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Abstract

In this study, we conducted an in-depth examination of the utility analysis of
the differentially private mechanism (DPM). The authors of DPM have already
established the probability of a good split being selected and of DPM halting. In
this study, we expanded the analysis of the stopping criterion and provided an
interpretation of these guarantees in the context of realistic input distributions. Our
findings revealed constraints on the minimum cluster size and the metric weight for
the scoring function. Furthermore, we introduced an interpretation of the utility of
DPM through the lens of the clustering metric, the silhouette score. Our findings
indicate that even when an optimal DPM-based split is employed, the silhouette
score of the resulting clustering may still decline. This observation calls into question
the suitability of the silhouette score as a clustering metric. Finally, we examined the
potential of the underlying concept of DPM by linking it to a more theoretical view,
that of (ξ, ρ)-separability. This extensive analysis of the theoretical guarantees of
DPM allows a better understanding of its behaviour for arbitrary inputs. From these
guarantees, we can analyse the impact of different hyperparameters and different
input data sets, thereby promoting the application of DPM in practice for unknown
settings and data sets.
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1 Introduction

There is recent work that introduces a clustering algorithm that is based on a robust
strategy finding smart separators: DPM [9]. We show utility proofs for DPM. The-
oretical bounds on the utility characterise the conditions under which an algorithmic
result is useful. For sufficiently tight utility bounds, dependencies of hyperparameters
and assumptions about the input data can be derived. Thus, when choosing appropriate
hyperparameters and understanding the behaviour of an algorithm for different settings,
such utility bounds can be of use. A substantial number of research papers employ em-
pirical evaluations and ablation studies to elucidate the utility of algorithms. However,
the experimental outcomes are constrained to the data sets that are evaluated and the
evaluated combinations of values for the hyperparameters.

Experimental evaluations can test some dependencies between hyperparameters and
properties of the input, while sufficiently tight theoretical bounds precisely characterise
these relations. However, relying on the experimental evaluation alone may result in
the omission of potential relations between hyperparameters and inputs, leading to an
incomplete characterisation of an algorithm’s behaviour regarding the utility.

In this study, we present theoretical bounds for a DP clustering algorithm, DPM,
which characterise its utility in diverse settings without assumptions on the input data.
By adding assumptions on the settings and the input data, such as that there is always
at least one central split or that the data points are drawn from a multiple Gaussian
distributions, the utility bounds become more precise.

The utility-privacy-tradeoff inherent to differentially private mechanisms is a funda-
mental aspect of their utility. A high level of privacy inevitably introduces a considerable
amount of noise, which in turn reduces the potential for utility. Similarly, a high level
of utility necessitates a lower level of noise, thereby only allowing for a smaller degree
of privacy to be guaranteed. In Differential Privacy, the privacy parameters, denoted by
the symbols ε and δ, are used to quantify the privacy guarantees of a mechanism. For
instance, in the case of the differentially private mechanism proposed in [9], the added
noise for a fixed privacy budget depends on both the input data set and some hyperpa-
rameters. The bounds on the utility of a mechanism depend on the hyperparameters of
the mechanism, which also include the privacy parameters.

Firstly, we introduce the concept of Differential Privacy, which is employed by state-
of-the-art privacy-preserving algorithms. As we analyse the utility guarantees of DPM,
we utilise the identical definitions of privacy as in [9]. Prior to presenting the clustering
algorithm DPM and the remaining question regarding theoretical analysis, we provide
some background on the field of clustering in general. Finally, we discuss pertinent
related work.
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1.1 Differential Privacy

The privacy notion Differential Privacy (DP) is based on the assumption that the input
data sets consist of data contributed by different individuals, some of which may be
sensitive. Consequently, each individual can potentially influence the behaviour of a
mechanism and its output. Despite the necessity of the mechanism to utilise the data
from the individuals for optimal performance, the privacy of any individual must be
preserved. This necessitates that the output should be robust to small changes (one
individual’s data) in the input data set. Consequently, in order to analyse the DP
guarantees of a mechanism, it is necessary to determine the largest impact that one
individual can have on the output. To determine this impact, we consider neighbouring
data sets, which are data sets that only differ by the data of one individual. A data set
consists of n d-dimensional data points (individuals) D = {x0, . . . , xn−1} ∈ Rd×n. The
conjunction of all possible data sets is the set of all data sets D = {D ∈ Rd×n| d, n ∈ N+}.

Definition 1 (Neighbouring data sets). Given two data sets D0, D1 ∈ D, we say D0 and
D1 are neighbouring if D1 = D0 ∪ {x} or D0 = D1 ∪ {x} for a data point x ∈ Rd. We
will denote neighbouring data sets as D0 ∼ D1.

In Differential Privacy, we consider the maximum leakage for a data point, i.e. for all
neighbouring data sets, we consider the pair that results in the largest difference in the
output of a mechanism. This difference is called the sensitivity of a mechanism.

Definition 2 (Sensitivity (Def. 2.2[9])). Given two neighbouring data sets D0, D1 and
some set X. A function f : D×X → R has sensitivity ∆f iff. ∆f ≥ maxD0∼D1 |f(D0)−
f(D1)|. A function f with sensitivity ∆f ∈ R is a ∆f -bounded query.

For all neighbouring data sets, we have to consider the pair that results in the largest
difference in the output of a mechanism. The bound of this difference directly gives us
the privacy parameters ε and δ.

Definition 3 ((ε, δ)-DP). A mechanism M with M : D → A preserves (ε, δ)-Differential
Privacy (short: (ε, δ)-DP) for some ε ∈ R>0 and 0 ≤ δ ≤ 1 if for all neighbouring data
sets D0, D1 ∈ D with D0 ∼ D1 and all possible observations O ⊆ A:

Pr[M(D0) ∈ O] ≤ exp(ε) Pr[M(D1) ∈ O] + δ.

Algorithms that preserve DP are often compositions of multiple mechanisms that each
preserve DP. Sequentially composing ℓ mechanisms that each preserve (ε, δ)-DP results
in an algorithm that preserves (ℓε, ℓδ)-DP. Composing mechanisms that preserve (ε, δ)-
DP and each take disjoint subsets of the input data set as input result in an algorithm
that preserves (ε, δ)-DP.

The noisy argmax algorithm, the Exponential Mechanism is an important building
block of DPM. The bounds on the utility guarantees of the Exponential Mechanism,
determine the behaviour of DPM and thus affect the utility guarantees.
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Definition 4 (Exponential Mechanism (Def. 2.5 [9])). Given S ∈ D and ε > 0,
a ∆f -bounded function f : ∆f ≥ maxS∼S′,s∈WS∪WS′ |f(S, s) − f(S′, s)|, where WS :=
dom(f(S, ·)) is the domain of the second input of f . Then the Exponential Mechanism
ME takes S, f, ε as input and draws an element s ∈ W with probability

pmfME(S,f,ε)(s) =
exp(εf(S, s)/∆f )∑

s′∈WS
exp(εf(S, s′)/∆f )

.

1.2 Clustering

The objective of clustering algorithms is to identify groups within data sets, whereby
the data points within the same group are similar to one another but dissimilar to those
in other groups. Such groups are also referred to as clusters. Each cluster is associated
with a representative, also referred to as the cluster centre. The objective of identifying
clusters is an unsupervised process, whereby the actual clusters are not known a priori.
Consequently, the quality of a clustering result cannot be evaluated based on its accuracy.
In the context of evaluating a clustering algorithm through experimentation, the use of
accuracy as a metric remains a viable approach, particularly when the input data set
is labelled. An additional metric for evaluating a clustering result is the inertia. The
inertia of a clustering result is defined as the sum of the distances between each data
point and its respective cluster centre. One limitation of this metric is that the lowest
possible inertia can always be achieved if there are n cluster centres and each data point
is assigned to its own. This suggests that an increase in the number of cluster centres
may enhance the inertia, even if it does not necessarily lead to an improvement in the
clustering result. The metric silhouette score assesses the ratio of the intra-distance
(distance to the own cluster centre) to the inter-distance (distance to the next cluster
centre) for each data point. As with the inertia, the silhouette score tends to improve
with an increase in the number of cluster centres. Further insights into the limitations
of the silhouette score can be found in Section 3.

1.3 Previous Work: DPM

The differentially private clustering algorithm, DPM, recursively divides an input data
set into subsets until only one cluster remains per subset. The objective is to ensure
that the clusters found represent the underlying data structure accurately. It is therefore
crucial to ascertain the optimal location for the separation of the data points. In the
initial phase, the candidates for splitting are generated for each dimension by dividing
the specified range into intervals of equal size. The midpoint of each interval represents
a potential split point. Subsequently, the splits are evaluated in accordance with a pre-
defined scoring function, with the objective of identifying those that will yield optimal
clustering results. The scoring function comprises two metrics: centreness and emptiness.
The emptiness metric gives preference to split candidates with a smaller number of data
points in comparison to a greater number of data points. Consequently, the selected
split candidates are those that divide dense areas, as opposed to those that divide dense
areas and split up clusters. The centreness metric prioritises split candidates that are not
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in proximity to the border, but rather situated in closer proximity to the centre of the
data points. Subsequently, the selected split is implemented, resulting in the division of
the current set in accordance with the specified criteria. Subsequently, DPM determines
whether the minimum cluster size has been exceeded for one of the subsets. In the event
that this is the case, the set that was previously split is added to the set of clusters.
Otherwise, if the maximum recursion level has not yet been reached, the procedure is
repeated for each subset. For an illustrative example, see Fig. 1. Subsequently, following
the final recursion, a representative is calculated and returned for each cluster, along
with the clusters themselves.
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Figure 1: An iteration of the recursive step in the DPM algorithm. ➀ The data points are
projected onto each dimension, and then multiple split candidates are generated based
on a fixed split interval size that is calibrated to the data set. ➁ A scoring function,
dependent on the specific clustering goal, assigns a score to each split candidate. ➂ The
split candidate with the highest score is selected with high probability to subdivide the
data set into two disjoint subsets. This procedure is then recursively repeated until only
a few elements remain in each subset. [9, Fig. 2]

As DPM is a privacy-preserving clustering algorithm, each step must be designed in a
way that ensures the preservation of data privacy, such that no information is leaked.
The number of data points in a subset is employed to ascertain whether DPM terminates
and to calculate the score of the split candidates. Consequently, DPM solely utilises the
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noisy number of elements. To select a split candidate that is optimal with respect to
a defined scoring function, we can utilise the Exponential Mechanism, which is a noisy
argmax. To scale the noise of the Exponential Mechanism, we must ascertain the sen-
sitivity of the scoring function. In order to determine the representative of a cluster,
DPM employs a differentially private averaging algorithm. The authors of [9] demon-
strate that all subroutines, in addition to their composition, preserve Differential Privacy.

The authors presented experimental findings pertaining to the efficacy of the method
in question, as well as theoretical constraints. The discrepancy between the number of
elements and the (shifted) noisy count was quantified. In order to analyse the behaviour
of DPM with respect to any given input data, it is necessary to employ the bounds on the
utility of the Exponential Mechanisms. Firstly, the probability of a split being selected
that is t′-central (i.e. a centreness value of at least t′) is demonstrated. Subsequently,
for a t′-central split, the difference between the emptiness of a selected split and the
optimal emptiness is bounded once more, utilising the utility bounds of the Exponential
Mechanism.

1.3.1 Scoring Function

In order to select split candidates that separate dense areas of data points, DPM employs
a scoring function that takes into account both the density and the position of a split
candidate. The density of a split candidate is quantified by the metric emptiness, which
is defined as the number of elements in the split candidate relative to the total number of
elements. In order to maximize the score, the difference between the optimal emptiness
of 1 and this proportion is computed. The position of a split candidate is defined as the
rank of the split candidate if it were to be inserted into the sorted data points along the
corresponding dimension. The rank of a split candidate is employed to guarantee that
divisions situated nearer to the centre are prioritised over those situated in close proximity
to the border. If the metric emptiness were the sole criterion, splits situated in proximity
to the border would be selected, given that they typically encompass a limited number
of elements, if any. As a consequence, this would result in the formation of imbalanced
splits and the creation of splits that contravene the minimum cluster size. Therefore, the
centreness metric serves to reduce the relative score of these split candidates. The precise
position of the split candidate is inconsequential; the objective is to avoid splits at the
borders. Accordingly, an inner and an outer quantile are defined using the parameter q.
For each quantile, a linear function is defined with the objective that the slope of the
function in the outer quantile is steeper than that of the inner quantile. We ensure that
with a second parameter t, which is the maximum centreness value of a split candidate
in the outer quantile and the minimum centreness value in the inner quantile. A split
candidate with the median as a rank is assigned the optimal centreness score of 1. The
scoring function, as implemented in DPM, is illustrated in Fig. 2 for an example dataset
(orange and blue dots). All data points are projected onto a single axis. For this axis,
the metrics emptiness and centre are calculated for some centreness parameter t, q and
split interval size β.
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Emptiness Centreness

Figure 2: The following visualisation depicts the scoring function employed by DPM for
the evaluation of split candidates. In order to assign a score, the data points are projected
onto each dimension. Subsequently, for each split candidate, the emptiness (light blue)
and centreness (light green) are computed. [9, Fig. 3]

Definition 5 (Scoring function). Given a set S and the subscore weight α > 0 and
further the centreness parameters t, q, the split interval size β, a split candidate s in
dimension i and ñ = |S|+ Lap(1/ε). Then, |s| is the number of data points in S(i) that
are contained in the split interval around s: |s| = |{x ∈ S(i) | s− 0.5β ≤ x ≤ s+ 0.5s}|.
Also r = r(s, S) is the rank of s when inserted in the sorted S(i). We distinguish the
cases that s is in one of the outer quantiles QO = [0, ñq] ∪ [ñ − ñq, ñ] and in the inner
quantile QI = (ñq, ñ− ñq). Then, the score f(S, ñ, s) is given by

ft,q,β(S, ñ, s) = α ·
(

1− |s|
ñ︸ ︷︷ ︸

eβ(S, ñ, s)

)
+


( ñ
2
−|r− ñ

2
|)·t

ñq if r ∈ QO

t−2q
1−2q +

( ñ
2
−|r− ñ

2
|)·(1−t)

ñ
2
−ñq

if r ∈ QI︸ ︷︷ ︸
ct,q(S,ñ,s)s

.

If t, q and β are clear from context we write f .

1.3.2 Exponential Mechanism

The objective is to identify a split candidate that exhibits a high score in accordance
with the specified scoring function. As DPM preserves DP, the Exponential Mechanism
is employed as a noisy argmax algorithm. In order to guarantee the privacy of the
data, noise is added to the selection process and thus only with high probability, a
split with a high score is selected. Therefore, the utility of the selection process is
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diminished in comparison to the non-DP argmax. The noise added to the selection
process is scaled by the sensitivity of the scoring function, denoted as ∆f . It is essential
to ensure that the sensitivity is not underestimated. Given that the sensitivity is in
O(n−1), it is necessary to ensure that the number of data points is overestimated in
most cases. Consequently, the noisy count is shifted by an offset that determines the
probability, denoted as δ, that the privacy guarantees of the Exponential Mechanism are
not upheld. The utility guarantees of the Exponential Mechanism are presented in [4].
In [9], the utility guarantees were extended to encompass the case of selecting a good
split with a maximum difference of ω to the optimal score.

Theorem 1.1 (Exponential Mechanism’s Utility - generalised (Theorem 5.2, [9])). Fix-
ing a set S ⊆ D ∈ D and the set of candidates W , let ω ≥ 0, OPT (S, f,W ) =
maxs∈W f(S, ñ, s)} and WOPTω = {s | |f(S, ñ, s) − OPT (S, f,W )| ≤ ω} denote the
set of elements in W which up to ω attain the highest score OPT (S, f,W ). Then, for
some κ > 0 the Exponential Mechanism ME satisfies the following property:

Pr
[
f(S, ñ,ME(S, f, ε)) ≤ OPT (S, f,W )− ω − 2∆f

ε

(
ln
(

|W |
|WOPTω |

)
+ κ

) ]
≤ e−κ.

1.3.3 Utility Guarantees

In [9], the authors present theoretical utility guarantees pertaining to the noisy count,
the selection of suitable split candidates, and the halting criterion.

The discrepancy between the precise count and the noisy number of elements can
be constrained by employing the cumulative density function of the Laplace mechanism
and the offset. It is demonstrated that the probability of the noisy count diverging by a
margin exceeding ln(

√
n/δ)/ε is equal to 1/(2

√
n).

The guarantees pertaining to the assertion that DPM identifies splits with high empti-
ness encompass both the assurance that a t′-central split is selected and the guarantee
that a t′-central split exhibits a high emptiness value. In the event that the selected
split is t′-central, the discrepancy between its emptiness and that of the optimal split is
shown to be asymptotically less than O(κ/(nε))(1− t′)/α with probability 1− exp(−κ).
The probability of a given split being t′-central depends on the number of splits that
are t′-central, which in turn depends on the value of t′, the size of the split interval,
and the characteristics of the input data. Furthermore, the scores of these splits can
be approximated by a lower bound and the sum of the scores of all split candidates by
an upper bound. This guarantee can be understood by considering that a high impact
of emptiness (large α) reduces the probability for a t′-central split to be selected. As
the value of t′ decreases, the number of t′-central splits increases, while the lower bound
on their score decreases. Nevertheless, the overall probability that a t′-central split is
selected still increases for smaller t′.

In a manner analogous to the bound on the probability that a t′-central split is
selected, the authors posit that DPM halts when a split is selected that is not t′-central.
With this general bound, t′ can be set to the largest centreness value such that the
minimum cluster size would be violated if chosen.
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Lemma 1.2 (Outer quantile is chosen - [9, Lemma 5.6]). Let S ⊆ D be the current set
with noisy count ñ and W the set of all split candidates and W≥t′ := {s | c(S, ñ, s) ≥ t′}.
Let emin := mins∈W e(S, ñ, s) be the minimal emptiness over all splits s ∈ W . The score
of every split candidate can be represented as α · emin+ t′+ln as (for some as ≥ 1). Then
with L≥t′ =

∑
s∈W≥t′

as and L<t′ =
∑

s∈W<t′
as, we know

Pr[s ∈ W<t′ ] =
1

L<t′
L≥t′

+ 1
.

1.4 Research Questions

The aforementioned guarantees of the stopping behaviour pertain solely to the scenario
in which DPM terminates on the first recursion level (the first split is selected such that
DPM halts). However, it can be demonstrated that even if a split is selected such that
DPM does not halt immediately, we can bound the probability such that DPM halts on
later recursion levels. In Section 2, we present a lower bound on the probability that
DPM halts after i splits. This is achieved by first providing a recursive description of
the probability and then presenting an approximation of this probability for an arbitrary
data set, as well as for an equally distributed and a Gaussian distributed data set.

In Section 3, we discuss the implications of the hypothesis that DPM selects optimal
splits for achieving a good clustering result in terms of the cluster metric silhouette score.
Consequently, we examine the point-wise alteration of the silhouette score, specifically
identifying which settings result in an improvement and which do not. Additionally, we
assess the suitability of the silhouette score as a clustering metric, illustrating an instance
where the silhouette score deteriorates following an optimal DPM-based split.

Finally, in Section 4, we establish a link between the split candidates implemented in
DPM and a more theoretical notion of (ξ, ρ)-separability. This enables us to comprehend
the implications of a given emptiness on the associated separation and to assess the
potential for identifying gaps that could be used to split the data set into clusters.

1.5 Related Work

This work presents a further analysis of the utility guarantees of the differentially pri-
vate clustering algorithm DPM, as presented in [9]. The remainder of this section will
distinguish between related work in the field of privacy-preserving clustering and the
theoretical guarantees provided for the usefulness of an algorithm.

There is a line of work [1, 10, 7, 3, 11, 5] on differentially private clustering algorithms
that provide theoretical guarantees regarding the optimal k-means clustering result. The
work [10] provides the best bounds in terms of inertia. In this work, we rather analyse the
behaviour of the mechanism for different settings. A line of research [1, 10, 7, 3, 11, 5] has
been conducted on differentially private clustering algorithms that provide theoretical
guarantees regarding the optimal k-means clustering result, the inertia. In [10], the
authors provide the most robust bounds in terms of inertia. In this work, we rather
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consider a different clustering metric, the silhouette score, and additionally analyse the
behaviour of the mechanism.

In [13], the authors present an algorithm for identifying heavy hitters while main-
taining privacy. Their approach, which involves data-independent splits and the use of
a scoring function as a stopping criterion, bears resemblance to DPM. However, the au-
thors do not provide a theoretical analysis of the algorithm’s utility.

In [9], authors discuss the following privacy-preserving clustering algorithms in the
context of DPM. Prior to the development of DPM, the LSH splits algorithm, as presented
in [2], represented the state-of-the-art of privacy-preserving clustering algorithms. The
authors of LSH splits provided theoretical bounds on the error in terms of distance to
the k-means clustering result, the inertia.

The Mondrian algorithm, as described in [8], and the Optigrid algorithm, as described
in [6], are both non-privacy-preserving algorithms that employ similar approaches to
those used by DPM. Mondrian is not a clustering algorithm; rather, it aims to subdivide
the data set into subsets of the same size. As with DPM, Mondrian recursively splits
the input data set, with each split occurring along one axis. One key difference between
the two algorithms is the manner in which the splits are selected. Mondrian splits at the
median of the dimension with the highest variance, whereas DPM aims to split close to
the median but also considers the density of a split environment. Optigrid is a clustering
algorithm that considers the dimensions of the input data set separately in order to deal
with high-dimensional data. The aim is to find splits through sparse regions, which is
similar to the goal of DPM. This is achieved by using kernel density estimation (per
dimension). In order to analyse the utility of Optigrid, the other authors discuss the
expected behaviour of the algorithm for different input distributions. They also discuss
the error in the worst case. In this work, we follow a similar approach to a theoretical
analysis of the utility of a mechanism. Furthermore, we investigate the impact of different
hyperparameters on the performance and behaviour of the mechanism.

In [12], the authors provide a refinement of random projection trees that adapt to
intrinsic dimension by adding a random rotation as a pre-processing step. To substantiate
this assertion, the authors present a rationale for the quality of selected splits and the
probability of a favourable outcome. This proof sketch is analogous to the utility proofs
presented in [9] and this work. The principal distinctions are that [12] demonstrates that
the diameter of each subset is diminished after a sufficient number of splits. However,
this is not applicable to DPM, as the number of splits cannot be arbitrarily large, as
each split results in the loss of information and an exponential increase in the number
of clusters. Moreover, the objective of clustering is not merely to reduce the diameter of
subsets; rather, it is to avoid splitting up clusters and to identify similarities in the data
points.
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2 Stopping Criterion of DPM

In [9], the authors put forth the argument that DPM halts with the probability that a
split candidate is selected in a way that violates the minimum number of elements.

Furthermore, they provide bounds for this probability. This approach considers solely
the possibility that a split is selected in a way that causes DPM to immediately halt.
However, this approach does not account for the possibility that DPM may halt within
the subsequent recursion steps, which could still be considered as halting appropriately.
Therefore, we present an inductive probability for the occurrence of DPM halting within
a fixed number of steps.

The probability that DPM halts within a fixed number of recursion levels i, can
be expressed as the sum of the probabilities that DPM halts after each recursion level
i ≤ j. For the initial level(i = 0), the probability that DPM halts is contingent upon
the probability of a split being selected that results in the minimum cluster size being
violated. For all subsequent split levels, the probability that DPM halts after the i+1 level
is equal to the probability of DPM halting after the i+1 split level, plus the probability
of DPM halting after i levels. With each split, and thus each level, the number of data
points in the considered set is reduced. As the number of data points decreases, the
likelihood of splits violating the minimum cluster size increases. If the selected split on
level i has a high centreness, the number of data points is decreased significantly and
thus for level i+ 1 the minimum cluster size is violated for larger emptiness values.

The centreness threshold ,tτ , is assigned such that all split candidates with lower
centreness violate the minimum cluster size. Given that the centreness function is com-
prised of two linear functions, it is necessary to consider two distinct cases with respect
to the centreness threshold. In the first case, selected splits that violate the minimum
cluster size are located in the outer quantile, while in the second case, selected splits that
violate the minimum cluster size are located in the inner quantile. The set of all split
candidates with centreness larger or equal to tτ is defined as W≥tτ (analogously W<tτ )
and for a centreness larger than tτ and less than t′, we write W>tτ∧<t′ . Given a set S,
we denote the partition of S into the subsets S′ and S′′ (with S′ and S′′ being disjoint)
as S = S′∪̇S′′. With the centreness metric as defined in Definition 5, the centreness of a
partition can be determined (if split according to DPM). Then, we write S = S′∪̇θS

′′.

2.1 General Stopping Guarantees

In general, we can write the probability that DPM halts as a conditional probability.
Over all possible centreness values, we have to multiply the probability that this value
occurs with the probability that DPM halts assuming a given centreness value (Eq. (1)).
We distinguish the cases that DPM halts immediately without further splitting and that
DPM halts on a later recursion level (Eq. (2)). In the latter, we have to ensure that
DPM halts for both subsets by multiplying the probabilities for each subset as well as
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the probability that such a separation occurs.

Pr[DPM halts on S]

=
∑

θ∈[0,1]

Pr[DPM halts on S|t′ = θ] · Pr[t′ = θ] (1)

=
∑

θ∈[0,tτ ]

Pr[t′ = θ] +
∑

θ∈[tτ ,1]

Pr[DPM halts on S|t′ = θ] · Pr[t′ = θ] (2)

=
∑

θ∈[0,tτ ]

Pr[t′ = θ]

+
∑

θ∈(tτ ,1]

∑
S′,S′′:

S′∪̇θS
′′=S

Pr[S split into S′, S′′︸ ︷︷ ︸
=A

] Pr[DPM halts on S′|A] · Pr[DPM halts on S′′|A]

(3)

In order to gain further insight into the probability of DPM halting, we begin by calcu-
lating the probability that DPM halts immediately on a given set, denoted by S. This
is (simplified) defined as the ratio of all splits that cause DPM to halt and all possible
splits (first summand in Eq. (2)) which was already provided in [9]. Secondly, we analyse
the probability of DPM halting at deeper recursion levels. To do so, we consider all pos-
sible partitions for every centreness value and calculate the probability of each partition
occurring(second summand in Eq. (3)).

2.1.1 First Split Level

The probability that DPM halts without any further splitting (first summand in Eq. (2))
is non-zero if the centreness value of a split is below the threshold tτ . Thus, the probability
that DPM halts immediately is determined by the probability that a split is selected that
violates the minimum cluster size τe and thus as given in [9].

Lemma 2.1 (DPM halts immediately). Given a set S, the noisy count of elements in
S ñS, the minimum size of elements, the set of all split candidates W , score function f
as defined in Definition 5 with valid centreness parameters (t ≥ 2q) and sensitivity ∆f ,
Then, the probability that DPM as described in Section 1.3 halts immediately on S is

Pr[DPM halts immediately on S]

=
∑

θ∈[0,tτ ]

Pr[t′ = θ] = Pr[s ∈ W≤tτ ]

=

∑
s∈W≤tτ

exp(f(S, ñ, s)ε/(2∆f ))∑
s∈W exp (f(S, ñ, s)ε/(2∆f ))

and tτ =


( ñ
2
−|τe− ñ

2
|)·t

ñq s ∈ QO

t−2q
1−2q +

( ñ
2
−|τe− ñ

2
|)·(1−t)

ñ
2
−ñq

s ∈ QI

(4)

where QO = [0, ñq] ∪ [ñ− ñq, ñ] and QI = (ñq, ñ− ñq).

Proof. The probability that DPM halts immediately on a given set S is equal to the
probability of selecting a split that violates the minimum cluster size. The numerator
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in Eq. (4) represents the sum of the exponential scores associated with all splits that
violate the minimum cluster size. The centreness threshold tτ depends on the minimum
cluster size and the size of the set S. Furthermore, the numerator is influenced by the
scores of the splits within the split candidate set, W≤tτ . The denominator is the sum of
the exponential scores of all potential split candidates and thus is solely contingent on
the scores of the split candidates for a given set, S.

We discussed the case that DPM halts immediately on a set S (similar to [9]). As
DPM recursively divides a set, it remains to show the probability that DPM halts before
level j. As an induction step, we first analyse the probability that DPM halts on the
next recursion level.

2.1.2 Induction Step

It is possible that DPM also halts on later levels, in addition to immediately. Therefore,
the probability that DPM halts on the next level for both subsets should be added to
the probability that DPM has already halted. The probability that DPM halts on the
subsequent level i+ 1 is contingent upon the entirety of the splits that have occurred at
preceding levels, in particular to the resulting partitions. Consequently, when considering
a given set S, all splits that do not immediately cause DPM to halt are taken into account.
Rather than considering all potential split candidates, we instead examine partitions
corresponding to specified centreness values, denoted by θ. For all θ larger than the
centreness threshold tτ , we go through all partitions of S resulting in θ. Subsequently,
we multiply the probability of this partition (2) and the probability that DPM halts on
the resulting subsets, denoted by S′ and S′′, respectively (1).

Lemma 2.2 (DPM halts on next recursion level). Given a set S, the corresponding cen-
treness threshold for S. Assuming that j < τs and even further i less than the remaining
recursion level, the probability that DPM as described in Section 1.3 halts on the next
recursion level is as follows

Pr[DPM halts on S on next recursion level]

=
∑

θ∈(tτ ,1]

∑
S′,S′′:

S′∪̇θS
′′=S

Pr[A = S split into S′, S′′]︸ ︷︷ ︸
(2)

·Pr[DPM halts on S′ and on S′′|A]︸ ︷︷ ︸
(1)

. (5)

Proof. We know that all splits with a centreness score of less than or equal to tτ cause
DPM to halt immediately. Therefore, only splits or resulting partitions with a centreness
value exceeding tτ are considered. For each partition, the probability that DPM halts for
the resulting subsets (1) is multiplied by the probability that this partition occurs (2). All
splits for which DPM does not halt are considered, and the probability of DPM halting
on the subsequent recursion level if this split occurs is summed, with each occurrence
weighted according to its probability.
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Remark 1. For the last considered recursion level, we know that only the probability that
DPM halts immediately is relevant as there is no next recursion level and thus∑

θ∈[tτ ,1]

Pr[DPM halts on S|t′ = θ] · Pr[t′ = θ] = 0.

The probability that DPM halts on S′ and S′′ depends on the ratio of the scores of
split candidates that violate the minimum cluster size and the scores of all split candi-
dates. The aforementioned split candidates that contravene the minimum cluster size are
defined by the centreness threshold, tτ . The centreness threshold, tτ , is solely dependent
on the size of the current set, with the fixed centreness parameters, t and q, held con-
stant. Despite the fixed minimum cluster size, the threshold is observed to increase for
smaller sets. Accordingly, the centreness threshold with respect to a given set S, tτ (S),
is defined. . By considering the values of tτ (S′) and tτ (S

′′), where S′ and S′′ represent
the partitioning of S, the probability that DPM halts on the subsequent recursion level
can be calculated using the equation provided in Eq. (4).

The preceding steps yield the following recursive equation for the probability that
DPM halts after i splits on a given set S.

Theorem 2.3. Given a set S, the set of split candidates W , the centreness threshold
tτ (S) and DPM as described in Section 1.3. Then, the probability that DPM halts on S
after at most i steps is recursively given by

Pr[DPM halts after i splits on S]

(∗)
= Pr[DPM halts immediately on S]︸ ︷︷ ︸

Lemma 2.1

+Pr[DPM halts on S on next recursion level]︸ ︷︷ ︸
Lemma 2.2

(6)

=Pr[s ∈ W≤tτ (S)]

+
∑

θ∈[tτ (S),1]

∑
S′,S′′:

S′∪̇θS
′′=S

Pr[S split into S′, S′′] Pr[DPM halts after i− 1 splits on S′ and S′′]︸ ︷︷ ︸
=Pr[DPM halts after i−1 splits on S′]

·Pr[DPM halts after i−1 splits on S′′|A]

(7)

Proof. In order for DPM to halt on a given data set, S, it must either halt immediately
or halt on the next recursion levels, provided that the maximum recursion depth has
not yet been reached. Subsequently, Eq. (7)is derived with the aid of Lemma 2.1 and
Lemma 2.2. The probability that DPM halts after i−1 splits on S′ and S′′ is the product
of the probabilities for S′ and S′′ under the assumption that this partition occurs. These
probabilities can then be determined by plugging in S′ or S′′ for S and i − 1 for i in
(∗).

As the algorithm DPM itself, we can define the probability that DPM halts until
a given recursion level is reached. This probability can be approximated by making
assumptions about the emptiness of the inner quantile, as well as the minimum occurring
emptiness. Consequently, a lower bound for the probability that DPM halts can be
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derived, which depends on the hyperparameters and assumptions about the input data
set. If it can be assumed that there is always a central split, even tighter bounds can be
obtained.

2.1.3 Approximation of Lower Bounds

The approximation of the probability that DPM halts, heavily depends on the input
data set. Furthermore, the following assumptions are made: the emptiness in the inner
quantile is at most eQI

, as otherwise the cluster would still be clusterable; as in [9], it is
assumed that all split candidates have an emptiness of at least emin.

Firstly, we establish a lower bound on the probability that DPM will halt immediately
when presented with a given set, S, and the corresponding centreness threshold, tτ (S).

Lemma 2.4 (Lower bound for DPM to immediately halt). Given a set S and its noisy
count ñ, and corresponding centreness threshold tτ (S) as well as a set of split candidates
W . Further, given DPM as introduced in Section 1.3 with scoring function f , metric
weight α, centreness parameter t with privacy budget ε for the Exponential Mechanism,
and sensitivity ∆f . Assuming that the minimum occurring emptiness is emin and the
maximum emptiness in the inner quantile is eQI

, the probability that DPM halts on S
immediately can be lower bounded as follows

Pr[DPM immediately halts on S] = Pr[s ∈ W≤tτ (S)]

≥
|W≤tτ (S)|eeminε/(2∆f )

|W≤tτ(S)
|e(tτ(S)+α)ε/(2∆f ) + |W≥t|e(1+αeQI

)ε/(2∆f ) + |W>tτ (S)∧<t|e(t+α)ε/(2∆f )

Proof.

Pr[s ∈ W≤tτ (S)]

=

∑
s∈W≤tτ (S)

exp(f(S, ñ, s)ε/(2∆f ))∑
s∈W exp (f(S, ñ, s)ε/(2∆f ))

We can give a lower bound on the nominator
∑

s∈W≤tτ (S)
exp(f(S, ñ, s)ε/(2∆f )). We

only know that splits W≤tτ that violate the centreness threshold have at least a score
of emin. Thus,

∑
s∈W≤tτ (S)

exp(f(S, ñ, s)ε/(2∆f )) ≥ |W ≤ tτ (S)| exp(eminε/(2∆f )).
We can also give an upper bound on the denominator

∑
s∈W exp (f(S, ñ, s)ε/(2∆f )).

For the sum of all split candidate we distinguish the split candidates that violate the
centreness threshold (1), the split candidates that are in the inner quantile (2) and
all other split candidates (3). Then,

∑
s∈W exp (f(S, ñ, s)ε/(2∆f )) ≤ (1) + (2) + (3)

and (1) ≤ |W≤tτ(S)
| exp((tτ(S) + α)ε/(2∆f )), (2) ≤ |W≥t| exp((1 + αeQI

)ε/(2∆f )) and
(3) ≤ |W>tτ(S)∧<t| exp((t+ α)ε/(2∆f )).

≥
|W≤tτ (S)|eeminε/(2∆f )

|W≤tτ(S)
|e(tτ(S)+α)ε/(2∆f ) + |W≥t|e(1+αeQI

)ε/(2∆f ) + |W>tτ(S)∧<t|e(t+α)ε/(2∆f )
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In order to provide a lower bound on the probability that DPM halts on later recursion
levels, two different cases are considered. If it can be assumed that a t′-central split is
always present, all possible partitions can be reduced to t′-central splits, allowing the
centreness threshold for the next recursion level to be approximated accordingly. Given
that there are no splits with high emptiness in proximity to the centre by assumption,
this assumption is reasonable for suitable split interval sizes and ranges. However, as the
current implementation of DPM does not adapt the split intervals to the current subset,
and thus it is not realistic to assume that there is always a t′-central split. Consequently,
the number of potential partitions is reduced to those that do not result in DPM halting.
With the additional assumption, the resulting bounds are more precise, as even in the
most unfavourable scenario of a t′-central split, the centreness is limited to t′. This
implies a more balanced partition and, consequently, a higher centreness threshold for
the subsequent recursion level. In certain settings, characterised by large values of t′

and relatively large split intervals, there might be no t′-central split. In such cases, the
probability of DPM halting at a later recursion level is likely to be overestimated. We
consider the probability with the additional assumption and without, as with additional
background knowledge and different implementations of DPM, the tighter lower bounds
on the probability are likely to be accurate.

There is a t′-central split Assume that there is always a t′-central split. Then,
we can give a lower bound on the probability for all θ ≥ tτ that a partition occurs
(Pr[S split into S′, S′′]) by lower bounding the probability that a t′-central split is se-
lected.

Lemma 2.5 (Lower bound on probability for t′-central split). Given a set S and its noisy
count ñ, and corresponding centreness threshold tτ (S) as well as a set of split candidates
W . Further, given DPM as introduced in Section 1.3 with scoring function f , metric
weight α, centreness parameter t with privacy budget ε for the Exponential Mechanism,
and sensitivity ∆f . Assuming that tτ < t′ < t and there is at least one t′-central split, the
minimum occurring emptiness is emin and the maximum emptiness in the inner quantile
is eQI

, the probability that a t′-central split is selected can be lower bounded as follows:

Pr[s ∈ W≥t′ ]

≥
exp((tτ (S) + eminα)ε/(2∆f ))

|W≤tτ(S)
|e(tτ(S)+α)ε/(2∆f ) + |W≥t′ |e(1+αeQI

)ε/(2∆f ) + |W>tτ (S)∧<t′ |e(t
′+α)ε/(2∆f )

Proof. The probability that a t′-central split is selected is determined by the ratio of
the sum of all scores with centreness above t′ compared to the sum of scores of all split
candidates.

Pr[s ∈ W≥t′ ] =

∑
s∈W≥t′

exp(f(S, ñ, s)ε/(2∆f ))∑
s∈W exp (f(S, ñ, s)ε/(2∆f ))

We can lower bound the nominator
∑

s∈W≥tτ (S)
exp(f(S, ñ, s)ε/(2∆f )). We know that

t′-central splits W≥t′ have at least a centreness of t′ and emptiness of emin, thus we get
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∑
s∈W≥t′ exp(f(S, ñ, s)ε/(2∆f )) ≥ exp((t′ + eminα)ε/(2∆f )). To get an upper bound on

the denominator, i.e. the scores of all split candidates
∑

s∈W exp (f(S, ñ, s)ε/(2∆f )), we
consider the following worst-case. We distinguish the following three sets of split candi-
dates: (1) t′-central split candidates have a centreness of at most 1 and an emptiness of at
most either 1 or eQI

if t′ > t. (2) The splits with centreness larger than tτ but less than t′

with a maximum emptiness of 1. (3) We are left with the split candidates that cause DPM
to halt with upper bounded centreness of tτ and emptiness of 1. Finally, we can put this
together to upper bound the denominator as follows:

∑
s∈W exp (f(S, ñ, s)ε/(2∆f )) ≤

(1) + (2) + (3) and (1) ≤ |W≤tτ(S)
| exp((tτ(S) + α)ε/(2∆f )), (2) ≤ |W>tτ(S)∧<t′ | exp((t′ +

α)ε/(2∆f )) and (3) ≤ |W≥t′ | exp((1 + αeQI
)ε/(2∆f )).

In considering the subsequent recursion step, it is now feasible to limit the scope
to t′-central splits. This may be approximated by determining the probability of the
partition exhibiting the least favourable halting characteristics. It is established that
the centreness threshold, tτ , increases with each successive split. The magnitude of the
increase is contingent upon the ratio of the subset size prior to and subsequent to the
split. Thus, the initial step is to ascertain the alteration in tτ . For a given value of t′,
the size of the sets resulting from the split can be determined. It is necessary to consider
two cases: firstly, where t′ > t, and secondly, where t′ ≤ t. The partitioning of a set S
into S′ and S′′ when t′ > t (inner quantile) is as follows with regard to the size:

t′ =
( ñ2 − |r − ñ

2 |)t
ñq

↔ t′

t
ñq − ñ

2
= |r − ñ

2
|

↔ |S′| = t′

t
ñq, |S′′| = ñ− ñq

t′

t

If t′ ≤ t (outer quantile), the partitioning regarding the size is as follows:

t′ =
t− 2q

1− 2q
+

( ñ2 − |r − ñ
2 )(1− t)

ñ
2 − ñq

↔
(
t′ − t− 2q

1− 2q

) ñ
2 − ñq

1− t
=

ñ

1
|r − ñ

2
|

↔ |S′| =
(
t′ − t− 2q

1− 2q

) ñ
2 − ñq

1− t
, |S′′| = ñ−

(
t′ − t− 2q

1− 2q

) ñ
2 − ñq

1− t

The next step is to plug in the size of the partitions S′ and S′′, in order to determine the
corresponding tτ (S

′) and tτ (S
′′). We set t = 2q which allows us to use c2q,q(S, s, ñS) =

1 − | 2rñS
− 1| as a lower bound on the centreness function, as only t ≥ 2q > 0 are

valid parameters. Therefore, for any given values of τe and ñS , the lower bound on the
centreness threshold for any t, q is given by the centreness threshold for c2q,q: tτ (S) =
1 − | 2rñS

− 1|. It can be demonstrated that 2τe ≤ ñS . This is because, if this were not
the case, it would follow that there is no split candidate for which the minimum cluster
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size is satisfied. Therefore, it can be concluded that for both cases, namely r = τe and
r = ñS − τe,the value of tτ (S) = 2τe

ñS
. In order to ascertain the extent of improvement in

tτ , it is necessary to consider the various scenarios pertaining to the relationship between
t′ and t.

(1) t′ > t → |S′| = t′

t
ñSq, |S′′| = ñS − t′

t
ñSq and

t′

t
q < 1

tτ (S
′) ≥ 2τe

t′

t ñSq
=

2τe
ñS︸︷︷︸
tτ (S)

· t

t′q︸︷︷︸
>1

> tτ (S)

tτ (S
′′) ≥ 2τe

ñS − t′

t ñSq
=

2τe
ñS︸︷︷︸
tτ (S)

· 1

1− t′q

t︸︷︷︸
<1︸ ︷︷ ︸

>1

> tτ (S)

(2) t′ ≤ t → |S′| =
(
t− 2t′ − 2q

2(t− 1)

)
ñS , |S′′| = ñS −

(
t− 2t′ − 2q

2(t− 1)

)
ñS ,

(
t− 2t′ − 2q

2(t− 1)

)
< 1

tτ (S
′) ≥ 2τe( t−2t′−2q

2(t−1)

)
ñS

=
2τe
ñS︸︷︷︸
tτ (S)

· 1
t−2t′−2q
2(t−1)︸ ︷︷ ︸
>1

> tτ (S)

tτ (S
′′) ≥ 2τe

ñS −
( t−2t′−2q

2(t−1)

)
ñS

=
2τe
ñS︸︷︷︸
tτ (S)

· 1

1− t− 2t′ − 2q

2(t− 1)︸ ︷︷ ︸
>1︸ ︷︷ ︸

>1

> tτ (S)

Four distinct alterations to tτ were contemplated for a subset, contingent on a given t′.
However, the inequality t′ ≤ t or t′ > t remains unchanged for different subsets and split
levels, given that t′ is fixed and t is a hyperparameter of DPM. In both cases (1) and
(2), we determine tτ (S

′) and tτ (S
′′). For the sake of simplicity, we will only consider the

most unfavourable scenario, which corresponds to the smaller centreness threshold which
results from the larger subset. This results in a less precise analysis, as the probability of
DPM terminating is underestimated for smaller subsets. Whether |S′| > |S′′| or |S′| <
|S′′| depends on t′, t, q, with t′ being fixed and t, q being hyperparameters. Consequently,
we can approximate tτ on split level i with S as the origin set as follows.

tjτ (S) ≥
2τe
ñS

·


min

(
t
t′q ,

1

1− t′q
t

)i

, t′ > t

min

(
1

t−2t′−2q
2(t−1)

, 1

1− t−2t′−2q
2(t−1)

)i

, t′ ≤ t.
(8)

As previously stated, the value of t′ remains constant for all levels of recursion.
However, the rank at which a split candidate achieves centreness of at least t′ varies with
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each split. For the sake of simplicity, we can also express t′ in terms of the split level.
This merely necessitates interpreting the t′ values of subsequent levels as a centreness
value for the origin set S.

t′ℓ ≥ t′ ·


min

(
t
t′q ,

1

1− t′q
t

)ℓ

, t′ > t

min

(
1

t−2t′−2q
2(t−1)

, 1

1− t−2t′−2q
2(t−1)

)ℓ

, t′ ≤ t.
(9)

The aforementioned building blocks allow us to establish a lower bound on the prob-
ability that DPM halts after at most i splits. It should be recalled that we are operating
under the assumption that there is a t′-central split.

Theorem 2.6 (Lower bound on probability that DPM halts after i splits (t′-splits)).
Given a set S and its noisy count ñ, and corresponding centreness threshold tτ (S) as well
as a set of split candidates W . Further, given DPM as introduced in Section 1.3 with
scoring function f with sensitivity ∆f , metric weight α, centreness parameters t, q and
privacy budget ε for the Exponential Mechanism. Assuming that the minimum occurring
emptiness is emin and the maximum emptiness in the inner quantile is eQI

, Then, for
a fixed t′ the probability that DPM halts until recursion level i can be lower bounded as
follows.

Pr[DPM halts after i splits on S] (10)

≥
j∑

i=0

Pr[s ∈ W≤tiτ (S)
]︸ ︷︷ ︸

Lemma 2.4

·
( j∏

ℓ=0

Pr[s ∈ W≥t′ℓ ]︸ ︷︷ ︸
Lemma 2.5

)2i

(11)

=

j∑
i=0

|W≤tjτ (S)
|eeminε/(2∆f )

|W≤tτ(S)
|e(t

j
τ (S)+α)ε/(2∆f ) + |W≥t|e(1+αeQI

)ε/(2∆f ) + |W
>tjτ (S)∧<t

|e(t+α)ε/(2∆f )

(12)( j∏
ℓ=0

exp((tℓτ (S) + eminα)ε/(2∆f ))

|W≤tℓ
τ(S)

|e(tℓτ (S)+α)ε/(2∆f )+ |W≥t′ℓ |e(1+αeQI
)ε/(2∆f )+ |W>tℓτ (S)∧<t′ℓ |e(t

′ℓ+α)ε/(2∆f )

)2i

(13)

with tjτ (S) =
2τe
ñS

· c and t′ℓ = t′ · c where c =


min

(
t
t′q ,

1

1− t′q
t

)i

, t′ > t

min

(
1

t−2t′−2q
2(t−1)

, 1

1− t−2t′−2q
2(t−1)

)i

, t′ ≤ t.

(14)

Proof. The probability that DPM halts immediately for a given set S and a recursion level
i can be lower bounded by approximating the centreness threshold tjτ (S) as in Eq. (8) and
interpreting t′ on level ℓ as t′ℓ according to Eq. (9). Subsequently, the probabilities that
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DPM halts without further splitting can be calculated using the results of the previous
section and the lower bound given in Lemma 2.4. In order to calculate the probability
that DPM does not halt but instead performs a t′-central split, we apply the lower bound
given in Lemma 2.5. For DPM to halt on some recursion level i, it has to halt for all 2i

subsets on this level. Thus, we must take the product of all these possibilities.

There is no t′-central split If we do not know for sure that there is a t′-central split,
the lower bound on the minimum centreness threshold as in Eq. (8) does not hold.

First, as in Section 2.1.3 we determine the probability that a tτ (S)-split is selected
for some set S. Then, we again lower bound the centreness threshold for some split level.

Lemma 2.7 (Lower bound on probability that DPM does not halt). Given a set S and its
noisy count ñ, and corresponding centreness threshold tτ = tτ (S) as well as a set of split
candidates W . Further, given DPM as introduced in Section 1.3 with scoring function
f , metric weight α, centreness parameter t with privacy budget ε for the Exponential
Mechanism, and sensitivity ∆f . Assuming the minimum occurring emptiness is emin, the
probability that DPM does not halt on S can be lower bounded as follows

Pr[s ∈ W>tτ ]

≥ 1− |W≤tτ |e(α+tτ )ε/(2∆f )

|W≤tτ |eeminαε/(2∆f ) + |W>tτ ,≤t|e(eminα+tτ )ε/(2∆f ) + |W≥t,>tτ |e(eminα+t)ε/(2∆f )

Proof. The probability that a split is selected such that DPM does not halt (tτ -central
split) is determined by the counter probability of the case that DPM halts.

Pr[s ∈ W>tτ ] = 1− Pr[DPM halts immediately on S]

= 1− Pr[s ∈ W≤tτ ]

= 1−
∑

s∈W≤tτ
exp(f(S, ñ, s)ε/(2∆f ))∑

s∈W exp(f(S, ñ, s)ε/(2∆f ))

To get a lower bound on the probability that DPM does not halt, we give an up-
per bound on the probability that DPM halts. First we upper bound the nominator∑

s∈W≥tτ
exp(f(S, ñ, s)ε/(2∆f )). The centreness of split candidates in W≤tτ can be

up to tτ and the emptiness up to 1 with the assumption of tτ < t. Then, we get∑
s∈W≤tτ

exp(f(S, ñ, s)ε/(2∆f )) ≤ |W≤t| exp((α+ tτ )ε/(2∆f )). To get a lower bound on
the denominator, i.e. the scores of all split candidates

∑
s∈W exp (f(S, ñ, s)ε/(2∆f )),we

distinguish the following sets of split candidates: (1) split candidates that cause DPM
to halt with lower bound on the score of emin. (2) The splits with centreness larger than
tτ but less than t and again minimum emptiness of emin. (3) We are left with the split
candidates in the inner quantile with minimum emptiness of emin and centreness of t.
Finally, we can put this together to lower bound the probability that DPM does not halt
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as follows:

Pr[s ∈ W>tτ ]

≥ 1− |W≤tτ |e(α+tτ )ε/(2∆f )

|W≤tτ |eeminαε/(2∆f ) + |W>tτ ,≤t|e(eminα+tτ )ε/(2∆f ) + |W≥t,>tτ |e(eminα+t)ε/(2∆f )

Remark 2. Note that if tτ > t, |W>tτ ,≤t| = 0 and the set of split candidates can be
divided into split candidates that violate the minimum cluster size W≤tτ and all other
split candidates W>tτ ,≥t.

As in Section 2.1.3, we distinguish the different cases tτ < t and tτ ≥ t. For a split
such that DPM does not halt, the minimum centreness threshold improves the least for
the largest possible set. Thus, for both cases, we can assume |S′| = ñS−τe > τe where τe
is the minimum cluster size. Again, we set t = 2q to get a lower bound on the centreness
function c2q,q = 1 −

∣∣2τe
ñS

− 1
∣∣ and as we know 2τe ≤ ñS because otherwise DPM would

have already halted. Then, we know tτ (S) = 2τe
ñS

. To analyse the improvement of the
minimum centreness threshold, it suffices to adjust the ñS accordingly, i.e. ñS = ñS − τe.

tτ (S
′) ≥ 2τe

ñS − τe
=

2τe
ñS︸︷︷︸
tτ (S)

· ñS

ñS − τe︸ ︷︷ ︸
>1

> tτ (S)

The approximation of tτ on split level i with S as the origin set can be achieved as
follows. With the exception of the assumption of t′-central splits, the centreness threshold
is dependent solely on the minimum cluster size τe and the size of the origin set S.

Lemma 2.8. Given a set S and its noisy count ñ and DPM as introduced in Section 1.3
with centreness parameters t, q. Assuming that there is at least one t′-central split, the
minimum centreness threshold for any subset of S after i spits is

tiτ (S) ≥
2τe
ñS

·
(

ñS

ñS − τe

)i

. (15)

The aforementioned building blocks allow us to establish a lower bound on the prob-
ability that DPM halts after at most i splits. It should be noted that we are considering
the case in which there is no knowledge of the existence of a t′-central split.

Theorem 2.9 (Lower bound on probability that DPM halts after i splits). Given a set S
and its noisy count ñ, and corresponding centreness threshold tτ (S) as well as a set of split
candidates W . Further, given DPM as introduced in Section 1.3 with scoring function
f with sensitivity ∆f , metric weight α, centreness parameters t, q and privacy budget
ε for the Exponential Mechanism. Assuming that the minimum occurring emptiness is
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emin and the maximum emptiness in the inner quantile is eQI
, Then, for a fixed t′ the

probability that DPM halts until recursion level i can be lower bounded as follows.

Pr[DPM halts after i splits on S] (16)

≥
j∑

i=0

Pr[s ∈ W≤tiτ (S)
]︸ ︷︷ ︸

Lemma 2.4

·
( j∏

ℓ=0

Pr[s ∈ W≥tℓτ (S)
]︸ ︷︷ ︸

Lemma 2.7

)2i

(17)

=

j∑
i=0

|W≤tjτ (S)
|eeminε/(2∆f )

|W≤tτ(S)
|e(t

j
τ (S)+α)ε/(2∆f ) + |W≥t|e(1+αeQI

)ε/(2∆f ) + |W
>tjτ (S)∧<t

|e(t+α)ε/(2∆f )

(18)( j∏
ℓ=0

1− |W≤tτ |e(α+tτ )ε/(2∆f )

|W≤tτ |eeminαε/(2∆f )+ |W>tτ ,≤t|e(eminα+tτ )ε/(2∆f )+ |W≥t,>tτ |e(eminα+t)ε/(2∆f )

)2i

(19)

with tjτ (S) ≥
2τe
ñS

·
(

ñS

ñS − τe

)i

(20)

Proof. In order to approximate a lower bound on the probability that DPM halts imme-
diately for a given set S and a recursion level i, we take the centreness threshold tjτ (S)
as in Eq. (15) and apply Lemma 2.4. If DPM does not halt immediately, the probability
that DPM halts on the subsequent recursion levels can be determined by multiplying the
aforementioned probability by the condition that such a split is selected (Lemma 2.5).
In order to guarantee that DPM halts on level i, there can be 2i subsets, and DPM must
halt for all of them.

The provided bounds on the probability that DPM halts appropriately depends on
the data set in question, particularly the number of split candidates that cause DPM to
halt. This number is in turn contingent upon the minimum size of a cluster, as well as the
input data itself. How are the data points distributed and thus how does the number of
split candidates change that violate the minimum cluster size for an increasing centreness
threshold tτ .

2.2 Limitations of Stopping Criterion

In some cases, DPM does not halt appropriately. This phenomenon can be explained by
considering the characteristics of the data sets on which DPM does not halt appropriately.
It is important to note that for DPM to halt on a given set, it must halt on each subset.

2.2.1 Equally Distributed Data Set

Let us consider a data set in which the data points are distributed equally across the
entire range for each dimension. In such a data set, we can assert with certainty that there
are no clusters and no suitable split candidates. Consequently, DPM should terminate
within a few steps and not return clusters.
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The interval sizes for all splits are identical, as are the emptiness values of all split
candidates, given that the data points are distributed equally. Consequently, the selec-
tion of split candidates is based exclusively on their centreness values. For the sake of
simplicity, we shall assume that the optimal score is always selected, which results in the
set being split into two subsets of equal size. We know that after i splits on a set S, the
remaining subsets are of size |S|

2i
. If the minimum cluster size τe is less than this size, i.e.

τe <
|S|
2τs where τs is the maximum recursion depth, DPM does not halt appropriately.

2.2.2 Gaussian Distributed Data Set

We proceed to examine data points derived from a Gaussian distribution per dimension.
In these data sets, we posit that there are no split candidates with high emptiness values
in proximity to the centre, indicating that a single cluster has been identified that does
not necessitate further division. In the event that the impact of emptiness is greater than
that of centreness, the probability of a split being selected that contravenes the minimum
cluster size increases. We discuss the circumstances under which, even in the optimal
case, DPM will not halt appropriately. Consequently, we consider the optimal case in
which, if DPM does not select a split candidate that immediately halts, it selects the
split with the best centreness value (of 1). In the case of a single Gaussian distribution
per dimension, the split interval size estimation implemented by DPM yields a value of
1/2σ. Subsequently, for each value of i (up to 7 as τs = 7 in the experiments), we provide
the minimum emptiness of the most central split (in all subsets) as well as the maximum
score of split candidates that cause to halt, which we will refer to as the halting split
candidates.

In selecting the optimal split candidate with the objective of halting DPM, we assume
that S = S′∪̇S′′ with |S′| = |S′′|. Therefore, it can be demonstrated that the centreness
of splits that cause DPM to halt is at most the centreness value belonging to a split
candidate with rank τe which we will denote as the centreness threshold tτ . Although
the minimum cluster size remains constant, the centreness threshold increases, doubling
in our case. The emptiness of the halting split candidates is at most one, allowing us to
derive an upper bound on the score of a halting split candidate of shi = 2i · tτ +α for the
i-th recursion level.

In this analysis, the score of the halting split candidates is compared with that of the
most central split candidate, which has a centreness value of 1. It is then necessary to
provide a lower bound on the emptiness value for different values of i. Recall that the
emptiness is determined as the difference between the optimal emptiness of 1 and the
fraction of elements in the current set. In the case of data points drawn from a single
Gaussian distribution, , the emptiness can be determined by assuming that the most
central split is always selected. The shift from the mean of the Gaussian to the median
of the subset after i splits, denoted as zi, can be determined by the range that holds
1− 2−i of the data points. The zi are computed as follows. For i < τs, the precise value
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of the shift is provided.

zi = Φ−1

(
1 + (1− 2i)

2

)
z0 = Φ−1

(
1

2

)
= 0

z1 = Φ−1

(
1.5

2

)
= Φ−1(0.75) ≈ 0.6744

z2 = Φ−1

(
1.75

2

)
= Φ−1(0.875) ≈ 1.15

z3 = Φ−1

(
1.875

2

)
= Φ−1(0.9375) ≈ 1.53

z4 = Φ−1

(
1.9375

2

)
= Φ−1(0.9688) ≈ 1.86

z5 = Φ−1

(
1.9688

2

)
= Φ−1(0.9844) ≈ 2.13

z6 = Φ−1

(
1.9844

2

)
= Φ−1(0.9922) ≈ 2.41

The split interval size is fixed as β = 1/2σ, and thus, it is necessary to consider the
fraction of elements in the range [−zi−β/(2σ),−zi+β/(2σ)] or [zi−β/(2σ), zi+β/(2σ)].
It is also necessary to consider that the fraction of elements obtained from the normal
distribution is related to the input data set rather than the current subset. As the
partitions are of the same size, this introduces a factor of 2i. Consequently, for a zi, the
lower bound on the emptiness of a central split can be expressed as follows, where Si

denotes the set on recursion level i, and sci the corresponding central split.

eci = e(Si, |S| · 2−i, sci ) ≥ 1− |sci |
|S|

· 2i

= 1− 2i · 1
2

(
2Φ

(
zi +

β

2σ

)
− 1−

(
2Φ

(
zi −

β

2σ

))
− 1

)
= 1− 2i

(
Φ

(
zi +

β

2σ

)
− Φ

(
zi −

β

2σ

))
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The next step is to plug in the different zi and set β = 1/2σ in order to obtain the
minimum emptiness for each split level.

ec0 = 1−
(
Φ

(
1

4

)
− Φ

(
− 1

4

))
= 0.80258

e1 = 1− 21
(
Φ

(
z1 +

1

4

)
− Φ

(
z1 −

1

4

))
= 1− 2

(
Φ(0.9244)− Φ(0.4244)

)
= 1− 2(0.82121− 0.66276)

= 0.6831

ec2 = 1− 22
(
Φ

(
z2 +

1

4

)
− Φ

(
z2 −

1

4

))
= 1− 4

(
Φ(1.4)− Φ(0.9)

)
= 1− 4(0.91924− 0.81594)

= 0.5868

ec3 = 1− 23
(
Φ

(
z3 +

1

4

)
− Φ

(
z3 −

1

4

))
= 1− 8

(
Φ(1.78)− Φ(1.28)

)
= 1− 8(0.96246− 0.89973)

= 0.49816

ec4 = 1− 24
(
Φ

(
z4 +

1

4

)
− Φ

(
z4 −

1

4

))
= 1− 16

(
Φ(2.11)− Φ(1.61)

)
= 1− 16(0.98257− 0.94630)

= 0.41968

ec5 = 1− 25
(
Φ

(
z5 +

1

4

)
− Φ

(
z5 −

1

4

))
= 1− 32

(
Φ(2.38)− Φ(1.88)

)
= 1− 32(0.99134− 0.96995)

= 0.3155

ec6 = 1− 26
(
Φ

(
z6 +

1

4

)
− Φ

(
z6 −

1

4

))
= 1− 64

(
Φ(2.66)− Φ(2.16)

)
= 1− 64(0.99609− 0.98461)

= 0.26528

At last, we are in a position to make a comparison between the highest score achieved by
a halting split candidate and the lower bound on the score of a central split candidate.
It is only in cases where the halting split candidate’s score exceeds that of the central
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split by a certain margin that it is selected with a high probability.

shi > sci +m

2i · tτ + α > 1 + eciα+m

tτ >
1 + (eci − 1)α+m

2i
(21)

In order to determine the corresponding centreness threshold that ensures DPM halts
on a given recursion level, we proceed to plug in the values for all levels up to and
including the sixth. It is established that tτ is within the range of [0, 1]. A high value
of tτ indicates that DPM will only halt when the minimum cluster size is considerable.
Fig. 3 depicts the lower bound of inequality in Eq. (21) for m = 0. In order to ensure
that DPM halts on all subsets, it is essential to have m is significantly greater than zero.
As the emptiness weight α increases, the lower bound on tτ decreases. For values of α
less than 5, the lower bound on tτ is too large for DPM to halt until a later recursion
level (for i ≥ 3). For larger values of α, namely α ≥ 5, the lower bound on tτ is less
than zero. This allows for a larger value of m, thereby ensuring the efficacy of the
splitting process. This is due to the fact that when the emptiness has a greater impact
than the centreness, there is a high probability that DPM will select a split with a low
centreness value but a high emptiness value. It is probable that these splits will be in
close proximity, given that in the considered data set there are no gaps present and that
it is Gaussian distributed. Furthermore, that if α is excessively high, the utility will
be adversely affected, as discussed in [9]. For all values of α, the lower bound on the
centreness threshold for tτ converges to zero as the number of recursion levels increases.
This implies that even for small minimum cluster sizes, the scores of splits that cause
DPM to halt are larger than those of central splits. Thus, even with a margin of m > 0,
a reasonable tτ is obtained. Consequently, even if the maximum recursion level is set too
high for a given data set, DPM will halt as a result of the minimum cluster size criterion.

2.3 Discussion

A theoretical analysis of algorithms may identify potential issues or areas of vulnerability
within the algorithmic structure. It was demonstrated that the guarantees presented in
Eq. (10) are, in fact, quite loose. This is primarily due to approximating the probability
that a t′-central split is selected by the probability of one single t′-central split. In the
absence of the assumption of at least one t′-central split, the lower bounds presented in
Eq. (16) are even less tight. As we considered the worst-case scenarios, our estimates are
likely to be conservative in the majority of cases where there may be multiple t′-central
candidates. This issue is particularly prevalent for smaller values of t′.

The underlying issue is that even when the remaining data sets span only a small
portion of the original range, the split candidates are not recalculated. Consequently,
depending on the data set, there may be only one or two split intervals that contain
data points. While this appears to be a crucial aspect for enhancing the utility of DPM,
it also necessitates updating the split interval size, which in turn may compromise the
confidentiality of the data.
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Figure 3: Visualisation of the lower bounds on the centreness threshold as given in
Eq. (21) for different values of the parameter α with m = 0.he x-axis represents the
recursion level, while the y-axis depicts the corresponding centreness threshold. Despite
the fact that tτ is greater than or equal to zero, negative y values are possible, enabling
the use of large m while maintaining the high probability of DPM halting. Larger values
for tτ result in DPM only halting for larger minimum cluster size.
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3 Theoretical Bounds Regarding the Silhouette Score

In [9], the authors demonstrated that DPM has a high probability of selecting optimal
splits. Additionally, the experiments revealed that the selected splits yielded excellent
clustering quality, as evidenced by the standard metrics of inertia, accuracy, and the
silhouette score. In order to gain further insight into the theoretical utility guarantees
of DPM with regard to the standard metrics, we establish a link between the selection
of optimal splits and the recognised clustering metric, namely the silhouette score. We
also discuss the shortcomings of the silhouette score as a clustering metric by giving an
example where the silhouette score decreases for an optimal DPM-based split.

3.1 Silhouette Score

The silhouette score of a clustering result is determined by a comparison of the inter-
and intra-cluster distances. Consequently, for each data point, the distance between that
point and its assigned cluster centre is calculated (denoted as d(Ci, x)), as well as the
distance between that point and the cluster centre of the nearest other cluster (denoted
as d(Cj , x)). Should the assigned cluster centre prove to be closer than any other cluster
centre, the silhouette value will be positive; conversely, it will be negative should this
not be the case. The silhouette values are subsequently normalised by dividing them by
the maximum value of the inter- and intra-distance. Thus, the optimal silhouette score
of 1 is achieved when all data points are positioned at their respective cluster centres.
The silhouette score of a clustering result is then calculated as the mean silhouette value
across all data points and clusters. Consequently, the clustering result with the best
silhouette score is that in which each data point constitutes a single cluster. Therefore,
in the case that a cluster only holds one data point, its silhouette value is set to 0.

Definition 6 (Silhouette Score). Given a data set D and a set of k cluster centres
C = {c0, . . . , ck−1}, then the silhouette score SC of the clustering C of data set D is
computed as follows:

S(C,D) =
1

n

k∑
i=0

∑
x∈Ci

s(Ci, x)

with s(Ci, x) =

{ d(Cj ,x)−(Ci,x)
max(d(Cj ,x),(Ci,x))

, |Ci| > 1

0, else

and d(Ci, x) =
1

|Ci| − 1

∑
x′∈Ci/{x}

||x′ − x||2, d(Cj , x) = min
j ̸=i

 1

|Cj |
∑
x′∈Cj

||x′ − x||2

 .

3.2 DPM and Silhouette Score

The manner in which the silhouette value of data points may undergo alteration is con-
tingent upon a number of factors. The application of a DPM-based split results in a
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modification of the clustering outcome for a single subset. Consequently, our analysis
focuses on the impact of these splits on the clustering result. The total silhouette score is
the average of the silhouette values of all data points. Consequently, we initially examine
the alteration in the silhouette value of a single data point subsequent to splitting. With
a theoretical delineation of the change in the silhouette value for a DPM-based split, we
then proceed to discuss the limitations of this characterisation. It is still possible for a
suitable split according to DPM to result in a reduction in the overall silhouette score.

3.3 Change in Silhouette Value

In examining the alteration of the silhouette value for a specific data point subsequent
to a DPM-based split, it is essential to differentiate between two scenarios: the data
point in question is within the subset undergoing division, or it is a member of one of
the other subsets. In the former case, both the intra- and inter-distances may undergo
modification. Conversely, in the latter scenario, only the inter-distance is influenced by
the split.

Partition that is Split We initially examine the potential alterations to the silhouette
value for data points within the subset undergoing division. Subsequently, following
the partitioning, each data point that was in S0 is situated within one of the resulting
partitions, designated as either S′

0 or S′′
0 . To determine the change in the silhouette value,

we need to distinguish the possible changes in the intra- and inter-distance for both S′
0

and S′′
0 . The intra-distance for data points in the partitions are now the distances to their

assigned cluster centre. For the inter-distance, either the closest cluster to S0 remains
the closest cluster or the other partition. In both cases the intra-distance can be larger
or smaller than the inter-distance.

For the silhouette value of data points in the subset to be split, both the inter-
and intra-distances can be decreased or increased. Therefore, if the intra-distance is
reduced more than the inter-distance, or the inter-distance is increased more than the
intra-distance, the silhouette value of these data points will improve after splitting.

Lemma 3.1 (Improvement of data points in partitioned subset). For each data point
x in a given set S0, the nearest neighbouring cluster is indicated by C. It is assumed
that S0 is being divided into S′

0 and S′′
0 via a DPM-based split. Subsequently, if the data

point x is situated in the subset S′
0, the silhouette value for x will improve following

the split in the following cases: d(C, x) < d(S′′
0 , x) < d(S0, x); or d(C, x) ≥ d(S′′

0 , x)
and d(S′′

0 , x) − d(S′
0, x) > d(C, x) − d(S0, x). It should be noted that the change in the

silhouette value is analogous for the case of x ∈ S′′
0 .

Proof. The silhouette value for data point x in set S0 is given by the following equation:

s(S0, x) =
d(C, x)− d(S0, x)

max(d(C, x), d(S0, x))
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The silhouette value of x after a DPM-based split is either s(S′
0, x) or s(S′′

0 , x) depending
on the assignment of x after the split. Then by Definition 6, the silhouette value after
splitting is as follows. We give the silhouette value for both cases x ∈ S′

0 and x ∈ S′′
0 but

note that for each data point that was in S0 we compute either s(S′
0, x) or s(S′′

0 , x).

s(S′
0, x) =

min(d(C, x), d(S′′
0 , x))− d(S′

0, x)

max(min(d(C, x), d(S′′
0 , x)), d(S′

0, x))
or

s(S′′
0 , x) =

min(d(C, x), d(S′
0, x))− d(S′′

0 , x)

max(min(d(C, x), d(S′
0, x)), d(S′′

0 , x))

The inter- and intra-distance of x may change. To analyse the change in the silhouette
value, we distinguish the following cases. The intra-distance s(S0, x) is replaced by either
s(S′

0, x) or s(S′′
0 , x) depending on the assignment of x.

1. Cluster C remains the closest cluster to x. If x ∈ S′
0, this implies d(C, x) < d(S′′

0 , x)
and if x ∈ S′′

0 , this implies d(C, x) < d(S′
0, x). In both cases, the silhouette value

improves compared to s(S0, x) if the intra-distance decreases, i.e. x is closer to the
cluster centre than before the split.

s(S′
0, x) =

d(C, x)− d(S′
0, x)

max(d(C, x), d(S′
0, x))

{
> s(S0, x) if d(S′

0, x) < d(S0, x)

≤ s(S0, x) if d(S′
0, x) ≥ d(S0, x)

s(S′′
0 , x) =

d(C, x)− d(S′′
0 , x)

max(d(S′
0, x), d(S′′

0 , x))

{
> s(S0, x) if d(S′′

0 , x) < d(S0, x)

≤ s(S0, x) if d(S′′
0 , x) ≥ d(S0, x)

2. Cluster C is not the closest cluster to x after the split but the other partition.
If x ∈ S′

0, this implies that d(C, x) ≥ d(S′′
0 , x) and if x ∈ S′′

0 , this implies
d(C, x) ≥ d(S′

0, x). The silhouette value improves compared to s(S0, x) if the
difference between the inter- and intra-distances increases.

s(S′
0, x) =

d(S′′
0 , x)− d(S′

0, x)

max(d(S′′
0 , x), d(S′

0, x)){
> s(S0, x) if d(S′′

0 , x)− d(S′
0, x) > d(C, x)− d(S0, x)

≤ s(S0, x) if d(S′′
0 , x)− d(S′

0, x) ≤ d(C, x)− d(S0, x)

s(S′′
0 , x) =

d(S′
0, x)− d(S′′

0 , x)

max(d(S′
0, x), d(S′′

0 , x)){
> s(S0, x) if d(S′

0, x)− d(S′′
0 , x) > d(C, x)− d(S0, x)

≤ s(S0, x) if d(S′
0, x)− d(S′′

0 , x) ≤ d(C, x)− d(S0, x)
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All other partitions Since we know how the silhouette value changes for the elements
in the subset being split (S0), we need to analyse the effect on all data points that are
not in the subset being considered (Sj). For these data points, we know that the intra-
cluster distance does not change, so we only need to consider all cases for the change in
inter-distance. So we only consider the silhouette value sc = s(Sj , x) and after splitting
sc′ = s(Sj , x) for all cases. After splitting, the nearest cluster centre for a data point in
Sj can change as follows. The closest cluster centre for a data point is S0 and after S0 is
split, either S′

0, S′′
0 or some C can be the closest cluster. If before the split the nearest

cluster centre is some cluster C; after the split either C remains the nearest cluster,
and thus the inter-distance remains or S′

0 or S′′
0 are the closest cluster centre. Only the

assumption that d(C, x) > d(S0, x) directly distinguishes two cases for sc and sc′. All
other assumptions to distinguish all possible sc do not directly imply different cases for
sc.

For data points in subsets that are not partitioned, the silhouette value can only
improve if the inter-distance increases while the intra-distance remains the same. Only
if the partitioned set was the closest cluster before, the inter-distance can increase if the
distance between x and both resulting partitions S′

0 and S′′
0 is greater than between x

and S0 before.

Lemma 3.2 (Change in the silhouette value for data points not in partitioned subset).
For each data point x in a given set Sj, the nearest neighbouring cluster is either some
cluster C or S0. It is assumed that S0 is being divided into S′

0 and S′′
0 via a DPM-based

split and further that S′
0 is closer to x than S′′

0 . The silhouette value for x will improve
following the split in the case: d(S0, x) < min(d(S′

0, x), d(S
′′
0 , x)) (1a, 1b).

Proof. The silhouette value before the split is defined as sc = s(Sj , x) for some data
point x ∈ Sj and after a DPM-based split sc′ = s(Sj , x).

sc = s(Sj , x) =
min(d(C, x), d(S0, x))− d(Sj , x)

max(min(d(C, x), d(S0, x)), d(Sj , x))

sc′ = s(Sj , x) =
min(d(C, x), d(S′

0, x), d(S′′
0 , x))− d(Sj , x)

max(min(d(C, x), d(S′
0, x), d(S′′

0 , x)), d(Sj , x))

To determine the change in the silhouette value of x, the following cases of change in the
inter- and intra- distance of x.

1. We first consider the case where the cluster S0 that is split was the closest cluster for
a data point x. After the split, there is no cluster S0 and either one of the partitions
S′
0, S

′′
0 is the closest cluster or if the distance to both centres has increased, some

cluster C may also be the closest cluster centre.

sc = s(Sj , x) =
d(S0, x)− d(Sj , x)

max(d(S0, x), d(Sj , x))

(a) After the split, instead of S0, one of its partitions S′
0, S

′′
0 is the nearest cluster.

In both cases, S′
0 or S′′

0 as the nearest neighbouring cluster, the silhouette
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value for a data point x improves if the inter-distance is greater than before
the split. The intra-distance is not affected by the split.

Damminsc′ = s(Sj , x) =
min(d(S′

0, x), d(S′′
0 , x))− d(Sj , x)

max(d(S′
0, x), d(Sj , x)){

> sc if min(d(S′
0, x), d(S′′

0 , x)) > d(S0, x)

≤ sc if min(d(S′
0, x), d(S′′

0 , x)) ≤ d(S0, x)

(b) After the split, neither S′
0 nor S′′

0 is the closest cluster for a data point x, but
some cluster C. In this case, we know that the distance to C is greater than
the inter-distance to S0. So, the silhouette value will always improve.

sc′ = s(Sj , x) =
d(C, x)− d(Sj , x)

max(d(C, x), d(Sj , x))
> sc

2. If S0 was not the closest cluster before the split, the silhouette value will only be
affected if one of the partitions is the closest cluster after the split.

sc = s(Sj , x) =
d(C, x)− d(Sj , x)

max(d(C, x), d(Sj , x))

(a) In both cases, S′
0 or S′′

0 as the closest cluster, the the inter-distance for x is
smaller than before the split, otherwise C would still be the closest cluster.
The intra-distance is not affected by the split, so there is no case where the
silhouette value improves.

sc′ = s(Sj , x) =
min(d(S′

0, x), d(S′′
0 , x))− d(Sj , x)

max(min(d(S′
0, x), d(S′′

0 , x)), d(Sj , x))
< sc

(b) If C is still the closest cluster after the split, the inter-distance is not affected.
Since the intra-distance is also unaffected, the silhouette value remains the
same.

sc′ = sc

The silhouette score of a clustering is determined by averaging the silhouette value
per data point. Thus, the silhouette score improves if the silhouette value per data point
improves on average. For all data points in clusters that are not split, the silhouette
value will only improve if S0 was the closest cluster before the split and after the split,
the centres of both partitions are further away from x. For the data points in the cluster
that is split, the improvement of the silhouette value depends on the change of the intra-
distance compared to the inter-distance.
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(a) Clustering result before splitting with
k = 2 and the corresponding silhouette
score of 0.72.

(b) Clustering result before splitting with
k = 3. and the corresponding silhouette
score of 0.7.

Figure 4: Example data set of three clusters each drawn from an isotropic Gaussian
distribution with a standard deviation of σ = 1. The two clusters with centres (0, 5)
and (0, 0) are 5σ apart. In Fig. 4a the clustering result is shown for two clusters (before
splitting) with a silhouette score of 0.72. In Fig. 4b the clustering result for three clusters
(after split at 2.5 in feature 2) is shown with a silhouette score of 0.7. So the clustering
quality decreases according to the silhouette score after the split.

3.4 Flaws of Silhouette Score

In the previous section we discussed in which cases the silhouette value for a data point
improves. If, on average, the improvements are greater than the degradations, then the
silhouette score for a data set SC improves. In this section, we analyse example data
sets for which the silhouette score does not improve after applying a DPM-based split.

We consider a data set with three clusters, each drawn from an isotropic Gaussian
distribution with the same standard deviation. Since we are considering the change in
the silhouette score after a DPM-based split, we assume the following setting for the data
set. We assume that all clusters have the same number of data points. An example data
set is plotted in Fig. 4a. The initial setting is that DPM has already chosen a split that
separates a third of the data points from the rest, resulting in the clustering as shown
in the figure. We refer to the purple data points as cluster C and to the yellow data
points as S0. Analogous to the previous section, we now consider the case where the
next DPM-based split, divides S0 into S′

0 (cyan in Fig. 4b) and S′′
0 (yellow in Fig. 4b).

For the example data set, the silhouette score before the second split decreases after the
split.

The change in the silhouette score is the average change in the intra- and inter-
distance of each data point. Thus, for the example given, the change in the silhouette
score should be influenced by the distances between the three cluster centres. We denote
the distance between two cluster centres of clusters C and S0 as dC,S0 = dS0,C . In Fig. 5
we analyse the example in Fig. 4 for a more general setting regarding the distances of
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Figure 5: This plot shows the change in the silhouette score of a clustering of a dataset
before and after the set S0 is split into S′

0, S
′′
0 . The data sets vary in the distance between

the cluster centres by a factor of the standard deviation of the cluster to understand this
effect. Higher values indicate more improvement in the silhouette score and negative
values indicate that the silhouette score is lower than before the split. An example
setting is given in Fig. 4.

the cluster centres. On the y-axis the change in the silhouette score is plotted and on the
x-axis the distance between the cluster C and S0 (before splitting). The different lines
correspond to the distances of S′

0 and S′′
0 (after splitting). The further away the cluster

centres of S′
0 and S′′

0 are, the better the change in the silhouette score. For larger dS′
0,S

′′
0
,

the intra-distance before the split increases as well as the inter-distance after the split.
As the distance between cluster C and S0 increases, the change in the silhouette score
decreases. A larger dC,S0 implies a large inter-distance for the data set before the split
as C is the closest cluster. After the split, if dC,S′

0
> dS′

0,S
′′
0

(analogue for S′′
0 ), the closest

cluster centre is S′′
0 . Although the intra-distance for S′

0 and S′′
0 decreases after the split,

the large inter-distances before the split can not be overcome. Thus, in these cases, the
advantage of the split is not captured by the silhouette score.

The impact of a DPM-based split on the silhouette value of data points was examined.
The conditions under which the silhouette value of a data point improves, depending on
whether the data point is in the partitioned subset or in any other partitions, were deter-
mined. The limitations of the silhouette score as a clustering metric were discussed using
an example in which, even for an optimal split, the overall silhouette score decreased.
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4 From (ξ, ρ) to Hero

The strategy of identifying gaps in data points rather than focusing on the centre of dense
areas has yielded encouraging results in terms of balancing the privacy-utility trade-off.
As an illustration, DPM employs metrics to locate gaps in data sets. DPM characterises
gaps as regions containing a limited number of data points. To enhance the precision of
the results, DPM incorporates the metric centreness, which prioritises central gaps over
those situated near the dimension bounds. In order to gain insight into the potential of
the approach of finding gaps, we propose a more theoretical definition of gaps which we
call (ξ, ρ)-separability.

4.1 (ξ, ρ)-Separability

The most intuitive definition of a gap is an area of size ρ in the data points with no data
points. If there is a gap in the data set, it can be said that the data set is separable. The
formalisation of the notion of separability of a set S into two subsets X and Y is based
on the requirement that, for every point x ∈ X there is a zone (an open ball) of radius
ρ/2 in which no points from Y are present. Similarly, every point y ∈ Y also has such a
zone of radius ρ/2 in which no points from X are present.

Definition 7 ((High dimensional) ρ-separability). Let S ⊆ D ∈ D be a set and x, y ∈ S
be two data points. Let X,Y be a partitioning of S, i.e. X∪̇Y = S. Then S is ρ-separable
into X and Y if ρ > 0 is the largest real value such that for every x ∈ X the open ball
Bρ/2(x) := {x′ | ∥x − x′∥2 ≤ ρ/2} does not contain elements of Y ,

∣∣Bρ/2(x) ∩ Y
∣∣ = 0.

We abbreviate that with X,Y are ρ-separable and write ρX,Y . If X,Y are clear from the
context, we write that X,Y are ρ-separable.

It could be argued that requiring that a gap does not contain any data points is
overly restrictive; therefore, we propose an extension to the definition of a gap, whereby
the number of data points in the area is also taken into account. A new parameter,
denoted as ξ, is introduced as an upper bound for the number of data points that can
be accepted in an area of size ρ. In other words ξ the number of data points that violate
ρ-separability, and thus these areas can still be considered as gaps in the data set. The
set can therefore be defined as (ξ, ρ)-separable.

Definition 8 ((ρ, ξ)-separability). Given two sets X,Y ⊆ D ∈ D, we say that for
ρ > 0, ξ ∈ N+, X and Y are (ξ, ρ)-separable iff. ξ is the smallest natural number such
that for every x ∈ X the open ball Bρ/2(x) does not contain more than ξ elements of Y ,∣∣Bρ/2(x) ∩ Y

∣∣ ≤ ξ.

Remark 3. If X and Y are (ξ, ρ)-separable, then there is at least one point s ∈ Rm

between X and Y such that the open balls Bρ/2(s) around s have at most ξ points from
X ∪ Y : |Bρ/2(s) ∩ (X ∪ Y )| ≤ ξ. We say that s is a (ρ, ξ)-separator of X and Y .
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4.2 Using Gaps for Clustering

If a set is (ξ, ρ)-separable for reasonable of ξ and ρ, it can be assumed to be clusterable.
The corresponding gaps can be employed for clustering purposes. One approach that
is employed by DPM, for example, is to consider the data points in each dimension
separately by projecting all data points onto a unit vector (the axis). In order to link
the guarantees for (ξ, ρ)-separability to these approaches, we present how they can be
interpreted. We begin by introducing the concept of projecting data points onto a vector.

Definition 9 (Projection). Given v ∈ Rm and D ∈ D, the projection πv of any point
x ∈ D onto v is described as the dot product between x and v. Formally, πv : Rm → R
with πv(x) = v · x. The projection of a set S ⊆ D onto v is described as πv(S) =
{πv(x)| x ∈ S}. The preimage set on a set G ⊆ R regarding a vector v is defined as
π−1
v (G) = {x ∈ Rm| x · v ∈ G} ⊇ S.

Remark 4. In order to define the vector on which the data points are projected, it is
sufficient to consider only the angle of the vector, rather than its length. Consequently,
we will only consider v ∈ Rm with ||v||2 = 1.

If a data set is ρ-separable in one direction v at an interval G, then the inverse image
of G is empty.

Lemma 4.1. Given a data set D ⊆ Rn. For v ∈ Rn, if vTD := πv(D) is ρ-separable at
the interval G ⊆ R, then π−1

v (G) is empty: D ∩ π−1
v (G) = ∅.

Proof. We prove Lemma 4.1 by contradiction. We thus assume that G ⊆ πv(Rn) and
that G ∩ πv(D) = ∅. We now further assume that there is a data point in D (x ∈ Rn)
that projected to v is also in G. Because vTx ∈ G, x is also in the inverted image of G:
x ∈ π−1

v (G). We assumed that x ∈ D and thereby the projection of x is in the projection
of the dataset D: ⇒ vTx = πv(x) ∈ πv(D). This is a contradiction to the assumption
that G ∩ πv(D) = ∅.

Let us consider a data set D and a direction v. We assume that there is an interval
G where no data points are in the inverse image of G. In this case, the data set D can
be partitioned into two disjoint sets that are ρ-separable. This parameter is given by the
interval (a, b) of G, where ρ is defined as follows ρ = b−a

2 .

Lemma 4.2. Let G = (a, b) with a < b. Given a data set D ⊆ Rn. For v ∈ Rn, if
D ∩ π−1

v (G) = ∅, then there is a partitioning S∪̇S′ = D of D such that ∀x ∈ S, y ∈ S′

are b−a
2 -separable at αx+ (1− α)y for some α ∈ [0, 1] and αx+ (1− α)y ∈ π−1

v (G).

It is assumed that there is an interval G in direction v with a disjoint inverted image
to the data set D. In accordance with the results of Lemma 4.1, the distance between
two projected datapoints πv(x), πv(y), which are in two disjoint sets, is required to be at
least b − a. This result is used to bound the distance between the data points x and y
(instead of their projections).
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Proof. Let S = D ∩ π−1
v ([b,∞)) and S′ = D ∩ π−1

v ((−∞, a]). ∀x ∈ S, y ∈ S′ with
Lemma 4.1 implies {x, y} ∩ π−1

v (G) = ∅. We know that

|πv(x)− πv(y)| ≥ b− a

= |vTx− vT y| ≥ b− a

= |vT (x− y)| ≥ b− a.

We can use this to bound ||x− y||2 as follows.

||x− y||2 = (x− y)T (x− y)

= ((vvT )(x− y))T (vvT (x− y))

= (v(vT (x− y)))T (v(vT (x− y)))

We need to consider different cases for the relation of vT (x− y) and b− a:

Case 1: vT (x− y) ≥ b− a

(v(vT (x− y)))T (v(vT (x− y))) ≥ (v(b− a))T (v(b− a))

= (b− a)(b− a)vT v

= (b− a)2

Case 2: −(vT (x− y)) ≥ b− a

(v(vT (x− y)))T (v(vT (x− y))) = (v(−(vT (x− y))))T (−(v(vT (x− y))))

≥ (v(b− a))T (v(b− a))

= (b− a)2

The argument put forth is that the separation of data points in the centre of a gap
that preserves ξ and ρ when projected yields a separation of similar quality in the original
dimensionality. In other words, the quality of the separation is preserved when the data
points are projected. To be more precise, the proof is analogous to that of ρ-separability,
whereby it is demonstrated that if a one-dimensional separator is constructed using the
aforementioned parameters, then there is a (ξ, ρ)-separator for the original dimensionality.

Formally, with Definition 9 we show that if the projection of two sets X and Y ,
is one-dimensionally (ξ, ρ)-separable, then already X and Y are (ξ, ρ)-separable. We
demonstrate that (1) the value of ξ is maintained even after projection, and (2) a sepa-
rating ρ/2-ball exists within the original set.
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(1) ξ data points are in the preimage of the projection. Let G ⊆ R in πv(S)
be a set that contains exactly ξ elements of S ⊆ D ∈ D. The projection onto v is
defined as projecting every point x ∈ S onto v. With Definition 8, we can prove that
if |πv(S) ∩ G| = ξ, then S can be partitioned into some Sl∪̇Sr = S s.t. Sl and Sr are
(ρ, ξ)-separable. If a data set is (ρ, ξ)-separable in one direction v in G, then the preimage
set π−1

v of G contains exactly ξ elements.

Lemma 4.3. Given a set S ⊆ D ∈ D. For v ∈ Rm with ||v||2 = 1, if vTS := πv(S) is
(ρ, ξ)-separable in G ∈ R, then π−1

v (G) contains exactly ξ elements: |S ∩ π−1
v (G)| = ξ.

Proof. We prove Lemma 4.3 by contradiction. Therefore, we assume that G ∈ πv(Rn),
G ∩ πv(S) = E and |E| = ξ. Further we assume that there is a data point x in S
(x ∈ Rm) that projected on v is also in G but not in E. Because vTx ∈ G, x is also in
the preimage set of G: x ∈ π−1

v (G). As x ∈ S and thereby the projection of x is in the
projection of the dataset S: ⇒ vTx = πv(x) ∈ πv(S). But with x ̸∈ E it follows that
G ∩ πv(S) = E ∪ x which is a contradiction to the assumption that G ∩ πv(S) = E.

(2) There is a ρ/2-open ball in the preimage of the projection. Assume for a
set S and a direction v there is an interval G with ξ data points in the preimage set of
G. Then, the set S can be partitioned into two disjoint sets that are (ρ, ξ)-separable and
ρ = |G| = max(G)−min(G).

Lemma 4.4. Let G ⊂ R and S ⊆ D ∈ D. For v ∈ Rm, if E := S ∩ π−1
v (G), then there

is a partitioning Sl∪̇Sr = S such that for all pairs (x, y) with x ∈ Sl, y ∈ Sr, (x, y) are
(ρ, ξ)-separable with ρ = |G|, ξ = |E|.

Proof. Let Sr = (S \ E) ∩ π−1
v ([max(G),∞)) and Sl = (S \ E) ∩ π−1

v ((−∞,min(G)]).
With Lemma 4.1 it follows that ∀x ∈ Sr, y ∈ Sl the following holds {x, y} ∩ π−1

v (G) ∈ ∅.
We know that

|πv(x)− πv(y)| ≥max(G)−min(G)

=|vTx− vT y| ≥ max(G)−min(G)

=|vT (x− y)| ≥ max(G)−min(G).

We use this to bound ||x− y||2.

||x− y||2 =(x− y)T (x− y)

=((vvT )(x− y))T (vvT (x− y))

=(v(vT (x− y)))T (v(vT (x− y)))

We need to consider two different cases regarding the relation of vT (x−y) and max(G)−
min(G):
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Case 1: vT (x− y) ≥ max(G)−min(G)

(v(vT (x− y)))T (v(vT (x− y))) ≥(v(max(G)−min(G)))T (v(max(G)−min(G)))

=(max(G)−min(G))(max(G)−min(G))vT v

=(max(G)−min(G))2

Case 2: −vT (x− y) ≥ max(G)−min(G)

(v(vT (x− y)))T (v(vT (x− y))) =− (v((vT (x− y))))T (−(v(vT (x− y))))

=(v(−(vT (x− y))))T (−v(vT (x− y)))

≥(v(max(G)−min(G)))T (v(max(G)−min(G)))

=(max(G)−min(G))2

Then, with Lemma 4.4 the distance between two projected datapoints πv(x), πv(y),
which are in two disjoint sets and not in the set E is required to be at least |G| ≥
∥πv(x) − πv(y)∥2. We can use |G| to give a lower bound for the distance between the
data points x and y: ∥x− y∥2 ≥ ρ ≥ ∥πv(x)− πv(y)∥2.

It has been demonstrated that the methodology of initially projecting the data points
onto one of the axes, selecting a separator, and then projecting them back also yields a
separator of comparable quality for the original data points in terms of ρ, ξ.

4.3 Relation to DPM

The clustering algorithm DPM [9] identifies gaps that can be used to separate clusters.
Accordingly, as previously outlined in Section 1, DPM employs the subscores centreness
and emptiness to assess the suitability of areas as potential splits. DPM considers only
split candidates of the same size, β, and thus the size of the split candidates is not
taken into account when selecting a split candidate. The subscore centreness criterion
prioritises splits situated at the centre of the data points in comparison to those located
closer to the border of the range of a given dimension. The subscore emptiness ensures
that those splits are favoured that separate groups of data points. The emptiness of a
given split is determined by the proportion of data points situated in the vicinity of the
split. It should be noted that the emptiness subscore is calculated by subtracting the
optimal emptiness of 1 from the value in question, as the objective is to maximise the
scoring function. The parameter ξ, represents the number of data points in a gap of
size ρ. Consequently, for a fixed gap size of ρ = β, the emptiness subscore for a split s
regarding a set S with noisy count ñ can be expressed as follows:

eβ(S, ñ, s) = 1− |s|
ñ

= 1− ξ

ñ
and β = ρ

It can therefore be posited that DPM is a DP clustering mechanism that identi-
fies optimal (ξ, ρ)-separations for a fixed value of ρ, while accounting for the aspect of
centreness.
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A variant of DPM that incorporates (ξ, ρ)-separability and centreness for varying
values of ρ may yield more optimal split candidates. Furthermore, the scoring of the
splits represents is more accurate with regard to the (ξ, ρ)-separability. Nevertheless,
although different values of ρ may result in a superior scoring function, a split with lower
score may be selected with a higher probability. As the number of candidates increases,
the selection process using the Exponential Mechanism becomes increasingly challenging.
The probability of a candidate being selected is determined by the ratio of their score to
the sum of scores of all split candidates. If the denominator, representing the summed
scores of all split candidates, is excessively large, the impact of the nominator (the can-
didate score) is diminished, leading to a convergence towards a uniform distribution for
the selection probability.

41



5 Conclusion

The theoretical utility analysis of the differentially private mechanism (DPM) was ex-
tended. The authors of DPM have already established the probability of a good split
being selected and of DPM halting. In this study, we expanded the analysis of the stop-
ping criterion and introduced the interpretation of the utility of a mechanism through
the lens of the silhouette score. Finally, we undertook a comprehensive examination of
the underlying concept of DPM, which involves identifying gaps rather than dense areas,
with a view to assessing its suitability for clustering.

In order to provide a more accurate assessment of the stopping guarantees of DPM,
we have established a more precise lower bound for the probability that DPM will halt.
This is achieved by considering not only the probability that DPM will halt immedi-
ately, but also the recursive nature of DPM. Consequently, for each recursion level, we
established a lower bound for the probability that DPM will halt at that level, as well as
for the probability of such a partitioning occurring. We considered two distinct settings.
Initially, we provided a lower bound that is universally applicable, irrespective of the
input data set. This is a relatively loose bound. Subsequently, with certain assumptions
regarding the input distribution, namely the availability of central splits, we provided
more precise lower bounds for the stopping guarantees. In order to gain a more accurate
understanding of the guarantees and their implications for the selection of hyperparame-
ters, we conducted an analysis of the inputs that would cause DPM to halt appropriately.
We examined the stopping behaviour of DPM for an equally distributed data set as well
as a Gaussian distributed data set. Our findings indicated that, for the latter, a large α
is necessary to guarantee that DPM halts for reasonable minimum cluster sizes, which in
turn affects the utility of DPM. Our analysis of the stopping behaviour of DPM suggests
that a greater number of central splits increases the probability that DPM will halt at
a later recursion level. In the current implementation of DPM, the split candidates are
only computed for the input data set and not adapted for each subset. This approach
saves computational overhead and privacy budget, but also allows for cases where only
a few split candidates actually capture the current subset. It would be interesting to
implement an adaptation of the split intervals to the current subset and evaluate this
approach empirically.

Prior to this work, the theoretical analysis of the utility guarantees of DPM are lim-
ited to analysing the stopping behaviour and bounding the probability of selecting a
split with specific characteristics. Although this analysis is crucial for comprehending
the behaviour of DPM, there is no direct correlation between the selection of an opti-
mal split and the metrics that quantify the utility of a clustering result. As previous
research has demonstrated the limitations of the clustering metric inertia, this study in-
stead focuses on the silhouette score. The point-wise change in the silhouette score after
DPM-based splits is analysed. A detailed analysis of all possible settings is conducted
to characterise the circumstances under which the silhouette score improves and when
it decreases. To provide an interpretation of the overall silhouette score of a clustering,
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rather than merely point-wise, we present an illustrative example. The presented exam-
ple demonstrates that, despite the selection of an optimal split by DPM, the silhouette
score may still decline. Therefore, the silhouette score also has limitations in terms of
capturing the utility of a clustering result, a point that has been previously highlighted
by the authors of DPM. Furthermore, they introduced a metric that measures the dif-
ference to a non-privacy-preserving baseline, which appears to be free from the same
shortcomings of previous metrics. This metric should be subject to further analysis to
ascertain its suitability as a clustering metric. It should be noted that they employed a
k-means optimisation as a baseline that, by design, optimises the metric inertia. Thus,
the introduced metric may be susceptible to the same limitations as inertia.

In contrast to existing work, which focuses on dense areas for differentially private
clustering, DPM is the first to adopt an approach based on identifying gaps in a data
set. Despite the existence of prior work that implements the identification of gaps for
the analysis of data sets, there is a lack of theoretical foundation for this approach in the
context of clustering. Accordingly, we considered the general approach of finding gaps
and linked it to the notion of separability. The term "gap" is defined in terms of both
the number of elements within the gap and the width of the gap itself. It was demon-
strated that if data points are separable for a given set of parameters, then a gap may be
defined by those same parameters. In implementing a specific definition of gaps, DPM
considers only intervals of a fixed size. This allows the scoring function of DPM to be
interpreted in terms of separability. An interesting avenue for future research would be
to analyse the performance when the width of a gap is introduced as a metric, i.e. split
interval of multiple sizes. Note that this approach would result in an increasing number
of split candidates, which would present a challenge in selecting a suitable split using the
Exponential Mechanism.

In this work, we conducted an exhaustive analysis of the utility guarantees of the
differentially private clustering mechanism, DPM. We enhanced the lower bounds for
the stopping behaviour of DPM. Furthermore, we established a theoretical connection
between DPM and the clustering metric, silhouette score. We demonstrated the potential
of the underlying approach of DPM by linking it to the theoretical notion of separability.
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