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Abstract

One common critique of biometric authentication is that
if an individual’s biometric is compromised, then the indi-
vidual has no recourse. The concept of revocable biomet-
rics was developed to address this concern. A biometric
scheme is revocable if an individual can have their current
enrollment in the scheme revoked, so that the compromised
biometric template becomes worthless, and the individual
can re-enroll with a new template that has similar recogni-
tion power. We show that modern deep CNN face matchers
inherently allow for a robust revocable biometric scheme.
For a given state-of-the-art deep CNN backbone and train-
ing set, it is possible to generate an unlimited number of
distinct face matcher models that have both (1) equivalent
recognition power, and (2) strongly incompatible biomet-
ric templates. The equivalent recognition power extends to
the point of generating impostor and genuine distributions
that have the same shape and placement on the similarity
dimension, meaning that the models can share a similarity
threshold for a 1-in-10,000 false match rate. The biometric
templates from different model instances are so strongly in-
compatible that the cross-instance similarity score for im-
ages of the same person is typically lower than the same-
instance similarity score for images of different persons.
That is, a stolen biometric template that is revoked is of less
value in attempting to match the re-enrolled identity than
the average impostor template. We also explore the feasi-
bility of using a Vision Transformer (ViT) backbone-based
face matcher in the revocable biometric system proposed in
this work and demonstrate that it is less suitable compared
to typical ResNet-based deep CNN backbones.

“Dr. Bowyer is a member of the FaceTec (facetec . com) Advisory
Board. Results in this paper do not necessarily relate to FaceTec products.
Code at: https://github.com/abhattal234/Revocable-Biometrics
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Figure 1. Cosine Similarity scores for genuine pairs using feature
vectors from Model 1 and Model 2, both identical end-to-end
models but trained separately, demonstrates impostor-like be-
havior. [Key - S.: Cosine similarity]

1. Introduction

Biometric templates are traditionally considered irre-
placeable; once stolen, they are thought to be permanently
compromised. This misunderstanding is even ingrained in
legislation. For example, the Biometric Information Privacy
Act (740 ILCS 14/5 Section 5¢) [1], enacted by the state of
Illinois in the United States, states, “Biometrics are unlike
other unique identifiers that are used to access finances or
other sensitive information. For example, social security
numbers, when compromised, can be changed. Biometrics,
however, are biologically unique to the individual; there-
fore, once compromised, the individual has no recourse, is
at heightened risk for identity theft, and is likely to with-
draw from biometric-facilitated transactions” [1]. An ar-
ticle discussing fingerprints states, “Biometric data might
provide a way to identify people with a high degree of ac-
curacy, but once it is stolen, there is nothing you can do to
make it secure again. Of course, if your fingerprint is stolen,
you could always use another finger, but you could only do
this 10 times. If enough people have their biometric
data exposed, eventually some systems could become unus-
able because so many users won’t be able to securely log in
to them ” [13]. Similar ideas are discussed in these articles
[27, 42].

The notion of “biometric identity” being stolen, as sug-
gested in various writings, is somewhat misleading. When
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a biometric sample, such as a face, fingerprint, or iris, is
used, the “identity” refers to the biometric template (also
known as the feature vector or embedding) generated by
the specific model in use. In cases where the “biometric
identity” is compromised, two potential breaches can occur:
either at the image level used for enrollment or at the fea-
ture extraction level, where the embedding vector is com-
promised. In the context of face recognition applications,
there is a general expectation that individuals’ face images
are already publicly available, making a breach at the im-
age level less pressing. As shown in Figure 1, the match
score between two genuine samples from different instances
of the same end-to-end model results in an impostor score.
Consequently, replacing the model used for a given identity
renders the previously enrolled template unusable for future
verifications, allowing breaches involving the enrolled fea-
ture template to be easily mitigated.

This work addresses verification tasks within the frame-
work of revocable biometrics, where compromised biomet-
ric templates can be revoked and replaced with new ones
to ensure security. In the proposed system, where multiple
instances of matchers are required, it is essential that each
matcher performs equivalently to ensure consistent recog-
nition accuracy after re-enrollment. We demonstrate that
N distinct matchers with similar performance can be pro-
duced by training multiple instances of the same end-to-end
model. It is also critical that a past template becomes in-
effective once revoked. We demonstrate this showing that
cross-model genuine pairs produce scores no better than a
typical impostor pair. This ensures the revoked template
cannot be used to impersonate the legitimate user after re-
enrollment.

Major contributions of our work include:

* We propose a new framework for revocable biometrics
that utilizes different instances of the same trained end-
to-end models, utilizing the inherent non-linear trans-
formations in ResNet-based deep CNNs to generate re-
vocable templates.

* We explore the feasibility of a Vision Transformer-
based backbone (ViT) within the proposed revoca-
ble biometrics framework and demonstrate that Vision
Transformer networks are less suitable for this frame-
work.

2. Literature Review

In this section, we review popular techniques for can-
cellable or revocable biometrics. For more detailed de-
scriptions, we refer readers to [24, 29]. One of the earliest
and most well-known approaches to cancellable biometrics
is the use of non-invertible transformations, a widely rec-
ognized method for generating cancellable biometric tem-
plates. The core idea is to apply linear or non-linear non-

invertible transformations, such as Cartesian, polar, or func-
tional transforms, to the biometric data during enrollment
[4, 7, 34, 35]. While these methods are simple and ef-
fective, they have several limitations. For example, they
are vulnerable to small changes in the signals and can be-
come unstable near sharp boundary points. Another com-
monly used non-invertible method is random projection
[17, 18, 19, 21, 30, 31]. In this approach, the extracted
features are projected onto a random subspace, typically
smaller than the original feature space, and matching is per-
formed in this reduced subspace [3].

Another well-known approach, largely inspired by the
success of convolutional networks, is the use of cancellable
biometric filters [40]. The core idea is to encrypt biomet-
ric templates using a user-specific random convolution ker-
nel during training. This random convolution kernel func-
tions as a personal identification number (PIN). The con-
volved training images are then used to generate a min-
imum average correlation energy (MACE) biometric fil-
ter. This encrypted filter is stored and used for authenti-
cation. An extension of the random projection approach
is BioHashing, which builds on similar principles. In Bio-
Hashing [8, 16, 20, 22, 45, 46, 44], a feature extraction
method, such as wavelet transform, is first applied to ex-
tract biometric features from the input biometric data. Us-
ing a user-specific tokenized random number (TRN), a set
of orthogonal pseudo-random vectors is generated. The dot
product between the feature vector and these random vec-
tors is then computed. Finally, binary discretization is ap-
plied to generate the BioHash template. The BioHashing
framework is designed as a one-way transform, offering a
high level of security for both the biometric data and ex-
ternal factors. Another convolution-based approach, known
as bio-convolving, is used for biometrics where templates
can be represented as a set of sequences, such as in on-
line signature verification [23]. A popular alternative is
the Bloom filter-based approach, which utilizes a space-
efficient probabilistic data structure to support membership
queries [38, 36, 37]. Other techniques, including random
perturbations [53], salting methods [53], and hybrid ap-
proaches [5, 6], are also employed to secure biometric tem-
plates. Several other cancellable biometrics schemes have
been developed in [26, 32, 33, 39]. A neural network-based
cancellable biometric scheme was first proposed in [43].
More recently, researchers have been exploring the use of
homomorphic encryption for privacy preservation in bio-
metric applications [47]. For further details, refer to the
survey in [48].

Our revocable framework is inspired by cancellable bio-
metric filters; however, instead of creating a user-specific
filter, we utilize N sets of equally capable models to re-
voke the enrollment of identity(ies) in the event of a stolen
template or if the user wishes to perform a new enroll-



ment. Our proposed framework also adheres to the ISO/IEC
International Standard 24745 [15], which provides guid-
ance on protecting individual privacy and outlines four
key properties for cancellable biometric templates: non-
invertibility/irreversibility, revocability, unlinkability/non-
linkability, and performance preservation.
(a) Irreversibility — The feature template must be computa-
tionally infeasible to reverse in order to reconstruct the orig-
inal biometric data. Recently, a research field has emerged
focused on recreating biometric identities from feature vec-
tors, but this requires precise knowledge of the model’s
training process, architecture details, and other specific in-
formation. Furthermore, deep neural network models con-
sist of stacked, irreversible non-linear transformation func-
tions, making it difficult to regenerate biometric identities
from feature templates produced by such models.
(b) Unlinkability — The protected samples should be un-
linkable, meaning it should be challenging to correlate a
person’s biometric data across different databases. Similar
to irreversibility, without detailed knowledge of the train-
ing process, linking the generated template to the original
model is highly difficult.
(c) Revocability — The template can be revoked in the event
of a breach. Given N models, it is straightforward to revoke
a previous template and generate a new one using a different
model within our framework.
(d) Performance preservation — Our use of /V different in-
stances of the same end-to-end model within our framework
requires that each instance maintains similar performance,
and we demonstrate that generating such N models is fea-
sible.

Finally, from an application standpoint, we should also
consider the following:
(e) Ease of enrollment — In the event of a template breach,
the compromised template can be revoked and replaced by
generating a new model for the specific identity without
compromising accuracy. This process does not require re-
enrollment of the entire gallery of templates.

3. N Distinct Models with Equivalent Accuracy

Consider a scenario with NV instances of equally capable
models, each obtained through identical end-to-end training
using the same backbone, loss function, dataset, and hyper-
parameter configurations. Our core hypothesis for the N-
model Revocable Biometrics framework is two-fold: a) We
can generate [V instances of the model that are equally accu-
rate, i.e., there is no significant performance variation across
the IV trained instances, and b) any cross-model genuine-
pair comparisons will result in impostor-level scores. How-
ever, for this system to function effectively, two key consid-
erations must be verified:

e Is it possible to train N distinct models that achieve

near-identical accuracy?

* Does cross-matching for genuine pairs across these N
distinct models result in very low similarity scores in
cross-model comparisons?

3.1. Models With Same Impostor and Genuine Dis-
tributions

To demonstrate that training N distinct yet capable mod-
els is a feasible task, we begin by training 10 models with
three different backbones: ResNet-18, ResNet-100, and
ViT, using ArcFace loss and identical hyperparameter con-
figurations. We present two metrics to show that these mod-
els are equally capable and similarly trained: a) Average
1:1 Verification Accuracy (%), including standard devia-
tions across trained models, and b) Average d-prime, along
with standard deviations across trained models.

(a) 1:1 Verification Accuracy. We follow the standard 1:1
Verification Accuracy (%) protocol and report the average
accuracy across five standard face recognition benchmarks:
LFW [14], CFP-FP [41], AGEDB-30 [25], CALFW [51],
and CPLFW [50], providing a more generalized measure
of model’s overall performance. The image pairs in this
dataset represent “in the wild” test scenarios.

(b) d-prime metric. We adopt the approach outlined in [9].
While 1:1 Verification Accuracy (%) offers a general perfor-
mance evaluation, it is crucial to ensure that any biometric
system performs equitably across different racial groups. To
verify that the NV distinct trained models exhibit consistent
performance across racial groups, we present d-prime eval-
uations for four demographic groups: Caucasian males (C
M), Caucasian females (C F), African-American males (AA
M), and African-American females (AA F), as represented
in the MORPH dataset. The image pairs in this dataset rep-
resent “controlled” or “ID quality” test scenarios.

Accuracy (%) d-prime
Backbone | Benchmark Avg. CF AAF CM AAM
R18 96.41 £ 0.07 6.27+0.02 643 +£0.02 7.00£0.03 7.53+0.01
R100 97.49 £ 0.04 8.08 £0.03 8.41+0.03 893+0.04 9.84+0.02
ViT 96.95 £ 0.19 6.52+0.24 654+025 7.38+£0.26 7.56+0.26

Table 1. Benchmark accuracy and d-prime w/ standard devia-
tion. For ResNet-based networks, the standard deviations in both
benchmark accuracy and d-prime across all demographic groups
are small, indicating consistent performance across all 10 trained
instances. However, for ViT, there is significant variation in per-
formance across the 10 instances, making it a less reliable choice
for the backbone compared to the more stable ResNet networks.

The results in Table 1 show a low standard deviation
across the benchmark datasets for ResNet networks, indi-
cating that training multiple ResNet models with similar
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Figure 2. Training N matchers with equivalent recognition power. While /N instances of deep CNN models can be trained with
consistent performance, ViT exhibits variations across different instances of trained models. Note that not only are the d-primes consistent
across the deep CNN models, but the genuine and impostor distributions also lie closely together along the similarity axis.
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Figure 3. Cross-model genuine comparison results yield impostor-like scores. The upper tail of the cross-model genuine distribution
falls below that of the same-model genuine distribution, meaning the maximum genuine score from cross-model comparisons is lower than
the maximum impostor score from same-model comparisons. This implies that the 1-in-10,000 FMR threshold used for enrollment can
reliably be applied for verification, even if the model changes for identities whose stored template has been compromised and revoked.

This behavior is consistent for both ResNet and ViT networks.

accuracy is feasible. However, face recognition (FR) mod-
els using Vision Transformers (ViT) as the backbone ex-
hibit significant variation in average performance, suggest-
ing that training N models with equal performance using
ViT is comparatively more challenging. The d-prime val-
ues for each demographic group in the MORPH dataset
further confirm the consistent performance across groups
for ResNet backbones, while highlighting the variability in
ViT backbones. Additionally, the distributions of genuine
and impostor scores, shown in Figure 2, remain consistent
across the N ResNet models, whereas the variations in the
ViT models are more pronounced. This reinforces the relia-
bility of face recognition networks with ResNet backbones
across demographic variations for the N-model revocable
framework proposed in this work, whereas ViT backbones
do not ensure equal accuracy across all N trained models.

The performance variability in Vision Transformers
(ViTs) compared to ResNets can be attributed to several
factors, such as the lack of image-specific inductive biases,
the high sensitivity of self-attention to initialization, a more
complex optimization landscape, and greater data require-
ments [49]. Therefore, the ViT architecture may not be the
most suitable backbone for an N-model revocable biomet-
rics framework proposed in this work.

3.2. Template Utility Only “Within the Model"

One of the key principles in designing a revocable bio-
metric system using N distinct trained models is that feature
vectors from genuine pairs, when extracted using different
model instances, should yield low cosine similarity scores,
causing genuine pairs to behave like impostor pairs. This
characteristic ensures that revoked templates cannot be used
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Figure 1. Proposed Revocable Biometric System Flow: Enrollment, Revocation, and Update. The proposed biometric system begins
with the enrollment phase. Once enrolled, the system operates stably. If a template is stolen or a user requests revocation, the revocation
phase is initiated, during which the existing template is updated using the next available instance of the trained model, and the identity-to-
model mapping is also updated. This process renders the old template unusable, allowing the system to resume stable operation.

to impersonate the legitimate user after re-enrollment.

To illustrate that cross-model genuine pairs produce
impostor-like scores, we use six instances of the same end-
to-end model from Section 3.1. One model is randomly
selected as the reference, with the remaining five serving
as alternative models. For the cross-model comparison, we
extract the embedding of one image of a genuine pair using
the reference model and the embedding for the other im-
age from the pair using one of the alternative models. The
genuine and impostor score distributions from these cross-
model feature match comparisons are shown in Figure 3.
Two key observations can be made from the plots. First,
the cross-model comparison typically results in a much
lower d-prime than the same-model comparison. Second,
not only is the d-prime lower, but both the genuine and
impostor distributions in the cross-model comparisons are
shifted toward a significantly lower score range. More im-
portantly, the upper tail of the cross-model genuine distri-
bution falls below that of the same-model impostor distri-
bution, meaning that even the highest match score from the
cross-model genuine comparison is lower than the highest
impostor score from the same-model comparison.

This holds largely true for both ResNets and ViT mod-
els. However, as discussed in Section 3.1, ViT exhibits sig-
nificant variability in model performance across N training
instances. If methods to stabilize ViT training are devel-
oped, face recognition models with ViT backbones could
also be used within this framework, as cross-model genuine

matches would behave like impostors, similar to ResNets
models.

3.3. System Overview

Given that we can train N equally capable models using
the same architecture, training datasets, and hyperparame-
ter configurations, and that cross-model comparisons yield
impostor-like scores for genuine pairs, we can develop a re-
vocable biometric system that leverages multiple models to
effectively counter impostor attacks. To illustrate this con-
cept, let’s assume we have N sets of trained models avail-
able for use. For clarity, we refer to the model that is cur-
rently active as the Pre-Revocation Model (pre-R). In the
event of a security breach or if the enrollee decides to revoke
their previous template, it is assumed that the attacker would
have accessed the template generated by this model. When
a template for a particular identity is revoked and a new
model is assigned, this new model is referred to as the Post-
Revocation Model (post-R) or the “secure model.” This
approach ensures that, even if a template is stolen or com-
promised, the compromised enrollment can be effectively
revoked without affecting other existing enrollments. The
individual’s enrollment is then updated with the new model
for future matching. If multiple breaches occur for the same
identity, the process of updating the currently active model
instance (pre-Revocation model) to a newer instance (post-
Revocation model) can be repeated as needed.

The proposed system overview is shown in Figure 1 and



operates as follows:

1. Enrollment Phase: An identity is enrolled using, say,
the Pre-Revocation Model (pre-R), which generates
and stores feature vectors for that identity. In addition
to feature vector generation and template storage, an
identity-to-model mapping dictionary is created. This
mapping enables the system administrator to deter-
mine which model to use for a particular identity dur-
ing a verification request. The identity-to-model map-
ping and update is handled through a simple hashmap
lookup process, with overhead that is almost negligi-
ble.

2. Stable Use Phase: While there has been no breach and
no enrollee has requested the revocation of their previ-
ous template, the system remains in a stable use phase.
During this phase, when a verification request is made
using identity-specific biometric input, the system re-
trieves the designated model for that identity, generates
the feature using the model, and compares the gener-
ated feature with the enrolled template.

3. Revocation Phase: If a template for a particular
identity is stolen or compromised, the compromised
enrollment can be revoked by invalidating the Pre-
Revocation Model (pre-R) for that identity. The update
process is straightforward. A different instance of the
trained model, now designated as the Post-Revocation
Model (post-R), is selected from one of the IV avail-
able trained models and assigned to the compromised
identity. The gallery template for the identity is up-
dated using features extracted by the Post-Revocation
Model. The identity-to-model mapping in the dic-
tionary is then updated to reflect this change. This
process can be applied to multiple identities in cases
where several identities request revocation or multi-
ple breaches occur. By doing this, the stolen or com-
promised template can no longer be used for authen-
tication. The new model generates fresh feature vec-
tors that are unrelated to the previous compromised
model. Note that re-enrolling compromised identities
using the new Post-Revocation (post-R) model does
not require re-enrollment for all other identities in the
gallery. One minor overhead of this system is the need
to maintain a mapping of each identity to the specific
model they are enrolled with, which is required for fu-
ture verification requests. This process of revocation
can be repeated an unlimited number of times, ensur-
ing continued usage in the case of multiple breaches.

4. Return to Stable Use Phase: Given that cross-model
comparisons result in impostor-like matches, when a
verification request involves an identity whose tem-
plate has been breached or revoked, future authentica-

tions will be handled by the Post-Revocation Model
(post-R) and an updated template gallery generated
using this model for the specific or multiple affected
identities. This ensures that any templates accessed by
malicious actors are treated as impostor matches and
denied access, while legitimate users can continue to
use the system with the same accuracy as the previ-
ous model, despite the revocation of their earlier tem-
plate. With updated identity-to-model mapping and an
updated template gallery, the system can return to the
stable use phase until the next breach event.

4. Implementation Details

To implement our re-enrollment schemes for comparison
experiments, we adopt ResNet18 and ResNet100 [12] with
the modifications proposed in [10] and ViT as detailed in
[2]. We use ArcFace loss as the choice of our loss function,
with combined margin values of (1, 0, 0.4). We use Web-
Face4M dataset [52] as the training set. Images in Web-
Face4M dataset are pre-aligned using RetinaFace [11]. The
model is trained for 20 epochs using SGD as the optimizer
[28], with momentum of 0.9, an initial learning rate of 0.1
and weight decay of 5e-4. We adopt polynomial decay as
the learning rate scheduler during training from [2]. All the
mentioned configuration parameters align with the ones uti-
lized for training WebFace4M on the ResNet-50/100 back-
bone, as mentioned in insightface [2] GitHub repository.
Each instance of the model (smallest to largest) requires
about 10-18 hours of training on 4 RTX-6000 GPUs.

5. Results and Analysis

To demonstrate the results of our proposed system,
we selected the Caucasian Female and African American
Female groups from the MORPH dataset. These groups
are generally considered to exhibit lower accuracy com-
pared to other demographic groups, making them ideal
for showcasing the robustness of our proposed revocable
biometric system. To demonstrate the effectiveness of our
results, we trained 10 instances of the same end-to-end
model. With 10 models, there are n x (n — 1)/2 unique
model pairs, resulting in a total of 45 pairs. We present
both same-model and cross-model comparisons using a
relationship matrix structure. The cross-model comparisons
here represent an attacker supplying a stolen template,
which is then compared to a re-enrolled template after
the user revokes and re-enrolls. The diagonal entries
represent same-model comparisons (both images in the
pair use the same model), while the off-diagonal entries
show cross-model comparisons (two different models are
used for the images in a pair). Since feature matching is
commutative, the relationship matrix is symmetric, with
cross-model comparisons shown in the upper triangle of
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Figure 2. Relationship matrix illustrating that verification attempts using a revoked template are unsuccessful. Top item in diagonal
entries represents the same-model 1-in-10,000 FMR threshold, the bottom item in diagonal entries represents the same-model d-prime,
and non-diagonal entries represent the maximum genuine score from cross-model comparisons. The cosine similarity scores for all 45
cross-model comparisons are below the operational threshold of 1-in-10,000 FMR for the original reference model, indicating that even
the highest cross-model genuine comparisons do not meet the similarity criteria for successful verification. The fop row presents the results
for the Caucasian Female group, while the bottom row shows the results for the African-American Female group.

the matrix.

Same model probe to gallery comparison. The diagonal
entries in Figure 2 represent standard feature matching be-
tween the probe and the feature template generated from the
same model. In each diagonal cell, the top value indicates
the d-prime of the model, while the bottom value indicates
the 1-in-10000 FMR threshold. The d-prime serves as a
general performance indicator for the model, and the 1-in-
10,000 FMR threshold represents the lower bound match
value for genuine authentication. From Figures 2a-2b,
and 2d-2e, we observe that across all diagonal entries,
the d-prime and 1-in-10,000 FMR thresholds for ResNet
networks are remarkably consistent. This demonstrates that
it is empirically possible to train a large number of models
with similar performance, allowing for continuous template
revocation and re-enrollment with a new template. From
Figure 2, the position of the impostor and genuine overlaps
across N models indicates that the same threshold can be
applied to the newer post-Revocation model. In contrast,

Figures 2c and 2f show considerable variation in d-prime
across 10 different instances of the ViT-trained models.
This suggests that ResNet-based networks are inherently
better suited for generating multiple models with similar
performance compared to ViT-based networks.

Cross model probe to gallery comparison. The non-
diagonal entries in Figure 2 represent standard feature
matching between the probe and the feature template gener-
ated from different models. Each non-diagonal entry shows
the maximum genuine score produced by cross-model com-
parisons. For instance, the entry at cell (1,2) represents
the highest genuine match score obtained when using the
probe feature extracted by model 1 and the gallery template
extracted by model 2. In an operational context, if a tem-
plate for any identity is compromised, the gallery feature for
that identity is re-extracted using the post-revocation model
(represented by all the column entries).

From Figures 2a - 2f, we observe that the non-diagonal
entries, representing the cross-model maximum genuine



scores, are all lower than the operational 1-in-10,000 FMR.
For example, if model 1 (the top-left entry) is the pre-
Revocation model, the 1-in-10,000 FMR for this model is
0.38. This value represents the lower bound of the match
score, meaning that for any biometric sample to be declared
a genuine match, its similarity to the stored template must
exceed this threshold. However, for model 1 (top row across
all columns), the maximum genuine score for all cross-
model comparisons between probe and gallery features is
lower than this threshold. This indicates that even the best
possible genuine scores using different models for probe
and gallery are below this limit, ensuring that even if an
attacker has access to the gallery template from the revoked
model, the system will still reject the match as genuine.

Although training N equally accurate instances of ViT-
based models is challenging, and ViTs are not yet state-of-
the-art in face recognition, their cross-model matching be-
havior is very similar to that of CNNs. This suggests that,
if ViT-based networks can be trained without performance
variance, they could reliably be used in the /N-model revo-
cable biometric system proposed in this work.

6. Conclusion and Discussion

We describe a general approach to revocable biometrics
for deep CNN based face recognition. Our approach ex-
ploits the fact that multiple trainings of a ResNet-based face
matcher result in matchers that have equivalent accuracy,
yet those matchers also generate embeddings for a given
face image that are incompatible across matchers. The re-
sult is that if a given user’s enrolled template is compro-
mised in some way, they can it revoked and be re-enrolled,
potentially an unlimited number of times, without experi-
encing any degradation in accuracy.

Our approach requires that a user’s face image be avail-
able for re-enrollment. This can either be an archived im-
age, if policies allow this, or the user can present a fresh im-
age as part of revocation and re-enrollment. This is not an
onerous requirement, as in current industry practice, a new
release of a matcher can require computing new templates
for all enrolled images. Our approach also requires that the
system maintain a list of which model instance is currently
valid for each user. The system can conceivably control
or limit the number of model instances, if desired, by re-
voking old templates and re-enrolling with a newer model
instance. Our approach also requires training multiple in-
stances of a matcher. These can be done in batches ahead of
them being needed, so that a request for revocation and re-
enrollment can be satisfied immediately, or a new instance
can be trained as needed when a request for revocation and
re-enrollment is made, resulting in a short time before the
re-enrollment is completed.

Revocable face recognition does not alleviate the need
for strong presentation attack detection (PAD). Revocabil-

ity and strong PAD are complementary elements of a secure
face recognition system. PAD has received greater attention
because in modern society basically everyone has multiple
of their face images in the public domain and accessible
to hackers. Presentation Attack Detection (PAD) is the so-
lution to malicious actors attempting to impersonate a tar-
geted individual using their face image. Revocability is the
solution to the deeper problem that a malicious actors has
stolen either the enrolled template associated with a person
or a fresh template created when the person makes an iden-
tity verification transaction, and is using the stolen template
to impersonate the person.

Future Work. There are various questions that could be
addressed in future work. One is that our experimental re-
sults in this paper are based on ResNet deep CNNs, and
it would be useful to verify that other popular CNNs for
face recognition support revocability equally well. An in-
teresting theoretical question involves the maximum num-
ber of equally accurate but distinct models that a network
can generate. Empirically it is clear that the number is large
for practical purposes, but it would be interesting to know
the theoretical upper limit. Another interesting question is
—what is the minimum training effort needed to generate an
equally accurate but distinct model. In this work, we have
done complete trainings from scratch. But it is possible that
a fine-tuning step that involves less computation could still
produce a suitable model. Future research could also in-
vestigate the unreliability of ViT backbones in cancellable
biometric applications and try to identify conditions under
which ViTs can be effectively employed. Lastly, future re-
search could explore whether this approach to revocable
biometrics applies to other modalities, such as iris and fin-
gerprint, where CNNs are used as the feature extractors.

Ethical Impact Statement

This work aims to improve the security of face recognition
systems against attacks by utilizing the inherent capabilities
of deep CNN matchers to design a secure, revocable bio-
metric system. Our results demonstrate that this revocable
framework performs consistently across all demographics
considered. No human data was directly collected for the
experimental results presented in this paper.
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