
ar
X

iv
:2

50
6.

18
75

6v
1

 [
cs

.C
L

]
 2

6
M

ay
 2

02
5

Semantic-Preserving Adversarial Attacks on LLMs: An Adaptive Greedy
Binary Search Approach

Chong Zhang1,3,*, Xiang Li2,1,*, Jia Wang1, Shan Liang1, Haochen Xue1, Xiaobo Jin1,†

1 Xi’an Jiaotong-Liverpool University 2 The Chinese University of Hong Kong
3 University of Liverpool

Abstract
Large Language Models (LLMs) increasingly
rely on automatic prompt engineering in graph-
ical user interfaces (GUIs) to refine user in-
puts and enhance response accuracy. How-
ever, the diversity of user requirements often
leads to unintended misinterpretations, where
automated optimizations distort original inten-
tions and produce erroneous outputs. To ad-
dress this challenge, we propose the Adap-
tive Greedy Binary Search (AGBS) method,
which simulates common prompt optimization
mechanisms while preserving semantic stabil-
ity. Our approach dynamically evaluates the
impact of such strategies on LLM performance,
enabling robust adversarial sample generation.
Through extensive experiments on open and
closed-source LLMs, we demonstrate AGBS’s
effectiveness in balancing semantic consistency
and attack efficacy. Our findings offer ac-
tionable insights for designing more reliable
prompt optimization systems. Code is avail-
able at: https://github.com/franz-chang/DOBS.

1 Introduction

The rapid deployment of large language models
across industries has led to a paradigm shift in
human-computer interaction, with leading manu-
facturers increasingly integrating automatic sug-
gestion optimization directly into the user inter-
face. Systems such as Microsoft’s Bing Copi-
lot (Microsoft, 2023) and the data-efficient plug-
and-play suggestion enhancement system (PAS)
(Zheng et al., 2024) embody this trend, employing
complex algorithms to reconstruct user queries to
improve response accuracy. These systems typi-
cally operate through a multi-stage refinement pro-
cess that may include vocabulary normalization,
intent disambiguation, and context-aware expan-
sion—processes that have shown significant effec-
tiveness in standardized testing environments.

*Equal contribution as first authors.
†Corresponding authors.

Selection
(+) Step

Selection
(-) Step

Sub Sentence 1

Original Question

Similarity

Sub Sentence 2

Original Question

Similarity

[START]

Ranked
Candidates

QA-Dataset

𝑐j

𝑥𝑖

[START]

Ranked
Candidates

QA-Dataset

Figure 1: The core of adaptive greedy binary search.
After identifying the keyword xi for each clause and
masking it, we use this method to determine the ωj that
replaces xi and semantically compare the new clause
with the original to guide the selection of top-k posi-
tions.

However, these automatic suggestion engineer-
ing systems have exposed their fundamental lim-
itations in real-world applications. As shown in
Figure 1, static optimization strategies often lead to
semantic drift—a phenomenon in which iterative
suggestion modifications gradually deviate from
the user’s original intent—in the face of the inher-
ent diversity of user contexts, language patterns,
and task requirements. This drift is particularly se-
vere in edge cases, where automated systems may:
(1) incorrectly resolve lexical ambiguities, (2) over-
fit common query patterns while ignoring specific
requests, or (3) inadvertently amplify subtle biases
present in the training data. More worryingly, these
optimizations create attack surfaces for adversarial
attacks, as demonstrated by recent research on just-
in-time injection vulnerabilities (Zou et al., 2023;
Maloyan and Namiot, 2025).

To address these challenges, we propose the
Adaptive Greedy Binary Search (AGBS) frame-
work, which outperforms the current state-of-the-
art methods in three key dimensions:

1

https://github.com/franz-chang/DOBS
https://arxiv.org/abs/2506.18756v1

Dynamic Semantic Stability: Unlike traditional
beam search methods that apply fixed constraints,
AGBS implements an adaptive threshold mecha-
nism that dynamically adjusts the semantic sim-
ilarity bounds based on real-time analysis of the
effects of instantaneous perturbations. This innova-
tion enables precise control of the balance between
attack strength and semantic preservation.
Hierarchical Cue Decomposition: AGBS adopts
a novel hierarchical decomposition strategy to first
identify key semantic units (keywords, clauses, and
contextual markers) in the cue, and then applies tar-
geted perturbations while maintaining grammatical
and pragmatic coherence.

Through extensive experiments, we demonstrate
that AGBS can successfully induce targeted mis-
behavior in 2400 test cases of commercial LLMs
while maintaining an average BERTScore of ap-
proximately 0.80 compared to the original prompts.
These findings not only validate the effectiveness
of our approach but also reveal fundamental limita-
tions of current prompt optimization methods. Our
main contributions include:

• Formalize the attack surface of just-in-time
optimization with a novel adversarial attack
strategy, achieving high success rates across
LLMs and datasets.

• Integrate AGBS into automatic prompt learn-
ing to improve the concealment and success
rate of adversarial attacks against complex
scenarios and diversified inputs.

• Provide practical guidelines for developing
more robust just-in-time optimization systems
that balance practicality and security.

2 Related Work

2.1 Adversarial Attacks on Deep Neural
Networks

Adversarial attack research mainly changes the in-
put to detect the vulnerability of the model: since
deep neural networks are vulnerable to adversarial
samples, small perturbations may lead to serious
classification errors (Szegedy, 2013). In response
to this phenomenon, the fast gradient representation
method (FGSM) (Goodfellow et al., 2014) shows
how to induce model errors by generating pertur-
bations through gradients. In the field of natural
language processing, the discrete nature of text
data makes text adversarial attacks more challeng-
ing (Li et al., 2018), so researchers have proposed a

variety of complex attack methods that can bypass
defense techniques (Carlini and Wagner, 2017). On
the other hand, adversarial training can effectively
improve the robustness of the model, which has
been proven to be one of the effective methods to
improve the robustness of the model (Mądry et al.,
2017). These studies have not only promoted the
development of adversarial attack techniques and
defense strategies but also had an important im-
pact on the application of artificial intelligence in
security-sensitive fields.

2.2 Adversarial Attacks for Large Language
Models

Adversarial attacks based on both white-box and
black-box pose a significant threat to LLMs. In
the white-box scenario, gradient-based distribu-
tion attack (GBDA) (Guo et al., 2021) leverages
the Gumbel-Softmax technique for optimization
with a differentiable adversarial loss, and uses
BERTScore and perplexity to enhance the percepti-
bility and fluency of the attack. HotFlip (Ebrahimi
et al., 2018) manipulates adversarial text by map-
ping text operations to a vector space and com-
puting derivatives, while AutoPrompt (Shin et al.,
2020) leverages a gradient-based strategy to opti-
mize the prompt template. Wallace et al. (Wallace
et al., 2021) introduced methods for discovering
universal adversarial triggers to change model out-
puts. However, these gradient-based attacks do not
apply to closed-source large language models.

Black-box adversarial attacks leverage various
techniques to exploit vulnerabilities in NLP mod-
els. Ribeiro et al. (Ribeiro et al., 2018) introduced
SEAs, a token manipulation method to identify and
mitigate excessive sensitivity in models. BERT-
Attack (Li et al., 2020) uses context-aware word re-
placements to subtly modify inputs. Hint injection
attacks, such as target hijacking and hint leakage,
embed harmful instructions to deceive LLMs, as
explored by McKenzie (McKenzie et al., 2023) and
Perez & Ribeiro (Perez and Ribeiro, 2022). Other
black-box methods include query-free techniques
like BadNets (Gu et al., 2017) and model replace-
ment strategies (Papernot et al., 2017). Goal-driven
attacks maximize KL divergence, equivalent to in-
creasing Mahalanobis distance between clean and
adversarial text embeddings, effectively targeting
LLMs (Zhang et al., 2024b,a). These approaches
highlight diverse tactics for addressing model secu-
rity challenges (Wang et al., 2024).

2

2.3 Adversarial Attacks with Beam Search
The TABS (Choi et al., 2022) method combines
semantic beam search with contextual semantic fil-
tering while maintaining the Top-k candidate adver-
sarial sentences and effectively narrows the search
space through semantic filtering to maintain seman-
tic consistency. In the improved beam search algo-
rithm (Zhao et al., 2021), each iteration selects the
K nodes from the previous iteration, and the word
selection range is expanded by backtracking the
iteration to improve efficiency. In leveraging trans-
ferability and improved beam search (Zhu et al.,
2022), multiple words are randomly selected for
replacement, multiple candidate sentences are gen-
erated for semantic filtering, and finally, the beam
width selects the sentence with the highest defense.
In Beam Attack (Zhu et al., 2023), the semantic fil-
tering method is used to improve the semantic sim-
ilarity of candidate words, and the words with the
highest similarity are selected for replacement to
generate the best adversarial attack samples (Wang
et al., 2024). When the above methods generate
adversarial samples for the pre-trained language
model, semantic pre-screening cannot correct the
bias in time, and when semantic constraints are
imposed and unqualified samples are re-generated,
it will increase the computational cost.

3 Methodology

Scope and Objectives: Starting with a text t con-
sisting of multiple sentences, the goal is to generate
a new text t′ that can effectively challenge LLMs
like ChatGPT while preserving the original mean-
ing of t. Otherwise, we believe the attack text t′

targets a text unrelated to t. Here, we use S(t′, t)
to indicate the similarity between the semantics of
the texts t and t′. When the LLM outputs O(t)
and O(t′) are inconsistent, t′ is identified as an ad-
versarial example for O. The target formula is as
follows:

O(t) = r, O(t′) = r′, S(t, t′) ∈ σ, (1)

Here, r and r′ represent the outputs of the model
O for texts t and t′, respectively, with r also being
the ground truth for text t. We introduce the sim-
ilarity function S(., .) and a small threshold σ to
evaluate the semantic relationship between the two
texts. In our work, our attack satisfies the following
conditions:

• Effective: The attack ensures that the adver-
sarial text maintains a high semantic similarity

with the original input, such that S(t, t′) ∈ σ.
If S(t, t′) exceeds or falls below the threshold
σ, the adversarial text is deemed invalid.

• Imperceptible: Defense mechanisms (e.g.,
jamming code detection) are often embedded
in LLM to make direct attacks easy to iden-
tify. Therefore, the perturbations introduced
in the adversarial text t′ are carefully designed
to remain contextually appropriate, ensuring
the natural fluency and coherence of the text
are not disrupted. For example, by selecting
alternative words that have similar semantics
but can change the output of the model, t′ is
difficult to be detected by the defense mecha-
nism, so as to improve the attack concealment
and success rate.

3.1 Adversarial Attacks with Adaptive Local
Search

Adversarial samples must achieve the desired at-
tack effect while preserving the semantic integrity
of the input samples. To induce incorrect model
outputs, it is crucial to maintain a controlled seman-
tic deviation between the adversarial examples and
the original inputs. Next, we will use a step-by-step
adaptive local search method to make the similar-
ity between adversarial samples and input samples
approximately equal to θ. Given a sentence input
X , it is divided into n sub-clauses xi, where each
sub-clause terminates at a designated position ti
(referred to as a "checking point"). By definition,
the positions are ordered as t1 < t2 < · · · < tn.
For the original sentence, this can be represented
as

X = {x1, x2, . . . , xT } , (1)

Where T denotes the total number of sub-clauses in
sentence X . We split it into several sub-clauses and
defined the endpoint of each sub-clause as a check-
ing point. Checking points for each sentence serves
as a positioning sentence adaptive process, and po-
sitions punctuation points for calculating similarity
with the original sentence. Let the position of the
i-th checking point be ti, where the points’ posi-
tions are t1 < t2 < · · · < tn in sub-clause, and n
represents the number of checking points. During
the generation process, at each checking point ti,
the similarity is computed between the partially
generated sentence

X̂1:ti = {x̂1, x̂2, . . . , x̂ti}, (2)

3

Adaptive Greedy
Binary Search

[START] Ranked
Candidate
selection

+Step

-Step

Perturbed
Samples

[Masked]

Words
Perturbed
Sentences

LLMs

Response

Attack
Tomas ate 1.5 pounds of
chocolate fudge last week.
Katya ate half a pound of
peanut butter fudge, while
Boris ate 2 pounds. How
many ounces of fudge did
the 3 friends eat in total?

QA-Datasets

Part-of-speech
Extraction

PoS-Mask

Embedding

Figure 2: The framework of Adaptive Greedy Binary Search for adversarial attack. There are three components
in AGBS. (a). PoS (Part-of-Speech) extraction and masking. (b). Generation of AGBS perturbed samples. (c).
Perturbed Samples Attack.

and the corresponding segment of the original sen-
tence

X1:ti = {x1, x2, . . . , xti}. (3)

in same-length sub-clause positions of ti.
At each checking point ti, we set a similar-

ity threshold σsim and dynamically adjust the
selection of candidate words cp in Top-k candi-
date set C based on the current similarity value
Sim(X1:ti , X̂1:ti).

Let the set of candidate words at checking point
ti be defined as

C(ti) = {c1, c2, . . . , ck}, (4)

where cj represents the j-th candidate word in the
Top-k ranking, and smaller subscript j represents a
higher Top-k ranking for cj in set C. Initially, we
select the middle-ranked word c⌊k/2⌋ as the starting
candidate.

The dynamic adjustment process based on the
similarity threshold σth is as follows:

If the original sub-clause xi contains masked
keywords (tagged as ’VB’, ’VBZ’, ’VBD’, ’VBN’,
or ’NNS’), the following adjustments are applied:

σsim = Sim(X1:ti , X̂1:ti), (5)

indicating that the generated sentence deviates too
much from the original. Here we use BertTok-
enizer to get the embeddings of X1:tiand X̂1:tiand
compute the cosine similarity between them to get
σsim.

To make the generated sentence closer to the
original, we adjust the candidate word down in the
Top-k list by one step position s, perform a "Rank +
s " operation, and move the selected position from
j to j − s,

If Sim(X1:ti , X̂1:ti) < σth, cp ← cj−s. (6)

Conversely, if the similarity value in Equation 5
exceeds the threshold σth, it indicates that the gen-
erated sentence is overly similar to the original,
potentially failing to achieve the intended attack ef-
fect. In this case, we adjust the candidate word up
in the Top-k list, performing a "Rank - s" operation,

If Sim(X1:ti , X̂1:ti) > σth, cp ← cj+s. (7)

Through the threshold judgment of similarity σth,
the selection order of candidate words is dynam-
ically adjusted so that the generated sentence not
only maintains a reasonable similarity with the orig-
inal sentence but also can achieve the attack goal of
modifying the selection of candidate words in real-
time based on the similarity between the generated
sentence and the original sentence, thereby control-
ling the reasonableness and attack effectiveness of
the generated output.

3.2 Dynamic generation of sub-clauses
At each generation step, the newly generated result
X̂ti is integrated into the masked position of the
original sentence X1 : ti, with the current context
x̂ti updated to xmi . These updates ensure that the
next generation step is based on the newly updated
context, gradually optimizing the generation pro-
cess.

Initially, the masked sentence XM is given by:

XM = {x1, . . . , xmi−1, [MASK], xmi+1, . . . , xT },
(8)

where [MASK] indicates the masked word at po-
sition mi. For [MASK] position mi, beam search
progressively expands the candidates to generate
the complete sentence.

We set the model prediction probability distri-
bution to be P (c | XM) , ∀c ∈ C, which is the
conditional probability of the model for each word

4

C in the vocabulary c, given the input sentence. In
this step, BERT is employed to predict the word for
the [MASK] position, producing the logits output
as follows:

logits(c) = BERT (XM , xmi) (9)

logits(c) is the raw score of the word c ∈ C, we
apply softmax to logits to generate a probability
distribution normalized over the entire candidate
set C,

P (c | XM) =
exp(logits(c))∑
c∈C exp(logits(c))

(10)

We sort the probability distribution P (c | XM)
to select the Top-K candidates with the highest
probability P (c | XM) = {c1, c2, . . . , ck}. Here
we pick cp as the best candidate, which x̂mi = cp.
At the i-th generation step, the model generates x̂ti
to replace the masked word, updating the sentence:

XM = {x1, . . . , xmi−1, x̂ti , xmi+1, . . . , xT }.
(11)

Finally, the updated context for the next step is:

X̂F = X̂1:tn = {x̂1, x̂2, . . . , x̂tn} . (12)

where X̂1:ti+1 represents the part of the sentence
that has been generated so far, including all results
up to the current step.

During each step of the generation process, we
continuously update the partially generated sen-
tence based on similarity calculations and dynamic
candidate word adjustment strategies until the en-
tire sentence is completed. This process continues
to perform similarity calculations and candidate
adjustments until the last segment of the sentence
is generated.

Let the final generated sentence be X̂F, and its
generation process can be described by the follow-
ing formula:

X̂F =

n∏
i=1

P (X̂ti | XM, X̂1:ti−1 , Sim(X1:ti , X̂1:ti)), (13)

Here, X̂ti denotes the word generated at step
i,XM represents the original masked sentence,
X̂1:ti−1 corresponds to the portion of the sentence
generated up to step ti, and Sim

(
X1:ti , X̂1:ti

)
evaluates the semantic similarity between the origi-
nal and generated sentences at position ti.

4 Experiments

4.1 Experimental Details
Datasets: We selected the following datasets,
including the QA scenario numerical response
datasets GSM8K (Cobbe et al., 2021), Math QA
(Amini et al., 2019), Strategy QA (Geva et al.,
2021), and SVAMP (Patel et al., 2021) with nu-
meric responses, and SQuAD (Rajpurkar et al.,
2016), SQuAD 2.0 (Rajpurkar et al., 2018), Movie
QA (Tapaswi et al., 2016) and Complex Web Ques-
tions (Talmor and Berant, 2018) with textual re-
sponses in QA scenario. Datasets details will be
listed in the Appendix A.
Parameter Settings: We set the semantic similar-
ity threshold to σ= 0.80. The strength of candidate
words is 13000, the number of randomly selected
questions is 300, and the BERT used is the pre-
trained BERT (bert-large-uncased) model. This
model has 24 transformer encoding layers, and the
dimension of the hidden layer is 1024. There are 16
attention heads in this version of the BERT model.
The detailed Appendix C.2 is for the setting of
beam width. The response criteria in numbers and
text are described in Appendix B.
Victim Models: In the evaluation for AGBS
method, we selected ChatGPT-4/4o (Radford et al.,
2020), Llama 3.1/3.2 (Dubey et al., 2024), Qwen
2.5 (Yang et al., 2024), Gemma 2 (Team et al.,
2024), and Phi-3.5 (Abdin et al., 2024) series of
LLMs, where each LLM selected a variety of
weight parameter sizes. Appendix A.2 provides
a detailed description of the victim models.
Evaluation Metrics: Assume that the test set is
D, the set of all question-answer pairs predicted
correctly by the LLM model f is T , and a(x) repre-
sents the attack sample generated by the clean input.
Then we can define the following three evaluation
indicators,

• Clean Accuracy The Clean Accuracy mea-
sures the accuracy of the model when dealing
with clean inputs Aclean = |T |

|D| .

• Attack Accuracy The Attack Accuracy met-
ric measures the accuracy of adversarial attack

inputs Aattack =
|
∑

(x,y)∈T f(a(x))=y|
|D| .

• Attack Success Rate (ASR) The attack
success rate indicates the rate at which a
sample is successfully attacked. Now we
formally describe it as follows ASR =
|
∑

(x,y)∈T f(a(x)) ̸=y|
|T | It is worth noting that for

the above three measurements, we have the

5

Algorithm 1 Adaptive Greedy Binary Search (AGBS)
Input: Original sentence X = {x1, x2, . . . , xT }, similarity threshold σth, Top-k candidate set C =
{c1, c2, . . . , ck}, search range k, masked sentence XM , similarity function Sim(·), mask position mi,
checking points ti.
Output: adversarial sentence XF

1: Split X into n sub-clauses based on POS tags (VB, VBZ, VBD, VBN, NNS), obtaining X1:ti

2: Initialize XF ← X ▷ Adversarial sentence initialization
3: Initialize candidate position cp ← c⌊k/2⌋ ▷ Start with middle-ranked word
4: for Each checking point ti do
5: Initialize candidate set C(ti)← {c1, c2, . . . , ck}
6: Update X̂1:ti ← {x̂1, x̂2, . . . , x̂ti−1, cp} ▷ Integrate current candidate word
7: Update XM ← {x1, . . . , xmi−1, cp, xmi+1, . . . , xT } ▷ Update masked sentence
8: Compute similarity σsim ← Sim(X1:ti , X̂1:ti) ▷ Evaluate semantic similarity
9: if σsim < σth then

10: Adjust cp ← cp+s ▷ Move to higher-ranked s steps if σsim < σth
11: else if σsim > σth then
12: Adjust cp ← cp−s ▷ Move to lower-ranked s steps if σsim > σth
13: end if
14: end for
15: Set XF ← X̂1:tn ▷ Concatenate all generated sub-clauses into final output
16: return XF

following relationship ASR = 1− Aattack
Aclean

.

• Average inference time (AVG) We assume
that the time cost to infer sample is T, then
our average inference time is Tavg, then Tavg

is: Tavg = 1
n

∑n
i=1 Ti

4.2 Implementation Details

Our parameters are set as follows: In our greedy
binary search procedure, we set the upper search
range to 13,000 and the semantic threshold to σ=
0.8. This threshold is represented by σ as the thresh-
old to adjust the Top-k candidate position at each
step, while we set the clause position and the greedy
binary search mechanism at the beginning of the
second sentence. The length norm α = 0.7 is the
initial value; Step X is set to 50. The embedding
shapes of the predicted clause and the main clause
are both [1,768].

For our experiments, we established two distinct
categories of question-answering (QA) scenarios.
The first category, numerical response QA, primar-
ily encompasses datasets such as GSM8K, SVAMP,
and Math QA. The second category, text response
QA, is represented by datasets including SQuAD,
Strategy QA, and Movie QA. To create our exper-
imental environment, we randomly selected 300
question-answer pairs from these datasets to serve
as the evaluation range.

4.3 Main Attack Results

We first evaluate the common open-source and
closed-source LLMs, mainly to test the attack suc-
cess rate on various LLMs under the adaptive
greedy search method. The main datasets included
are the QA datasets of text-type and numerical re-
sponses scenarios. The detailed experimental re-
sults are as follows in Table 1 and Table 2.

According to the main attack evaluation results
in Table 1. We can see that the AGBS method
achieves good attack results in numerical responses,
QA, and text reply scenarios. From the model’s per-
spective, the overall experiment shows that LLM
with a larger parameter number in the same model
is relatively more resistant. The AGBS method on
the Numerical Response Test shows a high ASR for
the GSM8K dataset and all tested LLMS. On the
SVAMP dataset, the AGBS method only has a high
ASR on the llama 3.1/3.2 and Qwen2.5 LLMs and
has a good attack effect. However, it does not have
a high ASR on the Gemma2 model. Part of the
reason may be that Gemma2 itself does not have a
high Clean Accuracy, thus limiting the exploration
of the attack success rate. Except for llama3.1-70B
in Math QA, which has many parameters, all other
models show high ASR. In summary, it can be said
that our AGBS method has achieved a good attack
effect on the numerical response test.

6

Models GSM8K SVAMP Math QA

Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG

gpt-4o-latest 47.50 15.00 68.42 2.21s 88.00 33.33 62.13 0.55s 32.40 22.33 31.08 0.82s
gpt-4-turbo 27.50 2.50 90.91 2.31s 84.67 38.00 55.12 0.55s 48.50 34.50 28.87 1.12s
llama3.1-8B 17.50 7.50 57.14 1.49s 17.33 8.00 53.84 0.81s 8.67 4.67 46.12 0.23s
llama3.1-13B 47.50 5.00 89.47 1.72s 47.83 27.33 42.86 1.15s 13.67 11.67 17.12 1.27s
llama3.2-1B 17.50 0.00 100.00 1.78s 31.76 3.33 89.49 0.97s 7.00 3.00 57.14 0.25s
llama3.2-3B 47.50 5.00 89.47 1.38s 39.33 5.33 86.45 0.83s 3.00 1.00 66.67 0.15s
qwen2.5-1.5B 47.50 5.00 89.47 1.97s 14.38 9.70 32.55 1.21s 5.67 2.67 52.91 0.75s
qwen2.5-7B 15.00 7.50 50.00 1.91s 53.00 22.00 58.49 1.05s 10.33 2.00 80.64 0.69s
qwen2.5-14B 22.50 5.00 77.78 2.49s 76.67 27.67 63.91 1.31s 64.86 39.18 39.59 1.16s
gemma2-9B 12.50 7.50 40.00 1.24s 60.27 19.67 67.58 0.75s 7.67 3.67 52.15 0.44s
gemma2-27B 70.00 10.00 85.71 0.85s 31.44 29.77 5.31 0.21s 10.33 2.00 80.64 1.28s
phi3.5-3.8B 22.50 0.00 100.00 3.35s 14.33 6.00 58.13 2.91s 1.00 0.00 100.00 1.73s

Table 1: Comparison of attack effects of AGBS on different LLMs and datasets (Numerical response test)

Models SQUAD Strategy QA Movie QA

Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG

gpt-4o-latest 54.52 43.49 20.23 0.63s 55.33 43.45 21.47 0.70s 76.06 56.31 25.97 0.81s
gpt-4-turbo 51.84 32.43 37.44 0.78s 57.33 43.70 23.77 0.56s 77.99 58.91 24.46 0.96s
llama3.1-8B 33.78 30.43 9.92 0.56s 43.33 42.33 2.31 1.07s 66.41 60.62 8.72 0.36s
llama3.1-13B 47.83 27.33 42.86 1.13s 47.33 35.68 24.61 1.42s 79.54 75.29 5.34 0.92s
llama3.2-1B 16.39 9.03 44.91 1.82s 54.00 46.33 14.20 0.26s 42.08 37.84 10.08 0.34s
llama3.2-3B 28.09 22.41 20.22 0.36s 34.33 29.33 14.56 0.23s 64.48 59.07 8.39 0.38s
qwen2.5-1.5B 14.38 9.70 32.55 0.38s 43.00 41.00 4.65 0.42s 33.20 30.45 8.28 0.38s
qwen2.5-7B 20.74 19.40 6.46 0.72s 55.00 36.57 33.51 0.46s 36.68 34.75 5.26 0.69s
qwen2.5-14B 30.77 30.43 1.10 1.12s 55.67 44.43 20.19 0.68s 66.02 62.93 4.68 1.16s
gemma2-9B 34.11 27.42 19.61 0.45s 54.00 48.36 10.44 0.17s 62.16 59.85 3.72 0.44s
gemma2-27B 44.15 37.79 14.41 0.85s 64.00 59.67 6.77 0.21s 69.11 67.57 2.23 0.94s
phi3.5-3.8B 14.33 6.00 58.13 3.36s 20.67 19.67 4.84 2.30s 33.59 31.66 5.75 0.36s

Table 2: Comparison of attack effects of AGBS on different LLMs and datasets (Text response test)

In other datasets are text response scenarios,
which contain SQAUD, Strategy QA, and Movie
QA datasets, and the results can be seen in Table 2.
This data set shows that the higher ASR occurs
in the LLMs with smaller weights under the same
model. For example, Qwen 2.5-0.5B and 1.5B
achieve high ASR on our adversarial attack test.
However, by increasing the weight of the Llama
and Qwen models, for example, to a scale greater
than 20B (20 billion parameters), the models show
obvious resistance to our AGBS method, and our
ASR drops sharply on the above scale models. This
phenomenon can be said to be the point at which
our future work can improve.

Overall, comparing results in the Table 1 and Ta-
ble 2 tables, we can observe that AGBS performs
better in the numerical response QA scenario than
in the text response QA scenario. We believe that
direct perturbation adversarial attacks against se-
mantic boundaries may be difficult to perform ad-
versarial attacks against reasoning about semantic
perturbations, and we will further explore the se-

mantic change angle decomposition of the AGBS
method in Table 3.

4.4 Comparison to other mainstream methods

We compare the mainstream adversarial attack
methods and find the intersection of these methods
that can be tested to conduct comparative experi-
ments. It contains the adversarial attack generation
methods TextFooler (Li et al., 2018), TextBugger
(Jin et al., 2020), and DeepWordBug (Gao et al.,
2018). There are also methods for assessing model
robustness, such as BertAttack (Li et al., 2020),
StressTest (Ribeiro et al., 2020), and CheckList
(Ribeiro et al., 2020). The above Attack Suc-
cess Rate experimental data are from PromptBench
(Zhu et al., 2024). The main results of this experi-
ment can be seen in Table 3. The Query situation
of various methods is also shown in the Table 3. In
addition, we set the statistics of the average con-
sumption time of adversarial sample generation
and the average successful total semantic similarity
for the AGBS method, which can better show the

7

Models SQuAD2.0 Math SVAMP

Aclean Aattack ASR Aclean Aattack ASR Aclean Aattack ASR

BertAttack (Li et al., 2020) 71.16 24.67 65.33 72.30 44.82 38.01 88.00 77.41 12.03
DeepWordBug (Gao et al., 2018) 70.41 65.68 6.72 72.30 48.36 33.11 88.00 64.83 26.33
TextFooler (Jin et al., 2020) 72.87 15.60 78.59 72.30 46.80 35.27 88.00 43.62 50.43
TextBugger (Li et al., 2018) 71.66 60.14 16.08 72.30 47.75 33.96 88.00 60.72 20.77
Stress Test (Ribeiro et al., 2020) 71.94 70.66 1.78 72.30 39.59 45.24 - - -
CheckList (Ribeiro et al., 2020) 71.41 68.81 3.64 72.30 36.90 48.96 - - -
G2PIA (Zhang et al., 2024b) 68.30 14.00 79.50 72.30 52.37 27.57 88.00 69.42 21.11
Target-Driven (Zhang et al., 2024a) 71.16 14.91 83.02 72.30 33.39 53.82 88.00 64.87 20.28

Our Method 71.16 12.48 83.09 72.33 28.50 60.61 88.00 33.33 62.13

Table 3: Comparison of the effectiveness of the AGBS method with other SOTA adversarial attack methods

characteristics of our AGBS method. The specific
experimental results are shown in Table 2.

The results of our longitudinal comparison ex-
periments on GPT-3.5-turbo are shown in Table 3.
Here, we count the query mode of the above at-
tack methods as a supplement so our efficiency
comparison range can be determined well in the
subsequent experiments. In many similar studies,
SQUAD 2.0 and Math QA datasets are selected as
our experimental control Baseline. The relevant
experimental results show that our AGBS method
far exceeds similar classical methods and currently
reaches SOTA.

4.5 Ablation Study

4.5.1 Parameter Sensitive Study
This section will mainly conduct parameter sen-
sitivity tests on σ and our X . We will conduct
specific experiments on multiple sets of parameters
under the same dataset and LLM to determine the
best set of parameters. Where σ makes us judge
the parameter of the critical semantic similarity
value, and X is the specific step size that we adjust
when adjusting beam search dynamically. While
ω is the beam width at each step of our specific
beam search, we will explore the three parameters
to determine the best combination. We select two
open sources and one closed-source common large
model to conduct parameter sensitivity tests on the
GSM8K dataset. The results are shown in Table 4.

The results of the sensitivity experiments for
hyperparameters are shown in the Table 4. We
selected the open-source models llama3.1-8B,
Qwen2.5-7B, Gemma2-9B, and OpenAI’s closed-
source model gpt-4-0125-preview as the target
models for our parameter sensitivity experiments.
It can be seen from the experimental results that
when we take the best ASR as the hyperparameter
index when σ and ω are set to 0.8 and 0.7, respec-

Target Models σ ω Aclean Aattack ASR

0.3 0.7 17.50 8.50 51.43
llama3.1-8B 0.8 0.7 17.50 7.50 57.14

0.8 0.3 17.50 15.00 14.29

0.3 0.7 15.00 9.50 36.67
qwen2.5-7B 0.8 0.7 15.00 7.50 50.00

0.8 0.3 15.00 15.00 0.00

0.3 0.7 50.00 15.00 70.00
gemma2-9B 0.8 0.7 50.00 5.00 90.00

0.8 0.3 50.00 17.50 65.00

0.3 0.7 27.50 12.50 54.55
gpt-4 0.8 0.7 27.50 2.50 90.91

0.8 0.3 27.50 9.75 64.55

Table 4: Hyperparameter sensitivity analysis for σ and
ω of AGBS attack.

tively, our AGBS strategy can play the greatest at-
tack effect, and we choose this group of parameters
as our best AGBS strategy parameters.

4.6 Dynamic Optimization Study

In this part of the ablation study, we will explore
whether our dynamic optimization strategy truly
works with beam search. We will compare the Dy-
namic and Static strategies. The static strategy is
to omit the selection position adjustment of Top-K,
fixed middle-ranked position as C⌊k/2⌋ as a candi-
date. The results are shown in Table 5.

Type Target Models Aclean Aattack ASR

Dynamic llama3.1-8B 17.50 7.50 57.14
Static llama3.1-8B 17.50 15.00 14.23

Dynamic llama3.2-3B 47.50 5.00 89.47
Static llama3.2-3B 47.50 27.75 41.58

Dynamic qwen2.5-7B 15.00 7.50 50.00
Static qwen2.5-7B 15.00 12.50 16.67

Dynamic gpt-4-turbo 27.50 2.50 90.91
Static gpt-4-turbo 27.50 17.50 36.36

Table 5: Experimental comparison of dynamic and static
strategies on AGBS attack

8

The experimental results show that the ASR of
the dynamic Beam Search strategy is significantly
higher than that of the static strategy, especially on
GPT-4-turbo and llama3.2-3B.

5 Conclusion
The AGBS method offers an effective approach
for adversarial attacks on LLMs by combining au-
tomatic prompt engineering with dynamic greedy
search, ensuring semantic stability and high attack
success rates. It reduces semantic biases from di-
verse inputs, enhancing attack concealment and
effectiveness in QA tasks. Experiments demon-
strate AGBS’s robustness across various LLMs, in-
cluding ChatGPT, Llama, Qwen, and Gemma, em-
phasizing its value in testing and improving LLM
security. Future work will extend AGBS to multi-
modal tasks and multi-turn conversations, address-
ing vulnerabilities in complex LLM applications
and enhancing their resilience.

9

Limitation

This study is limited to automatic prompt engineer-
ing based on beam search and does not involve
prompt engineering of other methods. In addition,
only the most common number and text response
QA scenarios of LLMs are introduced in the appli-
cation environment, and VQA (Visual Question An-
swering) and multi-round QA scenarios of LLMs
are not practiced.

Ethics Statement

Adversarial attacks against large language models
are crucial to enhance their robustness. However,
the techniques developed to exploit vulnerabilities
in LLMs found in this paper could be used for ma-
licious purposes against LLMs, such as making
LLMs produce misinformation or even hallucina-
tions. In short, we aim to find effective ways to at-
tack large language models to encourage the model
creator or manager to fix and improve the LLM vul-
nerabilities to improve the robustness of the LLMs
under test.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. arXiv preprint arXiv:1905.13319.

Nicholas Carlini and David Wagner. 2017. Towards
evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pages
39–57. Ieee.

YunSeok Choi, Hyojun Kim, and Jee-Hyong Lee. 2022.
Tabs: Efficient textual adversarial attack for pre-
trained nl code model using semantic beam search.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5490–5498.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,

Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. Hotflip: White-box adversarial examples
for text classification. Preprint, arXiv:1712.06751.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In SPW,
pages 50–56. IEEE.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristo-
tle use a laptop? a question answering benchmark
with implicit reasoning strategies. arXiv preprint
arXiv:2101.02235.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
2017. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint
arXiv:1708.06733.

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou,
and Douwe Kiela. 2021. Gradient-based adver-
sarial attacks against text transformers. Preprint,
arXiv:2104.13733.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In AAAI, volume 34, pages 8018–
8025.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao,
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. 2024. The impact of reasoning step
length on large language models. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 1830–1842.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2018. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint
arXiv:1812.05271.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: adversarial
attack against BERT using BERT. In EMNLP, pages
6193–6202. Association for Computational Linguis-
tics.

Aleksander Mądry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.
Towards deep learning models resistant to adversarial
attacks. stat, 1050(9).

Narek Maloyan and Dmitry Namiot. 2025. Adversar-
ial attacks on llm-as-a-judge systems: Insights from
prompt injections. arXiv preprint arXiv:2504.18333.

10

https://arxiv.org/abs/1712.06751
https://arxiv.org/abs/1712.06751
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2104.13733
https://arxiv.org/abs/2104.13733
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.500
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.500

Ian R McKenzie, Alexander Lyzhov, Michael Pieler,
Alicia Parrish, Aaron Mueller, Ameya Prabhu, Euan
McLean, Aaron Kirtland, Alexis Ross, Alisa Liu,
et al. 2023. Inverse scaling: When bigger isn’t better.
arXiv preprint arXiv:2306.09479.

Microsoft. 2023. Bing copilot: Your ai companion for
search. Accessed on 2024-10-10.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
2017. Practical black-box attacks against machine
learning. In ACCC, pages 506–519.

Arkil Patel, Satwik Bhattamishra, Navin Goyal, et al.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Fábio Perez and Ian Ribeiro. 2022. Ignore previous
prompt: Attack techniques for language models.
Preprint, arXiv:2211.09527.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Adam B. Santoro, Samuel Chaplot, Aditya Patra, and
Ilya Sutskever. 2020. Chatgpt: A language model for
conversational agents. OpenAI.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 65–70.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392. Associ-
ation for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In ACL, pages
856–865.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Behav-
ioral testing of nlp models with checklist. arXiv
preprint arXiv:2005.04118.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV
au2, Eric Wallace, and Sameer Singh. 2020. Auto-
prompt: Eliciting knowledge from language mod-
els with automatically generated prompts. Preprint,
arXiv:2010.15980.

C Szegedy. 2013. Intriguing properties of neural net-
works. arXiv preprint arXiv:1312.6199.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 574–584. Association for Computational Lin-
guistics.

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,
Antonio Torralba, Raquel Urtasun, and Sanja Fidler.
2016. Movieqa: Understanding stories in movies
through question-answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2021. Universal adversarial
triggers for attacking and analyzing nlp. Preprint,
arXiv:1908.07125.

Taowen Wang, Zheng Fang, Haochen Xue, Chong
Zhang, Mingyu Jin, Wujiang Xu, Dong Shu,
Shanchieh Yang, Zhenting Wang, and Dongfang Liu.
2024. Large vision-language model security: A sur-
vey. In International Conference on Frontiers in
Cyber Security, pages 3–22. Springer.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Chong Zhang, Mingyu Jin, Dong Shu, Taowen Wang,
Dongfang Liu, and Xiaobo Jin. 2024a. Target-driven
attack for large language models, ccf b. In European
Conference on Artificial Intelligence (ECAI), 2024.

Chong Zhang, Mingyu Jin, Qinkai Yu, Chengzhi Liu,
Haochen Xue, and Xiaobo Jin. 2024b. Goal-guided
generative prompt injection attack on large language
models. arXiv preprint arXiv:2404.07234.

Tengfei Zhao, Zhaocheng Ge, Hanping Hu, and Ding-
meng Shi. 2021. Generating natural language adver-
sarial examples through an improved beam search
algorithm. arXiv preprint arXiv:2110.08036.

Miao Zheng, Hao Liang, Fan Yang, Haoze Sun, Tian-
peng Li, Lingchu Xiong, Yan Zhang, Youzhen Wu,
Kun Li, Yanjun Shen, Mingan Lin, Tao Zhang, Gu-
osheng Dong, Yujing Qiao, Kun Fang, Weipeng
Chen, Bin Cui, Wentao Zhang, and Zenan Zhou.
2024. Pas: Data-efficient plug-and-play prompt aug-
mentation system. arXiv preprint arXiv:2407.06027.

Bin Zhu, Zhaoquan Gu, Yaguan Qian, Francis Lau, and
Zhihong Tian. 2022. Leveraging transferability and
improved beam search in textual adversarial attacks.
Neurocomputing, 500:135–142.

Hai Zhu, Qinyang Zhao, and Yuren Wu. 2023. Bea-
mattack: Generating high-quality textual adversarial
examples through beam search and mixed seman-
tic spaces. In Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pages 454–465.
Springer.

11

https://www.bing.com/
https://www.bing.com/
https://arxiv.org/pdf/2103.07191.pdf
https://arxiv.org/pdf/2103.07191.pdf
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2211.09527
https://openai.com/research/chatgpt
https://openai.com/research/chatgpt
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/1512.02902
https://arxiv.org/abs/1512.02902
https://arxiv.org/abs/1908.07125
https://arxiv.org/abs/1908.07125
https://arxiv.org/abs/2407.06027
https://arxiv.org/abs/2407.06027

Kaijie Zhu, Qinlin Zhao, Hao Chen, Jindong Wang, and
Xing Xie. 2024. Promptbench: A unified library
for evaluation of large language models. Journal of
Machine Learning Research, 25(254):1–22.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,
J Zico Kolter, and Matt Fredrikson. 2023. Univer-
sal and transferable adversarial attacks on aligned
language models. arXiv preprint arXiv:2307.15043.

12

Appendix

Contents

1 Introduction 1

2 Related Work 2
2.1 Adversarial Attacks on Deep Neu-

ral Networks 2
2.2 Adversarial Attacks for Large Lan-

guage Models 2
2.3 Adversarial Attacks with Beam

Search 3

3 Methodology 3
3.1 Adversarial Attacks with Adaptive

Local Search 3
3.2 Dynamic generation of sub-clauses 4

4 Experiments 5
4.1 Experimental Details 5
4.2 Implementation Details 6
4.3 Main Attack Results 6
4.4 Comparison to other mainstream

methods 7
4.5 Ablation Study 8

4.5.1 Parameter Sensitive Study 8
4.6 Dynamic Optimization Study . . . 8

5 Conclusion 9

Appendix 13

A Experiment details 13
A.1 Dataset details 13
A.2 Victim Models Details 14

B Criteria description on QA scenarios 14
B.1 Text Response Criteria: 14
B.2 Numerical Response Criteria: . . . 14
B.3 Detailed Prompts 14

B.3.1 Ollama text responses
prompts 14

B.3.2 Ollama numerical re-
sponses prompts 14

B.3.3 OpenAI text responses
prompts 14

B.3.4 OpenAI numerical
responses prompts 15

C Research on changes of AGBS Semantic
Similarity 15
C.1 Semantic Similarity of Single-

Dataset Attack Samples 15

C.2 Attack success rate variation under
AGBS search scope variation . . . 15

D Additional experiments results 16
D.1 The Additional experiments of the

main experiment 16

A Experiment details

A.1 Dataset details

GSM8K: The GSM8K dataset (Cobbe et al., 2021)
is a high-quality and linguistically diverse dataset
of mathematical word problems introduced by
OpenAI. It contains 8000 questions extracted from
Google searches, each with 8 similar questions.
The GSM8K dataset aims to train the model on
these problems to improve its performance when
dealing with imperfect matching problems.

Math QA: The Math QA dataset (Amini et al.,
2019) by Aliyun comprises curated math word
problems with detailed explanations, principles,
choices, and solution annotations.

Strategy QA: The Strategy QA (Geva et al.,
2021) dataset is specifically designed for
question-answering tasks and contains many
question-and-answer pairs for training and evaluat-
ing question-answering systems.

SVAMP: The SVAMP dataset (Patel et al., 2021)
is a dataset for question-answering tasks, which
contains many question-and-answer pairs designed
to help train and evaluate question-answering
systems.

SQUAD: SQuAD (Stanford Question Answering
Dataset) (Rajpurkar et al., 2016) is a widely used
question-answering dataset. It contains more than
100,000 question-answering pairs derived from
Wikipedia articles. The strength of the SQuAD
dataset lies in its large scale, high quality, and the
diversity of contexts and questions it contains.

SQUAD 2: SQuAD 2.0 (Rajpurkar et al., 2018)is
an upgraded version of the SQuAD dataset,
which introduces unanswerable questions based
on the original answerable questions. These
unanswerable questions are similar in form to the

13

answerable questions, but the paragraphs do not
contain answers.

Complex Web Questions: The ComplexWe-
bQuestions (CWQ) (Talmor and Berant, 2018)
dataset is based on Freebase, which contains
questions and Web Snippet files.

Movie QA: The Movie QA (Tapaswi et al., 2016)
dataset contains 14,944 questions about 408
movies, covering multiple question types ranging
from simple to complex. The dataset is unique in
that it contains a variety of information sources,
such as Video clips, subtitles, scripts, and DVS
(Described Video Service).

A.2 Victim Models Details
ChatGPT: This dialogue generation model
developed by OpenAI can produce conversations
that closely mimic human interactions (Radford
et al., 2020). By training on a large number of
datasets, it gains a lot of knowledge and insights.
In the experiments, GPT-4-Turbo and GPT-4-o are
selected as the victim models in the OpenAI family.

Llama 3.1/3.2: Llama 3.1 and 3.2 are advanced
language models developed by Meta AI (Dubey
et al., 2024). Trained on various datasets, Llama
improves language understanding and generation
capabilities and is suitable for various application
scenarios such as chatbots and content authoring.
In the experiments, our attack methods will test the
7B, 13B, and 70b versions of llama 3.1 and 1B and
3B versions of llama 3.2.

Qwen2.5: The Qwen 2.5 is a new series of large
language models from the Alibaba Group (Yang
et al., 2024). It contains the 0.5b, 1.5b, 7b, 72b. In
this experiment, we will select Qwen2.5 with the
main parameter size for experiments.

Gemma2: Google’s Gemma 2 model (Team et al.,
2024) is available in three sizes, 2B, 9B, and 27B,
featuring a brand-new architecture designed for
class-leading performance and efficiency.

Phi3.5: Proposed by Microsoft, Phi-3.5 is a
lightweight LLM designed for data analysis and
medical diagnosis, featuring high accuracy and
scalability (Abdin et al., 2024). This experiment
focuses on the Phi-3.5-3.8b model.

B Criteria description on QA scenarios

B.1 Text Response Criteria:
When the length of the answer in the QA data pair
is greater than or equal to three words, the LLMs
reply and the standard answer in the QA data pair
are crossed, and the same word is more than two
words, which is correct, and less than or equal
to two words, which is wrong. When the answer
length in the QA data pair is less than three words,
the intersection of the two must contain the answer
in the QA data pair. Otherwise, the situation is
judged as an error.

Let A and B be the sets of words in the LLM’s
response and the QA pair’s standard answer, respec-
tively. Let |A ∩B| denote the number of common
words between A and B.
For answers with three or more words:

Correctness =

{
Correct if |A ∩B| > 2

Incorrect if |A ∩B| ≤ 2
(14)

For answers with less than three words:

Correctness =

{
Correct if B ⊆ A ∩B

Incorrect if B ⊈ A ∩B
(15)

B.2 Numerical Response Criteria:
The final numerical result in the LLM’s response
should be exactly the same as the answer in each
QA data pair. Let Nr and Na be the numerical
responses of the dataset’s QA pair and standard
answers, respectively. So if Nr = Na, this case
is judged to be the correct answer. If the Nr is
not equal to Na, the case is judged to be a wrong
answer. The case where the decision is correct is
strictly enforced, equal to the decision.

B.3 Detailed Prompts
B.3.1 Ollama text responses prompts
Please give me a brief answer directly
and promise to answer in English:

B.3.2 Ollama numerical responses prompts
Give me the numerical answers directly,
without giving the intermediate steps:

B.3.3 OpenAI text responses prompts
Please give me a brief answer directly
to the following questions and promise
to answer in English:

14

B.3.4 OpenAI numerical responses prompts

Give me the numerical answers directly
in the following questions, without
giving the intermediate steps:

C Research on changes of AGBS
Semantic Similarity

In the results of changes in AGBS semantic simi-
larity, we will focus on exploring the detailed prop-
erties of the AGBS method under these changes.
These include the change in semantic similarity
when generating attack samples for a single dataset,
the correlation between semantic change and attack
accuracy under the AGBS strategy, and the change
in total ASR by adjusting the limited search scope.
This section will set up three kinds of experiments
to achieve these three aspects of interpretability ex-
ploration. In this part of the research, we refer to
related work on explainability (Jin et al., 2024).

C.1 Semantic Similarity of Single-Dataset
Attack Samples

In this part, we will evaluate the semantic changes
of the same dataset under the AGBS method on
different LLMs, where we select the GSM8K
and SVAMP datasets in llama3.1-8B, qwen2.5:7B,
qwen2.5:14B, gemma2:9B, and llama3.2:3B, re-
spectively. Samples of successful attacks on these
chosen LLMs generate a change in semantic simi-
larity. The results of the average variation trend of
position and semantic similarity for word selection
are shown in Figure 3, Figure 4.

0 5 10 15 20 25 30
Steps

14000

14200

14400

14600

14800

15000

15200

15400

Po
sit

io
n

Dynamic Optimization Beam Search Position Change Trend

llama3.1:8b
qwen2.5:7b
qwen2.5:14b
gemma2:9b
llama3.2:3b

Figure 3: Dynamic optimization beam search position
change trend

According to the results shown in the Figure 3,
the similarity and selection of position-changing

0 5 10 15 20 25 30
Steps

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Si
m

ila
rit

y

llama3.1:8b
qwen2.5:7b
qwen2.5:14b
gemma2:9b
llama3.2:3b

Figure 4: Dynamic optimization beam search semantic
similarity change trend

trends could be analyzed by visualizations. Al-
though the semantic changes of the AGBS strategy
on the same dataset in different LLMs are slightly
different, the overall position trend is still the same.
For example, in Figure 3, we can see roughly the
same inflectional point when selecting the position
of words on AGBS. This approximate inflection
point can prove that our dynamic strategy works
and that adaptive greedy binary search on different
LLMs is effective.

At the same time, from Figure 4 on our seman-
tic similarity change trend graph, we can see that
the semantic similarity change of our AGBS strat-
egy on different LLMs has the same trend. For
example, a similarity inflection point is generated
at about 18 and 19 steps. However, the magnitude
of similarity variation is different for each LLM.
In our experimental results, the semantic similarity
changes on llama3.2:3b and gemma2:9b are the
largest, and the changes on qwen2.5:7b, 14b, and
llama3.1:8b are more similar, which can be under-
stood as our AGBS strategy is more suitable for the
type of LLMs.

C.2 Attack success rate variation under
AGBS search scope variation

In this experiment, we explore the correlation be-
tween the search scope setting and the attack suc-
cess rate. The search scope directly affects the
efficiency of our algorithm, so exploring the rela-
tionship between the search scope and our attack
rate is the key to balancing attack effectiveness and
algorithm complexity.

We will select the search scope range in order of
magnitude to verify the attack on the QA pairs we
extracted from the validation set. We must know

15

the relationship between semantic similarity and
attack success rate to determine our search scope.
Our results are shown in the Table 6.

According to our experimental results in Table 6,
we can observe that under our AGBS strategy, our
attack effect reaches the best state when the search
scope is 13,000, and the ASRs are almost the high-
est. However, there are some special cases, such
as the performance of GSM8K and SVAMP on
Qwen2.5-14B in the QA scenario, both of which
have the best performance at a beam width of
10000. The 10000 beam width on Qwen2.5-14B
also outperforms the other cases on the GSM8K
dataset. The 10000 beam width on Qwen2.5-14B
also outperforms the other cases on GSM8K. So,
we set the beam width of the AGBS strategy to
13,000 as our optimal hyperparameter value.

Furthermore, we draw the line chart of the at-
tack success rate of the same model under different
search scopes. The below Figure 5 and Figure 6
are the ASR variation curves under different search
scopes on llama3.2-3B, llama3.1-8B, qwen2.5-7B,
and qwen2.5-14B, respectively. It is evident that
the attack accuracy is affected by the search scope
variation and thus affects the final ASR variation.
At a lower search scope, the performance is lim-
ited for each dataset under various LLMs, and a
reasonable commonality range is between 10,000
and 13,000.

In conclusion, we believe that the search scope of
AGBS plays a relatively critical role in determining
the performance of our AGBS strategy. This part
of our research identifies the best hyperparameters
for the AGBS policy.

D Additional experiments results

Below are the results of additional adversarial at-
tack experiments on the AGBS method.

D.1 The Additional experiments of the main
experiment

The following results in Table 7 and Table 8 show
the additional results of the comparison of attack ef-
fects of AGBS on different LLMs of the all dataset.
The target model includes llama-3.1-70B, llama-
3.3-70B, Qwen2.5-0.5B, and Gemma2-2 B.

16

Models Search scope GSM8K SQUAD SVAMP

Aclean Aattack ASR ↑ Aclean Aattack ASR ↑ Aclean Aattack ASR ↑

2000 55.00 10.00 81.82 26.76 22.07 17.53 43.00 8.67 79.84
6000 47.50 2.50 94.74 26.09 23.08 11.54 40.33 7.00 82.64

Llama3.2-3B 10000 25.00 2.50 90.00 25.08 21.74 13.32 38.00 7.33 80.71
13000 42.50 2.50 94.12 25.42 17.48 31.24 39.00 6.00 84.62
16000 40.00 2.50 93.75 25.08 21.40 14.67 36.00 7.33 79.64
2000 27.50 12.50 54.54 32.11 29.10 9.37 20.33 10.67 47.52
6000 20.00 5.00 75.00 31.10 26.76 13.95 18.33 6.33 65.47

Llama3.1-8B 10000 22.50 2.50 88.89 31.10 29.43 11.11 18.33 10.67 41.79
13000 25.00 2.50 90.00 35.45 29.77 16.02 16.33 10.00 38.76
16000 17.50 7.50 57.14 34.11 28.76 15.68 17.00 10.67 37.24
2000 15.00 10.00 33.33 20.40 17.73 13.09 53.33 20.00 62.50
6000 10.00 6.25 37.50 20.74 18.73 9.69 54.33 18.67 65.64

Qwen2.5-7B 10000 17.50 10.00 42.86 20.74 19.73 4.87 54.67 19.67 64.02
13000 15.00 7.50 50.00 20.40 14.36 29.61 54.00 16.45 69.54
16000 10.00 7.50 25.00 19.40 18.39 5.21 52.67 22.33 62.96
2000 10.00 7.50 2.50 32.78 28.43 13.27 71.67 27.00 62.33
6000 22.50 7.50 66.67 31.10 29.43 5.37 74.33 28.00 62.33

Qwen2.5-14B 10000 28.34 7.50 73.54 33.11 29.10 12.11 76.33 26.67 65.06
13000 17.50 12.50 28.57 32.44 26.67 17.79 73.33 26.00 64.54
16000 17.50 7.50 57.14 32.11 30.10 6.26 75.00 29.33 60.89

Table 6: The result of attack success rate via the AGBS search scope changes experiments (Llama3.2-3B/8B,
Qwen2.5-7B/4)

Models GSM8K SVAMP Math QA

Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG

llama3.1-70B 47.50 15.00 68.42 3.44s 74.50 32.82 55.95 3.05s 13.67 11.33 17.12 0.14s
llama3.3-70B 72.50 17.50 75.86 9.45s 77.67 40.00 48.50 4.92s 32.33 23.67 26.79 1.45s
qwen2.5-0.5B 32.50 2.50 92.31 1.84s 8.70 0.00 100.00 1.47s 6.00 2.33 61.17 1.81s
gemma2-2B 50.00 5.00 90.00 1.49s 37.67 12.33 67.27 0.74s 46.72 34.79 25.54 0.38s

Table 7: Comparison of attack effects of AGBS on different LLMs and datasets (Numerical response test)

Models SQUAD Strategy QA Movie QA

Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG Aclean Aattack ASR ↑ AVG

llama3.1-70B 49.83 44.15 11.40 2.01s 49.67 47.00 5.38 2.03s 79.54 75.29 5.34 2.23s
llama3.3-70B 52.17 49.16 5.77 2.53s 50.33 47.33 5.96 1.49s 78.76 75.29 4.41 1.90s
qwen2.5-0.5B 9.03 8.03 11.07 0.64s 26.67 25.33 5.02 1.09s 20.08 10.46 47.91 0.80s
gemma2-2B 19.40 15.97 17.68 0.38s 51.67 36.67 29.03 0.26s 62.16 48.59 21.83 0.39s

Table 8: Comparison of attack effects of AGBS on different LLMs and datasets (Text response test)

17

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

0

20

40

60

80

Va
lu

e

llama3.1-8b - GSM8K Dataset
A_clean
A_attack
ASR

(a) GSM8K on llama3.1-8B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

10

15

20

25

30

35

Va
lu

e

llama3.1-8b - SQUAD Dataset

A_clean
A_attack
ASR

(b) SQUAD on llama3.1-8B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

10

20

30

40

50

60

Va
lu

e

llama3.1-8b - SVAMP Dataset
A_clean
A_attack
ASR

(c) SVAMP on llama3.1-8B

Figure 5: The relationship between the AGBS search
scope and the attack success rate. (Part I)

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

0

20

40

60

80

Va
lu

e

llama3.2-3b - GSM8K Dataset

A_clean
A_attack
ASR

(a) GSM8K on llama3.2-3B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Va
lu

e
llama3.2-3b - SQUAD Dataset

A_clean
A_attack
ASR

(b) SQUAD on llama3.2-3B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

10

20

30

40

50

60

70

80

Va
lu

e

llama3.2-3b - SVAMP Dataset

A_clean
A_attack
ASR

(c) SVAMP on llama3.2-3B

Figure 6: The relationship between the AGBS search
scope and the attack success rate. (Part II)

18

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

10

20

30

40

50

Va
lu

e

qwen2.5-7B - GSM8K Dataset
A_clean
A_attack
ASR

(a) GSM8K on qwen2.5-7B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

5

10

15

20

25

30

Va
lu

e

qwen2.5-7B - SQUAD Dataset
A_clean
A_attack
ASR

(b) SQUAD on qwen2.5-7B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

20

30

40

50

60

70

Va
lu

e

qwen2.5-7B - SVAMP Dataset

A_clean
A_attack
ASR

(c) SVAMP on qwen2.5-7B

Figure 7: The relationship between the AGBS search
scope and the attack success rate. (Part III)

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

0

10

20

30

40

50

60

70

Va
lu

e

qwen2.5-14B - GSM8K Dataset
A_clean
A_attack
ASR

(a) GSM8K on qwen2.5-14B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

5

10

15

20

25

30

Va
lu

e
qwen2.5-14B - SQUAD Dataset

A_clean
A_attack
ASR

(b) SQUAD on qwen2.5-14B

2000 4000 6000 8000 10000 12000 14000 16000
Beam Width

30

40

50

60

70

Va
lu

e

qwen2.5-14B - SVAMP Dataset

A_clean
A_attack
ASR

(c) SVAMP on qwen2.5-14B

Figure 8: The relationship between the AGBS search
scope and the attack success rate. (Part IV)

19

	Introduction
	Related Work
	Adversarial Attacks on Deep Neural Networks
	Adversarial Attacks for Large Language Models
	Adversarial Attacks with Beam Search

	Methodology
	Adversarial Attacks with Adaptive Local Search
	Dynamic generation of sub-clauses

	Experiments
	Experimental Details
	Implementation Details
	Main Attack Results
	Comparison to other mainstream methods
	Ablation Study
	Parameter Sensitive Study

	Dynamic Optimization Study

	Conclusion
	Appendix
	Experiment details
	Dataset details
	Victim Models Details

	Criteria description on QA scenarios
	Text Response Criteria:
	Numerical Response Criteria:
	Detailed Prompts
	Ollama text responses prompts
	Ollama numerical responses prompts
	OpenAI text responses prompts
	OpenAI numerical responses prompts

	Research on changes of AGBS Semantic Similarity
	Semantic Similarity of Single-Dataset Attack Samples
	Attack success rate variation under AGBS search scope variation

	Additional experiments results
	The Additional experiments of the main experiment

