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Abstract—Vulnerability assessment is a critical challenge in
cybersecurity, particularly in industrial environments. This work
presents an innovative approach by incorporating the temporal
dimension into vulnerability assessment, an aspect neglected in
existing literature. Specifically, this paper focuses on refining
vulnerability assessment and prioritization by integrating Com-
mon Vulnerability Scoring System (CVSS) Temporal Metrics
with Bayesian Networks to account for exploit availability,
remediation efforts, and confidence in reported vulnerabilities.
Through probabilistic modeling, Bayesian networks enable a
structured and adaptive evaluation of vulnerabilities, allowing for
more accurate prioritization and decision-making. The proposed
approach dynamically computes the Temporal Score and updates
the CVSS Base Score by processing data on exploits and fixes
from vulnerability databases. In the case study, we apply this
approach to an industrial infrastructure modeled using the
Purdue Model. The dependencies among vulnerabilities are then
modeled through a Bayesian Attack Graph (BAG) to compute
the posterior exploitation probabilities at each BAG node.

Index Terms—CVSS Temporal Metrics, Vulnerabilities, Prob-
abilistic Inference, Bayesian Networks, Attack Graphs

I. INTRODUCTION

In the contemporary cybersecurity environment, the need
for a mechanism that can identify, categorize, and prioritize
threats and vulnerabilities in systems is increasingly apparent.
Companies and organizations must comprehend the risks as-
sociated with specific systems and formulate remediation and
mitigation strategies. The most prevalent tool employed for
assessing vulnerabilities is the Common Vulnerability Scoring
System (CVSS) [1], a de facto standard associated with the
respective Common Vulnerabilities and Exposures (CVE). The
CVE is designed to uniquely identify each vulnerability.

CVSS captures the main technical characteristics of soft-
ware, hardware, and firmware vulnerabilities [2], and its
outputs include numerical scores that indicate the severity of
the considered vulnerability. CVSS version 3.1 is composed
of three metric groups: Base, Temporal, and Environmental.
The Base metric group represents the intrinsic characteristics
of a vulnerability that are constant over time and across user
environments. The Temporal Metrics include measurements
of the present state of exploit techniques or code availability,
the existence of any patches or workarounds, and the con-
fidence in the description of a vulnerability. Environmental

metrics empower analysts to personalize the CVSS score,
considering the significance of the compromised asset within
an organization’s context. This is measured in terms of com-
plementary/alternative security controls in place, as well as
Confidentiality, Integrity, and Availability.

The purpose of the paper is to make the vulnerability
analysis as specific and contextualized as possible. A novel
approach to achieving this objective entails the assessment of
the temporal dimension. A vulnerability that is deemed critical
in the present may potentially diminish in severity in the
future, possibly attributable to the development of a solution
or a reduction in its susceptibility to exploitation. To this end,
the paper proposes the utilization of CVSS Temporal Metrics
for the evaluation of the impact of time on vulnerabilities, to
prioritize the vulnerabilities of a system and analyze how these
metrics influence vulnerability exploitation probability. These
objectives will be accomplished through a preliminary analysis
of vulnerability databases, collecting data about exploits and
fixes associated with a specific vulnerability, to compute CVSS
Temporal Metrics and update the CVSS Base Score. Then,
we employ Bayesian Networks (BN), a class of probabilis-
tic graphical models represented by directed acyclic graphs
G = {V, E}, where vi ∈ V represents a random variable
Xi and each edge (vi, vj) ∈ E represents causal relationships
among nodes [3]. The value of a BN node that is known a
priori is referred to as evidence. Upon receiving new evidence,
a BN computes the probabilities for all the other nodes using
the Conditional Probability Tables (CPTs) [4]. In detail, a
CPT specifies the conditional probability distributions of the
descendant, the child node, for all combinations of the states
of its direct predecessors, the parent nodes [5]. To enhance the
visualization of the network and its potential attack paths, we
employ a Bayesian Attack Graph (BAG), a tailored adaptation
of BNs designed to capture both attacker behavior and the
progression of attacks throughout the network. Specifically,
nodes represent compromising events, while edges repre-
sent conditional relationships between nodes. The information
available at each node in the BAG is the conditional probability
distribution p(Xi|pai), i.e. the probability of a node Xi to be
compromised given the state of its parent nodes pai [6].

The proposed approach is applied to a case study consisting
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of an industrial network infrastructure modeled through the
Purdue Enterprise Reference Architecture [7]. We first identify
system vulnerabilities and then apply the vulnerability analysis
approach by computing CVSS Temporal Scores and evaluating
the probabilities of compromising events through a BAG.

The rest of the paper is organized as follows. Section II
provides an overview of the related literature. Section III
presents the proposed vulnerability analysis approach. Section
IV describes an application of the proposed approach to the
case study, while Section V concludes the paper.

II. RELATED WORKS

For what concerns the utilization of BNs in the context of
vulnerability assessment, this topic is undergoing significant
expansion and development. This is well-explained by George
et al. [8], who examined the evolution of security risk assess-
ment methodologies in industrial sectors presenting BNs as an
emerging tool for dynamically assessing risks by integrating
new information and handling multi-state variables. In this
context, Huang et al. [9] proposed a BN-based risk assessment
model for SCADA systems that aims to dynamically and
quantitatively assess the security risk level and integrates tra-
ditional BN-based security risk assessment methods with the
Leaky Noisy-OR gate to support risk assessment for unknown
attacks. Guarino et al. [10] proposed a new risk assessment
approach that combines BNs with multi-criteria decision-
making to provide a holistic risk metric by integrating several
heterogeneous risk values calculated through BNs. Similarly,
Poolsappasit et al. [11] proposed a dynamic risk management
framework utilizing Bayesian Attack Graphs, which captures
the causal dependencies between various network states and
vulnerabilities. This approach addressed the limitations of
traditional risk assessment models by incorporating Bayesian
logic to quantify the likelihood of different attack paths. By
doing so, the framework enables system administrators to not
only analyze potential threats but also to dynamically adjust
their security strategies in response to evolving conditions
within the network. Singh et al. [12] proposed a novel risk
estimation model that utilizes CVSS and CVE data to evaluate
security risks. Their approach combines the frequency of
vulnerabilities and the maturity of exploit code to generate
a comprehensive assessment of risk levels associated with
vulnerabilities in a network. By focusing on the Temporal and
Environmental vectors of the CVSS score, the proposed model
allows for an understanding of vulnerability impact. Meng et
al. [13], instead, directed their attention toward the prioritiza-
tion of physical risks, proposing a hybrid Bayesian Network
model that integrates physical knowledge with data-driven
learning to prioritize risk-influencing factors (RIFs). This
model combines structure learning and parameter learning to
identify causal relationships among RIFs, providing valuable
insights for emergency planning and risk mitigation strategies.
Sato et al. [14] proposed the Exploit Time Probability (ETP)-
model, which emphasizes the significant impact of time on
the exploit probabilities of vulnerabilities. They focused on
the elapsed time since the vulnerability was published rather

than on CVSS metrics. Their analysis revealed that the exploit
time distribution is concentrated around zero, indicating that
vulnerabilities are often exploited shortly before or after their
publication in the National Vulnerability Database (NVD), but
giving poor information about the effective impact of time as
described in CVSS Temporal Metrics.

However, these works fail to assess the impact of time
on vulnerabilities, except for [12] and [14] which solely
consider the elapsed time since the publication of a CVE
to calculate exploitation probability. This approach is limited
in scope as it does not take into account a broader temporal
analysis across different data sources. In contrast, our approach
is innovative as it incorporates a comprehensive evaluation
of the impact of time by analyzing multiple vulnerability
databases. This allows us to capture a more holistic view of
how vulnerabilities evolve, their severity over time, and how
their risk factors change in different contexts. By integrating
several data sources, we provide a deeper understanding of
vulnerability trends, making our approach more robust and
insightful compared to previous studies.

III. VULNERABILITY ANALYSIS APPROACH

The primary objective of this study is to assess and prioritize
vulnerabilities within a system by leveraging CVSS Temporal
Metrics and Bayesian Networks. According to the CVSS
version 3.1 standard, three primary Temporal Metrics influence
the vulnerability score over time:

• Exploit Code Maturity (ECM): measures the likelihood
of the vulnerability being attacked and is typically based
on the current state of exploit techniques, exploit code
availability, or active, “in-the-wild” exploitation [2].

• Remediation Level (RL): indicates the availability of
either official patches or workarounds, as provided by
vendors, or alternative solutions. It highlights the level of
mitigation for a vulnerability.

• Report Confidence (RC): measures the degree of con-
fidence in the existence of the vulnerability and the
credibility of the known technical details.

The possible values and corresponding numerical scores for
these metrics are summarized in Table 1.

To compute the CVSS Temporal Metrics and the updated
vulnerability score, a dedicated script is developed that re-
trieves CVE data and verifies the presence of exploits and
fixes. Figure 1 presents a detailed flowchart outlining the
script’s operation.

The script takes as input a list of CVEs and begins to query
the NVD1, which is maintained by the National Institute of
Standards and Technology (NIST). The NVD is the primary
repository for CVEs and provides detailed information on
vulnerabilities, including their CVSS Base Score. The script
sends a request to the NVD API using the CVE ID provided
as input. If the CVE exists, the script retrieves the CVSS Base
Score related to that vulnerability.

1 https://nvd.nist.gov
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Fig. 1. Flowchart of the realized script.

Subsequently, the script searches for the existence of ex-
ploits related to the vulnerability under examination. The
script assesses the likelihood of exploitation by searching
for known exploits across three major exploit databases.
The initial database examined is the Metasploit2 database.
Metasploit is a widely used penetration testing framework that
provides detailed information about exploits, including their
effectiveness. The script queries the Metasploit database and

2https://www.metasploit.com

TABLE 1
VALUES OF TEMPORAL METRICS.

Metric Metric Value Numerical Value

Not Defined (X) 1

High (H) 1

Exploit Code Maturity Functional (F) 0.97

Proof-of-Concept (P) 0.94

Unproved (U) 0.91

Not Defined (X) 1

Unavailable (U) 1

Remediation Level Workaround (W) 0.97

Temporary Fix (T) 0.96

Official Fix (O) 0.95

Not Defined (X) 1

Report Confirmed (C) 1

Confidence Reasonable (R) 0.96

Unknown (U) 0.92

retrieves: name, description, and rank. The latter field is of
particular importance as it allows for the categorization of the
severity of the exploit and the evaluation of the Exploit Code
Maturity. In particular, the script assigns the ECM value as
described below:

• High (H): if the rank has a value as Excellent or Great
• Functional (F): if the rank has a value as Good or Normal
• Proof-of-Concept (P): otherwise
The second database examined is the Exploit Database3; it

is a public repository of exploits for various vulnerabilities. In
this case, the following information is retrieved: id, descrip-
tion, date_published, author, type, platform, url and verified.
As with the Metasploit Database, the latter field is used to
assess the ECM value. Specifically, the field verified serves
to indicate whether an exploit has been tested and confirmed
to function as intended. When set to 1 (true), the ECM is
designated as "Functional (F)". Conversely, when set to 0
(false), the assigned value is "Proof-of-Concept (P)".

The final exploit database examined is that of PacketStorm4.
PacketStorm provides a collection of exploits but with limited
metadata; so, in this instance, it is only feasible to ascertain
the presence or absence of an exploit pertaining to the vulner-
ability. In the event of a positive identification, the ECM is set
to "Proof-of-Concept (P)".

The final ECM value assigned to the vulnerability is the
maximum among the values of the three databases.

In the event that exploits corresponding to the vulnerability
under consideration are not identified in all three of the
databases, the ECM value is set to "Unproven (U)".

3https://www.exploit-db.com
4https://www.packetstormsecurity.com

https://www.metasploit.com/
https://www.exploit-db.com/
https://www.packetstormsecurity.com/


After verifying the presence of exploits, the script proceeds
to research for the presence of fixes or workarounds related
to the vulnerability under exam in the OpenVAS5 database,
which contains information on security solutions for known
vulnerabilities. In this case, the information retrieved is only
represented by the field solution_type, which refers to the type
of remediation or mitigation available for the vulnerability. In
detail, the script makes conversions from OpenVAS values to
RL values as described below:

• NoneAvailable → Unavailable (U)
• WillNotFix → Unavailable (U)
• Workaround → Temporary Fix (T)
• Mitigation → Workaround (W)
• VendorFix → Official Fix (O)
It should be noted that the assignment of the "Workaround"

value of the OpenVAS database to the "Temporary Fix (T)"
value of the Remediation Level is due to the definition of
"Workaround" in OpenVAS, which indicates a temporary
solution to avoid a vulnerability, while in [2] it is defined
as an unofficial, non-vendor solution available.

Finally, the last action of the script is to compute the Tem-
poral Score, that is the CVSS Base Score weighted with the
Temporal Metrics. In detail, the Temporal Score is computed
using the following formula:

TemporalScore = RoundUp(BaseScore ∗ ECM ∗ RL ∗ RC)

where RoundUp is a function that approximates the result to
the first decimal digit.

IV. CASE STUDY

In this section, we describe a case study in which we
apply the proposed approach to analyze vulnerabilities within
a simulated Industrial Control System (ICS). The goal is to
demonstrate how integrating CVSS Temporal Metrics with
Bayesian Networks can enhance vulnerability assessment and
prioritization.

A. Setup

Initially, we structure the ICS network infrastructure into
multiple layers following the Purdue Model, as shown in
Figure 2.

The Purdue Model defines several key layers of an attack:
• Layer 5 (Perimeter Security) – The attacker breaches

the network through a firewall vulnerability, bypassing
traditional security defenses.

• Layer 4 (Web and Business Servers) – By compro-
mising a web server, the attacker gains root access and
further infiltrates a business server.

• Layer 3 (Domain and Network Infrastructure) - The
attack spreads deeper by targeting domain controllers and
firewalls, allowing lateral movement within the internal
network.

• Layers 1-2 (Industrial Control Systems) - The attacker
breaches Human-Machine Interfaces (HMIs), enabling
direct access to Programmable Logic Controllers (PLCs).

5 https://www.openvas.org/

Fig. 2. ICS network infrastructure organized based on the Purdue Model.

In the analysis, we identify specific vulnerabilities in se-
lected systems within each layer of the Purdue Model. These
discovered vulnerabilities are used to construct the BAG
shown in Figure 3. The BAG allows to visualize the possible
attack paths that an attacker could take to reach the industrial
control devices at Layer 1, based on the exploitation of these
vulnerabilities.

This layered model, along with the analysis of identified
vulnerabilities and the BAG, allows us to map potential attack
vectors and assess their probabilities. It highlights how the
exploitation of vulnerabilities at higher layers (e.g., firewalls
and web servers) can cascade into deeper, more critical areas
(such as PLCs). Actually, the BAG illustrates the potential
real-world consequences of cyber intrusions, ranging from data
breaches to industrial sabotage.

Each BAG node’s CPT is computed based on the score
associated with the corresponding vulnerability. In more detail,
the CPTs describe the probability that one node may be
compromised given the security state of the parent nodes
and the specific vulnerability affecting it. Table 2 shows
the structure of the CPT associated with node i-th, where
the probability P (Xi) is computed based on the following

https://www.openvas.org/


Fig. 3. Bayesian Attack Graph of the simulated system.

formula: P (Xi) = Score/10, as the vulnerability score is
defined between 0 and 10. In our evaluation, we compare the
Bayesian inference results by first assigning the Score value
using the Base Score and then using the computed Temporal
Score, as detailed in Section III.

B. Analysis and Evaluation

The objective of this subsection is to illustrate the calculated
Temporal Score value for each vulnerability and to compute
the probability of node exploitation based on the score value.
This shows the difference depending on whether the Base
Score or Temporal Score is considered and shows the influence
of Temporal Metrics on the exploitation probability value.

TABLE 2
CONDITIONAL PROBABILITY TABLE SCHEMA.

Inference

True False

Evidence
True P (Xi) 1− P (Xi)

False 0 1

Table 3 shows the Temporal Score computed for each
vulnerability and the comparison with the corresponding Base
Score.

TABLE 3
TEMPORAL SCORES OF SYSTEM VULNERABILITIES.

CVE ID CVSS Base Score Temporal Score

CVE-2024-0012 9.8 8.9
CVE-2017-5638 9.8 9.3
CVE-2021-26084 9.8 9.8
CVE-2022-40684 9.8 9.8
CVE-2020-1472 10.0 8.9
CVE-2021-34527 8.8 8.2
CVE-2020-5135 9.8 8.9
CVE-2023-26293 7.8 7.1
CVE-2020-15782 9.8 8.9
CVE-2023-4699 10.0 9.1
CVE-2021-22681 9.8 8.9
CVE-2017-6034 9.8 8.9

A key observation from these results is that all Temporal
Score values are lower than or equal to their respective Base
Scores. This phenomenon occurs because Temporal Metrics
scale the score value downward, given their numerical values
ranging from 0.91 to 1. This mechanism enables a more
realistic and dynamic assessment, thereby avoiding the over-
estimation of vulnerabilities that, while critical at the time of
discovery, may have diminished in dangerousness over time.

Subsequently, the exploitation probabilities at each node are
computed based on both the Base and Temporal Scores. This
analysis resulted in findings indicating a substantial impact
of Temporal Scores on the calculation of inference, with
discrepancies in some cases reaching over 20%.

Table 4 shows the exploitation probability at PLC nodes
considering five different evidence scenarios. The results in-
dicate a significant difference in the probabilities obtained
when using the Temporal Score compared to the Base Score.
Specifically:

• In the first scenario, the marginal probability of compro-
mising PLC_2 without evidence about the presence of an
attacker is evaluated. The probability value drops from
36.5% (Base Score) to 25.1% (Temporal Score). This re-
duction reflects the fact that the associated vulnerabilities
have lower values due to the downscale of all CVSS Base
Scores with the influence of Temporal Metrics.



TABLE 4
IMPACT OF TEMPORAL METRICS ON

VULNERABILITY EXPLOITATION PROBABILITY.

Inference Probability
(BN with Base Scores)

Probability
(BN with Temporal Scores)

P(PLC_2 Impairment) 36.5% 25.1%

P(PLC_2 Impairment |
Remote attacker)

73.0% 50.1%

P(PLC_3 Impairment |
DMZ Bypass)

76.3% 60.9%

P(PLC_1 Impairment |
Root access on
Historian)

76.4% 62.4%

P(PLC_4 Impairment |
Root access on

HMI_2)

98.0% 89.0%

• In the second case, we analyzed the probability of com-
promising PLC_2 with evidence about the presence of
an attacker. This scenario reveals the most significant
decrease, from 73.0% to 50.1%.

• In the third scenario, the probability of compromising
PLC_3 decreases from 76.3% to 60.9% because several
vulnerabilities in the previous nodes have vendor patches,
lowering the RL values and thus reducing the overall risk.

• In the fourth example, the probability of compromising
PLC_1 drops from 76.4% to 62.4%. Despite a Functional
(F) level of ECM, the reduction is due to the availability
of a temporary fix that mitigates the risk.

• In the end, the probability of compromising PLC_4
decreases from 98.0% to 89.0% due to the unproven
existence of exploits for all previous nodes of the attack.

These results highlight how Temporal Metrics offer a more
realistic and time-sensitive assessment of vulnerability ex-
ploitation probability, enabling organizations to prioritize their
responses based on current threat conditions.

V. CONCLUSION

In this work, we presented a novel approach for vulnerabil-
ity assessment and prioritization that combines the Common
Vulnerability Scoring System (CVSS) Temporal Metrics with
Bayesian Attack Graphs (BAG), demonstrating how a proba-
bilistic framework could enhance cybersecurity strategies. By
leveraging up-to-date exploitation data, remediation efforts,
and expert confidence levels, our approach moves beyond
static, baseline assessments and offers a dynamic mechanism
to account for the evolving nature of threats.

Our case study demonstrates that when vulnerabilities are
re-scored using CVSS Temporal Metrics instead of static
CVSS Base Scores, organizations can achieve a more realistic
and dynamic ranking. As shown in our results, CVSS Base
Scores alone might overestimate threat levels of vulnerabilities
that have been patched, are hard to exploit, or carry ques-
tionable credibility. Conversely, vulnerabilities with confirmed
exploits and slow or non-existent remediation can rise in
priority, alerting security teams to potential blind spots in

their current patch-management processes. Moreover, since the
BAG relies on these scores to estimate exploitation probability,
this re-scoring also directly impacts the posterior probability
of node exploitation, refining the vulnerability assessment to
better represent the likelihood of exploitation for each node.

Looking to the future, this approach can incorporate addi-
tional data sources and other elements of the CVSS framework
— such as Environmental Metrics — to further refine priori-
tization based on an organization’s specific technology stack,
potential impact on operations, and existing security controls.

ACKNOWLEDGMENT

This work was supported by Agenzia per la Cybersicurezza
Nazionale under the programme for promotion of XL cycle
PhD research in cybersecurity – C83C24000790001. The
views expressed are those of the authors and do not represent
the funding institution.

REFERENCES

[1] Mell, P., Scarfone, K., & Romanosky, S. (2006). Common vulnerability
scoring system. IEEE Security & Privacy, 4(6), 85-89.

[2] Common Vulnerability Scoring System v3.1: Specification Document.
FIRST. [Online]. Available: https://www.first.org/cvss/v3.1/specification-
document

[3] Guarino, S., Vitale, F., Flammini, F., Faramondi, L., Mazzocca, N., & Se-
tola, R. (2023). A two-level fusion framework for cyber-physical anomaly
detection. IEEE Transactions on Industrial Cyber-Physical Systems, 2, 1-
13.

[4] Guarino, S., Ansaldi, S., & Setola, R. Multiple-Bayesian-Network-Based
Risk Assessment Methodology for Industrial Control Systems. In Criti-
cal Infrastructure Protection XVIII: 18th IFIP WG 11.10 International
Conference, ICCIP 2024, Arlington, VA, USA, March 18–19, 2024,
Proceedings (p. 113). Springer Nature.

[5] Laitila, P., & Virtanen, K. (2016). Improving construction of conditional
probability tables for ranked nodes in Bayesian networks. IEEE Transac-
tions on Knowledge and Data Engineering, 28(7), 1691-1705.

[6] Munoz-González, L., & Lupu, E. C. (2016). Bayesian attack graphs for
security risk assessment. In IST-153 Workshop on Cyber Resilience.

[7] Williams, T. J. (1994). The Purdue enterprise reference architecture.
Computers in industry, 24(2-3), 141-158.

[8] George, P. G., & Renjith, V. R. (2021). Evolution of safety and security
risk assessment methodologies towards the use of bayesian networks in
process industries. Process Safety and Environmental Protection, 149,
758-775.

[9] Huang, K., Zhou, C., Tian, Y. C., Tu, W., & Peng, Y. (2017, November).
Application of Bayesian network to data-driven cyber-security risk assess-
ment in SCADA networks. In 2017 27th International Telecommunication
Networks and Applications Conference (ITNAC) (pp. 1-6). IEEE.

[10] Guarino, S., Faramondi, L., Oliva, G., Del Prete, E., & Setola, R. (2024,
June). Holistic Risk Assessment in Industrial Control Systems: Combin-
ing Multiple Bayesian Networks with Multi-Criteria Decision Making. In
2024 32nd Mediterranean Conference on Control and Automation (MED)
(pp. 37-42). IEEE.

[11] Poolsappasit, N., Dewri, R., & Ray, I. (2011). Dynamic security risk
management using bayesian attack graphs. IEEE Transactions on De-
pendable and Secure Computing, 9(1), 61-74.

[12] Singh, U. K., & Joshi, C. (2016, October). Quantitative security risk
evaluation using CVSS metrics by estimation of frequency and maturity
of exploit. In Proceedings of the World Congress on Engineering and
Computer Science (Vol. 1, pp. 19-21).

[13] Meng, H., An, X., & Xing, J. (2022). A data-driven Bayesian network
model integrating physical knowledge for prioritization of risk influencing
factors. Process Safety and Environmental Protection, 160, 434-449.

[14] Sato, R., Kawaguchi, H., & Nakatani, Y. (2022, December). A Stochas-
tic Model for Calculating Well-Founded Probabilities of Vulnerability
Exploitation. In 2022 IEEE 22nd International Conference on Software
Quality, Reliability, and Security Companion (QRS-C) (pp. 34-43). IEEE.


	Introduction
	Related works
	Vulnerability Analysis Approach
	Case study
	Setup
	Analysis and Evaluation

	Conclusion
	References

