages 1–6, 2024.

[36] Ruitong Liu, Yanbin Wang, Haitao Xu, Zhan Qin, Fan Zhang, Yiwei
Liu, and Zheng Cao. Pmanet: Malicious url detection via post-
trained language model guided multi-level feature attention network.
Information Fusion, 113:102638, 2025.

[37] Yujie Li, Yanbin Wang, Haitao Xu, Zhenhao Guo, Zheng Cao, and Lun
Zhang. Urlbert:a contrastive and adversarial pre-trained model for url
classification, 2024.

[38] Sharif Amit Kamran, Shamik Sengupta, and Alireza Tavakkoli. Semi-
supervised conditional gan for simultaneous generation and detec-
tion of phishing urls: A game theoretic perspective. arXiv preprint
arXiv:2108.01852, 2021.

[39] Ozgur Koray Sahingoz, Ebubekir BUBEr, and Emin Kugu. Dephides:
Deep learning based phishing detection system. IEEE Access, 12:8052–
8070, 2024.

