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Abstract. Adversarial examples are small and often imperceptible per-
turbations crafted to fool machine learning models. These attacks seriously
threaten the reliability of deep neural networks, especially in security-
sensitive domains. Evasion attacks, a form of adversarial attack where
input is modified at test time to cause misclassification, are particularly
insidious due to their transferability: adversarial examples crafted against
one model often fool other models as well. This property, known as adversar-
ial transferability, complicates defense strategies since it enables black-box
attacks to succeed without direct access to the victim model. While adver-
sarial training is one of the most widely adopted defense mechanisms, its
effectiveness is typically evaluated on a narrow and homogeneous popu-
lation of models. This limitation hinders the generalizability of empirical
findings and restricts practical adoption.
In this work, we introduce DUMBer, an attack framework built on the
foundation of the DUMB (Dataset soUrces, Model architecture, and Bal-
ance) methodology, to systematically evaluate the resilience of adversarially
trained models. Our testbed spans multiple adversarial training techniques
evaluated across three diverse computer vision tasks, using a heterogeneous
population of uniquely trained models to reflect real-world deployment
variability. Our experimental pipeline comprises over 130k evaluations
spanning 13 state-of-the-art attack algorithms, allowing us to capture
nuanced behaviors of adversarial training under varying threat models and
dataset conditions. Our findings offer practical, actionable insights for AI
practitioners, identifying which defenses are most effective based on the
model, dataset, and attacker setup.

Keywords: Adversarial Attacks · Adversarial Training · Transferability.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable performance across a
wide range of tasks, particularly in computer vision, natural language process-
ing, and autonomous systems. However, these models are known to be highly
vulnerable to adversarial examples, i.e., carefully crafted inputs that cause the

https://arxiv.org/abs/2506.18516v1
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model to make incorrect predictions while appearing benign to human observers.
First identified in the context of image classification [10], adversarial attacks
have since evolved into a rich area of research, encompassing various modalities
and attack scenarios. One prominent class of these threats is evasion attacks,
where the attacker modifies inputs at test time to evade detection or mislead
the model. Real-world manifestations of such attacks have been observed in
malware detection systems [17], facial recognition spoofing [21], and autonomous
driving [8], raising significant concerns about the safety and reliability of AI
systems deployed in adversarial environments.

A particularly troubling property of adversarial examples is their transfer-
ability : adversarial inputs crafted for one model often succeed in misleading
other models, even if they differ in architecture, training data, or optimization
details [6,25]. This phenomenon enables gray-box and black-box attacks, where
the attacker has limited or no access to the target model’s internals yet can
still craft effective attacks using surrogate models. As a result, transferability
significantly undermines the security of models in deployed settings. The DUMB
framework [1] was recently proposed to study how adversarial transferability
varies as a function of three key dimensions: Dataset soUrces, Model architectures,
and the Balance of class distributions. It provided a standardized way to evaluate
how generalizable adversarial examples are across different training conditions,
laying the foundation for more robust empirical evaluations of adversarial threats.

One widely studied defense mechanism against adversarial attacks is adversarial
training, where the model is trained on adversarial examples in addition to clean
data [18,3]. This technique aims to increase the model’s robustness by explicitly
teaching it to resist known types of perturbations. While adversarial training
has shown promise, especially in white-box settings, its effectiveness often comes
with trade-offs: it can lead to significant reductions in accuracy on clean (non-
adversarial) inputs [24], increase training time, and sometimes fail to generalize
beyond the specific attack types used during training. Various improved techniques
have been proposed [28,26], each attempting to balance robustness and standard
accuracy. However, while the individual performance of adversarially trained
models has been extensively evaluated, the impact of adversarial transferability
on these defenses remains underexplored. Given the high computational demands
of adversarial training and the practical challenges of deploying robust models in
real-world settings, particularly under the threat of adversarial transferability, we
are prompted to ask: is adversarial training truly effective in real-world scenarios?
And if so, which strategies offer the most resilience across diverse attack conditions?
This work seeks to answer these questions by systematically evaluating various
adversarial training techniques under controlled yet transferable attack settings.

Contribution. This work presents DUMBer, an extension of the DUMB frame-
work that evaluates the impact of adversarial training on transferability across
models, datasets, and class balance conditions. While DUMB analyzed the ro-
bustness of models to transferred evasion attacks in standard training settings,
DUMBer investigates whether and how commonly used adversarial training
techniques improve resilience under the same conditions. We focus on the inter-
action between adversarial training and transferability, providing a systematic
evaluation across a broad spectrum of configurations. Our aim is to address a key
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limitation in the literature: adversarial training techniques are often evaluated
on a narrow and homogeneous set of models, which is quite limiting given the
empirical nature of these defenses. In contrast, we adopt a “DUMB population”
where every model is unique, better capturing the variability encountered in
real-world deployments. Our contributions can be summarized as follows.

– We propose DUMBer, an attacker model and framework that extends DUMB
by incorporating adversarial training into the evaluation of adversarial trans-
ferability. Across three axes (Dataset soUrces, Model architectures, and class
Balance), our testbed evaluates the evasion resilience of adversarially trained
models.

– We present a comprehensive empirical analysis across three computer vision
tasks, 13 distinct attack types, and 10 training strategies. Our “DUMB pop-
ulation” comprises 240 uniquely trained models spanning diverse datasets
and architectures, resulting in over 130,000 individual evaluations.

– Our analysis provides novel insights and best practices on how to apply
adversarial training to maximize model robustness under realistic attack
scenarios involving transferability.

– We release the full codebase and evaluation scripts to promote reproducibility:
https://github.com/spritz-group/DUMBer.

Research Questions. The extensive cross-parameter evaluations conducted in this
study enable us to address unique research questions that are highly valuable
to AI practitioners and future research efforts.

RQ1: Which adversarial attacks are most effective across the entire DUMB
population? In other words, what attack strategies perform best regardless
of the adversary’s level of knowledge or access?

RQ2: Which adversarial training strategies offer the highest overall robustness?
What defense techniques are most effective across the diverse scenarios repre-
sented in the DUMB population, irrespective of the attacker’s assumptions?

RQ3: How do different training strategies perform across varying evaluation
scenarios C? In other words, what are the best- and worst-case conditions
for deploying each defense strategy in practice?

RQ4: Do robust defenses against strong attacks generalize to weaker ones? Can
adversarial training improve resilience uniformly across a spectrum of attack
strengths, or is its benefit limited to specific threat levels?

RQ5: When and where does adversarial training fail? Specifically, how fre-
quently does it result in a negative AMR, and are these failures uniformly
distributed across scenarios C?

2 Related Works

We now review the state-of-the-art in adversarial training and transfearbility.

https://github.com/spritz-group/DUMBer
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Adversarial Transferability. Adversarial examples are designed to deceive ma-
chine learning models and often transfer across different models, enabling black-
and gray-box attacks through surrogate models. Recent work has investigated
the factors behind adversarial transferability. Gu et al.[13] provide a compre-
hensive survey, categorizing methods to enhance transferability and outlining
core principles and challenges. They stress the need for robust evaluation frame-
works covering diverse architectures and tasks. Building on this, Yu et al.[27]
show that transferability is often overestimated when evaluations are limited
to similar architectures, such as CNNs, and call for broader benchmarks across
different neural networks. These findings motivate the need for frameworks like
DUMB and DUMBer, which systematically assess adversarial transferability
across dimensions like dataset source, model architecture, and class balance.

Adversarial Training. Adversarial training is a leading defense strategy that
incorporates adversarial examples into the training process to improve model
robustness. Early approaches include FGSM-based training [10], which uses the
Fast Gradient Sign Method, and PGD-based training [18], which applies itera-
tive Projected Gradient Descent for stronger perturbations. Both aim to defend
against both seen and unseen attacks. Curriculum adversarial training [4] extends
these ideas by gradually increasing perturbation strength (ϵ) during training,
promoting more stable robustness. Ensemble adversarial training [23] further
diversifies defenses by introducing adversarial examples from multiple pre-trained
models, improving resilience against transfer attacks. With DUMBer, we evaluate
these techniques and their variants, also considering model-agnostic perturba-
tions, to systematically measure their impact on robustness across diverse and
transferable adversarial scenarios.

3 Threat Model

The original DUMB attacker model emphasizes the importance of simulating
realistic conditions for adversarial transferability—conditions often neglected in
the current literature [12]. Building on these foundations, our DUMBer framework
explicitly addresses three critical challenges that arise during attack execution
in practical settings:

– Dataset: Most prior works assume that both the attacker and victim have
access to the same dataset, which is rarely the case in real-world scenarios.
Constructing a surrogate dataset is far from trivial, as it depends heavily
on corpus generation strategies that can vary significantly across domains
and institutions. For example, in hate speech detection, it has been shown
that existing datasets are constructed using divergent methodologies, leading
to models that perform well on their training data but generalize poorly to
others [11]. This undermines the assumption that transferability is guaranteed
simply by using adversarial examples.

– Ground-truth distribution: A related yet distinct issue concerns the assump-
tion that attacker and victim datasets share the same underlying distribution.
In practice, this is rarely true. Differences may stem from distinct data col-
lection processes or disparate preprocessing and augmentation techniques.
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This mismatch becomes even more pronounced in imbalanced tasks, where
techniques such as SMOTE [5] or GAN-based oversampling [9] are often
employed to rebalance class distributions, further distorting the comparability
of training data across parties.

– Model architecture: Attackers and victims typically do not rely on identical
models. While prior work sometimes evaluates transferability across model
families, the space of potential architectures is vast, ranging from standard
CNNs to more sophisticated and customized models. For instance, in computer
vision alone, one might choose among VGG variants (e.g., VGG16, VGG19)
or ResNet families (e.g., ResNet18, ResNet50), each of which may respond dif-
ferently to adversarial perturbations. This diversity introduces an additional
layer of unpredictability in the effectiveness of transfer-based attacks.

In Table 1, we summarize eight representative attack scenarios, each capturing
a possible mismatch between the attacker’s surrogate model and the victim’s
target model. In realistic settings, the attacker typically does not know which
scenario they are operating in, except in the idealized white-box case.

Table 1: Conditions for each case in the DUMB attacker model. Scenarios for each
C are included in [1]. Subscripts a and v denote attacker and victim, respectively.

Case DUa vs DUv Ma vs Mv Ba vs Bv

C1
C2
C3
C4
C5
C6
C7
C8
= match, = mismatch.

C1 = pure white-box, C8 = pure black-box

Beyond these structural mismatches, an additional layer of complexity arises
from the widespread adoption of adversarial training techniques. Deployed models,
especially those exposed to end-users, are often hardened through such defenses
to enhance robustness and safety alignment. As a result, attackers must overcome
transferability challenges and contend with models explicitly trained to resist
adversarial inputs. The objective of DUMBer is to systematically evaluate how
these real-world conditions, ranging from mismatched assumptions to adversarial
training, impact the effectiveness of transfer-based attacks.

4 Methodology

Next, we present our methodology, which is built on the foundation of the DUMB
framework. While our evaluation covers the eight cases from Section 3, our main
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focus is a systematic study of how adversarial training affects these scenarios.
Section 4.1 defines the dimensions of transferability, Section 4.2 overviews the
attacks, Section 4.3 describes training dimensions, and Section 4.4 explains our
unified testing framework.1 An overview of the training process is shown in Fig. 1.

10 Training
Strategies

Baseline FGSM PGD Adaptive Curriculum

Ensemble Surrogate Non-Math Salt&Pepper Gaussian

4 Balance
Levels 50/50 40/60 30/70 20/80

3 Architectures AlexNet ResNet VGG

2 Datasets Bing Google

3 Tasks Task

x

x

x

x

240 Models
for each task

Fig. 1: Model combinations during the training phase.

4.1 Transferability Dimensions

This work focuses on three distinct computer vision tasks, each representing
common settings found in adversarial attack literature. These tasks are framed
as binary classification problems: distinguishing between Bikes vs. Motorbikes
(B&M), Cats vs. Dogs (C&D), and Men vs. Women (M&W). For each task, we
systematically vary the dimensions that influence adversarial transferability.

Dataset Source To meet the specific needs of our testbed, we manually collect
and validate two distinct datasets for each task from Bing and Google, ensuring
control over complexity and potential biases. Starting with an average of 14,264
images per dataset, we remove duplicates using difPy, perform manual inspec-
tions to eliminate mislabeled or low-quality samples, and randomly select 10,000
balanced images per dataset. All images are then resized to 300×300 RGB using
anti-aliasing to maintain quality.

Model Architecture We employ three widely-used and well-established com-
puter vision architectures: AlexNet [15], ResNet18 [14], and VGG11 [22]. We
fine-tune these models across our experimental tasks, building on architectures
also explored in the DUMB framework. Training procedures align with the official
PyTorch guidelines to ensure reproducibility.

1 Underlined terms highlight key dimensions impacting the DUMB population or
evaluation setup.
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Ground Truth Balancing To assess the impact of class imbalance between
attacker and defender, we simulate four levels of imbalance in the training sets:
balanced (50/50), weak (40/60), medium (30/70), and strong (20/80), always
treating the first class (Cats, Men, Bikes) as the minority across all tasks. The
minority class is undersampled accordingly while keeping the majority class fixed
(e.g., for strong imbalance in the Cats vs. Dogs task, 875 Cats vs. 3500 Dogs). This
procedure affects only the training sets; validation and test sets remain balanced.

4.2 Attacks

We incorporate two broad categories of adversarial attacks, mathematical and
non-mathematical, for a total of 13 distinct attacks across different threat models.

Mathematical Attacks Mathematical attacks are model-aware and generated
through optimization methods that leverage gradient information. Our eval-
uation includes widely used attacks such as FGSM [10], BIM [16], PGD [18],
RFGSM [23], DeepFool [20], TIFGSM [7], and Square [2], all implemented via
the Torchattacks Python library. These attacks differ in complexity and trans-
ferability, offering a robust basis to test model vulnerability under white-box
and black-box scenarios. It is important to note that mathematical attacks are
generated at the “balance level” described in Fig. 1, without incorporating any
adversarial training on the source model used for attack generation.

Non-Mathematical Attacks On the other hand, non-mathematical attacks
rely on simple image transformations independent of any model, making them
practical in real-world settings. Using only basic image processing via PIL, we sim-
ulate attacks like Gaussian noise, grayscale conversion, box blur, salt-and-pepper
noise, random occlusion (black box), and color inversion. Though simpler, these
attacks pose realistic threats to vision models and highlight the relevance of
evaluating robustness beyond optimization-based techniques.

Parameter Tuning Each attack, whether mathematical or not, has at least
one parameter controlling its strength (e.g., ϵ for mathematical attacks, radius or
noise level for others). We tune these parameters to maximize attack success while
preserving visual similarity, enforcing a minimum Structural Similarity Index
Measure (SSIM) of 0.4 to prevent excessive distortion. For testing, we select opti-
mal parameters to evaluate model robustness under pure evasion. For validation,
we generate adversarial examples across multiple parameter values to support
adversarial training, ensuring no information leakage between training and testing.

4.3 Training Strategies

We begin by training a baseline model on unperturbed data, reflecting nominal
conditions without adversarial influence. This is a control scenario to assess the
degradation caused by adversarial attacks. Subsequently, we investigate nine
adversarial training strategies designed to enhance robustness against evasion
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attacks. All adversarial training experiments are conducted from scratch rather
than fine-tuning a nominally trained model. This choice avoids compromising
between adversarial and nominal performance—an issue commonly encountered
in fine-tuning approaches. For each adversarial training strategy, we construct
a training dataset composed of 80% original (clean) samples and 20% adversarial
samples. These adversarial examples are drawn from the validation set, following
the generation procedure described in Section 4.2. While this general setup holds
for all strategies, specific implementations may vary based on the training logic.
We define and adapt the following training strategies to facilitate integration
within our framework.

– FGSM: Includes validation-time adversarial samples generated using FGSM
at a fixed ϵ = 0.2, selected to balance perturbation visibility and attack
strength [10].

– PGD: Mirrors the FGSM setup but employs PGD as the attack method, also
with ϵ=0.2 [18].

– Ensemble: Incorporates adversarial examples from both FGSM and PGD
attacks, aiming to increase robustness through attack diversity [23].

– Surrogate: Similar to Ensemble, but uses adversarial examples generated by
different model architectures (trained under the same DUMB configuration)
to simulate transferability-based threats.

– Curriculum: Progressively increases ϵ over training epochs while generating
FGSM attacks offline [4]. This method introduces gradually harder adversarial
examples during training.

– Adaptive: Also increases ϵ over time but generates adversarial examples online
during training [19]. This approach adapts to the model’s current weaknesses,
simulating evolving attack sophistication.

– Non-Mathematical Mixture: Employs all non-mathematical attacks at fixed
perturbation strengths, ensuring diversity without reliance on model gradi-
ents.

– Gaussian: Uses only Gaussian noise as the adversarial perturbation in the
20% adversarial portion of the training set.

– Salt-and-Pepper: Uses only salt-and-pepper noise to generate adversarial
examples for training, enabling focused analysis of noise-based robustness.

4.4 Testing

Designing the evaluation framework presents unique challenges, as the complex-
ity of adversarial attack generation is not aligned with the training process of
the selected target model, unlike the original DUMB framework, where these
components are tightly coupled.

Mathematical Attacks Gradient-based adversarial attacks must be crafted us-
ing dedicated models, referred to as source models Msrc. Our transferability dimen-
sions determine the number of these models: for each task, we consider 2 dataset
sources, 3 model architectures, and 4 data balance levels, resulting in 2×3×4=24
source models per task. Each of the 7 mathematical attacks is then evaluated
against a broader set of target models Mtrg, which includes the full combination
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space shown in Fig. 1, amounting to 240 unique configurations. Consequently,
the total number of mathematical attack evaluations amounts to: 3 tasks × 7
attacks × 24 Msrc × 240 Mtrg = 120,960, where 240 Mtrg correspond to 2 dataset
sources × 3 model architectures × 4 data balance levels × 10 training strategies.

Non-Mathematical Attacks Model-agnostic image perturbations, such as
those not relying on gradients, do not require dedicated Msrc and can be applied
directly to the input data. Nonetheless, the dataset source remains relevant, as
the images differ between the Bing and Google datasets. As a result, the total
number of evaluations for non-mathematical attacks is: 3 tasks × 6 attacks ×
2 datasets × 240 Mtrg = 8,640.

5 Results

In this section, we present the results of our evaluation framework and the effect
that adversarial training strategies have on the different transferability cases. We
first define the metrics for our evaluation in Section 5.1, followed by a baseline
evaluation of our trained models in Section 5.2. We then answer the research
questions detailed in Section 1.

5.1 Metrics

From a machine learning standpoint, each of our tasks is formulated as a binary
classification problem, where the model learns to distinguish between two distinct
classes based on the input images. Since label balancing plays a central role in our
analysis, we adopt the F1 score as the primary evaluation metric to assess the clas-
sification performance of the models. The F1 score provides a balanced measure
of precision and recall, making it particularly suitable for evaluating performance
in scenarios where class distribution may vary. This score is defined as follows.

F1=2
precision·recall
precision+recall

. (1)

To assess both the impact of adversarial attacks and the robustness of adver-
sarially trained models, we introduce two additional evaluation metrics: Attack
Success Rate (ASR) and Attack Mitigation Rate (AMR). ASR, also used in the
original DUMB framework, measures the proportion of samples classified initially
correctly by a model under clean conditions but misclassified after applying the
attack. This quantifies the effectiveness of the attack in degrading model perfor-
mance. To enable a more fine-grained assessment, we also introduce a metric called
severity, assigning each attack attempt to one of five levels that evenly partition
the ASR range from 0% to 100%. This distinction captures attacks ranging from
minimal impact (severity score 1) to significant degradation (severity score 5).
AMR, instead, is the difference between the ASR before and after adversarial train-
ing, normalized by the ASR before training. Specifically, AMR is calculated as:

AMR=
ASRoriginal−ASRadv

ASRoriginal
, (2)
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where the subscript “original” refers to the ASR measured on the baseline model,
and “adv” refers to the ASR of the adversarially trained model. This metric quan-
tifies the attack’s success rate reduction following adversarial training. A higher
AMR indicates that a specific training strategy has more effectively mitigated
the attack’s impact, improving the model’s robustness. It is important to note
that AMR is upper-bounded at 100% (indicating that all attacks were mitigated
successfully), but it is theoretically not lower-bounded. This is because adversarial
training could also deteriorate the model’s performance in nominal and adversarial
scenarios, resulting in a negative or zero value for AMR. To maintain interpretabil-
ity, we cap AMR values at -100%, acknowledging that stronger degradations are
possible, though they often occur when the original ASR was already low. We
thus define +100% as perfect improvement and -100% as complete degradation.

5.2 Baseline Evaluation

Before assessing the impact of evasion attacks, it is crucial to ensure that our
models perform reliably under standard, unperturbed conditions. Table 2 presents
the F1 scores across all models and training strategies on the nominal dataset.
As we adopt the same tasks defined in the original DUMB framework, we observe
a consistent trend in the baseline evaluation, where B&M emerges as the most
straightforward task, while M&W proves to be the most challenging. Overall,
adversarial training does not significantly degrade performance on clean data.
Most strategies maintain parity with the baseline and, in some cases, even im-
prove it. Notably, Gaussian noise and Adaptive training slightly enhance model
performance, suggesting a potential regularization effect that helps generalization.
The only approach that noticeably reduces performance is the Ensemble method,
which shows an average drop of 4.26% compared to the baseline. This may be
due to the added complexity of combining multiple decision boundaries, which
could reduce precision in non-adversarial contexts.

Table 2: Model performance (F1 score) across different training strategies.
Results are averaged on the dataset source and ground-truth balance dimensions.
Task Model Base FGSM PGD Ens. Sur. Cur. Ada. N.M. Gau. S.&P.

B&M
AlexNet 0.976 0.978 0.979 0.892 0.979 0.978 0.978 0.979 0.980 0.977
ResNet 0.986 0.987 0.986 0.987 0.988 0.987 0.985 0.987 0.987 0.988
VGG 0.985 0.985 0.986 0.987 0.988 0.986 0.985 0.987 0.985 0.986

C&D
AlexNet 0.953 0.948 0.949 0.933 0.947 0.952 0.953 0.951 0.950 0.948
ResNet 0.978 0.978 0.979 0.938 0.978 0.978 0.978 0.978 0.979 0.978
VGG 0.982 0.981 0.982 0.939 0.981 0.981 0.982 0.980 0.982 0.981

M&W
AlexNet 0.858 0.862 0.861 0.825 0.857 0.856 0.868 0.864 0.865 0.859
ResNet 0.921 0.921 0.922 0.871 0.917 0.925 0.920 0.920 0.922 0.922
VGG 0.925 0.925 0.925 0.831 0.923 0.925 0.925 0.920 0.925 0.921

Avg. Change w.r.t Base +0.02% +0.06% -4.26% -0.08% +0.05% +0.13% +0.03% +0.14% -0.05%
Ens. = Ensemble, Sur. = Surrogate, Cur. = Curriculum, Ada. = Adaptive.
N.M. = Non-Math-Mix, Gau. = Gaussian noise, S.&P. = Salt-and-pepper noise.
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5.3 Attack Overview

Before analyzing the performance of the DUMB population across its subgroups,
we first evaluate the overall effectiveness of the attacks described in Section 4.2.
An overview is presented in Fig. 2, where results are averaged across C scenarios
and tasks to reflect general attack behavior under diverse, balanced conditions.
A more detailed scenario-specific analysis was already provided in the original
DUMB paper [1]. Fig. 2 shows that TIFGSM is the most effective strategy in
the average DUMB scenario. This is unsurprising given its design to enhance
transferability, particularly benefiting “grayer” box settings. Conversely, attacks
such as BIM, Square, and RFGSM predominantly fall into severity score 1,
suggesting limited effectiveness in more generalized or transfer-based contexts.
Non-mathematical attacks predictably show lower severity, although techniques
like RandomBlackBox and BoxBlur occasionally outperform mathematical at-
tacks such as BIM and Square, especially when averaging across all attacker
scenarios. Notably, within severity score 1, certain attacks display a large fraction
of extremely low ASR cases: for example, BIM and RFGSM fall below a 5% ASR
in 24% of evaluations, highlighting their limited transferability. A more detailed
analysis on each task is shown in Appendix A.1.
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19%

9%

40%
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Non-Math Attacks

Severity Score
1 2 3 4 5

Fig. 2: Severity score distribution of each attack.

5.4 Adversarial Training Overview

Following the approach in Section 5.3, we now assess the AMR of each training
strategy across the full DUMB population. The goal is to identify which method
performs best when the defender has no knowledge of the attacker’s capabilities.
This evaluation considers each C scenario to reflect how a “naive” defender might
deploy protection without tailored assumptions. Results are shown in Fig. 3.
Severity 5 is missing for B&M, as no attacks reached that level. Severity 1 is
excluded across all tasks, as such attacks have negligible ASR and would distort



12 F. Marchiori et al.

AMR interpretation by exaggerating insignificant changes. Our focus on higher
severities aligns with the paper’s aim to support resilience against impactful
threats. Adaptive training stands out, achieving up to 96.69% AMR on B&M.
Curriculum and surrogate also perform well, while non-mathematical approaches
offer modest but more consistent improvements. Some negative AMR values
appear, especially on the M&W task. This stems from the task’s lower baseline
F1 score (see Table 2), making it more sensitive to training disruptions. Still,
since AMR remains strongly positive at higher severities, practitioners should
weigh these occasional drops—often linked to low-impact attacks—against the
broader gains in robustness.
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Fig. 3: Training strategies’ AMR at different attack severity scores. Labels below
scores indicate sample sizes for each cell: [S] (1–10), [M] (10–50), and [L] (50+).

5.5 Adversarial Training on DUMB

In Sections 5.3 and 5.4, we provided general overviews of attacks and training
strategies by averaging across all DUMB scenarios. We now focus on a scenario-
specific analysis, examining how each strategy performs under different C settings.
This detailed view is intended for practitioners familiar with their threat model
and the critical attack scenarios they face, as discussed in the original DUMB
paper. To ensure relevance, we limit our analysis to attacks with severity scores
of 3 or higher. This filters out cases where negative AMR values reflect negligible
performance changes and emphasizes scenarios where adversarial training mean-
ingfully impacts robustness. These results are summarized in Fig. 4. We observe
that adversarial training is most effective when the source and target models
share the same architecture (e.g., C1, C2, C5, C8), likely due to higher ASR in
those cases, as noted in the original DUMB study. Consistent with Section 5.4,
adaptive training can yield negative AMR when model architectures differ, pos-
sibly due to lower initial ASR. A noteworthy trend in the M&W task is that
AMR drops significantly when the dataset source differs, a pattern less evident
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in other tasks. This aligns with prior findings identifying M&W as particularly
sensitive to dataset mismatch, resulting in larger ASR discrepancies. Finally,
some task-scenario combinations are under-represented due to our severity ≥3
filter, especially where data is already sparse (e.g., C1-4-5-7 in B&M, C3-4-7-8
in C&D). As such, outliers like the adaptive C3 case in C&D should not be
over-interpreted; broader evaluation is needed to confirm such trends.
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Fig. 4: Training strategies’ AMR at different DUMB cases. Labels below scores
indicate sample sizes for each cell: [S] (1–10), [M] (10–50), and [L] (50+).

5.6 Attacks vs. Adversarial Training

An ideal defense would maintain strong protection regardless of an attack’s
severity. However, adversarial training often involves trade-offs, where optimizing
for one threat type can weaken resilience to others. To explore this, we analyze
two representative training strategies across varying attacks: adaptive, a strong
defense particularly effective against high-severity attacks (Fig. 5), and Non-Math,
a simpler, model-agnostic approach (Fig. 6). A detailed overview of the specific
AMR values is provided in Appendix A.2. Examining their behavior across DUMB
scenarios and attack severities reveals clear patterns. Adaptive training offers
strong resilience against high-severity attacks, often achieving AMR values above
60% for severities 4 and 5. However, its performance drops against lower severities,
where most negative AMR values occur. Conversely, Non-Math achieves more
consistent but modest positive AMR across lower severities, though it struggles
against stronger attacks. Neither method achieves uniform robustness: adaptive
favors severe threats, while Non-Math provides broader but shallower protection.
This highlights a key trade-off for practitioners: optimizing for strong attacks
may expose vulnerabilities to weaker but more frequent perturbations.
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Fig. 5: Adaptive training strategy AMR under different attacks.
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(b) Attack severity score analysis.

Fig. 6: Non-Math training strategy AMR under different attacks.

5.7 Adversarial Training Failiures

Understanding when adversarial training harms rather than helps is critical for
practitioners considering its adoption. A negative AMR signals that the model
has become more vulnerable to specific attacks than a baseline trained only on
clean data. Our evaluation shows that adversarial training is not universally
beneficial: 20.53% of all assessments resulted in a negative AMR, highlighting
a notable risk of performance degradation. When failures occur, the average
negative AMR is −35.89%±34.06, indicating that the loss in robustness can be
substantial. As shown in Figure 7, while most negative outcomes are moderate,
practitioners must be aware of a long tail of severe degradations.
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Fig. 7: Negative AMR distribution

To better understand where adversarial training most often fails, we analyze the
distribution of negative AMR across different experimental dimensions (Table 3).
Failures are heavily concentrated in DUMB scenarios involving a significant
mismatch between attacker and victim models (Table 3a). Notably, C4 and C8
(model and data mismatches) showed the highest rates of negative AMR, at
32.00% and 28.70%, respectively, while white-box settings (C1) exhibited minimal
failure (1.61%). Different training strategies also varied in robustness (Table 3b):
simple perturbation methods like Salt & Pepper and FGSM led to frequent
but less severe degradations, while the adaptive strategy, despite strong overall
performance, suffered the most severe failures when they did occur (-52.56% on
average). Attack type also plays a key role (Table 3c): DeepFool and Square attacks
triggered failures most frequently, with DeepFool causing the steepest average
drop in robustness (-53.73%). Finally, failure rates were highly skewed toward
weaker attacks (Table 3d), with 72.53% of negative AMR instances occurring
against attacks initially classified as Severity 1; stronger attacks rarely caused
adversarial training to backfire. These results highlight that adversarial training,
while powerful in some settings, is highly sensitive to mismatches, training
strategies, attack types, and the initial strength of adversarial perturbations.

6 Conclusions

This paper examined the effectiveness of various adversarial training strategies
across the scenarios defined by the DUMB framework. Based on 130k evaluations
across all folds of our updated and adapted attacker model, we provide the
following answers to our research questions.

A1: Attack strategies designed for transferability (e.g., TIFGSM) pose a greater
threat to the overall DUMB population, though non-mathematical, model-
agnostic methods also demonstrate significant ASRs.

A2: When the threat model is unknown, strategies such as adaptive and cur-
riculum generally yield the highest AMRs. However, adversarial training can
slightly degrade performance on lower-impact attacks in sub-optimal tasks.
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Table 3: Values and distributions of negative AMR across experimental dimensions.
“% Neg.” indicates, for each dimension, the percentage of negative samples relative
to the total number of negative samples across all dimensions., “Avg.” shows the
mean AMR values and standard deviation, “Med.” indicates the median AMR.

(a) By DUMB case.

Case % Neg. Avg. Med.

C1 1.61% −35.45±35.85 −20.00
C2 7.45% −32.23±36.34 −13.89
C3 10.84% −44.12±35.19 −33.33
C4 32.00% −42.75±35.18 −31.25
C5 2.17% −32.88±35.10 −15.79
C6 7.44% −28.40±33.32 −12.20
C7 9.79% −29.97±30.01 −18.18
C8 28.70% −30.28±30.87 −17.24

(b) By adversarial training strategy.

Train. % Neg. Avg. Med.

FGSM 14.70% −34.40±33.41 −20.69
PGD 9.11% −35.92±31.74 −25.00
Ada. 12.61% −52.56±36.15 −45.83
Cur. 7.41% −43.09±34.35 −32.58
Ens. 10.01% −42.70±34.77 −31.40
Gau. 11.81% −27.55±31.87 −13.04
N.M. 12.23% −30.43±33.06 −15.29
S&P 14.01% −21.80±25.82 −11.54
Sur. 8.11% −42.31±34.69 −30.71

(c) By attack.

Attack % Neg. Avg. Med.

BIM 13.19% −30.23±30.65 −17.24
DeepFool 24.30% −53.73±38.02 −47.37
FGSM 5.96% −22.38±24.88 −12.31
PGD 9.41% −30.66±29.86 −19.36
RFGSM 13.48% −30.97±31.39 −17.65
Square 22.39% −40.41±32.41 −30.36
TIFGSM 11.27% −12.44±16.69 −7.25

(d) By attack severity score.

Sev. % Neg. Avg. Med.

1 72.53% −43.13±35.13 −30.77
2 19.77% −21.30±23.59 −12.05
3 4.77% −5.87±5.91 −4.00
4 1.50% −4.93±4.78 −3.29
5 1.43% −2.72±3.08 −1.29

A3: Adversarial training proves most effective when the source and target mod-
els align. This also holds for mismatched datasets, but only when the original
task is sub-optimal in baseline evaluation. Performance can degrade in sce-
narios with multiple mismatches, particularly when attacks have lower ASRs.

A4: The most effective adversarial training strategies generalize across differ-
ent target attacks, though their success varies depending on the attacker’s
knowledge. However, specific attacks (e.g., DeepFool and Square) can nega-
tively impact adversarially trained models, highlighting the need for focused
attention on these cases.

A5: Adversarial training is less effective against lower severity attacks, indicat-
ing that it should be employed primarily when facing significantly impactful
threats.

Future Works. Future research could develop advanced adversarial training
strategies to overcome weaknesses against low-severity attacks. Exploring hy-
brid defenses that combine model-agnostic and transfer-optimized methods may
further enhance robustness across diverse scenarios. Expanding evaluations to
broader threat models and real-world datasets would improve understanding of
defense generalizability. Finally, a deeper study of the trade-offs between attack
severity and training strategies could guide the design of defenses tailored to
specific applications.
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A Additional Results

We now provide more details on the results shown in Section A.

A.1 RQ1

While Section 5.3 provides a cross-task overview of attack severity scores, Fig. 8
breaks them down by individual task. As noted in the original DUMB paper,
attacks tend to become more effective as tasks grow more challenging. Specifi-
cally, the more straightforward task (B&M) shows no high-severity mathematical
attacks, whereas the most complex task (M&W) features many. A similar trend
appears for non-mathematical attacks, although their overall ASR remains gen-
erally lower.

A.2 RQ4

In Fig. 9 and Fig. 10, we extend the analysis from Section 5.6 by including the
exact AMR values for each case.
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Fig. 8: Severity score distribution of each attack on each task.
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(b) Attack severity score analysis.

Fig. 9: Adaptive training strategy AMR under different attacks.
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Fig. 10: Non-Math training strategy AMR under different attacks.
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