
ar
X

iv
:2

50
6.

18
79

5v
1

 [
cs

.C
R

]
 2

3
Ju

n
20

25

Forge: An LLM-driven Framework for Large-Scale Smart
Contract Vulnerability Dataset Construction

Jiachi Chen1,2, Yiming Shen1, Jiashuo Zhang3*, Zihao Li4, John Grundy5, Zhenzhe Shao1
Yanlin Wang1, Jiashui Wang6, Ting Chen7,8, Zibin Zheng1

1Sun Yat-sen University, Zhuhai, China
2The State Key Laboratory of Blockchain and Data Security, Zhejiang University, Hangzhou, China

3Peking University, Beijing, China; *Corresponding author
4The Hong Kong Polytechnic University, Hong Kong, China

5Monash University, Melbourne, Australia; 6Zhejiang University, Hangzhou, China
7University of Electronic Science and Technology of China, Chengdu, China

8Kashi Institute of Electronics and Information Industry, Kashi, China
chenjch86@mail.sysu.edu.cn,shenym7@mail2.sysu.edu.cn,zhangjiashuo@pku.edu.cn
zi-hao.li@connect.polyu.hk,john.grundy@monash.edu,shaozhzh3@mail2.sysu.edu.cn

yanlin-wang@outlook.com,12221251@zju.edu.cn,brokendragon@uestc.edu.cn,zhzibin@mail.sysu.edu.cn

ABSTRACT

High-quality smart contract vulnerability datasets are critical for
evaluating security tools and advancing smart contract security
research. Two major limitations of current manual dataset con-
struction are (1) labor-intensive and error-prone annotation pro-
cesses limit the scale, quality, and evolution of the dataset, and
(2) absence of standardized classification rules results in inconsis-
tent vulnerability categories and labeling results across different
datasets. To address these limitations, we present forge, the first
automated approach for constructing smart contract vulnerability
datasets. forge leverages an LLM-driven pipeline to extract high-
quality vulnerabilities from real-world audit reports and classify
them according to the CommonWeakness Enumeration (CWE), the
most widely recognized classification in software security. forge
employs a divide-and-conquer strategy to extract structured and
self-contained vulnerability information from unstructured audit
reports. Additionally, it uses a tree-of-thoughts technique to classify
the vulnerability information into the hierarchical CWE classifi-
cation. To evaluate forge’s effectiveness, we run forge on 6,454
real-world audit reports and generate a dataset comprising 81,390
solidity files and 27,497 vulnerability findings across 296 CWE
categories. Manual assessment of the dataset demonstrates high
extraction precision and classification consistency with human ex-
perts (precision of 95.6% and inter-rater agreement k-𝛼 of 0.87). We
further validate the practicality of our dataset by benchmarking 13
existing security tools on our dataset. The results reveal the signifi-
cant limitations in current detection capabilities. Furthermore, by
analyzing the severity-frequency distribution patterns through a
unified CWE perspective in our dataset, we highlight inconsistency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil
© 2025 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

between the current smart contract research focus and the prior-
ities identified from real-world vulnerabilities. This analysis also
reveals key differences from traditional software security concerns,
providing practical implications for improving the smart contract
security ecosystem.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Smart contracts, Blockchain, Vulnerability dataset, LLM

ACM Reference Format:

Jiachi Chen1,2, Yiming Shen1, Jiashuo Zhang3*, Zihao Li4, John Grundy5,
Zhenzhe Shao1, Yanlin Wang1, Jiashui Wang6, Ting Chen7,8, Zibin Zheng1 .
2025. Forge: An LLM-driven Framework for Large-Scale Smart Contract
Vulnerability Dataset Construction. In Proceedings of IEEE/ACM 48th Inter-
national Conference on Software Engineering (ICSE ’26). ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Smart contracts on blockchain platforms have revolutionized digi-
tal asset management and decentralized applications [6, 89], with
the total value locked (TVL) exceeding $117 billion [15]. However,
this rapid growth has been accompanied by significant security
challenges. In 2024, there were more than 760 on-chain security
incidents, resulting in $2.36 billion in losses [8]. These security
incidents caused by evolving attack vectors [91] underscore the
critical importance of robust vulnerability detection mechanisms
in the smart contract ecosystem [10, 79].

High-quality vulnerability datasets are essential for develop-
ing security tools and advancing security research for smart con-
tracts [64, 86, 88]. However, current approaches to smart contract
vulnerability dataset construction face two critical limitations. First,
the manual process of dataset construction is labor-intensive
and error-prone, which limits the scale, quality, and ability to keep
up with the rapidly changing vulnerability landscape. For instance,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://arxiv.org/abs/2506.18795v1

ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil Chen et al.

a recent smart contract vulnerability dataset construction [88] re-
quired 44 person-months of manual effort to compile 1,618 vulner-
abilities across 682 DApps, introducing potential quality concerns
and making it difficult to evolve when new vulnerabilities emerge.
Second, the absence of standardized classification rules leads
to inconsistent vulnerability categories and labeling results across
different datasets. Existing datasets employ different vulnerabil-
ity classifications, such as Smart Contract Weakness Classification
(SWC) [69] or DASP10 [22], whichmay overlap or describe the same
vulnerability but have different names [67]. For instance, a vulnera-
bility labeled as “Front-running” [22] might appear as “Transaction
Order Dependence (TOD)” [70] or “Block Manipulation” [29] in
another, despite describing the same underlying issue at different
granularities. The lack of unified vulnerability classification rules
complicates the development and evaluation of vulnerability de-
tection tools and leads to inconsistent vulnerability management
practices [36].

To address these key limitations, we present forge, the first
automated framework for constructing comprehensive and high-
quality smart contract vulnerability datasets. forge employs an
LLM-driven pipeline to automatically extract vulnerability informa-
tion from real-world audit reports [84], significantly reducing the
manual effort required for dataset construction. To ensure standard-
ized classification, we integrate the Common Weakness Enumera-
tion (CWE) [38] - the most widely recognized vulnerability classifi-
cation in software security [33, 57]. Specifically, to effectively ex-
tract vulnerability information from real-world audit reports, forge
implements a divide-and-conquer strategy through a map-reduce
paradigm to effectively process lengthy audit reports and extract
structured self-contained vulnerability information. To accurately
classify the extracted vulnerabilities into the CWE classification,
forge introduces a tree-of-thoughts [82] reasoning technique that
leverages in-context learning to classify vulnerabilities hierarchi-
cally to appropriate CWE categories. Finally, forge collects the
source codes related to the extracted vulnerabilities and constructs
CWE-labeled vulnerability entries within the vulnerability dataset.

To construct a comprehensive dataset and evaluate forge’s ef-
fectiveness, we first collect and filter out 6,454 smart contract audit
reports from 47 security teams [19]. Using the reports as input,
forge took only 229.5 hours to construct a large-scale dataset com-
prising 27,497 vulnerability findings within 81,390 Solidity files
from real-world projects and covering 296 CWE categories. These
files averaged 2,575 lines of code, with 59.0% using the latest solid-
ity compiler version (v0.8+). This efficient and automated process
represents a significant improvement over existing manual dataset
construction practices like DAppSCAN, which requires 44 person-
months effort to build a dataset containing 39,904 files with 1,618
vulnerabilities from 25 categories [88].We evaluate the performance
of forge in extracting vulnerability-related information entities,
achieving a Macro-F1 score of 86.1%, with an average precision of
95.6%. Additionally, we assess the consistency of CWE classification
between forge and human experts, obtaining a high Krippendorff’s
𝛼 coefficient of 0.87 [28]. Moreover, to validate the practicality of
our dataset, we benchmark 13 widely used security tools. The re-
sults indicate their limited effectiveness, with the highest F1 score
reaching 18.59% and an average of 5.06% across all tools.

To further provide insights with our dataset for security prac-
titioners, we conduct an analysis of the smart contract vulnera-
bility landscape, including visualizations of risk prioritization and
comparative studies. By analyzing the severity-frequency distri-
bution through a unified CWE classification, we reveal not only
inconsistency between previous smart contract research focus and
real-world sourced vulnerability priorities but also distinct charac-
teristics compared to traditional software security concerns.

The key contributions of this research include:
• We introduce forge, the first LLM-based framework designed
to automatically construct smart contract vulnerability datasets
by extracting vulnerability information from audit reports and
classifying it into the CWE classification.
• We used forge to construct a dataset that includes 27,497 CWE-
annotated vulnerability findings from 81,390 real-world Solidity
files. This dataset features an average of 2,575 lines of code per
project, with 59.0% of projects using the latest Solidity compiler
versions (v0.8+).
• Wehighlight the limitations of existing security tools and conduct
an empirical analysis that combines the frequency and severity
of each vulnerability from a CWE perspective to derive insights
from previous research on both smart contracts and traditional
software.
• We have made our dataset, experimental results, and the source
code of forge available at https://github.com/shenyimings/FORGE-
Artifacts.

2 BACKGROUND AND MOTIVATION

2.1 CommonWeakness Enumeration (CWE)

Common Weakness Enumeration (CWE) is a dictionary of soft-
ware and hardware vulnerabilities, regularly maintained by the
community to reflect emerging security issues [38, 67].

CWE-1000: Research Concepts [40] view provides a comprehen-
sive classification system that follows a deep tree structure with
four abstraction levels that organize weaknesses from abstract con-
cepts to specific implementations: Pillar, Class, Base, and Variant. At
the highest level, there are ten Pillar level vulnerability categories,
representing fundamental vulnerabilities that cannot be further ab-
stracted. For example, CWE-284: Improper Access Control [43] is one
of the ten Pillar level weaknesses, with CWE-287: Improper Authen-
tication [44] as its Class-level child. Moving down the hierarchy, the
Base level introduces specific behaviors and properties as illustrated
by CWE-295: Improper Certificate Validation [45]. This specificity
is further refined at the Variant level, where technology-specific
details and implementations are addressed, as demonstrated by
CWE-298: Improper Validation of Certificate Expiration [46].

The CWE Classification process classifies diverse real-world secu-
rity issues to standardized CWE entries. This process identifies and
codifies the underlying flaws or errors responsible for exploitable
security risks [39]. The hierarchical structure of CWE allows for
the classification of nearly any software vulnerability to an appro-
priate entry. Prior studies [61, 67, 90] and audit reports e.g. [9] have
adopted CWE as an identifier for smart contract vulnerabilities.

https://github.com/shenyimings/FORGE-Artifacts
https://github.com/shenyimings/FORGE-Artifacts
https://github.com/shenyimings/FORGE-Artifacts
https://github.com/shenyimings/FORGE-Artifacts

Forge: An LLM-driven Framework for Large-Scale Smart Contract Vulnerability Dataset Construction ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil

MDMD

...
Dataset

Tree of Thoughts Reasoner

CWE-284

CWE-285
CWE-287

CWE-613CWE-306

CWE-645

Code Base

Contract
source files

Label

Fetch Code

Classify to
CWEs

LLaMA3 with CWEs
in context

...

Chunk #1

Chunk #n

Chunk #2

Audit
Reports

Summary
#1

L
L
a
M
A
3
:

7
0
b

Summary
#2

Summary
#n

...

Mapper Reducer
Project

metadata

Vulnerabilities

Structured
Infomation

Semantic Chunker1

Load &
Split

MapReduce Extractor2 Code Fetcher4
"project repo url?"
"address & chain id?"
"vulnerability findings?"

Hierarchical Classifier3

L
L
a
M
A
3
:

7
0
b

...
Text-splitter

...
Verified teams

Figure 1: Overview of forge framework.

2.2 Smart Contract Audit Reports

Smart contract auditing is a rigorous security assessment process
conducted by professional audit teams (e.g., Etherscan-verified audit
teams [19]) to identify security issues and document vulnerabilities
in detailed audit reports [24]. These expert-validated reports not
only detail vulnerability attack vectors but also provide essential
context about their discovery and potential impact, making them
ideal sources for systematic vulnerability analysis [25, 85]. They
aim to identify CWE-related vulnerabilities in smart contracts and
may recommend how to fix them.

2.3 LLMs for Dataset Construction

Large Language Models (LLMs) are advanced machine learning
models trained on extensive datasets of text and code, capable of
understanding and generating human-like language across diverse
domains [27]. Notable examples include GPT-4 [55], Claude3.5 [4],
and Llama3 [2]. These powerful models have demonstrated remark-
able capabilities in natural language processing [72, 80], program
understanding [87], and security analysis [33, 68].

Existing manual dataset construction processes are highly labor-
intensive and error-prone, which largely limits the scale, quality,
and evolution of the dataset. The promising capabilities of LLMs in
program comprehension and information extraction [32] demon-
strate the potential to reduce the manual effort required by the
current dataset construction processes. This motivates us to inves-
tigate whether an LLM-driven pipeline can be leveraged to achieve
automated vulnerability dataset construction.

Applying LLMs to build CWE-labeled smart contract vulnerabil-
ity datasets from complex real-world audit reports introduces three
key challenges: (1) Complexity of audit reports. For instance, the
Trail of Bits’ audit report for Uniswap v4 Core [60] spans 63 pages,
documenting project metadata and vulnerability findings along-
side extensive audit disclaimers, testing methodology descriptions,
and code architecture explanations. Such complexity necessitates
a systematic approach to extract and aggregate vulnerability in-
formation efficiently. (2) Complexity of the CWE hierarchy. With

over 900 weakness types across multiple abstraction levels and di-
mensions [40]. Traditional approaches such as keyword match [37]
and knowledge graph [23] often lead to inconsistent or superficial
results[33, 65]. (3) Limitations of LLMs. LLMs exhibit constraints
in handling domain-specific technical tasks. Their limited context
window and the “lost in the middle” phenomenon [31] impair the
processing of lengthy audit reports and lead to overlooked content
details [26]. Moreover, their inherent tendency to generate halluci-
nated content [87] could compromise the precision of vulnerability
classification.

3 FORGE FRAMEWORK

To automate smart contract vulnerability dataset construction and
to improve scaling, quality, and evolution, we present forge, an
end-to-end framework that leverages LLMs to build CWE-labeled
datasets from real-world audit reports.

3.1 Overview

The workflow of forge is outlined in Figure 1. The process begins
with the Semantic Chunker, which takes an audit report as input and
segments it into self-contained chunks based on semantic bound-
aries in the report file. The MapReduce Extractor then processes
individual chunks to extract vulnerability information (map phase)
and aggregate the results into structured summaries (reduce phase).
The Hierarchical Classifier employs the tree-of-thoughts [82] ap-
proach to systematically classify vulnerabilities into the 𝐶𝑊𝐸𝑠
(software-related entries of CWE) hierarchy, utilizing in-context
learning [17] with domain knowledge injection at each decision
point. Finally, the Code Fetcher module retrieves and integrates
relevant smart contract source files, complementing the extracted
vulnerability information to produce structured and classified vul-
nerability findings for vulnerability dataset construction.

3.2 Phase 1: Semantic Chunker

To address the token length limitations of LLMs, while preserv-
ing semantic integrity, we first apply a Semantic Chunker module.

ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil Chen et al.

This splits long-form audit reports into self-contained, semantically
coherent chunks by segmentation and chunk size optimization.
Specifically, a chunk is a text segment that (1) preserves complete
semantic information related to a vulnerability and (2) length falls
within the LLM’s processing threshold.

To split the audit report into self-contained chunks, forge first
converts the input report file into a unified markdown format using
PyMuPDF [59], preserving the file structure of headings and con-
tent. Then, it operates in the following steps: First, the document’s
inherent structure is leveraged to segment content along natural
semantic boundaries. These boundaries include document headings,
paragraph breaks, and Unicode-defined text units (from grapheme
clusters to sentences) to preserve the semantic hierarchy of the
source document. Then, a size verification ensures all chunks re-
main within the LLM’s token limit. If necessary, oversized chunks
are further divided at appropriate boundaries recursively.

3.3 Phase 2: MapReduce Extractor

To systematically process diverse and lengthy audit reports, forge
employs theMapReduce Extractor following the semantic chunking
phase. This module adopts a divide-and-conquer strategy, which
first extracts structured project metadata and vulnerability infor-
mation from these chunks (i.e., the map stage) and then merges
the vulnerability information among chunks (i.e., the reduce stage).
Specifically, the project metadata encompasses blockchain network,
on-chain address, GitHub URL, and commit ID, which is necessary
for accessing the source code associated with identified vulnerabili-
ties. The vulnerability information includes the title, description,
severity, and location, elucidating the vulnerability’s attack vector,
prerequisites, and potential impacts of exploitation. In the map
stage, forge extracts information for each chunk 𝑐𝑖 :

𝑠𝑖 = 𝑓map (𝑐𝑖 ,Q;𝜃) (1)
where Q denotes the information types that the LLM needs to ex-
tract, including project metadata and vulnerability findings. The
LLM-powered mapping function 𝑓map, parameterized by 𝜃 , per-
forms extraction of input chunks 𝑐𝑖 , producing outputs {𝑠1, . . . , 𝑠𝑁 }
conforming by Q.

In the reduce stage, the final structured information is generated
through:

𝑎 = 𝑓reduce ({𝑠1, · · · , 𝑠𝐾 },P,V;𝜃) (2)
where P denotes project metadata comprising source code iden-
tifiers (including GitHub repository URLs with specific commit
hashes or on-chain contract addresses), andV represents vulner-
ability attributes containing title, description, severity level, and
affected code locations. The 𝑓reduce operation first concatenates
map results {𝑠1, · · · , 𝑠𝐾 } until reaching the chunk_length thresh-
old defined in Section 3.2, then instruct LLM parameterized by 𝜃 to
deduplicate and merge the map results to a structured JSON output
𝑎. Figure 2 illustrates this structured output schema.

In cases where the combined length of map summaries (Σ𝑠𝑖) ex-
ceeds the model’s context window limit chunk_length, the MapRe-
duce extractor employs a two-stage reduction strategy. First, it
partitions the 𝑁 summaries into 𝐾 groups, where each group’s
total length remains within chunk_length. The system then per-
forms 𝐾 independent reduce operations, each producing a partially

1 project_info:

2 url: string,

3 commit_id: string,

4 address: string,

5 chain: string

6 findings:

7 id: int,

8 title: string,

9 description: string,

10 severity: enum(critical, high, medium, low,

info),

11 location: string

Figure 2: Structured information

structured result containing project metadata and vulnerability
information.

⊕

URL
Commit
Chain

Reduce result 1 Reduce result 2
Merged result

Finding 1

Finding 2

Finding 3

Commit

Finding 1

Finding 2

URL
Chain

Finding 1

Figure 3: A diagram of JSON merge operation

To merge these 𝐾 partial results into a final output, we define
an operator ⊕ that combines both project metadata (P) and vulner-
ability information (V) from two reduced JSON results in 𝑎𝑖 , 𝑎 𝑗 :

𝑎𝑖 ⊕ 𝑎 𝑗 = {P𝑖 ∪ P𝑗 ,V𝑖 ∪V𝑗 } (3)
As illustrated in Figure 3, the merge operation discards empty

fields and combines non-conflicting fields. In cases of conflicts, the
system adopts information from chunks that appear earlier in the
original document sequence. This choice is based on experimental
observations indicating that project metadata, e.g. URLs, commit
IDs, and addresses, typically appears in the earlier sections of audit
reports. Consequently, the information present in the earlier chunks
is consideredmore reliable. It has a lower likelihood of hallucination
by the LLM compared to the information found in later chunks.

Our map-reduce-based design ensures the completeness and
consistency of extracted information while handling long-form
reports that exceed the model’s context limitations.

3.4 Phase 3: Hierarchical Classifier

After completing smart contract vulnerability information extrac-
tion, we then classify the structured vulnerability findings into
CWE categories. Given the extensive parent-child structure of CWE
classifications as detailed in Section 2.3, our Hierarchical Classifier
module integrates an LLM-driven tree-of-thoughts (ToT) [82] rea-
soning process to navigate the complex hierarchical structure of
CWE, and utilizes In-Context Learning (ICL) [17] for CWE knowl-
edge injection for accurate classification.

Forge: An LLM-driven Framework for Large-Scale Smart Contract Vulnerability Dataset Construction ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil

3.4.1 Pre-processing. To better characterize software-level vulner-
abilities relevant to smart contracts, we refine the CWE-1000: Re-
search Concepts view [40], which contains both hardware and soft-
ware vulnerability categories. Specifically, we identified and filtered
out 108 hardware-related entries (e.g., CWE-1192: Improper Identifier
for IP Block used in System-On-Chip [41]) that are irrelevant to soft-
ware security assessment. We denote this refined subset as 𝐶𝑊𝐸𝑠 ,
which forms the foundation for the Hierarchical Classifier. Unless
otherwise specified, all subsequent references to CWE categories
in this paper refer to entries within this software-focused subset.

Additionally, following guidance from the CWE community [39],
we labeled each entry in 𝐶𝑊𝐸𝑠 with mapping notes indicating
whether the entry is suitable as a final category for smart contract
vulnerability. These labels guide our classifier by signaling which
𝐶𝑊𝐸𝑠 nodes can serve as valid endpoints during the classification
process, enabling proper fallback to higher-level categories when
more specific classifications are not appropriate. The detail of this
subset with mapping notes is provided in our online repository.

3.4.2 Tree-of-Thoughts (ToT) Reasoning. Our classification approach
leverages the inherent tree structure of CWE, where vulnerabilities
are organized in a hierarchical taxonomy from pillar-level cate-
gories to concrete leaf nodes [40]. By adopting a tree-of-thoughts
(ToT) reasoning framework [82], forge can systematically explore
classification decisions from general to specific CWE categories
while maintaining previous decision paths.

Our method transforms the vulnerability classification challenge
into a guided tree node search problem, where the LLM – with
𝐶𝑊𝐸𝑠 knowledge in context – serves as a pathfinder that traverses
through the 𝐶𝑊𝐸𝑠 hierarchy. At each level, LLM considers the
vulnerability information alongside the local structure of candidate
𝐶𝑊𝐸𝑠 categories, determining whether to advance to more specific
categories or fall back to previous nodes when appropriate.

Algorithm 1 Tree-of-Thoughts Reasoner
Require: vuln_info; llm; 𝐶𝑊𝐸𝑠 ; 𝑘 , 𝑙
1: global path← []
2: function Classify(node, l)
3: children← GetChildren(𝐶𝑊𝐸𝑠 , node)
4: if children is empty then return

5: end if

6: fallback_node← []
7: if node is MappingAllowd then fallback_node← node
8: end if

9: prompt ← ConstructPrompt(vuln_info, fallback_node,
children, k)

10: selected_node(s)← Parse(llm(prompt))
11: if fallback_node in selected_node(s) then return

12: end if

13: path.append([(l, selected_node(s))])
14: Classify(selected_node(s), l+1)
15: end function

16: initialize vuln_info, llm, 𝐶𝑊𝐸𝑠 , k
17: Classify(root of 𝐶𝑊𝐸𝑠 , 0)
18: return path

We formalize the classification process as a sequence of struc-
tured reasoning steps, as presented in Algorithm 1. It takes the
vulnerability information 𝑣𝑢𝑙𝑛, the language model 𝑙𝑙𝑚, the pruned
CWE hierarchy 𝐶𝑊𝐸𝑠 , the number of most relevant child nodes to
be selected at each level 𝑘 and the current level in the hierarchy 𝑙
as inputs. The output is the classification 𝑝𝑎𝑡ℎ.

The algorithm performs a recursive traversal of the 𝐶𝑊𝐸𝑠 hi-
erarchy, starting from the root node and progressively classifying
the vulnerability into more specific categories. At each level 𝑙 , 𝑙𝑙𝑚
functions as a classifier, taking prompt as input: (1) the vulnerability
title and description, (2) the current set of candidate child nodes
with their descriptions, and (3) a parameter 𝑘 specifying the number
of relevant nodes to select. 𝑙𝑙𝑚 leverages its semantic understand-
ing capabilities to reason between the vulnerability information
and each candidate node’s characteristics, outputting the 𝑘 most
relevant child 𝐶𝑊𝐸𝑠 nodes.

3.4.3 Fallback Strategy. In some cases, the most appropriate𝐶𝑊𝐸𝑠
category for a vulnerability may not be a leaf node but a more
abstract node closer to the root. To handle this, we introduce a
fallback strategy. For 𝐶𝑊𝐸𝑠 nodes that are labeled as mapping
allowed, we add them to the 𝑓 𝑎𝑙𝑙𝑏𝑎𝑐𝑘_𝑛𝑜𝑑𝑒 list in addition to their
child nodes (lines 8-10 in Algorithm 1). If the 𝑙𝑙𝑚 selects a fallback
node, the recursion terminates, and the final classification path is
returned (lines 13-15). Otherwise, the recursion continues to level
𝑙 + 1 if child nodes are selected by 𝑙𝑙𝑚 (lines 16-17).

irrelevant node

CWE-...

CWE-691

Prompt Template

<FEW_SHOT_EXAMPLE>
<VULN_INFO>
<k, OUTPUT_FORMAT>
<FALLBACK_NODE,
CURRENT_NODE> Let's
think step by step

Tittle

CWE-431 CWE-362

CWE-366CWE-362* CWE-368
*fall back node

relevant node

Description
iter 1

iter 2

iter 3

Based on the provided vulnerability and CWE
node information, I will perform a root cause

analysis. [REASONING PROCESS]
Answer: CWE-362, Concurrent Execution...

Figure 4: An example of ToT workflow

Figure 4 shows an example of the 𝐶𝑊𝐸𝑠 classification workflow.
For a vulnerability finding related to a marketplace contract affected
by potential front-running manipulations due to the absence of a
minimum swap output value enforcement mechanism, the classifi-
cation proceeds as follows. With 𝑘 = 1, in the first iteration, it is
classified into CWE-691: Insufficient Control Flow Management [49]
out of the 10 pillar categories. In the second iteration, from the
child nodes of CWE-691, the vulnerability is further classified into
CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization (‘Race Condition’) [47]. CWE-362 is labeled as map-
ping allowed, indicating that it is a suitable category for smart
contract vulnerability mapping. Therefore, in the third iteration,

ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil Chen et al.

CWE-362 is added to the selection list as a fallback node along with
its child nodes. LLM selects CWE-362 again, and the iteration ends.
The final classification path is CWE-691→CWE-362.

3.5 Phase 4: Code Fetcher

The metadata of target projects obtained from the extractor is
then processed by the Code Fetcher. This retrieves the correspond-
ing smart contract source code from trusted public repositories
– GitHub and blockchain explorers such as Etherscan [20] and
Bscscan [5]). The process of dealing with on-chain code is straight-
forward due to blockchain’s immutable nature. Source code at a
specific contract address directly corresponds to the version affected
by the reported vulnerability. For smart contract projects hosted on
Github repositories, developers typically create an audit branch for
review [78], which undergoes a thorough examination by security
auditors. Subsequently, developers implement fixes through new
commits. To maintain precise vulnerability information tracking,
ourMapReduce extractor module captures the commit-id (typically
in the form of a hash or a descriptive name) of the audited codebase,
allowing the Code Fetcher module to retrieve the exact version of
the source code files. Finally, the CodeFetcher combines the collected
source code files and the extracted vulnerability information into
vulnerability entities within the constructed dataset.

4 EVALUATION

In this section, we intend to answer the following key research
questions (RQs):
• RQ1. Can forge effectively generate a large-scale smart

contract vulnerability dataset from real-world audit re-

ports? We run forge on 6,454 audit reports to construct
a dataset, analyzing the statistics and comparing them with
existing datasets.
• RQ2. How does forge perform in vulnerability infor-

mation extraction? We assess the effectiveness of forge
framework in information extraction.
• RQ3. How consistently does forge perform in vulnera-

bility classification against human experts? We assess
the effectiveness of forge framework for vulnerability classi-
fication.
• RQ4. How practical is the forge dataset for evaluating

current smart contract vulnerability detection tools?

We leverage our large-scale dataset to assess the efficacy and
limitations of existing security tools, highlighting the practi-
cability of the dataset.

Data Collection. To curate our experimental dataset, we collect
10,312 publicly available audit reports from 47 renowned auditing
teams verified through Etherscan [19]. Since our dataset construc-
tion requires both vulnerability information and the corresponding
source code, we filter out audit reports where the source code is not
publicly accessible. We apply a regular expression matching script
to identify valid on-chain addresses and source code repository
URLs, ultimately obtaining 6,454 documents for further analysis.
Experiment Setup. We conducted our experiments on a CentOS
7.9 server equipped with 128 Intel(R) Xeon(R) Platinum 8376HCPUs
@ 2.60GHz, 512GB RAM, and 2 NVIDIA A800 80GB PCI GPUs. We
employ Llama3:70b-instruct-q8_0 as the foundation model for the

MapReduce Extractor and Hierarchical Classifier modules, with a
chunk length of 4,096 tokens, the number of a most relevant child
node 𝑘 set to 1 and a default temperature setting of 0.8 [3].

4.1 RQ1: Effectiveness of forge

We begin by running forge on our previously collected 6,454 audit
reports. This took a total of 229.5 hours, with an average processing
time of 127.8 seconds per report. This includes 45.0 seconds for
completing a vulnerability information extraction task and 18.3
seconds for each vulnerability classification.

Table 1: Overview of our forge dataset

Statistics Numbers

Total audit reports 6,454
Total DApp projects 6,579
Total solidity files 81,390
Average solidity files in a project 12
Average line of code in a project 2,575

Compiler Version 0.4+ 270
Compiler Version 0.5+ 478
Compiler Version 0.6+ 1,524
Compiler Version 0.7+ 360
Compiler Version 0.8+ 3,791
Other Compiler Version 31

Total vulnerability findings 27,497

The dataset built by forge encompasses 81,390 Solidity files, cov-
ering 27,497 vulnerabilities with CWE labels. Essential information
for each project is stored in 6,454 JSON files. Table 1 outlines the
key parameters of our dataset, highlighting that each project con-
tains an average of n Solidity smart contract files, with a mean of
2,575 lines of code per project. Notably, the most prevalent compiler
version in our dataset is 0.8+ (59.0%). Compared to the widely-used
SmartBugs dataset [18], where contracts average only 204 lines
of code and over 90% use outdated compiler versions (0.4+) [88],
our real-world sourced dataset exhibits significantly higher

complexity and comprehensiveness. Similarly, it also shows a
substantial increase in scale and coverage compared to human-
annotated datasets e.g.DAppSCAN, which contains 39,904 files with
1,618 vulnerabilities, with 35.2% of them using compiler 0.8+ [88].

Figure 5 showcases an example of a typical record in our dataset.
Each entry is comprised of several key fields that provide com-
prehensive information about the audited smart contract and its
vulnerabilities. The "path" field identifies the corresponding re-
ports, while the "project_info" field captures essential metadata
about the DApp, including its URL, commit ID, contract address,
blockchain network, compiler version, and Solidity file paths. The
"findings" field is an array where each element represents a dis-
tinct vulnerability. These vulnerability entries are further detailed
with a unique identifier ("id"), a CWE hierarchical classification
("category"), a concise description ("title"), an in-depth explana-
tion ("description"), an assessed impact level ("severity"), and
the specific code location of the vulnerability ("location")

Forge: An LLM-driven Framework for Large-Scale Smart Contract Vulnerability Dataset Construction ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil

{
 "path": "reports/xrpn.pdf",
 "project_info":
 {"url": "n/a",
 "commit_id": "n/a",
 "address": "0xC07c894D01A8785CB289620C...",
 "chain": "bsc",
 "compiler_version": ["v0.8.6+commit..."],
 "project_path": {"XRPNATION": "..."}
 },
 "findings":
 [{"id": 1,
 "category":
 {"1": ["CWE-284"],"2": ["CWE-269"],...},
 "title": "Contract owner can exceed...",
 "description": "Owner has authority...",
 "severity": "critical",
 "location": "contract.sol#L642"
 }]
}

Figure 5: An example record of forge dataset

Answer to RQ1: forge approach has built the most com-
prehensive smart contract vulnerability dataset compared to
previous attempts, such as Smartbugs and DAppSCAN, in both
scope and completeness.

4.2 RQ2: Performance of Information

Extraction

To evaluate the performance of forge in information extraction,
we first adopt a random sampling method based on confidence
intervals from the dataset built in RQ1, following the practices of
prior works [30, 81]. We set the confidence level to 95% and the con-
fidence interval to 10. Using the calculation method implemented
in [7], we randomly sampled 96 samples from the dataset. Two
authors of this paper independently match the results produced
by forge with original audit reports. Any discrepancies in this
labeling were resolved through discussion with a third author.

Following the evaluation method in [14], we then calculate pre-
cision (P) and recall (R) for each entity type. Precision measures the
accuracy of the extracted information, while recall measures the
comprehensiveness of the extraction. These metrics are calculated
by # correct entities extracted

entities extracted and # correct entities extracted
entities in ground truth , respectively.

The F1-score computes using the formula: 2×(𝑃×𝑅)
𝑃+𝑅

Table 2: Information extraction performance of forge.

Entity Precision(%) Recall(%) F1(%)

on-chain address 92.6 73.5 82.0
chain 100.0 82.3 90.3
URL 100.0 76.7 86.8
commit ID 100.0 78.9 88.2

vulnerability finding 91.7 73.2 81.4
severity 88.3 81.9 85.0
location 96.6 82.5 89.0

Average 95.6 78.4 86.1

Table 2 presents the information extraction performance of
forge, structured with entity types divided into project metadata

(on-chain address, chain, URL, commit ID) and vulnerability-related
(vulnerability finding, severity, location), showing precision, recall,
and F1-score for each category. We then compute forge’s overall
metrics as a weighted average across all entity types.We find that

forge achieves an overall precision of 95.6%, with a recall of

78.4%. The average F1-score (Macro-F1) is 86.1%.

Our analysis of incorrect samples reveals several scenarios for
improvement. Some reports present complex information (e.g. vul-
nerability codes) as images. In contrast, others employ checklist
formats with icons or color highlights to mark inspection results,
which poses challenges for single-modal models in detecting vulner-
ability information. These modality constraints impact extraction
comprehensiveness but do not impact the reliability of successfully
identified vulnerabilities.

Answer to RQ2: Our forge framework achieved an overall
F1 rate of 86.1% with a precision of 95.6%, highlighting its per-
formance in extracting project and vulnerability information.

4.3 RQ3: forge’s Classification v.s. Human

Experts

To answer RQ3, we evaluate the consistency of forge’s vulnerabil-
ity classification against human expert judgments. Determining the
category of a vulnerability with limited information is a subjective
and experience-based task, which may lead to varying results even
for professional security auditors [39]. For instance, the common
smart contract vulnerability Authorization through ‘tx.origin’ has
been categorized differently across security standards: SWC [71]
categorized it under CWE-477: Use of Obsolete Function [48] due to
its outdated and deprecated nature, while the EthTrust specifica-
tion [52] classified it under CWE-284: Improper Access Control [43]
because it can facilitate unauthorized access. Such discrepancies
are particularly pronounced when analyzing vulnerabilities with
limited contextual information. Thus, we employ Krippendorff’s
𝛼 (k-𝛼) [1, 28], a robust reliability coefficient widely used in con-
tent analysis with multiple evaluators, to quantitatively assess the
consistency between forge’s classifications with human experts,
instead of using human labeling results as ground truth.

Following the evaluation methodology from RQ2, we set a con-
fidence level of 95% and a confidence interval of 10, randomly
selecting 96 samples from the 27,497 vulnerabilities annotated with
CWE categories. Two authors of this paper independently analyzed
the description and code of each sample vulnerability, mapping it
to the closest category in the CWE classification system based on
its root cause. These ground truths were then compared with the
ultimate classification results of the forge framework.

We calculated k-𝛼 using Equation 4, where 𝐷𝑜 represents the
observed disagreement, 𝐷𝑒 denotes the expected disagreement by
chance, 𝑛𝑖 𝑗𝑘 is the number of disagreements between coders i and j
on coding unit k, 𝑑𝑖 𝑗𝑘 is the observed distance between coders i and
j on coding unit k, and 𝐸 (𝑑𝑖 𝑗𝑘) is the expected random disagreement
distance.

𝛼 = 1 − 𝐷𝑜
𝐷𝑒

= 1 −
∑
𝑖< 𝑗

∑
𝑘 𝑛𝑖 𝑗𝑘𝑑𝑖 𝑗𝑘∑

𝑖< 𝑗

∑
𝑘 𝑛𝑖 𝑗𝑘𝐸 (𝑑𝑖 𝑗𝑘)

(4)

ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil Chen et al.

The resulting k-𝛼 coefficient is 0.87, above the threshold of 0.80
suggested by Krippendorff [35] for drawing reliable conclusions.
This high level of agreement indicates that our LLM-based

classification approach achieves a substantial level of relia-

bility.

There may be some inconsistencies in forge. We have open-
sourced our dataset on GitHub to enable community engagement,
allowing developers and researchers to report issues and contribute
to its ongoing improvement. We analyzed the inconsistent results
we found and discovered three main reasons causing these incon-
sistencies.
• Some vulnerability descriptions are overly general, requir-
ing experience-based inference to accurately assign the corre-
sponding CWE type, leading to inconsistency between human
and LLM judgments.
• In complex cases involving multiple vulnerability cate-

gories, human experts tend to select more specific subcategories,
while LLM tends to choose more generic parent categories.
• The ambiguity of certain low-level CWE categories intro-
duces challenges for consistent classification. For example, dis-
tinguishing between CWE-755: Improper Handling of Exceptional
Conditions [50] and CWE-754: Improper Check for Unusual or Ex-
ceptional Conditions [50] requires careful consideration due to
their conceptual similarity.

Answer to RQ3: forge achieved a 0.87 k-𝛼 coefficient, indicat-
ing substantial agreement between forge and human experts
in CWE classification of smart contract vulnerabilities.

4.4 RQ4: Practicality of forge dataset

We assess the practicality of the forge dataset by evaluating how
existing smart contract vulnerability detection tools perform when
applied to our CWE-classified vulnerabilities derived from real-
world audit reports. To conduct this assessment, we employ Smart-
Bugs, a framework that integrates various tools to analyze smart
contracts [18]. The selection criteria for the tools included the re-
quirement that tools support source code as input, be automated,
and be capable of detecting at least one type of CWE vulnerability.
Based on these criteria, we selected 13 representative vulnerability
detection tools listed in Table 3 with diverse detection techniques.

Two authors independently map the vulnerabilities each tool
can detect to CWE categories, following the vulnerability mapping
guidelines provided in SmartBugs-Wiki [66]. Any discrepancies in
this mapping were resolved through discussion with a third author.
Based on this mapping, we run the selected tools on the forge
dataset with a default 300-second timeout and collect their detection
results. We standardize evaluation at the contract level: if a tool
detects any vulnerability within the contract that contains labeled
vulnerabilities, we count it as a true positive (TP). We calculate
precision, recall, and F1-score for each tool following the same
methodology as [11, 88], as shown in Table 3.

Our experiments reveal that the highest F1-score achieved by

any tool was only 18.59%, indicating a significant gap between
current detection methods and the realities of real-world vulnera-
bilities. Notably, several tools, such as Manticore and Maian, failed
to identify any true positives, which aligns with previous findings

Table 3: Analysis results of existing detection tools

Tool TP FP FN P(%) R(%) F(%)

Confuzzius [74] 13 462 2,250 2.74 0.57 0.95
Conkas [12] 2 51 677 3.77 0.29 0.55
Honeybadger [76] 0 7 52 0.00 0.00 0.00
Maian [53] 0 10 1,124 0.00 0.00 0.00
Manticore [51] 0 0 992 0.00 0.00 0.00
Mythril [13] 0 33 4,383 0.00 0.00 0.00
Osiris [75] 1 53 2,433 1.85 0.04 0.08
Oyente [34] 3 83 769 3.49 0.39 0.70
Securify [77] 1 3 1,004 25.00 0.10 0.19
Semgrep [63] 3,920 24,638 9,685 13.73 28.81 18.59
Slither [21] 4,016 40,468 14,936 9.03 21.19 12.66
Smartcheck [73] 3,939 34,446 10,512 10.26 27.26 14.91
Solhint [58] 3,271 19,976 11,485 14.07 22.17 17.21

by Durieux et al. [18] and Sendner et al. [64]. This observation
underscores the urgent need for more advanced detection tools and
highlights the importance of utilizing large-scale, diverse datasets
for accurate assessment and benchmarking.

Furthermore, we observed a distinction between static anal-

ysis and symbolic execution approaches using our forge

dataset. Static analysis tools, e.g., Semgrep, Slither, and Smartcheck,
exhibited a higher number of true positives due to the lower envi-
ronment requirements compared to symbolic execution tools like
Oyente and Mythril. However, this advantage comes at the cost of
a significantly higher false positive rate, leading to alarm fatigue
that can hinder developers from addressing genuine vulnerabili-
ties [16]. In contrast, symbolic execution tools, while more precise,
suffered from timeouts on real-world complex contracts due to
path explosion. These findings reveal gaps in existing detection
approaches that might have been overlooked with smaller or less
diverse datasets.

Answer to RQ4: The forge dataset demonstrates high prac-
ticality by evaluating existing security tools, revealing signifi-
cant limitations in current detection capabilities.

5 DISCUSSION

5.1 Implications

Our new forge dataset contains 81,390 real-world vulnerabilities
from 6,454 audit reports, which facilitates a comprehensive char-
acterization of smart contract vulnerabilities in real-world DApp
projects.

5.1.1 Vulnerability Frequency vs. Severity. This study offers critical
insights for security researchers and developers by examining the
correlation between vulnerability frequency and severity, identify-
ing high-impact vulnerabilities that warrant prioritized attention.

Smart contracts with the same vulnerability type can ex-

hibit different potential impacts. For example, while smart con-
tracts containing an Integer Bug may lead to serious financial loss,
the vulnerability could be insignificant if it appears only in func-
tions that are never invoked. To quantitatively represent the severity
level of each vulnerability type, we follow the recommendations

https://github.com/shenyimings/FORGE-Artifacts/blob/main/evaluation/RQ4/tool_classifications.csv

Forge: An LLM-driven Framework for Large-Scale Smart Contract Vulnerability Dataset Construction ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil

CWE-710

CWE-284

CWE-703

CWE-682

CWE-664

CWE-691

CWE-435

CWE-707

CWE-693 CWE-697

CWE-1041
16%

CWE-1068
5%

CWE-1076
3%

CWE-1164
2%

CWE-1126
2%

CWE-1059
2%

CWE-1357
1%

CWE-477
1%

CWE-758
1%

CWE-269
15%

CWE-285
4%

CWE-282
2%

CWE-749
1%

CWE-754
9%

CWE-755
3%

CWE-1339
5%

CWE-190
3%

CWE-193
2%

CWE-369
1%

CWE-191
1%

CWE-400
2%

CWE-221
1%

CWE-666
1%

CWE-670
1%

CWE-1265
1%

CWE-834
1%

CWE-436
1%

CWE-20
2%

...

Figure 6: Risk priority visualization of smart contract from

CWE perspective. The size of each rectangle represents the

frequency of occurrence, while the color depth indicates the

severity level (darker colors represent higher severity).
1

from previous work [62], adopting the Common Vulnerability Scor-
ing System v4.0 (CVSS v4.0) [54], which is an open framework used
to assess the severity of software vulnerabilities and provides a
standardized way to rate them. We calculated the average CVSS
score 𝑠 (𝑐) for each CWE category present in our dataset as follows:

𝑠 (𝑐) = 1
|V𝑐 |

∑︁
𝑣∈V𝑐

𝑠 (𝑣) (5)

V𝑐 denotes the set of vulnerability findings in our dataset that
belong to the CWE category 𝑐 , with each vulnerability denoted as
𝑣 ∈ V𝑐 . 𝑠 (𝑣) represents the CVSS score of a vulnerability finding
𝑣 . In our dataset, each vulnerability finding is assigned a severity
level (i.e., info, low, medium, high, or critical) by auditors based
on exploitation complexity and potential impacts. Each severity
level corresponds to a CVSS score according to the CVSS standard.
|V𝑐 | denotes the cardinality of the setV𝑐 , i.e., the total number of
vulnerabilities in category 𝑐 . This metric 𝑠 (𝑐) provides a quantitative
representation of the average severity for each CWE category.

To visualize the distribution, we created a treemap in Figure 6
that incorporates CWE hierarchical information, illustrating both
the frequency and severity of smart contract vulnerabilities from a
CWE perspective. As shown in Figure 6, at the Pillar level, CWE-
710: Improper Adherence to Coding Standards emerges as the most
frequent root cause. CWE-284: Improper Access Control represents
the vulnerability cause with the highest average severity. From a
severity-frequency perspective, we observe that coding practice-
related issues exhibit high frequency but relatively low severity.
Conversely, there are distinct clusters of low-frequency but high-
severity vulnerabilities, such as CWE-369: Divide By Zero.

Finding 1: High-severity smart contract vulnerabilities are not
necessarily the most common.

1A detailed interactive visualization is available in https://FORGE-security.github.io.

Table 4: forge average CVSS score Top 10 vs. Academic Re-

search Priority Top 10

CWE of forge Top 10

Detection Count Top 10

with CWE from Prior Research

1

CWE-940: Improper Verification of Source
of a Communication Channel Reentrancy (28) CWE-1265

2 CWE-369: Divide By Zero Integer Bug (16) CWE-190/191

3

CWE-347: Improper Verification of
Cryptographic Signature

Block-state Dependency (16) -
CWE-829

4

CWE-1265: Unintended Reentrant Invocation
of Non-reentrant Code Via Nested Calls Control-flow Hijacking (15) CWE-691

5 CWE-287: Improper Authentication Mishandled Exception (15) CWE-703

6

CWE-362: Concurrent Execution using
Shared Resource with Improper
Synchronization (’Race Condition’)

Assertion Failure (15) CWE-670

7 CWE-269: Improper Privilege Management Ether Leakage (14) CWE-282
8 CWE-285: Improper Authorization Suicidal Contract (14) CWE-749/826

9 CWE-282: Improper Ownership Management Transaction Origin Use (12)-
CWE-477/284

10

CWE-610: Externally Controlled Reference
to a Resource in Another Sphere Freezing Ether (11) CWE-684

5.1.2 Academic Research Priorities vs. Actual Security Concerns.
The left half of table 4 presents the top 10 specific CWE types in
our dataset ranked by average CVSS score, where higher scores
indicate a greater need for security audits in practical applications.
To understand how existing research aligns with real-world secu-
rity concerns, we compared these top 10 CWEs (called forge Top
10) shown in Table 4 with those most frequently targeted vulnera-
bilities in current smart contract analysis tools. According to the
comprehensive survey conducted by Zhang et al. [86], the right half
of table 4 presents the top 10 most frequently detected vulnerabil-
ity types from 37 existing methods published on top-tier Software
Engineering, Security, and Programming Language venues, which
effectively representing the research community’s primary focus.

Our comparison reveals a significant misalignment be-

tween academic research priorities and real-world security

concerns.While existing tools heavily focus on well-known vul-
nerabilities such as reentrancy (28 tools), integer bugs (16 tools), and
block-state dependency (16 tools), many of the most severe vulner-
abilities identified in our dataset receive considerably less attention.
For instance, CWE-940 and CWE-347, which rank among the top 2
most severe vulnerabilities in our dataset, are rarely addressed by
existing tools. Many high-severity smart contract vulnerabilities re-
lated to financial business logic identified from our dataset require
complex semantic understanding and context awareness, making
them challenging targets for automated analysis. This explains why
current tools tend to focus on more structurally identifiable issues.

The misalignment highlights the importance of grounding secu-
rity research in real-world data sources rather than focusing exclu-
sively on machine-detectable vulnerabilities. Our findings suggest
that the research community should recalibrate its focus to address
the most severe security threats identified through actual secu-
rity incidents and professional audits, even if these vulnerabilities
present greater challenges for automated detection.

Finding 2: There exists a significant gap between the vulnera-
bilities prioritized by academic research and those that pose the
greatest risks in practice.

5.1.3 Smart Contract Vulnerabilities vs. Traditional Software Vulner-
abilities. We conducted a comparative analysis between our smart

https://FORGE-security.github.io
https://FORGE-security.github.io

ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil Chen et al.

O
W

A
SP

 T
op

 1
0

FO
R

G
E

 T
op

 1
0

A01 Broken Access Control
A02 Cryptographic Failures
A03 Injection
A04 Insecure Design
A05 Security Misconfiguration
A06 Vulnerable and Outdated
Components
A07 Identification and Authen-
tication Failures
A08 Software and Data
Integrity Failures
A09 Security Logging and
Monitoring Failures
A10 Server Side Request Forgery
-
Non-listed

CWE-940

CWE-369

CWE-347

CWE-1265

CWE-287

CWE-362

CWE-269

CWE-285

CWE-282

CWE-610

Figure 7: forge Top 10 vs. OWASP Top 10 2

contract vulnerability rankings and the widely recognized tradi-
tional software security risks. TheOWASP Top 10 represents a broad
consensus on the most critical security risks to web applications
in the traditional software domain [56]. MITRE provides a CWE
perspective on the OWASP Top 10, mapping each risk to one or
more CWE root causes [42]. To illustrate the divergence between
the top 10 severity rankings from forge and OWASP root causes,
we utilized a slope graph (Figure 7) that visually demonstrates the
disparity in vulnerability rankings.

The comparison reveals significant differences between

the vulnerability landscapes of smart contracts and tradi-

tional software applications. Notably, while some OWASP cate-
gories (A01-A04, A07) find corresponding instances in forge Top
10, they fail to encompass several of the most severe vulnerabilities
in our dataset—including arithmetic issues, reentrancy problems,
transaction order dependency (TOD), and ownership-related vul-
nerabilities that involve digital asset management and can lead
to substantial losses if exploited. Additionally, A10 (Server-Side
Request Forgery) does not have direct equivalents in our dataset.

This discrepancy between the forge Top 10 and the OWASP Top
10 highlights the need for tailored security practices in the smart
contract domain. The wealth of experience and best practices accu-
mulated in traditional vulnerability management, such as prioritiz-
ing the most critical security issues for efficient resource allocation
and establishing standardized security assessment criteria, cannot
be directly transferred to the smart contract ecosystem. The unique
characteristics of smart contracts and the blockchain environment
demand the development of specialized security frameworks, tools,
and practices that address the specific challenges and risks associ-
ated with decentralized applications.

Finding 3:Our analysis reveals a significant divergence between
traditional software security and smart contract vulnerabilities,
which highlights the need for tailored security practices in the
smart contract domain.

2At the time of writing, the OWASP Top 10 2021 was the most recent version available.
The figure presents qualitative comparison results; the scale may be stretched for
visualization purposes.

5.1.4 For Ecosystem. Our study offers several important implica-
tions for the smart contract ecosystem: (1) Research Focus Realign-
ment. Our dataset provides empirical evidence to guide research
efforts toward high-severity vulnerabilities that currently receive
insufficient attention, helping bridge the gap between academic
research and practical security needs. (2) Security-First Development.
The severity-ranked vulnerability distribution serves as a practical
guideline for development practices, while our root cause analysis
enables crucial feedback into the software development lifecycle
for preventing entire vulnerability classes. (3) Vulnerability Evolu-
tion Analysis. By applying forge to audit reports across different
time periods, researchers can track vulnerability pattern mutations,
identify emerging threats, and understand the effectiveness of var-
ious security measures. (4) Cross-Domain Knowledge Transfer. By
CWE classification, our dataset enables comparing security chal-
lenges between traditional applications and smart contract systems,
facilitating knowledge transfer across domains.

5.2 Threats to Validity

Internal Validity. First, our dataset relies on LLM-based extrac-
tion and classification, which inherently introduces some impreci-
sion when serving as ground truth datasets where high accuracy is
crucial. This may impact practical utility. However, our evaluation
in Section 4.2 demonstrates a high precision score for the generated
entries, and our dataset is publicly accessible on GitHub, enabling
community-driven validation and refinement through the issue
tracking system. Second, our approach utilizes the 𝐶𝑊𝐸𝑠 category,
which was not originally designed for smart contract vulnerabilities.
This potential mismatch could lead to inevitable inconsistencies in
classification, as demonstrated in Section 4.3. Nevertheless, our eval-
uation analysis reveals that existing vulnerabilities from real-world
audit reports have already been classified effectively into 𝐶𝑊𝐸𝑠 ,
indicating sufficient coverage. Furthermore, our tree-of-thoughts
method adaptively identifies the most appropriate vulnerability
hierarchy level, mitigating potential inconsistencies.
External Validity. First, our dataset exclusively comprises audit
reports, potentially introducing selection bias. However, this ap-
proach actually strengthens dataset authenticity since these reports
from 47 renowned teams represent popular, real-world projects
subjected to a professional security evaluation, thereby enhanc-
ing ecological validity rather than diminishing it. Second, our im-
plementation employs LLama3 as the foundation model, raising
concerns about how model performance might influence research
conclusions, particularly with the emergence of new LLMs support-
ing longer context windows. This limitation is mitigated by our
research objective, which focuses on dataset generation rather than
context comprehension. Current LLMs, regardless of context length,
still face fundamental challenges like “lost in the middle” effects.
Within our framework, LLama3 demonstrates sufficient capability,
and the modular design of forge allows straightforward model
substitution when more effective alternatives become available.

6 RELATEDWORK

Smart Contract Vulnerability Datasets. There has been sub-
stantial research effort in constructing high-quality smart contract
vulnerability datasets. For example, Durieux et al. [18] introduced

Forge: An LLM-driven Framework for Large-Scale Smart Contract Vulnerability Dataset Construction ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil

SmartBugs-wild, containing 47,398 solidity files from Ethereum
with an average of only 204 lines of code per contract, and over
90% using an outdated 0.4+ compiler version. ScrawlD [83] incor-
porating vulnerability reports from multiple detection tools across
6,780 contracts. Both datasets were collected without manual vul-
nerability validation, including numerous false positives. Besides,
their simplistic and outdated code samples fail to represent contem-
porary smart contract development practices. More recent efforts
like Web3Bugs [86] and DAppSCAN [88] have attempted to pro-
vide higher-quality datasets by including deployed DApp audit
reports. The larger one of these, DAppSCAN, covers 37 vulnerabil-
ity types and includes 1,618 vulnerabilities. While existing datasets
rely on manual annotation processes that constrain their scope
and evolution, forge employs an automated approach, yielding a
comprehensive dataset of 81,390 Solidity files with an average of
2,577 lines of code per project, encompassing 27,497 vulnerabilities
across 296 CWE categories.
Vulnerability Classification. Decentralized Application Se-
curity Project Top 10 (DASP10) [22], Smart Contract Weakness
Classification (SWC) [69] and Smart Contract Security Verification
Standard (SCSVS) [62] have gained widespread adoption. However,
these classifications often suffer from mixing different dimensions
and providing non-orthogonal categories. Additionally, they have
remained static for years, failing to evolve with the rapidly changing
smart contract ecosystem [67]. In contrast, our work leverages the
CWE classification, which provides a hierarchical, comprehensive,
and regularly updated framework that encompasses both traditional
software and smart contract vulnerability patterns.
Empirical Analysis of Real-World Smart Contract Vulnerabil-

ities. Recent studies have conducted large-scale analyses of the
smart contract security ecosystem. Zhang et al. [86] investigated 516
real-world vulnerabilities from 2021-2022, with a particular focus on
machine-unauditable security bugs and their exploit patterns. Li et
al.[29] evaluated 8 Static Application Security Testing (SAST) tools
using a newly created taxonomy and benchmark (98.85% of vulner-
abilities from previous work, 1.15% from manual audits of real BNB
projects), providing guidance on SAST tool evaluation and selec-
tion. Sendner et al. [64] evaluated 18 vulnerability scanners across
multiple datasets comprising over 4 million contracts, providing in-
sights into the effectiveness of automated security tools. Compared
to these works, our automated dataset construction approach en-
ables more reliable and comprehensive empirical analysis through
large-scale, real-world-sourced vulnerability findings. Moreover,
from the unified perspective of the CWE, our work bridges the gap
between smart contracts and traditional software, offering valuable
comparative insights that were previously unavailable.

7 CONCLUSION

This paper presents forge, an automated framework for construct-
ing smart contract vulnerability datasets from real-world audit
reports. Our approach employs a divide-and-conquer strategy and
tree-of-thoughts reasoning to extract and classify vulnerabilities
into CWE categories, addressing critical limitations in manual
dataset construction. In 229.5 hours, forge constructed a dataset
containing 81,390 Solidity files with 27,497 vulnerabilities across 296
CWE categories, achieving expert-level classification consistency

(k-𝛼 =0.87) and high extraction precision (95.6%). Our empirical
analysis reveals distinct vulnerability patterns in smart contracts
compared to traditional software, significant misalignment between
research focus and real-world priorities, and limited effectiveness of
existing security tools (max 18.59% F1). forge advances smart con-
tract security through automated real-world vulnerability dataset
construction with a unified CWE classification, establishing essen-
tial foundations for both academic research and industrial practice.

REFERENCES

[1] Toufique Ahmed, Premkumar Devanbu, Christoph Treude, and Michael Pradel.
2025. Can LLMs Replace Manual Annotation of Software Engineering Artifacts?.
In MSR ’25: 22nd International Conference on Mining Software Repositories.

[2] Meta AI. 2024. Introducing Meta Llama 3: The Most Capable Openly Available
LLM to Date. https://ai.meta.com/blog/meta-llama-3/

[3] Andrei. 2024. llama-cpp-python. https://github.com/abetlen/llama-cpp-python/
blob/main/llama_cpp/server/types.py#L25.

[4] Anthropic. 2024. Introducing the next Generation of Claude. https://www.
anthropic.com/news/claude-3-family

[5] BscScan. 2025. BNB Smart Chain (BNB) Blockchain Explorer. https://bscscan.
com/

[6] Vitalik Buterin. 2014. A Next-Generation Smart Contract and Decentralized
Application Platform. whitepaper (2014), 3(37):2–1.

[7] Calculator.net. 2025. Sample Size Calculator. https://www.calculator.net/sample-
size-calculator.html

[8] CertiK. 2025. CertiK - Hack3d: The Web3 Security Report 2024. https://certik.
com/resources/blog/hack3d-the-web3-security-report-2024

[9] Chainsulting. 2020. 1inch v2 Audit Report. Technical Report. Chainsulting. 16
pages.

[10] Stefanos Chaliasos, Marcos Antonios Charalambous, Liyi Zhou, Rafaila
Galanopoulou, Arthur Gervais, Dimitris Mitropoulos, and Benjamin Livshits.
2024. Smart Contract and DeFi Security Tools: Do They Meet the Needs of
Practitioners?. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering (ICSE ’24). Association for Computing Machinery, 1–13.

[11] Jiachi Chen, Zhenzhe Shao, Shuo Yang, Yiming Shen, Yanlin Wang, Ting Chen,
Zhenyu Shan, and Zibin Zheng. 2025. NumScout: Unveiling Numerical Defects
in Smart Contracts Using LLM-Pruning Symbolic Execution. IEEE Trans. Softw.
Eng. 51, 5 (March 2025), 1538–1553. https://doi.org/10.1109/TSE.2025.3555622

[12] conkas. 2021. Nveloso/Conkas: Ethereum Virtual Machine (EVM) Bytecode
or Solidity Smart Contract Static Analysis Tool Based on Symbolic Execution.
https://github.com/nveloso/conkas

[13] Consensys. 2018. Consensys/Mythril: Mythril Is a Symbolic-Execution-Based
Securty Analysis Tool for EVM Bytecode. It Detects Security Vulnerabilities in
Smart Contracts Built for Ethereum and Other EVM-compatible Blockchains.
https://github.com/Consensys/mythril

[14] John Dagdelen, Alexander Dunn, Sanghoon Lee, Nicholas Walker, Andrew S.
Rosen, Gerbrand Ceder, Kristin A. Persson, and Anubhav Jain. 2024. Structured
Information Extraction from Scientific Text with Large Language Models. Nature
Communications 15, 1 (2024), 1418.

[15] DefiLlama. 2025. DefiLlama. https://defillama.com/
[16] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun

Chen, Basel Alomair, David Wagner, Baishakhi Ray, and Yizheng Chen. 2024.
Vulnerability Detection with Code Language Models: How Far Are We?. In 2025
IEEE/ACM 47th International Conference on Software Engineering (ICSE). IEEE
Computer Society, 469–481.

[17] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming
Xia, Jingjing Xu, Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui.
2024. A Survey on In-context Learning. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 1107–1128. https://doi.org/10.18653/v1/2024.emnlp-main.64

[18] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. In
2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
ACM, 530–541.

[19] etherscan.io. 2024. Smart Contracts Audit. https://etherscan.io/directory/Smart_
Contracts/Smart_Contracts_Audit_And_Security.

[20] etherscan.io. 2025. Ethereum (ETH) Blockchain Explorer. https://etherscan.io/
[21] Josselin Feist, Gustavo Greico, Alex Groce, and ACM. 2019. Slither: A Static

Analysis Framework For Smart Contracts. In 2019 IEEE/ACM 2ND INTERNA-
TIONALWORKSHOP ON EMERGING TRENDS IN SOFTWARE ENGINEERING FOR
BLOCKCHAIN (WETSEB 2019). 8–15.

[22] NCC Group. 2021. DASP - TOP 10. https://dasp.co/
[23] Zhuobing Han, Xiaohong Li, Hongtao Liu, Zhenchang Xing, and Zhiyong Feng.

2018. DeepWeak: Reasoning Common Software Weaknesses via Knowledge

https://ai.meta.com/blog/meta-llama-3/
https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/server/types.py#L25
https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/server/types.py#L25
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://bscscan.com/
https://bscscan.com/
https://www.calculator.net/sample-size-calculator.html
https://www.calculator.net/sample-size-calculator.html
https://certik.com/resources/blog/hack3d-the-web3-security-report-2024
https://certik.com/resources/blog/hack3d-the-web3-security-report-2024
https://doi.org/10.1109/TSE.2025.3555622
https://github.com/nveloso/conkas
https://github.com/Consensys/mythril
https://defillama.com/
https://doi.org/10.18653/v1/2024.emnlp-main.64
https://etherscan.io/directory/Smart_Contracts/Smart_Contracts_Audit_And_Security
https://etherscan.io/directory/Smart_Contracts/Smart_Contracts_Audit_And_Security
https://etherscan.io/
https://dasp.co/

ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil Chen et al.

Graph Embedding. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). 456–466.

[24] Hedera. 2025. What Is a Smart Contract Audit? https://hedera.com/learning/
smart-contracts/smart-contract-audit

[25] Mingyuan Huang, Jiachi Chen, Zigui Jiang, and Zibin Zheng. 2024. Revealing
Hidden Threats: An Empirical Study of Library Misuse in Smart Contracts. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering
(ICSE ’24). Association for Computing Machinery, 1–12.

[26] Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin Zhao, and Ji-Rong Wen.
2023. StructGPT: A General Framework for Large Language Model to Reason
over Structured Data. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.).
Association for Computational Linguistics, 9237–9251.

[27] Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large Language Models Are Zero-Shot Reasoners. In Advances
in Neural Information Processing Systems, Vol. 35. 22199–22213.

[28] Klaus Krippendorff. 2019. Content Analysis: An Introduction to Its Methodology.
SAGE Publications, Inc.

[29] Kaixuan Li, Yue Xue, Sen Chen, Han Liu, Kairan Sun, Ming Hu, Haijun Wang,
Yang Liu, and Yixiang Chen. 2024. Static Application Security Testing (SAST)
Tools for Smart Contracts: How Far Are We?. In Proceedings of the ACM on
Software Engineering, Vol. 1. 1447–1470. https://doi.org/10.1145/3660772

[30] Lu Liu, Lili Wei, Wuqi Zhang, Ming Wen, Yepang Liu, and Shing-Chi Cheung.
2022. Characterizing Transaction-Reverting Statements in Ethereum Smart Con-
tracts. In Proceedings of the 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’21). IEEE Press, 630–641.

[31] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the Middle: How Language Models
Use Long Contexts. Transactions of the Association for Computational Linguistics
12 (2024), 157–173.

[32] Peiyu Liu, Junming Liu, Lirong Fu, Kangjie Lu, Yifan Xia, Xuhong Zhang, Wenzhi
Chen, Haiqin Weng, Shouling Ji, and Wenhai Wang. 2024. Exploring ChatGPT’s
Capabilities on Vulnerability Management. In Proceedings of the 33rd USENIX
Conference on Security Symposium (SEC ’24). USENIX Association, 811–828.

[33] Xin Liu, Yuan Tan, Zhenghang Xiao, Jianwei Zhuge, and Rui Zhou. 2023. Not
The End of Story: An Evaluation of ChatGPT-Driven Vulnerability Description
Mappings. In Findings of the Association for Computational Linguistics: ACL 2023,
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for
Computational Linguistics, 3724–3731.

[34] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.
Making Smart Contracts Smarter. In CCS’16: 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 254–269.

[35] GiacomoMarzi, Marco Balzano, and Davide Marchiori. 2024. K-Alpha Calculator–
Krippendorff’s Alpha Calculator: A User-Friendly Tool for Computing Krippen-
dorff’s Alpha Inter-Rater Reliability Coefficient. MethodsX 12 (2024), 102545.

[36] Pascal C Meunier and Eugene H Spafford. 1999. Final Report of the 2ndWorkshop
on Research with Security Vulnerability Databases, January 1999. (1999).

[37] MITRE. 2024. 2024 CWE Top 25 Most Dangerous Software Weaknesses. https:
//cwe.mitre.org/top25/archive/2024/2024_methodology.html

[38] MITRE. 2025. CWE - About CWE. https://cwe.mitre.org/about/index.html
[39] MITRE. 2025. CWE - CVE→ CWE Mapping "Root Cause Mapping" Guidance.

https://cwe.mitre.org/documents/cwe_usage/guidance.html.
[40] MITRE. 2025. CWE - CWE-1000: Research Concepts (4.16). https://cwe.mitre.

org/data/definitions/1000.html
[41] MITRE. 2025. CWE - CWE-1192: Improper Identifier for IP Block Used in System-

On-Chip (SOC) (4.16). https://cwe.mitre.org/data/definitions/1192.html.
[42] MITRE. 2025. CWE - CWE-1344: Weaknesses in OWASP Top Ten (2021) (4.16).

https://cwe.mitre.org/data/definitions/1344.html.
[43] MITRE. 2025. CWE - CWE-284: Improper Access Control. https://cwe.mitre.

org/data/definitions/284.html
[44] MITRE. 2025. CWE - CWE-287: Improper Authentication. https://cwe.mitre.

org/data/definitions/287.html
[45] MITRE. 2025. CWE - CWE-295: Improper Certificate Validation. https://cwe.

mitre.org/data/definitions/295.html
[46] MITRE. 2025. CWE - CWE-298: Improper Validation of Certificate Expiration.

https://cwe.mitre.org/data/definitions/298.html
[47] MITRE. 2025. CWE - CWE-362: Concurrent Execution Using Shared Resource

with Improper Synchronization (‘Race Condition’). https://cwe.mitre.org/data/
definitions/362.html

[48] MITRE. 2025. CWE - CWE-477: Use of Obsolete Function. https://cwe.mitre.
org/data/definitions/477.html

[49] MITRE. 2025. CWE - CWE-691: Insufficient Control Flow Management. https:
//cwe.mitre.org/data/definitions/691.html

[50] MITRE. 2025. CWE - CWE-755: Improper Handling of Exceptional Conditions.
https://cwe.mitre.org/data/definitions/755.html

[51] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A User-
Friendly Symbolic Execution Framework for Binaries and Smart Contracts. In

2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 1186–1189.

[52] Chaals Nevile. 2023. EEA EthTrust Security Levels Specification V2. https:
//entethalliance.org/specs/ethtrust-sl/#sec-3-access-control

[53] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. In Proceed-
ings of the 34th Annual Computer Security Applications Conference (ACSAC ’18).
Association for Computing Machinery, 653–663.

[54] NVD. 2025. NVD - Vulnerability Metrics. https://nvd.nist.gov/vuln-metrics/cvss
[55] OpenAI. 2023. GPT-4. https://openai.com/index/gpt-4/
[56] OWASP. 2024. OWASP Top Ten | OWASP Foundation. https://owasp.org/www-

project-top-ten/
[57] Shengyi Pan, Lingfeng Bao, Xin Xia, David Lo, and Shanping Li. 2023. Fine-

Grained Commit-Level Vulnerability Type Prediction by CWE Tree Structure. In
Proceedings of the 45th International Conference on Software Engineering (ICSE
’23). IEEE Press, 957–969.

[58] Protofire. 2025. Solhint. https://github.com/protofire/solhint
[59] pymupdf. 2025. PyMuPDF. https://github.com/pymupdf/PyMuPDF
[60] Alexander Remie. 2024. Uniswap v4 Core Security Assessment. Technical Report.

Trail of Bits.
[61] Claudia Ruggiero, Pietro Mazzini, Emilio Coppa, Simone Lenti, and Silvia Bonomi.

2024. SoK: A Unified Data Model for Smart Contract Vulnerability Taxonomies.
In Proceedings of the 19th International Conference on Availability, Reliability and
Security. ACM, 1–13.

[62] Damian Rusinek and Paweł Kuryłowicz. 2021. Smart Contract Security Verifica-
tion Standard. https://securing.github.io/SCSVS/

[63] Semgrep. 2025. Semgrep. https://semgrep.dev/p/smart-contracts
[64] Christoph Sendner, Lukas Petzi, Jasper Stang, and Alexandra Dmitrienko. 2024.

Large-Scale Study of Vulnerability Scanners for Ethereum Smart Contracts. In
2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2273–
2290.

[65] Şevval Şimşek, Zhenpeng Shi, Howell Xia, David Sastre Medina, and David
Starobinski. 2024. Poster: Analyzing and Correcting Inaccurate CVE-CWE Map-
pings in the National Vulnerability Database. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security (CCS ’24). Associ-
ation for Computing Machinery, 5042–5044.

[66] SmartBugs. 2020. Vulnerabilities Mapping. https://github.com/smartbugs/
smartbugs/wiki/Vulnerabilities-mapping

[67] Majd Soud, Grischa Liebel, and Mohammad Hamdaqa. 2023. A Fly in the Oint-
ment: An Empirical Study on the Characteristics of Ethereum Smart Contracts
Code Weaknesses and Vulnerabilities. Empirical Software Engineering 29, 1
(2023).

[68] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Wei Ma, Lyuye Zhang, Yang Liu,
and Yingjiu Li. 2024. LLM4Vuln: A Unified Evaluation Framework for Decoupling
and Enhancing LLMs’ Vulnerability Reasoning. arXiv:2401.16185

[69] SWC. 2020. Smart Contract Weakness Classification (SWC). https://swcregistry.
io/

[70] SWC. 2020. SWC-114 - Smart Contract Weakness Classification (SWC). https:
//swcregistry.io/docs/SWC-114/

[71] SWC. 2020. SWC-115 - Smart Contract Weakness Classification (SWC). https:
//swcregistry.io/docs/SWC-115/

[72] Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita
Bhattacharjee, Mansooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. 2024.
Large Language Models for Data Annotation and Synthesis: A Survey. In Proceed-
ings of the 2024 Conference on Empirical Methods in Natural Language Processing,
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (Eds.). Association for
Computational Linguistics, 930–957.

[73] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,
Evgeny Marchenko, and Yaroslav Alexandrov. 2018. SmartCheck: Static Analysis
of Ethereum Smart Contracts. In Proceedings of the 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain. ACM, 9–16.

[74] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.
2021. ConFuzzius: A Data Dependency-Aware Hybrid Fuzzer for Smart Contracts.
In 2021 IEEE European Symposium on Security and Privacy (EuroS&P). 103–119.

[75] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting
for Integer Bugs in Ethereum Smart Contracts. In Proceedings of the 34th An-
nual Computer Security Applications Conference (ACSAC ’18). Association for
Computing Machinery, 664–676.

[76] Christof Ferreira Torres, Mathis Steichen, and Radu State. 2019. The Art of The
Scam: Demystifying Honeypots in Ethereum Smart Contracts. In Proceedings of
the 28th USENIX Conference on Security Symposium (SEC’19). USENIX Association,
1591–1607.

[77] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Bünzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18). Association for Computing Machinery, 67–
82.

https://hedera.com/learning/smart-contracts/smart-contract-audit
https://hedera.com/learning/smart-contracts/smart-contract-audit
https://doi.org/10.1145/3660772
https://cwe.mitre.org/top25/archive/2024/2024_methodology.html
https://cwe.mitre.org/top25/archive/2024/2024_methodology.html
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/1192.html
https://cwe.mitre.org/data/definitions/1344.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/298.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/477.html
https://cwe.mitre.org/data/definitions/477.html
https://cwe.mitre.org/data/definitions/691.html
https://cwe.mitre.org/data/definitions/691.html
https://cwe.mitre.org/data/definitions/755.html
https://entethalliance.org/specs/ethtrust-sl/#sec-3-access-control
https://entethalliance.org/specs/ethtrust-sl/#sec-3-access-control
https://nvd.nist.gov/vuln-metrics/cvss
https://openai.com/index/gpt-4/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://github.com/protofire/solhint
https://github.com/pymupdf/PyMuPDF
https://securing.github.io/SCSVS/
https://semgrep.dev/p/smart-contracts
https://github.com/smartbugs/smartbugs/wiki/Vulnerabilities-mapping
https://github.com/smartbugs/smartbugs/wiki/Vulnerabilities-mapping
https://arxiv.org/abs/2401.16185
https://swcregistry.io/
https://swcregistry.io/
https://swcregistry.io/docs/SWC-114/
https://swcregistry.io/docs/SWC-114/
https://swcregistry.io/docs/SWC-115/
https://swcregistry.io/docs/SWC-115/

Forge: An LLM-driven Framework for Large-Scale Smart Contract Vulnerability Dataset Construction ICSE ’26, April 12-18, 2026, Rio de Janeiro, Brazil

[78] Uniswap. 2024. Uniswap/v4-Core at Audit/Trail-of-Bits. https://github.com/
Uniswap/v4-core/tree/audit/trail-of-bits

[79] Zhiyuan Wan, Xin Xia, David Lo, Jiachi Chen, Xiapu Luo, and Xiaohu Yang.
2021. Smart Contract Security: A Practitioners’ Perspective. In Proceedings of
the 43rd International Conference on Software Engineering (ICSE ’21). IEEE Press,
1410–1422.

[80] Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu
Li, Jinan Xu, Jianfeng Qu, and Jie Zhou. 2023. Is ChatGPT a Good NLG Evaluator?
A Preliminary Study. In Proceedings of the 4th New Frontiers in Summarization
Workshop, Yue Dong, Wen Xiao, Lu Wang, Fei Liu, and Giuseppe Carenini (Eds.).
Association for Computational Linguistics, 1–11.

[81] Shuo Yang, Jiachi Chen, and Zibin Zheng. 2023. Definition and Detection of
Defects in NFT Smart Contracts. In Proceedings of the 32nd ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (ISSTA 2023). Association
for Computing Machinery, 373–384.

[82] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving with
Large Language Models. In Advances in Neural Information Processing Systems,
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (Eds.),
Vol. 36. Curran Associates, Inc., 11809–11822.

[83] Chavhan Sujeet Yashavant. 2021. Sujeetc/ScrawlD.
[84] Jiashuo Zhang, Jiachi Chen, Zhiyuan Wan, Ting Chen, Jianbo Gao, and Zhong

Chen. 2024. When Contracts Meets Crypto: Exploring Developers’ Struggles
with Ethereum Cryptographic APIs. In Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering (ICSE ’24). Association for Computing
Machinery, 1–13.

[85] Jiashuo Zhang, Yiming Shen, Jiachi Chen, Jianzhong Su, Yanlin Wang, Ting Chen,
Jianbo Gao, and Zhong Chen. 2024. Demystifying and Detecting Cryptographic
Defects in Ethereum Smart Contracts. In 2025 IEEE/ACM 47th International Con-
ference on Software Engineering (ICSE). IEEE Computer Society, 114–126.

[86] Zhuo Zhang, Brian Zhang, Wen Xu, and Zhiqiang Lin. 2023. Demystifying Ex-
ploitable Bugs in Smart Contracts. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 615–627.

[87] Zibin Zheng, Kaiwen Ning, Qingyuan Zhong, Jiachi Chen, Wenqing Chen,
Lianghong Guo, Weicheng Wang, and Yanlin Wang. 2024. Towards an Un-
derstanding of Large Language Models in Software Engineering Tasks. Empirical
Software Engineering 30, 2 (2024), 50.

[88] Zibin Zheng, Jianzhong Su, Jiachi Chen, David Lo, Zhijie Zhong, and Mingxi Ye.
2024. DAppSCAN: Building Large-Scale Datasets for Smart Contract Weaknesses
in DApp Projects. IEEE Trans. Softw. Eng. 50, 6 (2024), 1360–1373.

[89] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian
Weng, and Muhammad Imran. 2020. An Overview on Smart Contracts: Chal-
lenges, Advances and Platforms. Future Generation Computer Systems 105 (2020),
475–491.

[90] Haozhe Zhou, Amin Milani Fard, and Adetokunbo Makanju. 2022. The State of
Ethereum Smart Contracts Security: Vulnerabilities, Countermeasures, and Tool
Support. Journal of Cybersecurity and Privacy 2, 2 (2022), 358–378.

[91] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye
Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. 2023.
SoK: Decentralized Finance (DeFi) Attacks. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2444–2461.

https://github.com/Uniswap/v4-core/tree/audit/trail-of-bits
https://github.com/Uniswap/v4-core/tree/audit/trail-of-bits

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Common Weakness Enumeration (CWE)
	2.2 Smart Contract Audit Reports
	2.3 LLMs for Dataset Construction

	3 forge Framework
	3.1 Overview
	3.2 Phase 1: Semantic Chunker
	3.3 Phase 2: MapReduce Extractor
	3.4 Phase 3: Hierarchical Classifier
	3.5 Phase 4: Code Fetcher

	4 Evaluation
	4.1 RQ1: Effectiveness of forge
	4.2 RQ2: Performance of Information Extraction
	4.3 RQ3: forge's Classification v.s. Human Experts
	4.4 RQ4: Practicality of forge dataset

	5 Discussion
	5.1 Implications
	5.2 Threats to Validity

	6 Related work
	7 Conclusion
	References

