
ar
X

iv
:2

50
6.

18
47

0v
1

 [
cs

.C
R

]
 2

3
Ju

n
20

25
1

Automatic Selection of Protections to Mitigate
Risks Against Software Applications

Daniele Canavese, Leonardo Regano, Bjorn De Sutter, Member, IEEE, and Cataldo Basile, Member, IEEE

✦

This work has been submitted to the IEEE for
possible publication. Copyright may be transferred
without notice, after which this version may no
longer be accessible.

Abstract—This paper introduces a novel approach for the automated
selection of software protections to mitigate Man-At-The-End risks
against critical assets within software applications. We formalize the key
elements involved in protection decision-making—including code arti-
facts, assets, security requirements, attacks, and software protections—
and frame the protection process through a game-theoretic model.
In this model, a defender strategically applies protections to various
code artifacts of a target application, anticipating repeated attack at-
tempts by adversaries against the confidentiality and integrity of the
application’s assets. The selection of the optimal defense maximizes
resistance to attacks while ensuring the application remains usable
by constraining the overhead introduced by protections. The game is
solved through a heuristic based on a mini-max depth-first exploration
strategy, augmented with dynamic programming optimizations for im-
proved efficiency. Central to our formulation is the introduction of the
Software Protection Index, an original contribution that extends existing
notions of potency and resilience by evaluating protection effectiveness
against attack paths using software metrics and expert assessments.
We validate our approach through a proof-of-concept implementation
and expert evaluations, demonstrating that automated software protec-
tion is a practical and effective solution for risk mitigation in software.

Index Terms—software protection, Man-at-the-End attacks, software
risk mitigation, software potency and resilience

1 INTRODUCTION

Software impacts many aspects of our lives these days.
The business of companies developing software or creat-

‚ D. Canavese is with Institut de Recherche en Informatique de Toulouse.
E-mail: daniele.canavese@irit.fr

‚ L. Regano is with the Dipartimento di Ingegneria Elettrica ed Elet-
tronica, Università degli Studi di Cagliari, Cagliari, Italy. E-mail:
leonardo.regano@unica.it

‚ B. De Sutter is with the Computing Systems Lab of Ghent University.
E-mail: bjorn.desutter@ugent.be

‚ C. Basile is with the Dipartimento di Automatica e Informatica, Politecnico
di Torino, Torino, Italy. E-mail: cataldo.basile@polito.it

Corresponding Author: L. Regano
This work was partially supported by project SERICS (PE00000014) under
the NRRP MUR program funded by the EU - NGEU, by ICO, Institut
Cybersécurité Occitanie, funded by Région Occitanie, France, by the European
research project Horizon Europe DUCA (GA 101086308), by the European
FP7 research project ASPIRE (GA 609734) and CNRS IRN EU-CHECK.

ing or managing content and services with software de-
pends to a large degree on the resistance of the software
against so-called Man-At-The-End (MATE) attacks [1].

In the MATE attack model, attackers have full access
to the software and complete control over the systems on
which they aim to reverse engineer software and tamper
with it to breach the security requirements of its assets.
They can use various tools like simulators, debuggers,
disassemblers, and decompilers. MATE attacks include
reverse engineering (e.g., to steal algorithms or find
vulnerabilities), tampering (e.g., to bypass license checks
or cheat in games), or unauthorized execution (e.g., to
run multiple copies with a single license).

Defenders can only rely on protections within the
software or remote trusted servers to mitigate the MATE
risks against their software. Hence, Software Protection
(SP) refers to protections deployed within that software to
secure its assets without relying on external services.

SP comes at a cost. It may add overhead to compu-
tation time, used memory and network bandwidth and
may negatively impact the user experience. Mitigating
risks from MATE attacks hence means selecting a set of
SPs to be deployed on different parts of the application
so that the attacker is delayed for a defender-defined
time frame without degrading the performance over
defender-defined acceptable levels.

As highlighted in the literature [2], SP today of-
ten lacks a formal risk analysis and relies heavily on
security-through-obscurity. Experts manually select SPs,
and their effectiveness and performance are assessed
ex-post, i.e., only after deployment. Many challenges
remain in achieving automated risk analysis of software.
Formalization and automation are largely required as
risk mitigation needs precision, i.e., the repeatability or
reproducibility of obtained results [2].

Other research highlighted a significant skill gap [3]:
there are not enough experts to protect all software that
can benefit from rigorous SP; they are costly, hence SP
is out of reach for SMEs.

Automation is also needed as software vendors face
time-to-market pressure. Every new version of an ap-
plication needs to be protected. Part of the work on
previous versions can probably be reused, but typically,

https://arxiv.org/abs/2506.18470v1

2

the SPs at least need to be diversified. Additionally,
software vendors may have to protect many versions,
such as ports to different platforms, including mobile
devices with limited computational resources. When
proper protection would affect the application’s usability
due to SP’s overheads, developers may decide to limit
the features on those platforms. For example, media
players with DRM will only access low-quality media
versions if the platform does not allow full protection.

In this field, substituting human experts is not an easy
job. The identification of the SP techniques to use, the
parts of the software to protect and the configuration
of the SPs are left to the ‘feeling’ of the team of ex-
perts operating on the code. Empirical studies aim at
modeling the impact of protections against attacks [4],
[5], [6]. All converge to the need for formal definitions
of potency and resilience, the criteria introduced by
Collberg et al. [7], that allow estimating the effectiveness
of SPs when applied on specific portion of a program.

Moreover, even if human experts were available, la-
tency would still be problematic. Automated tool sup-
port can cut the required time and effort.

In this context, our research aims to formalize, au-
tomate, and optimize the risk mitigation phase by de-
veloping a method to suggest a set of SPs to apply to
different parts of the software to delay attackers without
degrading the performance over acceptable levels.

To address these questions and achieve our research
goals, the contributions of this work are the following:

‚ a method to compute the effectiveness of protections
when applied to software assets’ requirements;

‚ a formal model for selecting the optimal SPs to
mitigate risks against the vanilla application, con-
strained by an overhead threshold;

‚ an approach for finding timely solutions to the
above model.

The rest of the paper is organized as follows. Section 2
presents an overview of a MATE SP approach to manage
MATE attack risks that we previously developed, to
frame the novel contributions of this paper. Section 3 for-
mally introduces the constructs used during the decision
process. Section 4 describes the model, the algorithms,
and the metrics for optimally selecting the mitigations.
Section 5 describes how we consulted software protec-
tion experts and the inputs they provided for our ap-
proach. Section 6 presents a quantitative and qualitative
validation of our models and tools. Section 7 relates our
solution to the state of the art. Finally, Section 8 draws
conclusions and sketches ideas for future work.

2 OVERVIEW OF OUR APPROACH

Protecting software against MATE attacks can be seen
as a risk management process. The National Institute
of Standards and Technology (NIST) has proposed an
Information Technology (IT) systems risk management
standard that identifies four main phases [8]:

unprotected application (source code)

asset annotation

source code analysisR
IS

K
F

R
A

M
IN

G

threat identification

risk evaluation and prioritizationR
IS

K
A

S
S

E
S

S
M

E
N

T

decision making

deployment

R
IS

K
M

IT
IG

A
T

IO
N

protected application

server-side logic

R
IS

K
M

O
N

IT
O

R
IN

G

KB

Figure 3: The ESP workflow.

The ESP can also be used in two additional modes. It can be configured to propose a set of
solutions that experts can manually edit to control the SP deployment fully. Moreover, it can be
used to evaluate the effectiveness of solutions manually proposed by experts.

6.1. Risk Framing in the ESP

This tasks’ purpose is to initialize all the constructs and their relations as needed for risk
analysis, and to store them into a model formally defined in [19] and named the KB. It covers half
of the models (M.1 , M.4 , M.5) highlighted in Section 5. Figure 4 presents the core classes, which
will be discussed in the next sections. The KB is instantiated as an OWL 2 ontology [3].

The risk framing starts with the preparation of the KB with generic a-priori information. This
includes the core concepts and data not related to the specific application to be protected but
relevant to framing the risk analysis process. A priori information includes the assets types (c.1 ,
c.2); the supported security requirements (c.8 , c.9 , c.12 , c.13 , c.14); all the known attack steps and
their characterization (c.4 , c.17 , c.18 , c.20 , c.21 , c.22); the available SPs and their composability
(c.24 , c.26 , c.27 , c.28 , c.29); and the necessary constructs to evaluate risks and mitigations (c.23 ,
c.25 , c.30 , c.31 , c.32 , c.33) that were discussed in Section 5.1. The user can also set preferences and
analysis parameters (c.38 , c.44), including hard and soft constraints and SDLC requirements (c.34 ,
c.36), as well as the SPs to consider and the kinds of attacks to counter.

The ESP then performs a source code analysis (m.2) that populates the KB with a-priori
analysis-specific information using the Eclipse C Development Toolkit13. The analysis collects

13https://projects.eclipse.org/projects/tools.cdt

30

Fig. 1. The ESP workflow.

1) risk framing: to establish the scenario in which the
risk must be managed;

2) risk assessment: to identify threats against the sys-
tem assets, vulnerabilities of the system, the harm
that may occur if those are exploited, and the
likelihood thereof;

3) risk mitigation: to determine and implement appro-
priate actions to mitigate the risks;

4) risk monitoring: to verify that the implemented ac-
tions effectively mitigate the risks.

Basile et al. [2] discussed how this approach can be
adopted for MATE SP. They argued that as much as
possible of the four phases should be formalized and
automated, and they presented results obtained with a
prototype Expert system for Software Protection (ESP)
that indeed automates much of the approach. Figure 1
presents the semi-automated workflow of the ESP. The
work presented in this paper is a major contribution
of the ESP.1 Its complete code is available,2 as well
as a technical report on its inner workings [9], a user
manual [10], and a demonstration video.3 The ESP is
primarily implemented in Java as a set of Eclipse plug-
ins with a customized UI. It protects software written
in C and needs source code access. The target users
are software developers and SP consultants aiming to
protect a given application.

1. In the ASPIRE project and some cited papers, the ESP was called
the ASPIRE Decision Support System (ADSS).

2. https://github.com/daniele-canavese/esp/
3. https://www.youtube.com/watch?v=pl9p5Nqsx o

https://github.com/daniele-canavese/esp/
https://www.youtube.com/watch?v=pl9p5Nqsx_o

3

File
+path

ApplicationPart
+name

Code

Asset Datum

!enumeration"

SecurityRequirement

+CONFIDENTIALITY
+INTEGRITY

!enumeration"

DatumType

Call

DatumItem

hasRequirement

hasType

accesses

hasCall hasCallee

startsWith

isFollowedBy

refersTo

Fig. 2. The ApplicationPart class in the SP meta-model
used in the ESP.

2.1 Risk Framing
In the risk framing phase, the ESP user must first anno-
tate the code and data fragments of the C source code of
the application that need protection. These pragma and
attribute annotations identify those fragments as assets
and specify their security requirements, which currently
include confidentiality and integrity. A formal specifica-
tion of the annotation language is available online [9].

Using the source code analysis capabilities of the
Eclipse C Development Toolkit,4 a formal representation
of the whole application is then obtained from the
source code, according to a software protection meta-
model [11]. In this meta-model, an application is mod-
elled as a hierarchical structure of application parts that
can be code regions or data elements (e.g., variables
and parameters). The relations between those parts in
the meta-model are captured in the model instances
stored in a Knowledge Base (KB), including which code
fragments access which data, and the call graph.

During the risk framing phase, a catalogue of available
SPs is also collected in the KB. This includes ordering
requirements, restrictions, synergisms, and antagonisms
of SPs. At the time of writing, the ESP supports Tigress,
a source code obfuscator developed at the University of
Arizona, and the ASPIRE Compiler Tool Chain (ACTC),
which automates the deployment of SP techniques de-
veloped in the ASPIRE FP-7 project [9], [10]. Table 1
summarizes the SP techniques supported by the ESP.

2.2 Risk Assessment
In the risk assessment phase, the threats to the assets
are first identified. These threats are represented as a set
of attack paths that attackers can try to execute. These
paths, in turn, are ordered sequences of atomic attacker
tasks called attack steps. Attack paths are equivalent to
attack graphs [12] and can serve to simulate attacks,
e.g., with Petri Nets [13]. The attack steps that popu-
late our KB originate from a study and taxonomy by

4. https://projects.eclipse.org/projects/tools.cdt

Ceccato et al. [5], [14] and from data from industrial SP
experts who participated in the ASPIRE project. In our
ESP, the attack steps are rather coarse-grained, such as
“locate the variable using dynamic analysis” and “mod-
ify the variable statically”. Future work will address this
limitation of our Proof of Concept (PoC) implementation.

The attack paths are built via backward chaining as
presented in earlier work [15], [16], [17]. An attack step
can be executed if its premises are satisfied. It produces
the results of its successful execution as conclusions.
The chaining starts with steps that allow reaching an
attacker’s final goal (the breach of a security require-
ment) and stops at steps without any premise. The ESP
then performs the risk evaluation and risk prioritiza-
tion by assigning a risk index to each identified attack
path. Every attack step in the KB is associated with
multiple attributes, including the complexity to mount
it, the minimum skills required to execute it, the avail-
ability of support tools and their usability. Additional
attributes can be added easily. Each attribute assumes
a numeric value in a five-valued range. The values of
complexity metrics and software features computed with
the available analysis tools on the involved assets are
used as modifiers on the attributes to assess the actual
risks. For instance, an attack step labeled as medium
complexity can be downgraded to lower complexity if
the asset to compromise has a cyclomatic complexity
below some threshold [18]. The risk index of an attack
path is obtained by aggregating the modified attributes
of its steps into a single value. Per attack step, our tool
first aggregates all the step’s modified attributes into a
single attack step risk index. The attack path risk index is
then computed from its steps’ indices. For more details
on this computation, we refer the reader to the existing
work from Regano et al. [16], [17].

2.3 Risk Mitigation
As is commonly done in MATE SP research, we assume
that attacks cannot be prevented; they can only be de-
layed with the help of SPs. Hence, the mitigation process
must select a set of SPs to be applied on parts of the
unprotected application such that the attacker will be de-
layed without degrading the application’s performance
beyond defender-defined acceptable levels.

2.3.1 From Risk Index to Software Protection Index
We model the delaying of attackers as lowering the
risk index of their attack paths. The ESP has to find
good candidate protection solutions to reduce those risk
indices. To identify good candidate solutions, the ESP
first searches for suitable SPs, i.e., SPs that are known
qualitatively to impact attributes of the attack steps.

A solution is an ordered sequence of a number of SPs.
In this context, an SP is not a conceptual construct or
method such as “an opaque predicate”. Instead, it refers
to a concrete instantiation, meaning it is a concrete code
transformation applied to a specific asset in a specific

https://projects.eclipse.org/projects/tools.cdt

4

PROTECTION TYPE
REQUIREMENTS TOOL

CONFIDENTIALITY INTEGRITY ACTC TIGRESS

anti-debugging ○␣
branch functions ○␣ ○␣
call stack checks ○␣ ○␣
code mobility ○␣
code virtualization ○␣5
control flow flattening ○␣
data obfuscation ○␣
opaque predicates ○␣
remote attestation ○␣ ○␣
white-box crypto ○␣

TABLE 1
SPs supported by the ESP, with enforced security requirements and tools used to deploy the SPs. For each tool, we

only mark techniques supported on our target platforms, i.e., Android and Linux on ARMv7 processors.

program by a specific SP tool that is configured with
specific configuration parameters.

Each such SP is associated with a formula that can
alter the attributes of each attack step. If a SP is deployed,
the risk index of the attack steps and paths can hence be
recomputed to assess the impact of the SP quantitatively.

For nearly three decades, software metrics have been
used to model the strength of software protections
quantitatively. Collberg et al. proposed the use of soft-
ware complexity metrics originating from the domain
of software engineering for assessing the potency of
protections[7], [19], and others used quantitative metrics
computed on the outputs of software analysis tools to
assess the impact of protections on those tools’ useful-
ness for attackers. Examples of the former are Halstead
size [20] and cyclomatic complexity [18], examples of the
latter are points-to-set sizes computed by data flow anal-
ysis tools [21], confusion factors of binary code disassem-
blers [22], and missing edges in function CFGs drawn by
GUI disassemblers [23]. The first three example metrics
can be considered general-purpose metrics, in the sense
that they are relevant to many attack steps and are
impacted by many protections. The last two examples
are more special-purpose metrics, in the sense that they
are relevant for only a limited set of attacker tools
and that they are impacted by protections specifically
designed for that reason.

In the ESP, the formulas used to recompute risk indices
consider complexity metrics computed on the protected
assets’ code. Additional modifiers are activated when
specific combinations of SPs are applied on the same
application part. This way, the ESP models the impact of
layered and synergetic SPs when recomputing the risk
indices.

Candidate solutions must also meet cost and over-
head constraints. Our PoC filters candidate SPs using
five overhead criteria: client and server execution time
overheads, client and server memory overheads, and
network traffic overhead.

Finally, the SP index associated with a candidate solu-

tion is calculated based on the recomputed risk indices
of all discovered attack paths against all assets, weighted
by the assets’ importance. The SP index is the ESP’s
instantiation of what is generally called residual risk.

Computing the SP index by recomputing the risk
index requires knowledge of the metrics on the protected
application. As applying all candidate solutions would
consume an infeasible amount of resources, we have
built a Machine Learning (ML) model to estimate the
metrics delta after applying specific solutions without
having to build the protected application [24]. The ESP’s
ML model has been demonstrated to accurately predict
variations of up to three SPs applied on a single applica-
tion part. With more SPs the accuracy starts to decrease
significantly. This issue seems to be solvable with larger
data sets and more advanced ML techniques.

The ESP uses the same predictors to estimate the
overheads associated with candidate solutions. Per SP
and kind of overhead, the KB stores a formula for
estimating the overhead based on complexity metrics
computed on the unprotected application.

2.3.2 Game-theoretic Optimization Approach
The possibility, and in practice the necessity, of combin-
ing protections greatly increases the solution space. To
explore it efficiently and to find (close to) optimal solu-
tions in an acceptable time, the ESP uses a game-theoretic
approach, simulating a non-interactive SP game. In the
game, the defender makes one first move, i.e., proposes
a candidate solution for protecting all assets. Each pro-
posed solution yields a base SP index, with a positive
delta over the risk index of the vanilla application that
models the solution’s potency.

Then, the attacker makes a series of moves corre-
sponding to investments of an imaginary unit of effort
in one attack path, which the attacker selects from the
paths found in the attack discovery phase. Similarly to
how potency-related formulas of the applied SPs yield a
positive delta in the SP index, we use resilience-related
formulas that estimate the extent to which invested

5

attack efforts eat away parts of protections and hence of
their potency, thus yielding a decreasing SP index called
the residual SP index. This use of resilience aligns with the
framing of the potency and resilience terms in a recent
survey on SP evaluation methodologies [25].

Figure 3 shows a game tree for a scenario with three
candidate solutions S1, S2, and S3; and two possible
attack paths K1 and K2 on two assets α1 and α2 with,
in this example, the same security requirements r. Each
node on the second row models a candidate solution. In
a node labeled s : ppp1q, s is the candidate solution, p is
its residual SP index, and p1 its base SP index.

The lower nodes model attack states. For example,
the leftmost node on the bottom row models the state
reached after a pre-order traversal of the path to that
node, i.e., in the state after the attacker has invested
in K1 on α1, in K2 on α1, and in K1 on α2. In each
node labeled kpα, rq : ppp1q, k is the latest attack step,
α the asset it targets with requirement r, p the state’s
residual SP index considering all succeeding attack steps
included in the node’s subtrees, and p1 the state’s resid-
ual SP index considering the already executed steps. It
can be seen that each additional attack step decreases
the p1 value as it eats away at the SP index, and that
each node’s p is the minimum of its childrens’ p1 values,
because the defender makes the worst-case assumption
that the attacker will choose the optimal attack path. For
leaf nodes, p “ p1 shows only one residual SP index.

The directed edges in the graph mark the best attack
paths on each candidate solution. The dark nodes mark
the best candidate solution, i.e., the one with the highest
residual SP index, as well as the best attack path on
that solution. The top node of the graph, in essence,
summarizes this info.

In Section 4, this whole optimization process and the
used formulas are discussed in more detail as some of
the major contributions of this paper.

2.3.3 Deployment of Candidate Solutions
The ESP then proposes the best solution, possibly with a
low number of comparably scoring alternative solutions,
to the user, who can make the final selection. The user
can then still manually adapt the solution, e.g., fine-
tuning some SP configuration parameters, and have the
ESP generate the corresponding configuration files for
the protection tools.

At that point, the user can simply invoke those tools
(at the moment Tigress and the ACTC, see Section 2.1) on
the application to actually deploy the selected solution in
it. The result of this step (and of the whole workflow) is
the protected binary plus source code for the server-side
components for selected online SPs.

Optionally, the ESP can also be asked to deploy ad-
ditional asset-hiding strategies. In practice, SPs such as
obfuscations are never completely stealthy [26]. Instead,
they leave fingerprints. If only the assets are obfuscated,
those fingerprints facilitate attack steps that aim to locate
the assets. The ESP supports three asset-hiding strategies

to mitigate this and thus better hide the protected assets.
In fingerprint replication, SPs already deployed on assets
are also applied to other code parts to replicate the
fingerprints such that attackers analyse more parts. With
fingerprint enlargement, we enlarge the assets’ code re-
gions to which the SPs are deployed to include adjacent
regions, so attackers need to process more code per
region. With fingerprint shadowing, additional SPs are
applied on assets to conceal fingerprints of the chosen
SPs to prevent leaking information on the security re-
quirements. We refer to existing papers [26], [2] for more
information on this aspect of the ESP’s mitigation phase.

2.4 Risk Monitoring
If the selected SPs include online SPs such as code
mobility [27] and reactive remote attestation [28], the ESP
generates all the server-side logic, including the back-
ends that perform the risk monitoring of the released
application. This includes the untampered execution as
checked with remote attestation and the communication
with the code mobility server.

Our PoC does not automatically include the feedback
and other monitoring data, such as the number and fre-
quency of detected attacks, compromised applications,
and server-side performance issues. The KB must be
manually updated using GUIs to change risk framing
data related to attack exposure and SP effectiveness.
Issues related to insufficient server resources must also
be addressed independently; the ESP only provides the
logic, not the server configurations.

3 FORMALIZATION - THE KNOWLEDGE BASE

The KB contains the basic structures on which the
algorithms operate that Section 4 will describe. These
objects, relationships, and properties are based on the
meta-model for SP [11] that was mentioned earlier in
Section 2.1. This section discusses them in more detail
in preparation for Section 4.

3.1 Artifacts
An application artifact a is a source code region, which
consists of consecutive source code lines. The Applica-
tion Artifacts (AAs) relevant to the mitigation form the
artifact space A. Two AAs are joint if they have at least
one source element in common. This is denoted a1 [a2.
Obviously, jointness is commutative (a1 [a2 ðñ

a2 [a1) and idempotent (a[a). In our model, we only
consider AAs that are either completely disjoint, or one is
included completely in the other, i.e., they are nested. We
assume that a code normalization pre-pass has been per-
formed, through which variable declarations and other
statements, including subexpressions of interest, have all
been put on separate lines. Hence variables correspond
to proper AAs.

Variables need special care, however. For each vari-
able, data flow analysis and alias analysis can identify

6

`

S3,
`

K1pα1, r1q,K1pα1, r1q,K2pα2, r2q
˘˘

:8

S1:7p18q

K1pα1, r1q:7p11q

K1pα1, r1q:9 K2pα2, r2q:7p8q

K1pα1, r1q:7 K2pα2, r2q:8

K2pα2, r2q:9p12q

K1pα1, r1q:9

S2:5p16q

K1pα1, r1q:9p14q

K1pα1, r1q:9

K2pα2, r2q:5p15q

K1pα1, r1q:6p13q

K1pα1, r1q:6

K2pα2, r2q:5

S3:8p15q

K1pα2, r1q:8p14q

K1pα1, r1q:8p12q

K1pα1, r1q:9 K2pα2, r2q:8

K2pα2, r2q:9

Fig. 3. Search tree example, computed with a mini-max approach and dynamic programming optimizations enabled.

the set of all source code lines that can directly or
indirectly (via aliasing pointers) depend on the variable6.
If this set of a variable’s dependent AAs overlaps with
some other AA, the variable is considered joint with that
AA.

3.2 Security Requirements and Assets

A security requirement, denoted with r, is taken from the
requirement space R. Our experiments concerned with
two security requirements: confidentiality and integrity.
Our approach, however, is extensible and can support
any other security requirement.

A Protection Objective (PO) is a pair rr, as that specifies
the security requirement r of an AA a. All the POs
belong to the PO space denoted with O.

The assets of the application are the AAs that we ulti-
mately need to protect. They appear in at least one PO
pair and form the asset set A Ď A. For ease of notation,
we will denote assets as α P A, to easily tell them from
non-assets artifacts a P A. All protection objectives are
associated with a non-negative weight indicating their
importance, which can be retrieved using the function
weight : O Ñ Rě0.

3.3 Protections

To protect the security requirements of the assets, the
ESP will select Concrete Software Protections (CSPs) to be
deployed on the assets. The CSPs are the protection
instantiations implemented by the used SP tools and
configured by the users of the tools. Each possible con-
figuration of a supported SP is hence a CSP pi,j .

The total protection space is the set P of all CSPs.
We partition it into sets Pi “ tpi,1, ..., pi,nu. Each such
set models a single so-called Abstract Software Protection
(ASP): a set of CSPs that can be treated as one at certain

6. We assume that the used SP tools are conservative, in the sense
that they will never deploy SPs in ways that alter the application’s
semantics. The AAs in our model are only used to determine which
transformations will be requested from the tool. The alias analysis
used to determine the set of a variable’s dependent AAs can hence
be unsound, and in the simplest case even be skipped. While this
may yield a suboptimal selection of SPs when the selected ones are
not applicable or composable, it cannot yield a non-conservatively
protected program. Ideally, the SP tool and the decision support tool
of course re-use exactly the same analyses, but this is no requirement.

points in our approach and algorithms. For example, the
SP types listed in Table 1 correspond to ASPs.

This allows for a more concise expression of
protection-related information in the KB, namely per
ASP instead of per CSP, and it enables optimizations of
the algorithms where they can reason per ASP instead
of per CP.7

A CSP pi,j that is deployed on a specific AA a, is called
a Deployed Software Protection (DSP) and denoted with
pi,jpaq. All the potential DSPs from the DSP space D.

Most SPs can only be deployed on certain types of
AAs. For instance, control flow flattening [29] cannot
protect variables but only code. We model whether a
SP Pi is compatible with an artifact a with the Boolean
function compatible : 2P ˆA Ñ tJ,Ku. Furthermore, we
model whether a SP affects a security requirement with
the function protect : 2P ˆ R Ñ tJ,Ku. For instance,
control flow flattening helps to preserve confidentiality
but not integrity.

Dependencies between SPs applied to the same AA
are captured with the following relations, which were
inspired by the work by Heffner and Collberg [30]:

‚ allowed precedence: P1 ăP2 indicates that P1 can pre-
cede P2, i.e., P1 can be applied to some AA before
P2;

‚ required precedence: P1 ăR P2 denotes that P1 has to
precede P2;

‚ forbidden precedence: P1 ćP2 denotes that P1 cannot
precede P2;

‚ encouraged precedence: P1 ă` P2 indicates that P1 is
suggested to precede P2, i.e., this order is particu-
larly beneficial to the AA’s protection. This implies
P1 ăP2;

‚ discouraged precedence: P1 ă- P2 denotes that P1 better
not precede P2 because this combination negatively
impacts the protection. This also implies P1 ăP2.

Note that these relations only restrict the order in which
SPs should be applied to some AA, not whether they
need to be applied immediately after each other. For
example, applying SPs P1, P2 and P3 in that order to

7. It are these benefits that determine how to partition P into the
ASPs Pi: if two CSPs can be considered equivalent with respect to the
information and reasoning that is expressed at the level of ASPs, they
can be added to the same partition. If not, they need to be stored in
separate partitions and be considered different ASPs.

7

some AA is possible if P1 ă` P3 holds. These relations
can model various limitations, which may be due to an
SP technique itself or to the used SP tool. For instance,
the fact that some SP that can be applied at most once
per asset (e.g., anti-debugging) can be formalized simply
as P ćP .

Dependencies can be expressed as regular expres-
sions [30] and valid sequences of CSPs or ASPs can be
generated accordingly. We exploited this property in our
implementation.

3.4 Solutions
A solution S is an ordered list of DSPs S “

pp1pa1q, p2pa2q, . . . q in the solution space S.8

The vanilla solution is the solution without any DSPs,
and is represented as ∅ P S for any application.

DSPs and solutions are not inputs of algorithms in
Section 4, they are outputs dynamically computed by
our methods.

3.5 Metrics
Our approach and models rely on software metrics for
estimating both the effectiveness of protection solutions
and their overheads. General-purpose as well as special-
purpose metrics are supported, and static metrics such as
the mentioned as well as dynamic metrics such as profile
information. All the metrics considered by the model are
stored in a set M .

The optimization process has to examine numerous
solutions. Since building binaries and measuring metrics
is time-intensive, it is impractical to assess metrics on
compiled binaries for all solutions to examine. Hence,
in our model, we introduced an abstract function that
predicts the value of the metrics after the application of
the solution. Formally, the generic function predictm :
S ˆ A Ñ R receives as input a solution and an artifact
and returns the metric m P M of such artifact when it is
protected with the solution’s DSPs.

Our current PoC includes the following three general-
purpose and three special-purpose metrics:

‚ halstead: the Halstead size of code AAs, i.e. their
number of operators and operands [20];

‚ cyclomatic: the cyclomatic complexity of code AAs,
i.e. their number of linearly independent paths [18];

‚ instructions: an AA’s number of instructions [20];
‚ instructions. remote: the number of instructions of an

AA moved to a remote server by SPs such as code
mobility [27] or client-server code splitting [31], [6];

‚ instructions. local: the number of instructions of an
AA that has been migrated from the main applica-
tion process into additional local processes needed
for protection purposes, such as the self-debugging
code deployed as an anti-debugging protection [32];

8. CSPs have been indexed as pi,j when we were referring to
partitions of the protection space. Here, the single indexed pi is used
to order CSPs in a solution.

‚ instructions. guarded: the number of instructions of
an AA guarded against tampering by tampering
detection techniques such as remote attestation [28].

Our PoC used the link-time rewriter framework Dia-
blo [33] to measure them on the vanilla application.

Moreover, we have built a pool of ML models that
implement the predictm function for the PoC supported
metrics. Given a DSP ppaq and the metrics values for
the vanilla a, estimate the metrics values that would be
obtained after the DSP has been applied [24].

3.6 Overheads
In our model, overheads are real numbers that corre-
spond to ratios of performance metrics before and after
protection with a given solution. Multiple performance
metrics are supported because multiple types of metrics
might be relevant (e.g., space, time, bandwidth) on dif-
ferent application parts (e.g., app initialization vs. later
phases with real-time requirements, and client-side vs.
remote server-side in the case of online SPs).

These overheads can be smaller than one, as some
SPs can reduce metrics values. For instance, client-server
code splitting can move AAs to a server [31], thus
reducing the computational resources needed to execute
the AA on the client.

Formally, the function overheadi : S ˆ 2A Ñ Rě0

returns the type i overhead of a deployed solution on
a set of artifacts. If this set is the whole program, the
total overhead of type i is returned. By specifying these
limits for sets of artifacts, the model supports expressing
multiple, different constraints on different parts of the
application.

The maximum allowed value for the overhead of type
i on a set of artifacts A will be denoted by θipAq P Rě0.
To specify that we do not care about a specific type of
overhead, we can write θipAq “ 8.

Our current PoC supports five types of overhead, the
latter three of which are only considered when online
SPs such as remote attestation are used in a solution:

1) client app computation time on sample inputs;
2) client app memory footprint on those inputs;
3) server computation time for online SPs;
4) server memory footprint for online SPs;
5) required network bandwidth.
To estimate the overhead overheadi function, our PoC

measures the relevant metrics on the vanilla application
and estimates them for the candidate solutions, because
it cannot generate and measure that much binaries.
The formulas used for this estimation were designed to
estimate an upper bound on the overheads. Alternative
techniques for obtaining more precise estimations are
certainly useful [34], but that is orthogonal to the rest
of our approach.

3.7 Attacks
An attack step will be denoted by k, with all the known
attack steps forming the set K. When the generic opera-

8

tions implied by an attack step are performed on an AA
a P A, we will write kpaq.

An attack path Kpα, rq that endangers a security re-
quirement r of an asset α is an ordered sequence of
attack steps that the attacker executes on specific AAs
ai: Kpα, rq “ pk1pa1q, k2pa2q, . . . q. It can be that ai ‰ α
when ai serves as a pivot to the attacker’s goal α. The
attack path space Kpαq includes all the attack paths against
a specific artifact α.

The attack paths K in K and the attack steps k therein
are abstract in the sense that they do not include a notion
of effort. In other words, they model virtual attacks in
which an attacker has infinite time to execute each attack
steps, and therefore, succeeds in every step.

Since we aim at estimating how SPs delay attacks, we
need to incorporate the concept of effort.

Therefore, a concrete attack path Kpα, rq is the in-
vestment of a certain amount of effort in executing a
sequence of concrete attack steps kipαq to endanger the
requirement r, which are the execution of the attack step
ki on the AA aj for an imaginary unit of effort.9 The
set Kpα, rq denotes the set of all possible concrete attack
paths against the requirement r of α.

The concrete attack paths Kpα, rq against an
asset are derived from the attack paths Kpα, rq.
For an attack path Kpα, rq “ pk1pa1q, k2pa2q, . . . q,
such concrete attack paths are of the form
Kpa, rq “

`

k1pa1q, k1pa1q, . . . , k2pa2q, k2pa2q, . . .
˘

. When
a step kipajq is repeated multiple times, it implies
that more than one unit of effort is invested in it. A
shorthand for a step kipajq that is repeated n times is to
write k

n

i pajq.
Not all concrete attack paths lead to the viola-

tion of a security property. For example, given the
abstract attack path Kpα, rq “ pk1pa1q, k2pa2qq, in-
vesting in the concrete

`

k1pa1q, k2pa2q
˘

may not be
enough for compromising the security properties, while
`

k1pa1q, k1pa1q, k1pa1q, k2pa2q, k2pa2q
˘

can instead lead to
a successful attack.

We model the concept of probability of successfully
mounting a concrete attack path on a protected asset
α with the function Λ : S ˆ Kpα, rq Ñ r0, 1s. Such a
path’s success probability is computed on the success
probability of its steps. To that extent, the concrete at-
tack step probability πk

n
paq

P r0, 1s is the probability of
successfully executing the concrete attack step k on the
unprotected asset α (i.e. on the vanilla application) with
n imaginary units of effort. The base probability πkpaq

has been explicitly provided by our experts through
interviews and questionnaires; the other values of n
are obtained with formulas that asymptotically increase
from a base probability to 1. π considers the attacker’s
expertise by changing the base probability. For instance,
a guru-level attacker will have a higher probability of

9. It is not useful for optimization purposes to give a precise value
of the imaginary unit of effort, as is this just a fixed value to allow
comparing the effectiveness of techniques.

success than a script kiddie10.
In addition, the mitigation factor ζkpaq,ppaq

P r0, 1s re-
duces the feasibility of executing the attack step kpaq

when the DSP ppaq is deployed.
The synergy factor ωk,pipaq,pjpaq

P Rě0 is used to model
protections’ precedences (see Section 3.3). If pi P Pi and
pj P Pj , then:

‚ ωk,pipaq,pjpaq
ą 1 if Pi ă- Pj ;

‚ ωk,pipaq,pjpaq
ă 1 if Pi ă` Pj ;

‚ ωk,pipaq,pjpaq
“ 1 otherwise (i.e. only Pi ăPj holds).

In our PoC, the ζ and ω are constant values determined
using the experts’ assessments, even if in the most
general case, they may depend on the artifact.

Finally, given a solution S “ pp1pa1q, . . . , pnpanqq, the
probability of a concrete attack path Kpα, rq “

´

k
ni

i paiq
¯

i
is computed as follows:

Λ
´

S,
´

k
ni

i pai, rq

¯¯

“
ź

i

µpaiq ¨ πk
ni
i paiq

where µpaq is a function returning the combined effect
of the mitigation (ζ) and synergy factors (ω) of all the
SPs applied to a, so that:

µpaq “
ź

pxpaqPS

ζkpaq,pxpaq
¨

ź

pypaqPS

ωk,pxpaq,pypaq

4 OPTIMAL SELECTION

We leverage a game theoretical procedure to find the
optimally protected application. In this scenario, we
have two players: the defender, whose goal is to raise
the application’s security, and the attacker, who tries
to diminish it. Our approach works in two stages: a
preparatory stage that precomputes the data structures
needed for the second, exploratory stage that searches
for the best solutions.

4.1 Preparatory stage
The preparatory stage is computationally inexpensive but
helps improve the optimization process. It executes the
algorithms for preparing the list of DSPs that can be
considered for protection, as well as algorithms that
partition the AAs into sets named Code Correlation
Sets (CCSs), to speed up the optimization of the DSPs
selection that will be applied on them.

Given the pair rr, as, which includes a PO we want to
enforce, we identify the set Drr,as of all the compatible
DSPs implementing such PO, which is useful to explore
the solution space:

Drr,as “ tppaq : p P P ^compatiblepP, aq^protectpP, rqu

The full DSP space can be trivially computed as the
union of the individual Drr,as.

10. Our approach only requires that the probabilities of successful
attack steps are known to compute the protection indices. There is no
need to formalize what it actually means to be successful, or even to
define successful as the probability of success being 1.

9

Attack paths include attack steps that operate on
different AAs (see Section 3.7). When two attack paths
include attack steps operating on the same AA, one
should consider countering all the involved attack steps
for deciding how to protect the common AA. The idea
is to partition the AAs into sets, named the CCSs, that
permit dividing the attack paths so that we can protect
artifacts in each set independently. The optimization
problem is then split into smaller problems that are more
manageable, as the game we propose is, in the worst
case, exponential.

Formally, given an asset α and all the attack paths
tKipα, rqui against it that have been determined during
the risk assessment phase (see Section 2.2), we introduce
the function art : A Ñ 2A, which returns the set of
all the artifacts involved in at least one attack step to
compromise at least one security property of α. In other
words, this function returns the AAs targeted by at least
one attack step in any of the Kipα, rq.

If artpαiq [artpαjq does not hold, protecting the two
assets will have no interference.

By contrast, if artpαiq [artpαjq holds, during the miti-
gation, the defender may have to deploy protections on
common artifacts to mitigate both attack paths.

However, it is not enough to separate the attack paths
that have no shared AAs using art; it is needed to
build the closure to be able to partition the optimization
problem. Hence, we use the art function to partition
the artifact space A into a collection of non-empty CCSs
“ tAt1u,At2u, . . . , u where:

Atiu “ tαj P A : Dαk P Atiu, artpαjq [artpαkqu.

Given this recursive construction, when protecting
assets in a CCS, the assets in all the other CCSs will not
be affected. Being partitions, CCSs satisfy the coverage
(i.e.

Ť

i Atiu “ A) and the disjointness (i.e.
Ş

i Atiu “ H).
Hence, a solution S can be split into a set of partial
solutions St1u, St2u, . . . one for each CCS.

4.2 Exploratory stage
The goal of the exploratory stage is to find the optimal
candidate solutions. A state T “

`

S,KA
˘

is a pair
consisting of a solution S and an ordered sequence of
attack paths KA “

`

Kpα1, rq,Kpα2, rq, . . .
˘

against the
assets A to protect. We will indicate with T the state
space so that T P T . The simplest state is p∅,∅q, which
is the vanilla solution without any attacks; note also that
the vanilla solution is valid for any application.

Inspired by game theory, we devised an imaginary
turn-based game with two players: the attacker, who will
invest effort trying a variety of attack paths to compro-
mise the security requirements of the application assets,
and the defender, who will explore various solutions to
protect them. Unlike traditional games like chess and
checkers, however, the first turn is due to the defender,
while all the remaining turns are for the attacker. This
simulates the situation where a software house tries to

INPUT: the attack path space KA, the solution
space S, a state T “

`

S,KA
˘

, and the
maximal depth d

OUTPUT: the optimal state T 1 of the sub-tree
rooted in T and its protection index p1

1 IF T “ NIL THEN // the defender’s turn

2 p1 Ð ´8

3 FOREACH S P S DO

4 T̃ , p̃ Ð EXPLOREpKA,S, pS,∅q, d ´ 1q

5 IF p̃ ą p1 THEN
6 p1 Ð p̃

7 T 1 Ð T̃
8 END
9 END

10 ELSE IF d “ 0 THEN // a terminal node

11 T 1 Ð T
12 p1 Ð indexpT q

13 ELSE // the attacker’s turns

14 p1 Ð 8

15 FOREACH Kpαq P KA DO

16 T̃ , p̃ Ð

EXPLOREpKA,S, pS,KA Y Kpαqq, d ´ 1q

17 IF p̃ ă p1 THEN
18 p1 Ð p̃

19 T 1 Ð T̃
20 END
21 END

22 RETURN T 1 and p1

Algorithm 1: EXPLORE.

publicly release a protected application and attackers
have a certain amount of time to try multiple attacks
before the value of assets in it decreases to irrelevant
values.

This scenario can be represented with a tree such as
the one depicted in Figure 3. The first level of the tree
contains the (blue) solutions (i.e. the defender moves,
i.e., the candidate solutions). All the other (red) nodes
are concrete attack paths (i.e. the attacker moves). Hence,
any path from the root is a state as it includes a specific
candidate solution and zero or more concrete attack
paths that the attacker may mount to compromise the
application when that candidate solution is applied.
Every solution is associated with a base SP index (in
parentheses) that is reduced every time the attacker
executes a new attack path, yielding a residual SP index
with the lowest value being reached at the leaves. The
(black) optimal state contains the optimal solution that,
after the attack phase, maintains the maximum residual
SP index. Although the optimal solution is the most
interesting information, the other information in the state
is the sequence of the most dangerous (black) attack
paths, which can also be useful when performing a more
educated risk assessment of the application to protect.

Exploring the graph with a depth-first search algo-

10

rithm allows one to determine how the solution resists
the attack paths and then choose the solutions that resist
the best. The simplest way to explore such trees is to
use the recursive Algorithm 1 based on the traditional
minimax depth-first exploration strategy used in chess
programming [35], [36]. It receives the attack paths
against the assets, the solution space, the state to analyze
T , and the maximum remaining depth of the tree to
visit (which corresponds to the attack path moves still
available to the attacker). It returns the optimal state T 1

of the sub-tree rooted in T and its SP index as outputs.
The SP index is a real number stating how safe a state

is. As a rule of thumb, the defender wants to maximize
the SP index of the application, while the attacker wants
to minimize it.

To start the search from the tree root, the first call
must be EXPLOREpNIL,KA,S, dq, with d ě 1; this will
return the optimal state after analyzing the entire tree.
In the initial call, the loop of Lines 3–9 explores all
the children of the root note, i.e., all possible moves
in the defender’s turn. For each of those moves, which
correspond to the potential solutions, the recursive call
on Line 4 explores the subtree corresponding to the
attackers’ answers. The answer with the highest residual
SP index is then selected on lines 5–8 since the defender’s
goal is to maximize the application’s security.

In the recursive calls, the code on Lines 10–21 is
executed to optimize the attackers’ answers and the
compute the attacker subtrees. The algorithm first checks
if the current state is a terminal node at Line 10. When
a terminal node is found, the exploration stops, and the
current state and its residual SP index are returned. Oth-
erwise, at Line 13, the algorithm recursively explores all
the attack paths and returns the state with the smallest
residual SP index, as the attacker’s goal is to compromise
the application’s security.

For example, in the tree in Figure 3, the optimal state is
`

S3,
`

K1pα1, r1q,K1pα1, r1q,K2pα2, r2q
˘˘

with a protec-
tion index of 8. When the attacker plays, the attack with
the lowest residual SP index is chosen as the ‘winning
move’, and residual SP index is propagated upward
until it reaches the blue (defender) nodes. Dually, the
defender’s goal is to pick the state with the highest resid-
ual SP index, and the optimal solution is propagated
to the root. Algorithm 1’s performance can be vastly
improved by adopting a series of well-known dynamic
programming optimizations. Namely, we implemented
the following techniques:

‚ alpha-beta pruning [37]: this variation skips large
portions of the tree without impacting the final
result;

‚ aspiration windows [38]: this optimization explores
a minimal portion of the tree by guesstimating the
protection index range of the optimal state — this
technique is particularly useful when securing a
new version of an already analyzed application;
thus, when the optimal solution of a similar model
is known in advance;

‚ transposition tables [39]: they cache-like objects that
store previously computed values related to the
protection indices;

‚ futility pruning [40], extended futility pruning [41]
and razoring [42]: these reduction techniques ag-
gressively prune forward some states if they seem
unpromising.

When Algorithm 1 is adapted to incorporate these op-
timizations, the optimized algorithm can decide not to
explore some children or sibling nodes, thus making the
search tree asymmetric; in these cases, the protection
index is computed also in some non-terminal nodes and
used to perform an estimation whether or not it is useful
to further explore a subtree.

Another simple yet effective optimization exploits the
CCSs. Instead of building a single tree for the whole
application, we build a tree for each CCS At1u,At2u, . . .
as each CCSs are independent pieces of the application.
The global optimal solution combines together all the
optimal solutions for each CCS, and its residual SP index
is computed accordingly. The EXPLORE algorithm can
be used without any modification; however, one caveat
must be reported for our PoC. The requirements on
overheads are global properties of an entire application
and cannot be easily split according to the CCSs. Solu-
tions to this issue are under investigation, in our PoC,
we explicitly associated an overhead threshold θi with
each CCSs. These thresholds were explicitly asked to the
industry experts we consulted (as will be discussed in
Section 5).

4.3 Iterating the solution space
The EXPLORE algorithm requires an efficient manner to
iterate through the solution space S, which can be too
big to fit into memory.

In our PoC, we decided to explore the solution space
S by generating the next solution the mini-max algo-
rithm must process. The generation algorithm receives
in input a solution S, the POs, and DSPs spaces, and a
user-defined integer constant σ specifying the maximum
number of DSPs to use per each PO. It returns the next
candidate solution to explore S1 or NIL if S has been
fully explored.

The algorithm is iterative and does not require storing
the entire solution space in memory. However, it needs
a starting point. The vanilla solution ∅ is always a valid
starting solution for any application but our approach
also took into account the experts’ requests to feed the
algorithm with their initial candidate solutions.

The function that generates the next solution works in
three steps.

1) First, it generates a permutation of the DSPs in
the input solution, i.e., it changes the order of
the protections in the input solution. It uses the
lexicographic permutations with restricted prefixes
algorithm [43] to correctly take into account pro-
tections’ precedence and may also exclude dis-

11

couraged combinations. Further, combinations that
exceed the overhead thresholds are discarded.

2) Then, it fuzzes the DSPs in that permutation, that
is, it adds, removes, or replaces some DSPs with
some other ones and checks that all the precedences
are satisfied.

3) Finally, it selects a subset of the DSPs at the previ-
ous step and returns the solution including them
(which may contain more, less or the same number
of DSPs of the input solution.

Trivially, the algorithm returns NIL, signalling that the
solution space has been fully explored11.

4.4 The Software Protection Index

The SP index is computed with the function index : T Ñ

R. Similarly to Collberg’s potency, the key property of
our protection index is that if a state T1 is more secure
than another state T2, then indexpT1q ą indexpT2q must
hold, thus permitting us to find the optimal one. In
addition, the sign of a SP index allows us to infer some
traits of a state T “

`

S,KA
˘

:
‚ if indexpT q “ 0, the state T is without protections

from the attacks in KA, as for the vanilla application
indexpp∅,∅qq “ 0,

‚ if indexpT q ą 0, the state T is mitigating the risks
against the application, also when the attacker is
investing in the attacks in KA;

‚ if indexpT q ă 0, the security of T is compromised
by some attacks in KA.

Security is a multi-faceted aspect of a protected ap-
plication; thus, to compute the SP index, we decided to
use multiple quantifiable security characteristics named
security measures.

The functions measurei : AˆT Ñ Rě0 return the value
of the i-th security measure of an asset in a particular
state. We identified four security measures that stem
from how SPs work:

‚ measureCC : The code comprehension measure esti-
mates how hard it is to understand (local) code. SPs
such as obfuscations increase it, while attacks such
as deobfuscation attempt to decrease it.

‚ measureCT : The code transfer measure estimates how
much code has been moved to a remote trusted
server, thus making it unavailable for reverse en-
gineering on a local machine. For instance, code
mobility raises this measure, while attacks on the
application’s dependence on the remote server (e.g.,
by reconstructing its funtionality locally) lower it.

‚ measureTD: The tampering detection measure evalu-
ates how effective a protection is in detecting an
integrity failure. As an example, remote attestation
boosts this measure while circumventing or bypass-
ing such a protection reduces it.

11. Even if the solutions are not saved, the used algorithms do
not generate duplicates. Hence, we know the generation has been
completed by only maintaining counters.

‚ measureTA: The tampering avoidance measure as-
sesses how effective a protection is in making (static
or dynamic) tampering harder. For instance, anti-
debugging increases this value, while removing
such a technique decreases it.

The code comprehension and transfer measures are
related to code confidentiality, while tampering detection
and avoidance are related to integrity.

All these measures have different relations with the
complexity metrics and protections selected, which are
captured by our formulas. An increase in all the static
metrics values, e.g., after obfuscation, has a positive
impact on protection, as it is supposed to make code
comprehension tasks harder. Decreasing the code size
due to the application of some server-side protections,
like client-server code-splitting, has a positive impact
on the code transfer measure. On the other hand, the
application of remote attestation is unrelated to the static
complexity metrics as it only depends on the technique
used and the number and types of attestation checks
inserted. The general formula for computing the SP
index of a state T “ pS,KAq is:

indexpT q “
ÿ

αPA

˜

weightpαq ¨

˜

ÿ

i

measureipα, T q

¸¸

.

We computed the i-th measure using the equation:

measureipα, T q “ τi ¨ measure1
ipα, T q´

ρi ¨ Hpϵi ´ measure1pα, T qq.

This formula leverages measure1
ipα, T q, an adjusted mea-

sure that takes into account the effects of DSPs and attack
paths on the asset α and the Heaviside step function
H. The adjusted measure is multiplied by τi P Rě0, a
custom weight introduced to allow us to fine-tune the
importance of each measure. The second part of the
formula subtracts a large constant ρi P Rě0 whenever
the adjusted measure is less than ϵi P Rě0. This subtrac-
tion allows marking states for which assets have been
breached so that the search algorithm will avoid them12.

To compute the adjusted measures, we will make use
of the equation

measure1
ipα, T q “

¨

˝

ź

KpaqPKA

p1 ´ Λ pS,Kpaqq

˛

‚¨

¨ measureipα, pS,∅qq

This equation uses measureipα, pS,∅qq, the i-th ad-
justed security measure computed only on the solution
S without any attack path. The attack path’s influence is
instead taken into consideration with the multiplicative
factor using the Λ function.

12. In chess, this is the equivalent of a checkmate. However, in chess,
all checkmate configurations are equivalent, so their score can be set
to ´8. By contrast, we need to differentiate a state with a security
breach from another state with two breaches, so we cannot set all their
SP indices to the same value.

12

To compute measureipα, pS,∅qq, we use the utility
function H1

pxq “ Hpxq¨x to simplify some formulas, a va-
riety of complexity metrics and the notion of Collberg’s
potency [7] P : AˆS Ñ R. The potency is a value stating
how well an artifact is protected and, given the metric
m (see Section 3.5), it can be expressed as:

Pmpa, Sq “
predictmpa, Sq

predictmpa,∅q
´ 1.

Using these definitions, we computed the four ad-
justed security measures with the following formulas:
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

measureCCpα, pS,∅qq “ H1
pPhalsteadpα, Sq`

Pcyclomaticpa, Sqq

measureCT pα, pS,∅qq “
predictremote.instructionspα, Sq

predictinstructionspα,∅q

measureTDpα, pS,∅qq “
predictguarded.instructionspα, Sq

predictinstructionspα, Sq

measureTApα, pS,∅qq “
predictlocal.instructionspα, Sq

predictinstructionspα, Sq
.

5 EXPERT CONSULTATION

To instantiate the quantitative optimization approach
that we described conceptually in the previous sec-
tions, many functions, formulas, factors, parameters, and
weights need to be instantiated, i.e., concrete values need
to be chosen. However, known models of MATE attacker
behavior [5], [14] and reverse engineering in general [44],
[45] are qualitative. In other words, the literature offers
no established, comprehensive quantitative models of
how SPs affect the attacker’s performance as needed for
our approach. We hence collected the necessary inputs
from SPs developers and industry experts involved in
the ASPIRE project; from other experts from the project
consortium partners, i.e., that were not performing or
assisting the research in the project); and from experts
in the Advisory Board.

5.1 Consulted Experts

We can broadly distinguish two types of experts that
have been consulted through structured interviews.

SPs developers

This category of experts developed SPs, like obfuscation
tools, code guards, software attestation techniques, and
code mobility, as reported in a project deliverable [9].
These experts were primarily asked to answer surveys
about the SPs they developed, the security requirements
they help preserve, the attackers’ activities their tech-
niques impact, and the dependencies with other SPs, i.e.,
limitations on composability and potential synergies be-
tween them. Moreover, they participated in the surveys
related to the definition of the SP Index function.

Industry experts
This category of experts includes researchers and practi-
tioners, often with strong backgrounds in offensive tasks
and domain knowledge of the use cases on which the
project artifacts were evaluated. They worked on design-
ing and analyzing the use case applications to protect,
on selecting the proper SPs as mitigation (as human
experts do when no decision support tools are available
to automate the selection), on deploying the techniques,
and eventually on evaluating empirically whether the
protected binaries met the security requirements at an
acceptable overhead. They were asked to answer surveys
on the SPs they used for their jobs, following the same
approach as the SPs developers. Moreover, they were
interviewed to acquire empirical information, like expert
evaluation of the effectiveness of SPs, complexity of
attack steps, and relations among complexity metrics
and attack steps and SPs. In short, they were the primary
source of information for building the SP index formulas.

5.2 Consultation Coverage
The inputs obtained from the experts cover many areas.

Suitability to preserve security requirements (Sec. 3.3)
SPs developers’ feedback was used to build the
compatible function and, together with Industry Experts’
feedback, to define the protect function.

Relations among SPs (Sec. 3.3)
SPs developers and Industry experts helped to formally
model the relations between SPs to the same AAs (al-
lowed, required, forbidden, encouraged, discouraged).
These relations have been assessed using ad hoc surveys
where they were asked to evaluate them on a three-
level scale. This information was complemented with
the existing literature in the field and with the results
of empirical experiments we conducted to assess the
efficacy of selected SPs [4], [28]. These data helped build
the function ωk,pipaq,pjpaq

, i.e., the synergy factor.

Metrics, SP’s and attack complexity relations (Sec. 3.5)
SP developers were first asked to indicate the metrics
that were affected by the application of their SPs. Then,
together with Industry experts, they were asked to es-
timate the impact of variations in the metrics on the
complexity of specific attack steps. These data were used
to build the measureipα, T q, the parameters τi to relate
the importance of the metrics, and measure1

i functions.

Relations between metrics and SP overheads (Sec. 3.6)
SPs developers answered surveys to determine the as-
sociation between the metrics and the overheads for
the SPs they owned. This feedback was also used to
build the formulas that estimate overheads based on
the results of the ML predictors. Moreover, they helped
determine the overhead thresholds and their split into
CCSs.

13

USE CASE PO CCSS

COUNT RANGE MEAN

demo player 58 27 1–2 1.15
license manager 59 26 1–7 1.65
OTP generator 24 17 1–4 1.29

TABLE 2
Code correlation sets in our use cases.

STAGE ALGORITHM COMPLEXITY

preparatory determine deployed SPs linear

preparatory compute code
correlation sets quadratic

exploratory explore search tree exponential

TABLE 3
Computational complexity of the approach.

Relations between SPs and attack steps (Sec. 3.7,3.5)
Experts were first asked to evaluate the complexity
of individual attack steps, regardless of the presence
of SPs. This information served to build the concrete
attack steps probability πk

n
paq

. Then, they were asked to
indicate the impact of the SPs in countering the attack
steps, which resulted in the mitigation factor ζkpaq,ppaq

.
We also collected information about attack steps able
to weaken specific SPs, which was used to estimate
the effectiveness of SPs and helped build the formulas
estimating the probability of successfully mounting an
attack path against the security requirement of an asset,
i.e., the Λ function. Moreover, this experts’ feedback was
used to build the resilience-related formulas used during
the game-theoretic optimization to estimate the extent to
which invested attack efforts eat away parts of the SP
potency, thus decreasing the SP index.

6 VALIDATION
The first validation step we have performed is a the-
oretical complexity analysis. Table 3 summarizes the
results; the full results are reported in the Supplemental
material, where we also list the pseudo-code for all our
relevant algorithms. In the worst case, the search tree
algorithm has an exponential upper bound complexity.
This is the case with and without enabling the dynamic
programming optimizations reported in Section 4.2.

To assess whether this high theoretic complexity im-
pacts the feasibility of the approach, Section 6.1 will
present an experimental evaluation of the practical us-
ability of the optimization method and the introduced
heuristics, showing that in practice, the PoC implemen-
tation completes in minutes. Next, Section 6.2 will report
a summary of the qualitative evaluation by SP experts.

12. The ACTC provides limited support for code virtualization,
meaning that it is not reliably applicable to all code fragments. Hence,
the ESP does not consider it a potential protection instance.

4 32 64 12
8

25
6

51
2

0

20

40

PO count

op
ti

m
iz

at
io

n
ti

m
e

[m
in

]

depth
3
4
5
6

Fig. 4. Optimization time vs. number of POs.

4 32 64 12
8

25
6

51
2

0

1

2

3

4

concrete attack path count

op
ti

m
iz

at
io

n
ti

m
e

[m
in

]

depth
3
4
5
6

Fig. 5. Optimization time vs. number of attack paths.

6.1 Quantitative Evaluation

We tested our PoC (written in Java) on a virtual machine
running on 4 cores of an 11th gen Intel® Core™ i9-
11950H@2.60 GHz and 8GB RAM with Ubuntu 18.04.2
LTS and OpenJDK version 11.0.4 2019-07-16.

Figures 4 and 5 show the time to find the optimal
solution in a variety of applications depending on the
POs and the concrete attack paths. The times have been
computed on search trees of depths 3, 4, 5, and 6. We
have chosen these depth values considering that we used
a tree depth of 3 in the qualitative validation reported in
Section 6.2, with which we obtained results considered
satisfactory by the SP experts involved in the validation.
Furthermore, we considered the numbers of POs and
attack paths ranging from 4 to 512, which we consider
reasonable for real-world applications. For example, as
reported in Table 2, the use cases devised to perform
the qualitative validation range from 24 to 59 POs13. In
addition, we enabled all the supported protections (the
complete list is available in the Supplemental material).

The plots show that the trend is exponential in the

13. Notice that the number of POs in an application is larger than
the number of high-level assets to protect in them. For example,
when a high-level asset such as a license manager needs to have its
integrity protected, the multiple functions that implement it all become
individual POs. The number of high-level assets ranged from 5 to 8 in
the use cases used in the qualitative evaluation.

14

number of POs, concrete attack paths, and search depth.
The latter is the most impactful factor on the execution
time since we are increasing the tuple length of the
concrete attack paths to be analyzed. Interestingly, the
PO count affects the search time more than the concrete
attack path count. This is because the number of POs
affects the first tree level and, hence, indirectly, also the
whole tree, while the number of concrete attack paths
affects all the levels except the first one.

We note that the number of POs, concrete attack
paths, and the search depth primarily influences the
computational time. The actual size of the assets (e.g.,
the source lines of code) does not affect the running time,
nor the number of AAs that are non-assets.

Furthermore, the use of CCSs can mitigate the ex-
ponential nature of the search tree algorithm, as this
heuristic allows the execution of the algorithm multiple
times on smaller sets of POs. Table 2 shows the size of the
CCSs computed on our use cases used for the qualitative
validation described in Section 6.2. The obtained CCS
contain at most 7 POs, with a mean value of less than 2
POs per CCS in all use cases. Figure 4 indicates that, for
such a small number of POs, the execution time of the
search tree algorithm was in the order of seconds.

6.2 Qualitative validation
This qualitative evaluation reports experts’ opinions
about our PoC implementation. It was collected from
the experts from the industrial partners in the ASPIRE
project consortium and its advisory boards. As reported
in Section 2, our PoC covers the whole process of
protecting a Vanilla Application (VA). In this section,
we focus on evaluating the mitigation phase, which
implements the technique described in Section 4. The
complete evaluation of the whole PoC is available in
another article [2] that framed our research in the IT
Design Science Framework [46] towards the adoption of
the NIST Risk Management Framework (SP800-39 [8])
to progress towards a standardized MATE risk manage-
ment approach.

The evaluation process objects were three Android
apps designed and implemented by the project’s indus-
trial partners to represent their commercial software: a
One-Time Password generator for home banking apps,
an app licensing software, and a Digital Rights Manage-
ment (DRM)-enabled video player for protected content.
These apps included security-sensitive assets in dynam-
ically linked C libraries, which were only made avail-
able to academic partners. The high-level descriptions
of applications and assets were disclosed in a project
deliverable [47] to confirm they are not toy examples.

Each of the three ASPIRE industrial partners involved
two experts to validate their own use cases: one internal
expert (i.e., actively involved in the project) and one
external expert (i.e., not participating in the project). The
evaluation was organized into three consecutive phases:

1) Early Internal Expert Assessment: During the PoC
development, the protection owners were involved

in evaluating if their individual SPs were used on
the proper assets and in the correct way to build
solutions. Moreover, internal experts provided con-
tinuous feedback on the PoC models, reasoning
processes and results. Their feedback drove the
PoC development, leading to the alpha version of
the PoC, which was tested comprehensively by the
internal experts. In particular, they were involved
in demos. When the PoC was stable enough, they
used it to protect their use case, analyzing and
commenting on the results, including the solutions
proposed by the PoC and their protection indices.

2) Final Internal Expert Assessment: Near the end of
the project, internal experts were asked to test the
PoC’s first stable version. They used the PoC’s GUI
to protect their use case. Moreover, they evaluated
the tool’s maturity, answering a set of open-ended
questions. Such answers were then discussed in
multiple calls between the internal experts, the
protection owners, the PoC developers and the
coordinator (including this paper’s authors). The
internal experts’ comments and suggestions were
incorporated into the final version of the PoC.

3) Assessment with External Experts: The PoC’s final
version was finally tested by external experts, who
had never before used the PoC nor had they any
information on its internal reasoning processes.
They analyzed the results of the PoC execution on
their use cases, commenting on the solutions and
the individual SPs chosen by the PoC to protect
them. They provided their assessment results by
answering the questionnaire provided to the inter-
nal experts in the previous phase.

The experts accessed the PoC outputs, an HTML
report including the AAs and assets, the attack paths,
and the 10 candidate solutions with the highest solution
protection index.14 The PoC reports on the three app
use cases, almost identical15 to the ones analyzed by the
experts, are available on GitHub16.

The questionnaire answers provided in the second
and third phases of the evaluation showed that, in
summary, the internal and external experts considered
the PoC promising. The degree of automation of the risk
management phases, particularly of the mitigation, was
perceived as useful to support their daily tasks. They
noted that the tool could be powerful in the hands of
experts due to the high configurability of the internal
reasoning processes, which can lead to choices of SPs
for the target application with a quality comparable

14. These solutions, produced by implementing the technique de-
scribed in Section 4, are listed in the report as Level 1 Protections.
The results listed as Level 2 Protections are not relevant for this article,
since they are produced by an additional reasoning phase of the PoC,
where additional protections are applied to non-sensitive code to hide
the target application assets and confuse the attacker, following an
approach described in a previous publication [26].

15. To comply with industrial partners’ confidentiality requirements,
we renamed code and data identifiers of their use cases.

16. https://github.com/daniele-canavese/esp/tree/master/reports

https://github.com/daniele-canavese/esp/tree/master/reports

15

to a completely manual solution. Conversely, in the
hands of software developers without a SP background
and consequently unable to properly fine-tune the PoC
parameters, the experts determined that the PoC would
not attain the same degree of security for the target
application.

The evaluation of the candidate solutions proposed by
the PoC was positive. The experts highlighted that the
ESP’s selection of SPs was specifically tailored for the
use cases. Indeed, all the POC’s decision processes are
based on a formal model of the AAs constituting the
use case code. Thus, attack paths are specific to the target
use case. Consequently, since the generation of candidate
solutions considers both the AAs formal model and the
application-specific attack paths, the resulting choice of
SPs is customized for the targeted use case.

The experts also confirmed that the resulting protected
applications conserved their original semantics after ap-
plying any of the proposed Candidate Solutions (CSs).
Furthermore, they agreed on the acceptability of the
computational overhead introduced by the chosen SPs,
since the use cases protected with the proposed CSs
were still usable without excessive delays. Also, they
reported a high level of obtained asset security since the
SPs included in the CSs were considered able to protect
the use cases appropriately against all the attack paths
(see Section 2.2) generated by the PoC, and also against
the real attacks performed by professional pen testers17

and it has been the basis for a journal article [14].

7 RELATED WORK

Our work relates to existing work in software protection
and risk management.

7.1 Evaluation of Software Protection Strength

Our approach’s use of complexity metrics is in line with
the 1997 proposal of Collberg et al. [7] to evaluate the
potency of protections in terms of complexity metrics.
Since then, complexity metrics have been frequently
used in literature to evaluate the strength of novel ob-
fuscations [25].

Our use of complexity metrics to compute protection
indices is our implementation of the conceptual 2009
proposal of Nagra and Collberg [49] to define potency
in terms of extra resources needed for an attacker’s
analyses to reveal properties of a protected program.
Nagra and Collberg define potency in relation to spe-
cific analyses to reveal specific properties, which is an
improvement over the 1997 definition, but they leave it
open how those analyses can be composed of sequences

17. During the ASPIRE project, two external pen testers were tasked
to attack the three use cases, each protected with a set of SP manually
chosen by the internal experts. They could not successfully attack the
DRM player use case within their available time frame and reported a
significant delay in attacking the two other use cases. A report of their
activity is available in two ASPIRE public deliverables [47], [48].

of individual attack steps and how the impact of protec-
tions on such compositions should be evaluated. With
our approach, we propose a method to specifically solve
that issue.

For each type of attack step, our approach uses distinct
formulas in terms of complexity metrics to compute
how that specific step’s required effort is impacted by
the deployed SPs, and how much that attack step can
counter that impact, i.e., reduce the protection index. By
using distinct formulas for each type of attack step, our
approach captures that different metrics are relevant for
the different attack steps to be considered.

By considering only the attack steps that are relevant
for the given POs, i.e., the given assets and their secu-
rity requirements, and with those distinct formulas, we
instantiate the recommendation of De Sutter et al. [25]
to evaluate the strength of protections in terms of con-
crete attacks. By considering both how SPs yield base
protection indices, and how attack steps can reduce
them to yield residual protection indices, our approach
also adopts their recommendation to perform complete
evaluations, i.e., to consider both the potency the and
resilience of SPs.

7.2 Automated IT Risk Management
Research in the automation of risk management proce-
dures in IT systems is rather old, with multiple expert
systems for network intrusion detection and auditing be-
ing proposed from 1986 onwards [50], [51]. More recent
research mixes expert systems with AI/ML approaches.
The work by Depren et al. uses Self Organizing Maps
and decision trees for breach detection [52], feeding these
results to an expert system for further interpretation,
while the approach by Pan et al. uses neural networks
for detecting attacks leveraging zero-day vulnerabilities
and an expert system to identify known attacks [53].

A recent survey by Kaur et al. enumerates works for
automated risk mitigation in computer networks [54],
distinguishing between approaches for the automated
isolation of infected devices and tools for automated
recommendation and implementation of risk mitigation
procedures [55]. MATE software protection differs con-
siderably from network security, however. MATE attack
modelling needs to include manual tasks and human
comprehension of code, which are not considered in
network security. For example, in network security, the
development of zero-day exploits (using tools also found
in the MATE toolbox) is handled as an unpredictable
event, which side-steps the complexity of analysing and
predicting human activities. This entirely prevents us
from reusing of existing assessment models developed
for the network security scenario.

7.3 MATE Software Protection Risk Mitigation
In a previous paper [2], we proposed two possible
approaches for MATE risk mitigation. The first is per-
forming single-pass mitigation, where a human or a tool

16

is able to find in a single pass the best SP solution,
taking into account also attacks against the protected
application. Considering the complexity of the SP deci-
sion process, we deem the automation of this approach
unfeasible given the current state of research and the
currently available computational resources. The second
approach is iterative mitigation, where multiple steps in
the SP decision process are performed. In this approach,
a first SP solution is evaluated on the VA. Then, possible
attacks are evaluated on this solution in order to refine
it with additional SP. Multiple rounds of refinement
are possible. The game-theoretic procedure presented in
Section 4 can be considered a first attempt at automat-
ing this procedure since solutions are found iteratively,
taking into account the effect of possible attacks against
the protected application in terms of a decrease in the
protection index. Indeed, this is only an estimation of the
actual resilience of selected protections against attacks.
In this sense, the approach could be improved by gener-
ating multiple versions of the application protected with
the SP solutions with the highest protection index, and
automating attack paths found in the risk assessment
phase to find the most resilient solution. It should be
noted that, given the size of the solution space, it would
be practically impossible to perform such a test on all
possible solutions. Thus, the game-theoretic approach
would still be useful even with an available implemen-
tation of such an automated attack procedure.

In industrial practice, companies provide so-called
cookbooks with SP recipes. For each asset, users of their
tools are advised to manually select and deploy the
prescribed SPs in an iterative, layered fashion as long
as the overhead budget allows for additional SPs. Auto-
mated approaches are either overly simplistic or limited
to specific types of SPs, and hence only support specific
security requirements. Collberg et al. [7], and Heffner and
Collberg [30] studied how to decide which obfuscations
to deploy in which order and on which fragments given
an overhead budget. So did Liu et al. [56], [57]. They
differ in their decision logic and in the metrics they
use to measure SP effectiveness. Importantly, however,
their used metrics are fixed and limited to specific
program complexity and program obscurity metrics,
without adapting them to the identified attack paths.
Coppens et al. proposed an iterative software diversi-
fication approach to counter a concrete form of attack,
namely diffing attacks on security patches [58]. Their
work measured the performance of concrete attack tools
to steer diversification and reduce residual risks. All of
the mentioned works are limited to obfuscations. In all
works, measurements are performed after each round of
transformations, much like in the second approach we
discussed above.

To improve the user-friendliness of manually de-
ployed SP tools, Brunet et al. proposed composable
compiler passes and reporting of deployed transforma-
tions [59]. Holder et al. evaluated which combinations
and orderings of obfuscating transformations yield the

most effective overall obfuscation [60]. However, they
did not discuss the automation of the selection and
ordering according to a concrete program and security
requirements.

7.4 Software Protection Tools
Multiple tools, both commercial and free and open
source software (FOSS), are available to automatically
deploy SP techniques to protect selected AA on a target
application. Our PoC were originally designed in the
context of the ASPIRE project, which also developed
the ASPIRE Compiler Tool Chain (ACTC), an FOSS
toolchain for protecting native ARM Android/Linux
libraries [47]. Tigress18 is another popular automatic SP
tool, that is freely available for research. Tigress is devel-
oped by the University of Arizona. This tool performs
source-to-source transformations and supports multiple
SP techniques. The techniques we support for our miti-
gation phase are the ones of these two tools [17]. For the
protection of natively compiled C/C++ programs, only
one additional tool is popular in research according to
a recent survey [25], namely Obfuscator-LLVM [61] and
more recent derivatives thereof. Those operate on the
LLVM Intermediate Representation of the target code to
deploy multiple SP techniques.

Many commercial SP solutions are available, such as
the ones from Irdeto19, GuardSquare20, VMProtect21 and
Oreans (Code Virtualizer22 and Themida23). However,
scarce information can be derived from commercial de-
scriptions of these tools on their inner workings and the
implemented SP techniques.

There is also research interest [62], [63] in automating
the deployment of hardware-based SPs, such as Intel
SGX and ARM Trustzone. Adapting an application code
to support such HW solution is no trivial task, as target
application code must comply with multiple require-
ments (e.g., the use of a modified C Standard Library
for SGX-based applications).

8 CONCLUSIONS AND FUTURE WORKS

This paper presented an approach for automatically
selecting protections to mitigate risks against assets in
software applications. Starting from a vanilla application
with annotated assets and previously identified attack
paths, the approach employs a game-theoretic method
to choose the optimal set of protections, simulating
a scenario where a defender uses protection to delay
potential attackers. The game is solved using a heuristic
based on a mini-max depth-first exploration strategy,
enhanced with dynamic programming optimizations. To
compare candidate solutions, we introduce the Software

18. https://tigress.wtf
19. https://irdeto.com
20. https://www.guardsquare.com
21. https://vmpsoft.com
22. https://www.oreans.com/CodeVirtualizer.php
23. https://www.oreans.com/Themida.php

https://tigress.wtf
https://irdeto.com
https://www.guardsquare.com
https://vmpsoft.com
https://www.oreans.com/CodeVirtualizer.php
https://www.oreans.com/Themida.php

17

Protection Index, which evaluates the effectiveness of
protection against specific attack paths. We developed
a proof-of-concept tool that implements our approach,
which experts validated throughout the ASPIRE project.
The final assessment confirmed that automated software
protection is a viable means for developers and experts
to mitigate application risks.

Future work will see technical improvements in the
decision-making process. Better heuristics in the game-
theoretic solver, some inspired by chess, like killer
moves, smarter solutions and attack paths visit order,
can further improve performance.

Applying the most recent advances in ML and AI
should allow better prediction of metrics used in the
computation of the Software Protection Index and over-
head estimations. Furthermore, the model for estimating
overheads can also be made more precise; we would like
to enable the protection experts to express global over-
heads to be translated into the artifact-specific overheads
used by our model.

Moreover, we aim to refine the software protection
index to make it a practical yet general implementation
of potency and resilience, using more metrics, including
the dynamic ones like entropy of memory access patterns
and instruction traces, and results from dynamic taint
analysis.

Finally, another interesting research area is the auto-
matic generation of more comprehensive attack paths
using Large Language Models (LLMs) with Retrieval-
Augmented Generation. Indeed, more precise attack
paths during the risk assessment phase could help gen-
erate even better solutions.

REFERENCES
[1] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski, “Guest

editors’ introduction: Software protection,” IEEE Software, vol. 28,
pp. 24–27, March 2011.

[2] C. Basile, B. De Sutter, D. Canavese, L. Regano, and B. Coppens,
“Design, implementation, and automation of a risk management
approach for man-at-the-end software protection,” Computers &
Security, vol. 132, p. 103321, 2023.

[3] F. Goupil, P. Laskov, I. Pekaric, M. Felderer, A. Dürr, and
F. Thiesse, “Towards understanding the skill gap in cybersecu-
rity,” 2022.

[4] A. Viticchié, L. Regano, M. Torchiano, C. Basile, M. Ceccato,
P. Tonella, and R. Tiella, “Assessment of source code obfuscation
techniques,” in 2016 IEEE 16th International Working Conference on
Source Code Analysis and Manipulation (SCAM), pp. 11–20, IEEE,
2016.

[5] M. Ceccato, P. Tonella, C. Basile, B. Coppens, B. De Sutter, P. Fal-
carin, and M. Torchiano, “How professional hackers understand
protected code while performing attack tasks,” in 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC),
pp. 154–164, IEEE Computer Society, 5 2017.

[6] A. Viticchié, L. Regano, C. Basile, M. Torchiano, M. Ceccato, and
P. Tonella, “Empirical assessment of the effort needed to attack
programs protected with client/server code splitting,” Empirical
Software Engineering, vol. 25, no. 1, p. 1 – 48, 2020.

[7] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfus-
cating transformations,” Computer Science Technical Reports 148,
Dep. of Computer Science, University of Auckland, New Zealand,
7 1997.

[8] Joint Task Force Transformation Initiative, “SP 800-39. managing
information security risk: Organization, mission, and information
system view,” tech. rep., National Institute of Standards & Tech-
nology, 2011.

[9] C. Basile et al., “ASPIRE Framework Report,” Deliverable D5.11,
ASPIRE EU FP7 Project, 2016.

[10] B. Coppens et al., “ASPIRE Open Source Manual,” Deliverable
D5.13, ASPIRE EU FP7 Project, 2016.

[11] C. Basile, D. Canavese, L. Regano, P. Falcarin, and B. De Sutter,
“A meta-model for software protections and reverse engineering
attacks,” Journal of Systems and Software, vol. 150, pp. 3–21, 2019.

[12] C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” in Proceedings of the 1998 Workshop on New
Security Paradigms, NSPW ’98, pp. 71–79, ACM, 1998.

[13] H. Wang, D. Fang, N. Wang, Z. Tang, F. Chen, and Y. Gu, “Method
to evaluate software protection based on attack modeling,” in
Int’l Conf. on High Performance Computing and Communications
(HPCC) & Int’l Conf. on Embedded and Ubiquitous Computing (EUC),
pp. 837–844, IEEE Computer Society, nov 2013.

[14] M. Ceccato, P. Tonella, C. Basile, P. Falcarin, M. Torchiano, B. Cop-
pens, and B. De Sutter, “Understanding the behaviour of hackers
while performing attack tasks in a professional setting and in a
public challenge,” Empirical Software Engineering, vol. 24, no. 1,
pp. 240–286, 2019.

[15] C. Basile, D. Canavese, J. d’Annoville, B. De Sutter, and F. Valenza,
“Automatic discovery of software attacks via backward reason-
ing,” in Proc. 1st Int’l Workshop on Software Protection, SPRO ’15,
pp. 52–58, IEEE Press, 2015.

[16] L. Regano, D. Canavese, C. Basile, A. Viticchié, and A. Lioy,
“Towards automatic risk analysis and mitigation of software
applications,” in Information Security Theory and Practice, pp. 120–
135, Springer International Publishing, 2016.

[17] L. Regano, An Expert System for Automatic Software Protection. PhD
thesis, Politecnico di Torino, 2019.

[18] T. J. McCabe, “A complexity measure,” IEEE Transactions on
software Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[19] B. Curtis, S. Sheppard, P. Milliman, M. Borst, and T. Love, “Mea-
suring the psychological complexity of software maintenance
tasks with the Halstead and McCabe metrics,” IEEE Transactions
on Software Engineering, vol. SE-5, no. 2, pp. 96–104, 1979.

[20] M. H. Halstead, Elements of Software Science. Elsevier, 1977.
[21] C. Foket, B. De Sutter, and K. De Bosschere, “Pushing Java type

obfuscation to the limit,” IEEE Trans. on Dependable and Secure
Computing, vol. 11, pp. 553–567, 2 2014.

[22] C. Linn and S. Debray, “Obfuscation of executable code to im-
prove resistance to static disassembly,” in Proceedings 10th ACM
conference on Computer and communications security, (New York, NY,
USA), pp. 290–299, ACM, 2003.

[23] J. Van den Broeck, B. Coppens, and B. De Sutter, “Obfuscated
integration of software protections,” Int’l Journal of Information
Security, vol. 20, pp. 73–101, 2 2021.

[24] D. Canavese, L. Regano, C. Basile, and A. Viticchié, “Estimating
software obfuscation potency with artificial neural networks,” in
Security and Trust Management (G. Livraga and C. Mitchell, eds.),
(Cham), pp. 193–202, Springer International Publishing, 2017.

[25] B. De Sutter, S. Schrittwieser, B. Coppens, and P. Kochberger,
“Evaluation methodologies in software protection research,”
ACM Comput. Surv., vol. 57, Dec. 2024.

[26] L. Regano, D. Canavese, C. Basile, and A. Lioy, “Towards opti-
mally hiding protected assets in software applications,” in Proc.
Int’l Conf. on Software Quality, Reliability and Security, pp. 374–385,
IEEE Computer Society, 2017.

[27] A. Cabutto, P. Falcarin, B. Abrath, B. Coppens, and B. De Sutter,
“Software protection with code mobility,” in Proc. of the 2nd ACM
Workshop on Moving Target Defense, MTD ’15, pp. 95–103, ACM,
2015.

[28] A. Viticchié, C. Basile, A. Avancini, M. Ceccato, B. Abrath, and
B. Coppens, “Reactive attestation: Automatic detection and re-
action to software tampering attacks,” in Proceedings of the 2016
ACM Workshop on Software PROtection, SPRO ’16, p. 73–84, ACM,
2016.

[29] T. László and Ákos Kiss, “Obfuscating c++ programs via control
flow flattening,” Annales Universitatis Scientiarum Budapestinensis
de Rolando Eötvös Nominatae. Sectio Computatorica, vol. 30, 06 2007.

[30] K. Heffner and C. Collberg, “The obfuscation executive,” in
Information Security (K. Zhang and Y. Zheng, eds.), (Berlin, Hei-
delberg), pp. 428–440, Springer Berlin Heidelberg, 2004.

[31] M. Ceccato, M. Dalla Preda, J. Nagra, C. Collberg, and P. Tonella,
“Barrier slicing for remote software trusting,” in 7th IEEE Int’l
Working Conference on Source Code Analysis and Manipulation
(SCAM), pp. 27–36, IEEE Computer Society, 2007.

18

[32] B. Abrath, B. Coppens, S. Volckaert, J. Wijnant, and B. De Sutter,
“Tightly-coupled self-debugging software protection,” in Proc.
of the 6th Workshop on Software Security, Protection, and Reverse
Engineering, SSPREW ’16, pp. 7:1–7:10, ACM, 2016.

[33] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De
Bosschere, “DIABLO: a reliable, retargetable and extensible link-
time rewriting framework,” in Proc. Fifth IEEE Int’l Symposium
on Signal Processing and Information Technology, pp. 7–12, IEEE
Computer Society, 12 2005.

[34] S. Alberto, “Towards the prediction of performance degradation
of obfuscated code,” Master’s thesis, Politecnico di Torino, 2021.

[35] E. Borel, “La théorie du jeu et les equation intégrales à noyau
symétrique gauche.” comptes rendus de l’académie des sciences,
173: 1304–08. translated by lj savage in,” Econometrica, vol. 21,
pp. 97–100, 1921.

[36] S. Claude, “Programming a computer for playing chess,” Philo-
sophical Magazine, Ser, vol. 7, no. 41, p. 314, 1950.

[37] J. R. Slagle and J. E. Dixon, “Experiments with some programs
that search game trees,” J. ACM, vol. 16, p. 189–207, apr 1969.

[38] H. Kaindl, R. Shams, and H. Horacek, “Minimax search algo-
rithms with and without aspiration windows,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 13, p. 1225–1235, dec 1991.

[39] D. Breuker, J. Uiterwijk, and H. Van Den Herik, “Information in
transposition tables,” Advances in Computer Chess, vol. 8, pp. 199–
211, 1997.

[40] J. Schaeffer, Experiments in search and knowledge. University of
Waterloo, 1986.

[41] E. A. Heinz, “Extended futility pruning,” ICGA Journal, vol. 21,
no. 2, pp. 75–83, 1998.

[42] J. Birmingham and P. Kent, “Tree-searching and tree-pruning
techniques,” in Computer chess compendium, pp. 123–128, Springer,
1988.

[43] D. E. Knuth, The Art of Computer Programming, Volume 4A: Com-
binatorial Algorithms, Part 1. Addison-Wesley, 2011.

[44] A. Mantovani, S. Aonzo, Y. Fratantonio, and D. Balzarotti, “RE-
Mind: a first look inside the mind of a reverse engineer,” in Proc.
32st Usenix Security Symposium, 2022. To appear.

[45] D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek,
“An observational investigation of reverse engineers’ process and
mental models,” in Extended Abstracts of the 2019 CHI Conference
on Human Factors in Computing Systems, 2019.

[46] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS quarterly, pp. 75–105, 2004.

[47] C. Basile, D. Canavese, and L. Regano, “ASPIRE Validation,”
Deliverable D1.06, ASPIRE EU FP7 Project, 2016.

[48] M. Ceccato, “ASPIRE Security Evaluation Methodology,” Deliv-
erable D4.06, ASPIRE EU FP7 Project, 2016.

[49] J. Nagra and C. Collberg, Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection. London, UK:
Pearson Education, 2009.

[50] L. J. Hoffman, “Risk analysis and computer security: bridging
the cultural gaps,” in Proceedings of the 9th National Computer
Security Conference, pp. 156–161, National Institute of Standards
and Technology, 1986.

[51] D. Denning and P. G. Neumann, “Requirements and model for
ides – a real-time intrusion-detection expert system,” tech. rep.,
SRI International, Menlo Park, CA, USA, 08 1985.

[52] O. Depren, M. Topallar, E. Anarim, and M. K. Ciliz, “An intel-
ligent intrusion detection system (IDS) for anomaly and misuse
detection in computer networks,” Expert Systems with Applications,
vol. 29, no. 4, pp. 713–722, 2005.

[53] Z. S. Pan, H. Lian, G. Y. Hu, and G. Q. Ni, “An integrated model of
intrusion detection based on neural network and expert system,”
in 17th Int’l Conf. on Tools with Artificial Intelligence, pp. 672–673,
IEEE Computer Society, 11 2005.

[54] R. Kaur, D. Gabrijelčič, and T. Klobučar, “Artificial intelligence for
cybersecurity: Literature review and future research directions,”
Information Fusion, vol. 97, p. 101804, 2023.

[55] M. Husák, L. Sadlek, S. Špaček, M. Laštovička, M. Javornı́k, and
J. Komárková, “Crusoe: A toolset for cyber situational awareness
and decision support in incident handling,” Computers & Security,
vol. 115, p. 102609, 2022.

[56] H. Liu, “Towards better program obfuscation: Optimization via
language models,” in Proc. 38th Int’l Conference on Software Engi-
neering Companion, ICSE ’16, pp. 680–682, Association for Com-
puting Machinery, 2016.

[57] H. Liu, C. Sun, Z. Su, Y. Jiang, M. Gu, and J. Sun, “Stochastic
optimization of program obfuscation,” in Proceedings of the 39th
International Conference on Software Engineering, ICSE ’17, pp. 221–
231, IEEE Press, 2017.

[58] B. Coppens, B. De Sutter, and J. Maebe, “Feedback-driven binary
code diversification,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 4, pp. 1–26, 2013.

[59] P. Brunet, B. Creusillet, A. Guinet, and J. M. Martinez, “Epona and
the obfuscation paradox: Transparent for users and developers, a
pain for reversers,” in Proceedings of the 3rd ACM Workshop on Soft-
ware Protection, pp. 41–52, Association for Computing Machinery,
2019.

[60] W. Holder, J. T. McDonald, and T. R. Andel, “Evaluating optimal
phase ordering in obfuscation executives,” in Proceedings of the
7th Software Security, Protection, and Reverse Engineering / Software
Security and Protection Workshop, SSPREW-7, Association for Com-
puting Machinery, 2017.

[61] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-
LLVM – software protection for the masses,” in Proceedings of
the IEEE/ACM 1st International Workshop on Software Protection,
SPRO’15, Firenze, Italy, May 19th, 2015 (B. Wyseur, ed.), pp. 3–
9, IEEE, 2015.

[62] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P. L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer,
and P. Pietzuch, “Glamdring: Automatic Application Partitioning
for Intel SGX,” in Proceedings of USENIX Annual Technical Confer-
ence, pp. 285–298, USENIX Association, July 2017.

[63] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and
S. Yan, “Occlum: Secure and Efficient Multitasking Inside a Single
Enclave of Intel SGX,” in Proceedings of APLOS 2020: International
Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 955–970, ACM, March 2020.

	Introduction
	Overview of our approach
	Risk Framing
	Risk Assessment
	Risk Mitigation
	From Risk Index to Software Protection Index
	Game-theoretic Optimization Approach
	Deployment of Candidate Solutions

	Risk Monitoring

	Formalization - the Knowledge Base
	Artifacts
	Security Requirements and Assets
	Protections
	Solutions
	Metrics
	Overheads
	Attacks

	Optimal selection
	Preparatory stage
	Exploratory stage
	Iterating the solution space
	The Software Protection Index

	Expert Consultation
	Consulted Experts
	Consultation Coverage

	Validation
	Quantitative Evaluation
	Qualitative validation

	Related work
	Evaluation of Software Protection Strength
	Automated IT Risk Management
	MATE Software Protection Risk Mitigation
	Software Protection Tools

	Conclusions and future works
	References

