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Abstract
Alert prioritisation (AP) is crucial for security operations centres (SOCs) to manage the overwhelming volume of alerts
and ensure timely detection and response to genuine threats, while minimising alert fatigue. Although predictive AI
can process large alert volumes and identify known patterns, it struggles with novel and evolving scenarios that demand
contextual understanding and nuanced judgement. A promising solution is Human-AI teaming (HAT), which combines
human expertise with AI’s computational capabilities. Learning to Defer (L2D) operationalises HAT by enabling AI
to “defer” uncertain or unfamiliar cases to human experts. However, traditional L2D models rely on static deferral
policies that do not evolve with experience, limiting their ability to learn from human feedback and adapt over time. To
overcome this, we introduce Learning to Defer with Human Feedback (L2DHF), an adaptive deferral framework that
leverages Deep Reinforcement Learning from Human Feedback (DRLHF) to optimise deferral decisions. By dynamically
incorporating human feedback, L2DHF continuously improves AP accuracy and reduces unnecessary deferrals, enhancing
SOC effectiveness and easing analyst workload. Experiments on two widely used benchmark datasets, UNSW-NB15 and
CICIDS2017, demonstrate that L2DHF significantly outperforms baseline models. Notably, it achieves 13-16% higher
AP accuracy for critical alerts on UNSW-NB15 and 60-67% on CICIDS2017. It also reduces misprioritisations, for
example, by 98% for high-category alerts on CICIDS2017. Moreover, L2DHF decreases deferrals, for example, by 37%
on UNSW-NB15, directly reducing analyst workload. These gains are achieved with efficient execution, underscoring
L2DHF’s practicality for real-world SOC deployment.

Keywords: Alert prioritisation, Security operations centre, Learning to defer with human feedback, Deep
reinforcement learning from human feedback, Human-AI teaming

1. Introduction

Effective alert prioritisation (AP) is crucial in security operations centres (SOCs) to help analysts identify
and respond to critical alerts amid the overwhelming volume of daily notifications. Organisations often
receive in excess of 10,000 alerts daily (Ede et al., 2022; FireEye, 2015), making it easy for genuine threats
to be overlooked among less important ones. The sheer volume of alerts, many of which are false positives,
contributes significantly to analyst fatigue (Baruwal Chhetri et al., 2024; Jalalvand et al., 2024). When AP
systems fail to reliably distinguish false positives from genuine attacks, analysts are inundated with low-priority
or irrelevant alerts (Alahmadi et al., 2022). Worse, misprioritisinging critical alerts as medium or low priority
constitutes a serious security hazard by allowing genuine threats to go undetected, while also increasing the
analysts’ cognitive load when such alerts must be re-investigated at a later stage. Together, these factors reduce
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the analysts’ ability to focus on and respond effectively to genuine security incidents (Baruwal Chhetri et al.,
2024).

To address these challenges, artificial intelligence (AI) and machine learning (ML)-enabled tools are
increasingly adopted to automate AP tasks. However, despite their growing use, studies such as TrendMicro’s
Global Study (Trend Micro, 2021) and SANS Institute’s SOC Survey (Crowley et al., 2023) highlight that SOCs
continue to face significant challenges in managing cyber threats. The dynamic nature of the threat landscape
and the inherent uncertainty of security situations makes fully automated AP problematic. Even with recent
advances in AI, ML-based systems remain brittle when confronted with novel or unexpected scenarios not
captured in their training data (Tariq et al., 2025a). A key limitation is their inability to recognise when they
are likely to fail (Zhang et al., 2023), often resulting in incorrect predictions with high confidence (Tariq et al.,
2025a).

Such failures can cause the system to overlook critical alerts or mistakenly prioritise benign ones, thereby
increasing the possibility of undetected attacks. According to MITRE (Knerler et al., 2022), while automated
AP helps SOCs manage the overwhelming volume of raw alerts, human analysts remain indispensable for
interpreting and contextualising these alerts. As noted, "automation assists, but does not fully replace, the
judgement of advanced human analysts" (Knerler et al., 2022). One approach to incorporating human input
into AP involves periodic retraining of AI models with analyst feedback (Kim & Dán, 2022; Hore et al.,
2023a). However, this approach lacks real-time adaptability, introduces operational inefficiencies due to
repeated training cycles, and results in delayed integration of human expertise, limiting its effectiveness in
dynamic threat environments.

Human-AI teaming (HAT) has the potential to improve AP by leveraging the unique strengths of human
analysts and AI systems (Jalalvand et al., 2024). HAT enables collaboration between human expertise and
machine intelligence, producing outcomes neither could achieve alone (Baruwal Chhetri et al., 2024; Cleland-
Huang et al., 2022; Schleiger et al., 2024). AI excels at processing large volumes of alert data, detecting
anomalies, uncovering hidden patterns, and prioritising alerts at scale. In contrast, human analysts contribute
contextual understanding, validate AI-generated priorities, and provide valuable feedback to refine the system
(Jalalvand et al., 2024). This synergy improves overall performance and reduces misprioritisations (Jalalvand
et al., 2024; Tariq et al., 2025b). Furthermore, by minimising irrelevant alerts, HAT can help reduce alert
fatigue, a persistent challenge in SOC environments (Baruwal Chhetri et al., 2024; Tariq et al., 2025b).

Learning to Defer (L2D) (Madras et al., 2018) is a paradigm that operationalises HAT by allowing AI
systems to defer decision-making in uncertain or complex situations to human experts. L2D offers a promising
solution for AP by enabling AI to handle routine alerts autonomously while deferring uncertain or novel cases
to human analysts for contextual judgements. In this setup, the AI first classifies1 incoming alerts, deferring
those beyond its confidence threshold for human review. Human analysts then conduct further investigations,
identify novel threats, and refine prioritisation decisions. L2D consists of two core components: a predictive
model that classifies alerts, and a deferral model that determines whether to rely on the AI’s output or defer to

1For the purpose of this study, we use prioritisation, categorisation, and classification interchangeably to refer to the process of
assigning importance or priority to alerts.
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human judgement. By striking this balance, L2D enhances AP accuracy while reducing analyst involvement.
However, current L2D implementations are limited by their static deferral mechanisms. Once trained, the
deferral model lacks the ability to evolve based on ongoing human interactions, missing crucial opportunities
for continuous learning and improvement. Moreover, this inflexibility can lead to repeated deferrals of similar
alerts, increasing analyst workload and hindering system performance. Incorporating real-time feedback
mechanisms for continuous adaptation is essential to optimise AP performance in dynamic cybersecurity
environments (Tariq et al., 2025b; Jalalvand et al., 2024).

To address this limitation of L2D, we propose Learning to Defer with Human Feedback (L2DHF),
illustrated in Figure 1. L2DHF enhances the traditional L2D approach by replacing the static deferral model
with an adaptive deferral model, implemented as a Deep Reinforcement Learning (DRL) agent trained through
human feedback, following the Deep Reinforcement Learning from Human Feedback (DRLHF) framework.
This enhancement enables the deferral strategy to evolve over time based on real-time analyst feedback,
supporting continuous learning and improved AP performance. Initially, the predictive AI assigns priorities
to the incoming alerts, after which the DRL agent decides whether to accept the predictive AI’s prioritisation
or defer uncertain alerts to human analysts. Analysts apply their domain knowledge and contextual insights to
validate and adjust priorities, providing feedback to the DRL agent. This feedback loop strengthens the DRL
agent’s learning and improves its deferral decisions, thereby increasing AP accuracy, reducing misprioritisation
between severity threat levels, including false positives and false negatives, and easing analyst workload.
Additionally, the Analyst-Validated Alert Repository (AVAR) stores analyst-validated alerts, enabling the
system to recognise and filter out previously seen and validated alerts, thus streamlining the prioritisation
process.

1.1. Contributions

The main contributions of this study are:

i. The L2DHF Framework: We propose L2DHF, a novel extension of the L2D paradigm that integrates a
dynamic and adaptive deferral mechanism implemented via a DRL agent within a DRLHF architecture.
This enables an effective real-time HAT, allowing the DRL agent to continuously refine its deferral policy
based on analyst feedback, thereby improving decision-making over time.

ii. Application of L2DHF to AP: We apply L2DHF to the core SOC task of AP. L2DHF facilitates
real-time, dynamic HAT for AP, improving AP accuracy, reducing analyst workload, enhancing SOC
efficiency and effectiveness, and addressing key operational challenges.

iii. Empirical evaluation: We evaluate L2DHF using two widely adopted network intrusion datasets,
UNSW-NB15 (Moustafa et al., 2017a; Moustafa & Slay, 2015) and CICIDS2017 (Sharafaldin et al.,
2018). Results demonstrate that L2DHF significantly outperforms baseline approaches. For instance,
L2DHF improves AP accuracy for critical alerts by 13-16% on UNSW-NB15 and 60-67% on CI-
CIDS2017. It also substantially reduces misprioritisations, including a 100% reduction in misprioritisa-
tion of critical alerts, a 98% reduction in misprioritisation of high-category alerts, and a 52% reduction
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Figure 1: Learning to Defer with Human Feedback (L2DHF) framework.

in false positives on CICIDS2017. Furthermore, L2DHF reduces analyst workload, as evidenced by 37%
reduction in deferred alerts on UNSW-NB15 compared to baseline approaches.

1.2. Structure
The rest of this article is structured as follows. Section 2 provides an overview of related work. Section

3 introduces the proposed L2DHF method, and Section 4 discusses its implementation. Section 5 describes
the experimental setup. Section 6 provides the experimental results, followed by a presentation of threats to
validity in Section 7. Finally, Section 8 concludes the paper.

2. Related work and background

This section highlights the most relevant recent works on ML-based AI solutions as well as HAT for AP,
aiming to identify research gaps and emphasise our contributions. It is not intended as an exhaustive review.
For a comprehensive review on AP approaches in SOCs, including those addressing HAT, refer to (Jalalvand
et al., 2024).

2.1. ML-based AI solutions
Extensive research has focused on automating AP using ML-based AI solutions, particularly supervised

and unsupervised learning (Aminanto et al., 2020; Jeamaon & Khemapatapan, 2022; Ongun et al., 2021;
Feĳoo-Martinez et al., 2023; Alperin et al., 2019). For example, Ongun et al. (2021) developed an automated
AP method by employing ensembles of various unsupervised ML techniques, such as Isolation Forest and
unsupervised deep learning to generate anomaly scores for alert ranking. Alperin et al. (2019) proposed a
hybrid approach that integrates natural language processing (NLP) with supervised ML models such as random
forests. In this approach, NLP techniques are used to extract key attributes from alert data, which are then fed
into the supervised ML models to assign vulnerability scores used to prioritise alerts.

Beyond supervised and unsupervised learning, several studies have investigated reinforcement learning (RL)
approaches for automated AP (Chavali et al., 2022; Hore et al., 2023b; Huang & Zhu, 2022; Tong et al., 2020).
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For example, Hore et al. (2023b) applied DRL to allocate resources required for mitigating vulnerabilities
and subsequently employed an integer programming model to prioritise vulnerabilities based on the resource
allocation determined by DRL. Similarly, Tong et al. (2020) used game theory to model the defender–attacker
interaction for AP and applied an adversarial RL framework to capture the computational complexity involved
in solving the game.

The majority of SOC platforms integrate some form of ML-based AI technologies to enhance SOC
operations. In particular, AP is typically fully automated in these systems, with little to no human analysts
involvement in the prioritisation process. Examples of state-of-the-art solutions that incorporate AI systems
to automate AP as part of their service offerings include Trend Vision One (Trend Micro, 2025), Palo Alto
Networks Cortex XSOAR (Palo Alto Networks, 2024), and Splunk SOAR (Sandhu, 2024). For instance, Palo
Alto Networks Cortex XSOAR (Palo Alto Networks, 2024) leverages ML capabilities for automated AP. It
uses classifiers to categorise alerts and assign corresponding priorities. These classifiers are trained using
analyst-provided data, ensuring that the system meets the specific, customised requirements.

2.2. Human-AI teaming paradigms

HAT for AP is still in its early stages. A detailed examination of AP methods in SOCs shows that methods
integrating HAT for AP are still largely unexplored (Jalalvand et al., 2024). In this work, we frame our
discussion of HAT for AP around three aspects: periodic AI retraining, L2D, and reinforcement learning from
human feedback (RLHF), based on our critical review of the landscape.

2.2.1. Periodic model retraining
Few research efforts have explored AI retraining to enable HAT for AP (see, e.g., Hore et al., 2023a;

Gelman et al., 2023; Kim & Dán, 2022; Liu et al., 2022; Hossain et al., 2020). For instance, Gelman et al.
(2023) proposed an AP approach where an ensemble of supervised ML models categorises and prioritises
alerts, while analysts leverage their domain knowledge to provide feedback on AP outputs. This feedback is
then used to retrain the ML models, reducing repetitive tasks for analysts. Most existing studies follow a similar
paradigm to address HAT for AP, relying on periodic model retraining with analyst-labelled alerts (Hore et al.,
2023a; Kim & Dán, 2022; Liu et al., 2022; Hossain et al., 2020).

Although periodic model retraining allows for the integration of human input into AI systems, it offers
limited responsiveness to evolving threats due to computational constraints, processing delays, and infrequent
update cycles. Moreover, periodic retraining does little to address the brittleness of AI models, which perform
badly when encountering out-of-distribution samples (Tariq et al., 2025a). Even with periodic updates, retrained
models may fail to generalise beyond past or current data distributions, leaving them ill-equipped to detect
emerging threat patterns or adapt to unforeseen behaviours. Compounding this issue, such models lack the
self-awareness to recognise when their predictions are uncertain or likely to fail (Baruwal Chhetri et al., 2024).
As a result, periodic retraining can create a false sense of robustness while leaving critical gaps in real-world
adaptability and reliability.
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2.2.2. Learning to defer (L2D)
L2D (Madras et al., 2018) and learning to reject (L2R) (Hendrickx et al., 2024) are frameworks designed

to enable ML models to manage uncertain or complex cases. L2R introduces a rejector, allowing ML models
to refrain from making predictions when encountering uncertain inputs or those beyond their training data.
L2D builds upon L2R by not only identifying such cases but actively deferring ambiguous decisions to human
experts, who leverage domain knowledge and contextual understanding to make informed decisions (Tariq et al.,
2025a; Baruwal Chhetri et al., 2024). Some works have extended L2D to include multiple experts (Keswani
et al., 2021; Tailor et al., 2024), enhancing its versatility. Learning to Complement (L2C) is a variant of
L2D that aims to allocate challenging instances to AI when they are difficult for humans, and assign complex
instances to humans where AI struggles (Wilder et al., 2020). To the best of our knowledge, L2D and its
variants have yet to be applied to support HAT for AP.

A key limitation of existing L2D setups is their static nature (Joshi et al., 2022). Typically, L2D employs
two supervised models: a predictive model that makes decisions based on input data, and a deferral model
that determines whether to trust the predictor or defer to a human expert (Liu et al., 2019; Verma & Nalisnick,
2022). However, once trained, the deferral model does not adapt to the predictive model’s errors or to human
feedback, neglecting the dynamic and evolving nature of real-world decision-making. This lack of adaptability
restricts its ability to adjust its deferral policy in real time. In the context of AP in SOCs, such rigidity can
be detrimental, as it hampers the system’s capacity to respond properly to evolving threats and undermines
effective AP.

Some L2D variants incorporate a RL agent as the deferral model to enhance adaptability (Balazadeh et al.,
2022; Straitouri et al., 2021; Joshi et al., 2022). For instance, Straitouri et al. (2021) used an RL-based deferral
model to determine which tasks are handled by the AI and which are passed to the human in a car driving task.
The RL agent is trained on historical data of both humans and the predictor actions to learn a deferral policy.
But, without real-time interaction between human and the RL agent, the L2D model cannot dynamically adapt
to evolving contexts, limiting its effectiveness in fast-changing environments.

2.2.3. Reinforcement learning from human feedback (RLHF)
RLHF is an emerging approach that guides the learning process of RL agents using human feedback, rather

than relying on a predefined reward function. This approach holds significant potential for enhancing the
adaptability and performance of AI systems, ensuring better alignment with human preferences (Kaufmann
et al., 2023). Initially developed for training robots to interact with real-world environments, RLHF has since
been applied to complex tasks such as Atari games (Christiano et al., 2017), recommendation systems (Shuvo
& Yilmaz, 2022; Solinas et al., 2021), large language models (LLMs) (Zhu et al., 2023; Ouyang et al., 2022),
and image generation (Lee et al., 2023), where human guidance enables RL agents to adapt their decisions in
diverse scenarios. An extensive review and discussion on RLHF is provided in (Kaufmann et al., 2023).

To the best of our knowledge, only one study has applied RLHF in the AP context. Wang et al. (2024)
proposed an active learning framework that leverages RLHF, where the RL agent selects the top-ranked,
potentially high-risk alerts for analyst validation, with initial priorities assigned by an unsupervised model.
This approach incorporates RL in place of traditional supervised learning within the active learning framework,
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allowing it to dynamically integrate analyst feedback and continuously optimise the active learning’s query
policy.

While Wang et al. (2024) integrate RLHF into active learning for alert selection, their framework lacks
the core principle of L2D, i.e., the ability to defer uncertain and unknown decisions to a human expert, which
enhances adaptability to novel and evolving threats. Our work fills this gap by introducing L2DHF, an adaptive
L2D framework built on RLHF, that facilitates real-time HAT for AP.

3. Learning to defer with human feedback (L2DHF)

This section introduces the L2DHF framework, as depicted in Figure 1. L2DHF operates through a
multi-step process involving predictive AI, AVAR, and a DRL agent operating within the DRLHF framework,
facilitating human-AI collaboration. We assume that alerts generated within the SOC are considered for AP
at distinct time steps. At each time step, the predictive AI first prioritises incoming alerts. These prioritised
alerts are then cross-checked against analyst-validated alerts stored in AVAR from previous steps, ensuring
only new or unseen alerts are forwarded to the DRL agent for further evaluation. Previously seen alerts are
filtered out. If the predictive AI assigns a priority that matches the AVAR’s priority, it is accepted; otherwise,
the predictive AI’s priority is overridden by the validated priority provided by AVAR. This filtering process
streamlines the AP workflow. The remaining alerts are forwarded to the DRL agent, which functions as an
adaptive and dynamic deferral model. The DRL agent determines whether to defer alerts with potentially
inaccurate priorities to human analysts or accept the predictive AI’s priorities. Analysts, leveraging their
domain knowledge and expertise, validate or adjust the priorities of the deferred alerts, providing feedback to
the DRL agent. This continuous feedback helps the DRL agent refine its deferral policy over time, enhancing
its ability to defer appropriately to human analysts.

3.1. Predictive AI model

The predictive AI model is tasked with prioritising alerts. However, its prioritisation may be inaccurate
due to several factors, including biased training data, the presence of uncertain or novel alerts that deviate from
historical patterns, the model’s limited ability to adapt to evolving threats, and challenges in incorporating
contextual information. The predictive AI model can be implemented using any supervised learning technique,
such as neural networks, random forests, or decision trees, and can also benefit from ensemble methods to
improve robustness and accuracy.

3.2. Analyst-validated alert repository (AVAR)

AVAR stores alerts that have been validated by analysts over time. At each time step, the DRL agent defers
certain alerts to analysts for validation. Analysts either revise the priority assigned by the predictive AI or
accept it as is. Since these priorities are validated by human experts, they serve as valuable references for future
decisions. This process also allows the system to identify and remove duplicate alerts in subsequent steps,
reducing redundancy and easing the workload for both the DRL agent and analysts. By excluding previously
validated alerts, AVAR ensures that only new and unseen alerts are forwarded to the DRL agent for further
evaluation, thus maintaining the efficiency of the L2DHF framework.
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Before alerts prioritised by the predictive AI are forwarded to the DRL agent, they are compared against
those stored in AVAR based on their features. If a match is found, the alert’s priority is either retained or
adjusted according to the corresponding entry in AVAR. Matched alerts are then excluded from those passed
to the DRL agent.

Furthermore, the alerts stored in AVAR play a key role in shaping elements of the DRL agent’s state,
supporting its deferral decisions. To facilitate this, AVAR organises analyst-validated alerts into separate
storages based on their assigned priority by the analyst. For instance, if alerts are prioritised into categories
such as critical, high, medium, low, and normal, AVAR maintains five corresponding category storages and
stores analyst-validated alerts in the storage that matches each category. The use of these category-specific
storages in constructing the DRL’s state is detailed in Section 3.3.1.

To keep the predictive AI up to date while managing the growing size of AVAR, a cyclical retraining strategy
can be employed using the accumulated analyst-validated alerts. Over time, these alerts serve as high-quality
training data for regularly retraining the predictive AI, enhancing its ability to prioritise based on the most recent
and relevant feedback. After each retraining cycle, the AVAR can be pruned by removing older, previously used
alerts, thereby maintaining scalability and responsiveness. This approach ensures the predictive AI remains
adaptive to analyst feedback and evolving threat patterns while keeping the AVAR streamlined.

3.3. Deep reinforcement learning from human feedback (DRLHF)

Through iterative interactions, the DRL agent reviews the alerts prioritised by the predictive AI and either
(i) accepts the assigned priorities, or (ii) defers alerts that may be misprioritised to human analysts. Analysts
then validate or adjust these priorities based on their domain knowledge. This feedback is used to update the
DRL agent’s deferral policy. Over time, the continuous feedback loop enables the DRL agent to adapt and
optimise its deferral policy, leading to progressively improved performance.

In brief, a DRL agent learns a policy that maximises cumulative rewards through interactions with its
environment over time. At each step, the agent:

• Observes a state 𝑠 ∈ 𝑆, where 𝑆 is the set of possible states, representing the environment’s observable
condition.

• Chooses an action 𝑎 ∈ 𝐴, from the action set 𝐴, representing the available choices.
• Receives a reward 𝑟 (𝑠, 𝑎) after taking action 𝑎 in state 𝑠.
• Transitions to the next state 𝑠′ ∈ 𝑆.
The objective is to learn a policy 𝜋 that maximises the expected cumulative discounted reward:

E𝜋

[ ∞∑︁
𝑘=0

𝛾𝑘𝑟 𝑘 (𝑠, 𝑎)
]

where 𝛾 ∈ [0, 1) is the discount factor, which determines the relative importance of future rewards and 𝑘 ∈ N0

is an index denoting the number of steps from the current state. The policy 𝜋 or the associated value function
is approximated using deep neural networks (Ravichandiran, 2020).

The key components of the DRL framework: state, action, and reward, are described below.
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3.3.1. State
The state is represented as a vector of elements for each alert, providing crucial information to guide the

DRL agent’s deferral decisions. The first element in this vector is the priority assigned by the predictive AI.
For example, this priority can be classified into categories such as critical, high, medium, low and normal.
These can be mapped to numerical values (e.g., 4 for critical to 0 for normal) to support efficient analysis,
facilitate comparison, and enable seamless integration with ML models. These mappings are flexible and can
be adjusted depending on the problem context.

Subsequent state elements are derived from alert features relevant to determining alert priority. Feature
extraction techniques can be applied to enhance the quality and relevance of these features. Each alert feature is
then compared against the features of analyst-validated alerts stored in the AVAR category storages. If a match
is found in a specific category storage, the corresponding state element is assigned that category’s priority. If
no match is found, or if the feature matches alerts across multiple categories, the state element is assigned a
value of 10 to indicate ambiguity.

Another state element is computed by calculating the average Euclidean distance between the current alert
and the stored alerts in each of the AVAR category storages. The state element is then assigned the priority of
the category with the smallest unique average distance. If two or more categories exhibit the same minimum
distance, the state element is assigned a value of 10 (unknown).

The final state element captures the alert’s transition status. Initially, it is set to 10 (unknown) for all alerts.
When an alert is deferred to the analyst, this element is updated to reflect the priority assigned by the analyst.
This update models the alert’s current and next state, allowing the DRL agent to improve its learning and refine
its decisions.

Figure 2 provides an illustrative example of the DRL state representation for each alert. In this example,
the predictive AI assigns a priority level of "critical" (mapped to the value 4). The alert consists of 𝑚 features.
The value of feature 1 matches that of feature 1 in alerts stored in the critical storage of AVAR, so its state
element is assigned 4. The values of features 2 and 𝑚 match the corresponding features in alerts stored in the
high storage, and their corresponding state elements are assigned 3. Also, the alert has the minimum average
Euclidean distance to the alerts in medium storage, resulting in a state element value of 2. The final element
captures the alert’s transition status. If the alert has not yet been processed by the DRL agent, it is in its current
state, so this element is set to 10. Once the DRL agent processes the alert, it transitions to its next state and the
value of this element is updated. If the alert is deferred, the element takes the analyst-assigned priority (e.g., 3
for high); otherwise, it remains 10.

This state structure is carefully designed to balance the inclusion of informative and learnable elements,
contributing to the DRL agent’s decision-making process. The predictive AI’s priority serves as an initial
indicator of alert priority. Elements based on similarity between alert features and analyst-validated alerts in
AVAR storages incorporate historical expert decisions, enabling the agent to detect potential misprioritisations.
The Euclidean distance element offers a complementary, integrated measure of similarity to alerts in AVAR
storages. Finally, the inclusion of the transition status further allows the DRL agent to adjust its policy based
on how past deferral decisions evolved. This modular design is adaptable to different operational contexts and
can be extended or adjusted as needed.
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Figure 2: An illustrative example of state elements of DRL.

3.3.2. Action
The action is represented as a binary variable, where 1 denotes deferring the alert to an analyst, and 0

indicates accepting the predictive AI’s assigned priority. An action value of 1 suggests that the alert may have
been misprioritised by the predictive AI and requires expert validation, while a value of 0 reflects confidence
in the predictive AI’s assessment, allowing the system to proceed without human intervention.

3.3.3. Reward
The reward quantifies the effectiveness of the DRL agent’s deferral decisions based on the analyst’s feedback

regarding the alert’s priority. It is structured around five priority categories: critical, high, medium, low, and
normal, which can be tailored to suite the specific alert type and problem context. Eq.(1) presents the reward
formula:

𝑅𝑒𝑤𝑎𝑟𝑑 =



𝑧 + 𝑤, 𝑝AI ≠ 𝑝analyst, 𝑝analyst is Critical

𝑧 + ℎ, 𝑝AI ≠ 𝑝analyst, 𝑝analyst is High

𝑧 + 𝑔, 𝑝AI ≠ 𝑝analyst, 𝑝analyst is Medium

𝑧 + 𝑓 , 𝑝AI ≠ 𝑝analyst, 𝑝analyst is Low

𝑧, 𝑝AI ≠ 𝑝analyst, 𝑝analyst is Normal

−𝑞, 𝑝AI = 𝑝analyst

0, not deferred to the analyst

𝑓 < 𝑔 < ℎ < 𝑤

𝑧, 𝑞, 𝑓 , 𝑔, ℎ, 𝑤 > 0
(1)

In Eq.(1), 𝑝AI and 𝑝analyst denote the alert priority assigned by the predictive AI and the analyst, respectively.
The DRL agent receives a positive reward (𝑧, 𝑧 > 0) for deferring inaccurate-priority alerts (𝑝AI ≠ 𝑝analyst)
and a negative reward (−𝑞, 𝑞 > 0) for deferring accurate-priority alerts (𝑝AI = 𝑝analyst) to the analyst. We also
introduce additional parameters ( 𝑓 , 𝑔, ℎ, 𝑤, where 𝑓 < 𝑔 < ℎ < 𝑤) to reward the DRL agent more if it defers
an inaccurately prioritised alert with higher criticality to the analyst for correction. DRL gets a reward of 0 if
it decides not to defer an alert.

The DRL agent checks each alert in the received batch individually, applying the corresponding state,
action, and reward for it. Algorithm 1 presents the proposed L2DHF framework.

4. L2DHF implementation

This section presents the implementation details of the L2DHF framework, providing a comprehensive
overview of its three core components: the predictive AI model responsible for initial alert prioritisation,
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Algorithm 1: L2DHF: Learning to Defer with Human Feedback framework.
Input: Raw alerts L = {𝑙1, 𝑙2, . . . , 𝑙𝑛} at time step 𝑡

Output: Prioritised alerts P
1 foreach time step 𝑡 do

/* Stage 1: Predictive AI Initial Prioritisation */

2 Compute initial priorities 𝑝AI
𝑖

for each alert 𝑙𝑖 ∈ L using the predictive AI
/* Stage 2: AVAR Filtering */

3 foreach 𝑙𝑖 ∈ L do
4 if 𝑙𝑖 ∈ AVAR then
5 Retrieve AVAR’s validated priority 𝑝AVAR

𝑖

6 if 𝑝AI
𝑖

= 𝑝AVAR
𝑖

then
7 Accept 𝑝AI

𝑖
as final priority for 𝑙𝑖

8 else
9 Override 𝑝AI

𝑖
with 𝑝AVAR

𝑖

10 else
11 Send 𝑙𝑖 to DRLHF module for refinement

/* Stage 3: DRLHF Priority Improvement */
12 foreach 𝑙𝑖 sent to DRLHF do
13 Construct DRL state vector 𝑠𝑖 for 𝑙𝑖
14 Choose DRL action 𝑎𝑖 for 𝑙𝑖 where 𝑎𝑖 ∈ {accept 𝑝AI

𝑖
, defer 𝑙𝑖}

15 if 𝑎𝑖 = accept 𝑝AI
𝑖

then
16 Set 𝑝final

𝑖
← 𝑝AI

𝑖

17 else if 𝑎𝑖 = defer 𝑙𝑖 then
18 Request analyst-validated priority 𝑝

analyst
𝑖

for alert 𝑙𝑖
19 Set 𝑝final

𝑖
← 𝑝

analyst
𝑖

20 Compute reward 𝑟𝑖 using Eq.(1)
21 Transition to next state 𝑠′

𝑖

22 return P = {(𝑙𝑖 , 𝑝final
𝑖
) | 𝑙𝑖 ∈ L}

AVAR that stores analyst-validated alerts, and DRLHF that refines alert priorities through analyst-guided
learning. Details on how the analyst is modelled in our experiments are also provided.

4.1. Predictive AI model

The predictive AI was built using an ensemble of classifiers. To achieve this, we initially fine-tuned seven
supervised models (Random Forest, Deep Learning, Decision Tree, XGBoost, Näive Bayes, AdaBoost, and
Logistic Regression) using the Optuna hyperparameter optimisation framework (Shekhar et al., 2021). Each
model was then trained and evaluated using stratified 10-fold cross-validation over two metrics: accuracy and
G-mean. While accuracy reflects the models’ overall effectiveness in AP, G-mean captures their ability to
handle class imbalance, an important consideration in real-world security datasets. Based on performance
across these metrics, we selected the top four models for each dataset. As shown in Figure 3, for UNSW-NB15,
Random Forest, Deep Learning, XGBoost, and AdaBoost demonstrated consistently strong performance across
both metrics and were chosen for the ensemble. For CICIDS2017, Random Forest, XGBoost, AdaBoost, and
Näive Bayes were chosen. Although Deep Learning exhibited slightly higher accuracy than Random Forest and
Näive Bayes, its low G-mean indicated weaker performance on imbalanced datasets, leading to its exclusion
for this dataset.
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(b) CICIDS2017.

Figure 3: Evaluation of classifier performance across accuracy and G-mean metrics.

The ensemble model was used to categorise alerts into five severity levels based on the Common Vulnera-
bility Scoring System (CVSS): critical, high, medium, low and normal. Severity levels are commonly used for
AP in existing studies (Bicudo et al., 2024; Ariani & Salman, 2020; Tripathi & Singh, 2011).

4.2. AVAR

AVAR was implemented as outlined in Section 3.2, with its category storages organised according to the
five CVSS severity levels. As our experiments span a relatively short period (12 weeks, as noted in Section
5.4), we did not retrain the predictive AI model or refresh the AVAR over this period. This allowed for a focused
evaluation of the deferral mechanism under stable conditions, without added variability from model updates.

4.3. DRLHF

The DRLHF implementation was structured around the core components of DRL: state, action, and reward.
The implementation of the action component follows the design described in Section 3.3.2 and is not repeated
here. The following details the implementation of the state and reward components.

• State. The state was represented as a vector comprising multiple elements, constructed as outlined
in Section 3.3.1. Additional implementation details are provided here for the elements derived from
alert features, which require further elaboration. Our experiments utilised alerts from two datasets,
UNSW-NB15 and CICIDS2017. We applied Principal Component Analysis (PCA) for feature extraction
and dimensionality reduction, resulting in 12 principal components per dataset. We evaluated four
configurations for selecting these features: (1) the top 3, (2) top 6, (3) top 9, and (4) all 12 PCA
components. For each dataset, we empirically determined the optimal number of alert-feature based state
elements by assessing the AP accuracy of L2DHF across these configurations. The optimal setup used
all 12 PCA features for UNSW-NB15 and the top 6 PCA features for CICIDS2017. These features were
then used to construct the corresponding state elements for the DRL agent.

• Reward. The reward was determined according to Eq.(1), using the following parameter values: 𝑞 =

5, 𝑧 = 1, 𝑓 = 2, 𝑔 = 4, ℎ = 6, 𝑤 = 8. These parameters are configurable and can be adapted to suit
different problem contexts. Although fine-tuning these values may optimise performance, it is not
central to assessing the effectiveness of L2DHF in comparison with the baseline models.
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4.3.1. DRL algorithm and architecture
We employed the Dueling Double Deep Q Network (D3QN) (Gök, 2024), a RL architecture well-suited to

problems with discrete action spaces. D3QN builds upon the widely used Deep Q Network (DQN) algorithm
by integrating Double DQN and Dueling DQN. In doing so, D3QN addresses DQN’s issue of overestimating
action values, while also speeding up the training process (Gök, 2024).

D3QN, like DQN and its variants, employs a neural network to approximate the Q-value, 𝑄(𝑠, 𝑎), repre-
senting the expected return of taking action 𝑎 in state 𝑠. The network architecture used to implement D3QN
consists of an input layer followed by three fully connected (FC) layers (64, 64, and 32 neurons), each employing
ReLU activation. The output layer uses a linear activation with dimensionality equal to the action space. The
model uses the Adam optimiser with a 0.001 learning rate and the mean squared error (MSE) loss. We also set
the size of replay buffer (a memory storing past experiences of DQN for training the neural network model) to
1000 and the batch size (the number of experiences sampled from the replay buffer for training the network) to
64.

For the RL part of D3QN, we set the discount factor to 𝛾 = 0.70 and the greedy parameter to 𝜖0 = 0.75. To
ensure Q-value convergence (Li et al., 2020), we adopted a step-decay approach, which gradually decreases the
greedy parameter 𝜖 over time steps. In early time steps, 𝜖 was kept high to promote exploration, then gradually
reduced to facilitate exploitation. Eq.(2) calculates 𝜖 for each time step:

𝜖 =
𝜖0

1 + time step ∗ 𝑑_𝜖
(2)

where 𝑑_𝜖 is the decay level for 𝜖 and is set to 0.005. We also set a minimum value of 𝜖𝑚𝑖𝑛 = 0.01 to prevent 𝜖
from falling below this threshold.

We implemented both the D3QN algorithm and the associated alert prioritisation environment from scratch,
ensuring they were tailored to the specific requirements and constraints of the AP task.

4.3.2. Analyst
In our implementation, ground truth data was used to simulate the analyst’s feedback during interactions

with the DRL agent. This proxy is widely adopted in prior work on human-AI decision-making (Mozannar
& Sontag, 2020; Wang et al., 2024; Cao et al., 2024). For instance, Wang et al. (2024) use ground truth data
to represent security analysts’ feedback in an anomaly detection-based AP approach that incorporates active
learning through RLHF. Similarly, our framework uses ground truth data as the known priority labels of alerts
from the datasets to emulate how an analyst would assess the alert’s priority, allowing the DRL agent to receive
timely and consistent reward signals.

The interaction between the DRL agent and the analyst was subjected to a limited time budget, reflecting
the analyst’s constrained availability. While the DRL agent can evaluate all incoming alerts, the analyst may
not have sufficient time to review every deferred alert in a given iteration. Following the approach in (Shah
et al., 2019), we assumed that approximately 80% of an analyst’s time is spent on reviewing alerts, with the
remaining 20% allocated to other tasks such as training and report writing. For instance, if each time step
corresponds to one hour, the analyst can devote roughly 48 minutes to reviewing alerts deferred by the DRL
agent.
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According to MITRE, analysts typically spend several minutes reviewing each alert, though the exact dura-
tion varies depending on factors such as SOC policies, the number of analysts, and the volume of alerts (Knerler
et al., 2022). Following MITRE (Knerler et al., 2022), we assume that each alert requires a few minutes for
review, with more severe alerts requiring additional time. Table 1 outlines the assumed analyst review durations
for each alert category. These time allocations are specific to the problem context and can be adjusted to reflect
different operational environments or organisational policies.

Table 1: Analyst’s review time for different alert categories.

Alert category Critical High Medium Low Normal

Review time (min) 4.5 3.5 2 1.5 1

Additionally, our implementation of L2DHF involved only one analyst. To increase the processing of more
severe alerts, L2DHF sorts alerts by their predictive AI’s priority before the DRLHF phase.

5. Experimental setup

5.1. Datasets

We utilised two widely used, publicly available network intrusion datasets to evaluate L2DHF: UNSW-
NB15 (Moustafa & Slay, 2016; Sarhan et al., 2021; Moustafa et al., 2017b) and CICIDS2017 (Sharafaldin
et al., 2018). Although other datasets such as KDD-Cup99 (Stolfo et al., 1999) and NSL-KDD (Tavallaee et al.,
2009) are available, UNSW-NB15 and CICIDS2017 were chosen as representative benchmarks that sufficiently
capture a wide range of typical intrusion scenarios. While additional datasets may offer further insight, these
two are considered adequate for demonstrating the performance advantages of L2DHF compared to baseline
models. Each dataset contains more than 2 million alerts, offering a robust foundation for evaluation.

The UNSW-NB15 dataset contains 49 features, both numerical and categorical (Ngo et al., 2024), including
flow features (e.g., source/destination IP addresses and port numbers), basic features (e.g., total duration and
source bits per second), and time-related features (e.g., record start time and end time) (Moustafa & Slay,
2016). Similarly, CICIDS2017 has both numerical and categorical features, including flow features, as well
as additional features like duration and total forward inter-arrival time (Sharafaldin et al., 2018). The total
number of features of CICIDS2017 is 79. The complete list of features for UNSW-NB15 and CICIDS2017
can be found in (Moustafa & Slay, 2016) and (Rosay et al., 2022), respectively.

Alerts were prioritised according to the five CVSS severity levels. For UNSW-NB15, the CVSS values
were sourced from the ground truth data. For CICIDS2017, the CVSS values were sourced from (Duraz et al.,
2023), which provides a summary table of numerical CVSS scores. These scores were then mapped to five
categorical levels using the standard defined by National Institute of Standards and Technology (NIST) and
CVSS v3.x. (National Institute of Standards and Technology, 2024).

Both datasets were pre-processed to ensure data quality and consistency. Following the approach in (Ngo
et al., 2024), we removed flow-related features such as source and destination IP addresses. Features with a high
proportion of missing values were also excluded, and categorical features were transformed into numerical
representations using one-hot encoding. To further enhance feature quality and reduce dimensionality, we
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applied PCA, a widely used technique (Ngo et al., 2024; Moustafa et al., 2017b; Zoghi & Serpen, 2024), to
extract the most relevant features. Based on the cumulative variance ratio, we selected 12 principal components
for both datasets, as this configuration captures over 95% of the total variance, ensuring adequate information
retention. These PCA-transformed alerts were used as input for the predictive AI model’s initial AP.

Each dataset was divided into two parts: (i) building the ensemble of classifiers and (ii) evaluating L2DHF.
For ensemble development, 250,000 samples per dataset (around 10% of the total data) were used, with 25,000
samples (10%) for parameter tuning, 175,000 samples (70%) for training, and 50,000 samples (20%) for testing
the classifiers. Based on the information in Section 5.4 regarding the number of time steps and average arrival
rate of alerts, the average number of alerts used for evaluating L2DHF was 806,400 in both datasets.

5.2. Baseline models

We evaluated L2DHF against three baseline models: (i) the predictive AI ensemble, (ii) DRLHF, and (iii)
an L2D model. Details of the DRLHF and predictive AI implementations are provided in Section 4. The L2D
model utilises a confidence threshold to determine whether an alert should be deferred to the analyst. With four
classifiers in the ensemble, a priority is accepted if at least three classifiers agree on the same value, establishing
a confidence threshold of 0.75. If the priority confidence falls below this threshold, the L2D model defers the
alert to the analyst; otherwise, it retains the priority assigned by the predictive AI. This approach assumes that
the analyst’s prediction error is constant, as described by (Madras et al., 2018). By leveraging ground truth
data as the analyst feedback, our model aligns with this assumption.

5.3. Evaluation metrics

We evaluated L2DHF and baseline models using the following metrics. Table 2 summarises the formulas
and descriptions of the metrics.

• AP Accuracy: Measures the model’s ability to accurately prioritise alerts across different severity
categories. It is defined as the ratio of correctly prioritised alerts to the total number of alerts prioritised.

• Misprioritisations: This metric counts all alerts that are incorrectly assigned to severity levels different
from their true category. It reflects the model’s overall effectiveness in minimising misprioritisations
that could compromise security. For example, misprioritisation of critical alerts includes cases where
critical alerts are mistakenly assigned high, medium, low, or normal priorities. In contrast, false positives
and false negatives represent specific types of misprioritisations: false negatives occur when genuine
threats—alerts with severity levels of critical, high, medium, or low—are incorrectly categorised as
non-threats, i.e., in the normal category. Conversely, false positives are instances where non-threatening
alerts (normal category) are mistakenly assigned a threat level of low, medium, high, or critical.

• Unprocessed Alerts and Deferred Alerts by the Deferral Model: These interrelated metrics assess
the deferral model’s effectiveness in handling alert volume and analyst workload. The number of
unprocessed alerts represents those received for prioritisation but not processed by the deferral model,
indicating missed opportunities to improve AP; a lower count indicates better performance. In contrast,
the number of processed alerts refers to those handled by the deferral model. Moreover, the number of
deferred alerts reflects how often the deferral model defers alerts to human analysts, directly impacting
their workload.
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Table 2: Formulas and descriptions of evaluation metrics.

Metric Formula Description

AP Accuracy AP Accuracy𝑐 =
| {𝑖∈𝐴𝑝

𝑐 : �̂�𝑖=𝑝𝑖 } |
|𝐴𝑝

𝑐 |
where 𝐴

𝑝
𝑐 is the set of alerts prioritised into category 𝑐 (𝑐: critical,

(per category 𝑐) high, medium, low, normal), 𝑝𝑖 is the assigned priority, and 𝑝𝑖 the
true priority. Averaged over all time steps.

Misprioritisations MP𝑐 =
∑

𝑖∈𝐴𝑇
𝑐 :𝑝𝑖=𝑐∧ �̂�𝑖≠𝑐 1 where 𝐴𝑇

𝑐 is the set of alerts belonging to category 𝑐. This measures
(per category 𝑐) the total number of alerts with category 𝑐 but incorrectly prioritised

into other categories, summed over all time steps.

Unprocessed Alerts 𝑈 = |𝐴rec | − |𝐴proc | where 𝐴rec is the set of alerts received, and 𝐴proc is the subset that
(by the deferral model) were processed by the deferral model.

Deferred Alerts 𝐷 =
∑

𝑖∈𝐴proc∩𝐴defer 1 where 𝐴defer is the set of alerts deferred to the analyst. This measures
total number of alerts that were both processed by the deferral model
and then deferred to the analyst for review.

Execution Time 𝑇exec (in seconds) Measures the model’s runtime to process all alerts in a time step.

• Execution Time: This metric represents the computational time, in seconds, required for the model to
process alerts at each time step. Shorter execution times indicate greater efficiency, enabling real-time
processing in SOC environments.

5.4. System specifications and execution environment

The models were implemented in Python 3.11 and executed on an Intel(R) Xeon(R) Gold 6148 machine
with 65GB of RAM and 12 CPU cores running at 2.40GHz.

The models were run continuously to simulate alert processing over a 12-week period, representing 24/7
SOC operations across 2016 hourly time steps. This duration allowed the system to capture diverse alert
characteristics and evolving analyst-system interactions, while providing the DRL agent ample opportunity to
learn and converge on optimal decisions. At each hourly time step, the number of incoming raw alerts was
modelled using a Poisson distribution, as outlined in (Shah et al., 2019; Hore et al., 2023b; Huang & Zhu,
2022). The distribution had an average arrival rate of 400 alerts per hour, reflecting typical real-world SOC
conditions, where approximately 10,000 alerts are received daily (Ede et al., 2022; FireEye, 2015). These alerts
were then forwarded to the models for prioritisation.

The L2DHF framework is designed to be both scalable and adjustable to diverse operational conditions
across different SOCs. While our implementation used a one-hour time step and an average of 10,000 alerts
per day, the framework can easily be reconfigured for different time intervals and alert volumes. SOCs with
lower or higher traffic can adjust the time step duration or alert arrival rates accordingly, ensuring effective
deployment in both smaller-scale SOCs with moderate alert loads and in high-throughput SOCs requiring
real-time prioritisation over shorter intervals.

6. Results

This section presents the results and discusses the key insights. Table 3 summarises the key findings related
to L2DHF performance. The results are presented below with reference to the relevant evaluation metrics.

16



Table 3: Summary of L2DHF performance across all metrics.

No. Description

1 L2DHF consistently outperforms L2D, the predictive AI, and DRLHF in terms of AP accuracy across various categories
and overall.

2 L2DHF reduces the number of unprocessed alerts, thereby enhancing AP accuracy, and reduces the number of deferred alerts,
thus decreasing the analyst workload.

3 L2DHF reduces misprioritisations. In particular, it decreases the misprioritisation of top-severity alerts to lower severity
categories, thereby lowering the likelihood of top-severity alerts being overlooked and potential security compromises.

4 Handling unprocessed alerts typically necessitates increasing the number of analysts. L2DHF, with its superior AP
accuracy and reduced number of deferred alerts, requires fewer analysts compared to baselines.

5 DRLHF prioritises significantly fewer alerts than L2DHF, resulting in a large number of unprocessed alerts. Since DRLHF
does not incorporate initial prioritisation from the predictive AI, the unprocessed alerts have no assigned priority.

6 Improvements in the predictive AI can enable L2DHF to process a greater proportion of alerts, leading to higher AP
accuracy and overall system performance.

7 L2DHF demonstrates manageable and efficient execution times, making it suitable for real-time AP scenarios.

6.1. AP accuracy
Tables 4 and 5 present the overall average AP accuracy as well as the average accuracies across different

alert categories, for both processed and unprocessed alerts by the deferral model, accounting for the analyst’s
time budget. Since the predictive AI lacks a deferral model, the total number of alerts it prioritises is reported.
Figures 4 and 5 illustrate the models’ AP accuracy over time, broken down by individual categories and overall
performance.

Since normal alerts constitute the majority and achieve high accuracy in both datasets, including them can
artificially inflate overall accuracy, obscuring the models’ true performance on more severe categories. To
address this, we removed normal alerts when calculating the overall accuracy in Figures 4 and 5. Additionally,
Tables 4 and 5 include a column reporting overall accuracy excluding normal alerts. Finally, because the
CICIDS2017 dataset does not contain low-category alerts, performance results for this category are unavailable.
From these results, we draw three main insights.

• L2DHF consistently outperforms baseline models in AP accuracy across various categories, as well
as in the overall performance.

− For critical alerts, the average AP accuracy of the predictive AI and L2D is 0.841 and 0.864
(UNSW-NB15), and 0.624 and 0.6 (CICIDS2017), respectively. L2DHF improves these scores by
16% and 13%, raising the accuracy to 0.977 for UNSW-NB15, and by 60% and 67%, achieving a
perfect 1.0 for CICIDS2017.

− For high-category alerts, the predictive AI and L2D models achieve average AP accuracies of
0.918 and 0.945 (UNSW-NB15), and 0.932 and 0.937 (CICIDS2017), respectively. L2DHF further
enhances these scores by 7% and 4% for UNSW-NB15, increasing the accuracy to 0.985, and by
7% for CICIDS2017, achieving a perfect score of 1.0.

− For medium-category alerts, the predictive AI and L2D attain accuracies of 0.954 and 0.960
(UNSW-NB15), and 0.718 and 0.758 (CICIDS2017), respectively. L2DHF further improves this
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Table 4: Average AP accuracies and alert counts across various alert categories and overall, UNSW-NB15.
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Table 5: Average AP accuracies and alert counts across various alert categories and overall, CICIDS2017.

Model

Overall Critical High Medium Normal

Count Accuracy Accuracy Count Accuracy Count Accuracy Count Accuracy Count Accuracy
(with (without

Normal) Normal)

L2DHF

Processed alerts 77424 0.984 0.996 348 1.0 15807 1.0 40416 0.994 20853 0.952
(time budget > 0) 10% 63% 43% 33% 3%
Unprocessed alerts 731226 0.929 0.767 205 0.624 20943 0.932 81407 0.718 628671 0.968
(time budget = 0) 90% 37% 57% 67% 97%

L2D

Processed alerts 699304 0.962 0.797 450 0.6 28202 0.937 100203 0.758 570449 0.999
(time budget > 0) 86.9% 81.4% 77.2% 82.7% 88.3%
Unprocessed alerts 128855 0.929 0.767 103 0.624 8331 0.932 21006 0.718 75596 0.968
(time budget = 0) 13.1% 18.6% 22.8% 17.3% 11.7%

P-value 0.000 0.000 0.000 0.000 0.000 0.000

Predictive Total alerts 806061 0.929 0.767 553 0.624 36750 0.932 121823 0.718 649524 0.968
AI (time budget: NA)
P-value 0.000 0.000 0.000 0.000 0.000 0.000

DRLHF

Processed alerts 126191 0.994 0.993 49 0.959 1926 0.995 57839 0.993 66377 0.995
(time budget > 0) 15.6% 8.9% 5.3% 47.6% 10.2%
Unprocessed alerts 680403 0 0 504 0 34719 0 63678 0 581502 0
(time budget = 0) 84.4% 91.1% 94.7% 52.4% 89.8%

P-value 0.000 0.000 0.000 0.010 0.000 0.000

by 4% and 3%, elevating it to 0.992 for UNSW-NB15, and by 38% and 31%, boosting the accuracy
to 0.994 (CICIDS2017).

− Regarding low-category alerts, the predictive AI and L2D achieve accuracies of 0.39 and 0.496
(UNSW-NB15), respectively. L2DHF significantly improves this, reaching 0.925—an increase of
137% over the predictive AI and 86% over L2D.

− In terms of overall accuracy without normal alerts, L2DHF reaches 0.989 versus 0.948 for L2D
and 0.937 for the predictive AI showing around 4% and 6% improvement (UNSW-NB15). L2DHF
also achieves 0.996 against 0.797 and 0.767 for L2D and the predictive AI, improving the overall
accuracy without normal by almost 25% and 30%, respectively (CICIDS2017).

• Enhanced predictive AI performance can significantly increase the proportion of alerts processed
by L2DHF, thereby boosting the percentage of alerts with improved AP accuracy. As noted earlier,
not all alerts may be processed by L2DHF due to the analyst’s time constraints. In the UNSW-NB15
dataset, the predictive AI achieves a perfect accuracy of 1.0 for normal alerts, meaning these alerts require
no further refinement, and are excluded from being forwarded to the DRLHF component of L2DHF.
Consequently, only severe alerts are sent to L2DHF, resulting in a significantly higher percentage of
processed alerts for UNSW-NB15. Specifically, 99.7% of critical alerts are processed by L2DHF for
UNSW-NB15, compared to 63% for CICIDS2017. The processed critical alerts achieve high accuracies
of 0.977 (UNSW-NB15) and 1.0 (CICIDS2017), while the predictive AI’s average accuracy, which is
0.841 (UNSW-NB15) and 0.624 (CICIDS2017), is applied for the unprocessed critical alerts. This
highlights the AP accuracy improvement for processed alerts.

As shown in Table 5, in CICIDS2027, L2DHF achieves a lower accuracy for normal alerts (0.952)
compared to the predictive AI (0.968). However, this figure is misleading, as only 3% of normal alerts
were processed by L2DHF, making its accuracy value unreliable. To address this, we could exclude
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(a) Accuracy overall (without normal category).
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(b) Accuracy critical category.
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(c) Accuracy high category.
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(d) Accuracy medium category.
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(e) Accuracy low category.

Figure 4: AP accuracy in categories and overall, UNSW-NB15.

normal alerts from being sent to DRLHF part of L2DHF for CICIDS2017 as well. While the predictive
AI’s accuracy for normal alerts is not perfect for CICIDS2017, it is reasonably high. This exclusion
would increase the number of processed severe alerts, which are more important, thereby leading to a
significant rise in the total number of processed alerts and improved AP accuracy.

The trend of more processed alerts with higher predictive AI accuracy is also observed for L2D. Although
normal alerts are not excluded from L2D processing in UNSW-NB15, the predictive AI’s higher AP
accuracy enables L2D to process 100% of alerts, whereas this value drops to 86.9% for CICIDS2017.
This is because higher AP accuracy from the predictive AI increases L2D’s confidence in its deferral
decisions, allowing more alerts to be accepted with the predictive AI’s assigned priority. As a result,
fewer alerts are deferred to the analyst, optimising analyst time for more uncertain cases and boosting the
number of processed alerts.

• DRLHF processes significantly fewer alerts compared to the other models, resulting in a large
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(b) Accuracy critical category.
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(c) Accuracy high category.
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(d) Accuracy medium category.

Figure 5: AP accuracy in categories and overall, CICIDS2017.

volume of un-prioritised alerts. As shown in Table 4, for UNSW-NB15, DRLHF prioritises only 6.5%
of total alerts, leaving the remaining 93.5% unprocessed and therefore un-prioritised, as DRLHF lacks
initial prioritisation from the predictive AI. This pattern is also evident across different alert categories.
For instance, only 9.3% of critical alerts, 6.1% of high-category alerts, and 3.4% of low-category alerts
are processed by DRLHF. In the case of CICIDS2017, as shown in Table 5, although the total number of
processed alerts increases to 15.6%, the majority of top-priority alerts, such as critical and high-category
alerts, which pose greater vulnerabilities and are therefore more important for SOCs, remain largely
unprocessed and without assigned priority. Only 8.9% of critical alerts and 5.3% of high-category alerts
are processed.

Table 4 shows that DRLHF slightly outperforms L2DHF in AP accuracy for some severe categories.
However, this higher accuracy applies to a much smaller portion of the alerts. For instance, in Table
4, while DRLHF achieves an accuracy of 0.997 for high-category alerts, it only covers 6.1% of them,
leaving 93.9% unprocessed and without assigned priority. In contrast, L2DHF achieves an accuracy of
0.985 across 98% of high-category alerts. For the remaining 2% of high-category alerts not processed by
L2DHF, the predictive AI’s accuracy (0.918) is applied. Therefore, while DRLHF may show seemingly
higher accuracy in some cases, this is misleading, as it processes a far smaller proportion of the alerts
and cannot be considered superior to L2DHF.

L2D processes higher percentage of alerts. However, due to its suboptimal accuracy, especially for critical,
high, medium and low categories, these alerts still require more careful analyst review, increasing the
analyst’s workload.
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Figure 6: The count of misprioritisations.

Minor variations in the total number of alerts submitted to the models arise from the random Poisson-
distributed alert arrivals at each time steps. To assess the significance of accuracy differences between L2DHF
and baselines, we performed the Mann-Whitney U-test (MacFarland & Yates, 2016). The results, presented in
Tables 4 and 5, show that all P-values, except for one case (low-category alerts for DRLHF in UNSW-NB15),
are under 0.05, indicating statistical significance at the 95% confidence level. Since all models achieve perfect
accuracy for normal alerts in UNSW-NB15, comparisons of overall accuracy with normal alerts were omitted.

6.2. Misprioritisations

Figure 6 shows the count of misprioritisations over time steps across all categories. DRLHF is excluded
from the comparison due to its limited number of processed alerts in most categories, making it impractical to
compare with other models. For a fair comparison, we ensure that the processed alert percentage of L2DHF
matches that of the other models.

− In general, L2DHF notably reduces misprioritisations, including misprioritisation between severe threat
levels, false positives and false negatives, across all categories compared to other models, with the
exception of L2D on CICIDS2017, which demonstrates a lower false positive number.

− In the case of critical alerts that are most important for SOCs to correctly detect, L2D and the predictive
AI misprioritise 1,154 and 1,344 alerts, respectively, in UNSW-NB15. In contrast, L2DHF significantly
reduces misprioritisations of critical alerts to 197, achieving reductions of 83% and 85% compared to L2D
and predictive AI, respectively. In CICIDS2017, L2DHF achieves a 100% reduction in misprioritisation
of critical alerts, compared to 21 misprioritised critical alerts by both L2D and the predictive AI. This
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improvement is particularly important, as misprioritised critical alerts can lead to serious breaches or
delayed responses to active threats.

− In a similar pattern for high-category alerts, L2DHF misprioritises 167 alerts in UNSW-NB15, reflecting
a reduction of nearly 73% and 82%, compared to the 618 misprioritised by L2D and the 921 misprioritised
by the predictive AI, respectively. In CICIDS2017, L2DHF misprioritises only 4 high-category alerts,
compared to 206 and 249 misprioritised by L2D and the predictive AI, respectively, resulting in a 98%
reduction in misprioritisation of high-category alerts.

− L2DHF not only reduces misprioritisations, but also mitigates the danger of more severe alerts
being misclassified into less severe categories, thereby reducing the likelihood of top-severity alerts
being overlooked. For example, in UNSW-NB15, L2DHF primarily misclassifies critical alerts as high-
priority alerts, which still receive significant attention from SOCs for investigation and response. Only
1 critical alert is misclassified as medium and another 1 as low by L2DHF. In contrast, the predictive AI
misclassifies 5 critical alerts as medium priority and another 5 as low priority. In CICIDS2017, all 21
critical alerts misprioritised by L2D and the predictive AI are labelled as normal priority, substantially
increasing the potential harmful consequences of overlooking these critical-severity threats. Moreover,
in CICIDS2017, among the misprioritised high-category alerts, 2 are downgraded to medium by L2DHF,
while L2D downgrades 198 to medium and 8 to normal, and the predictive AI downgrades 229 to medium
and 19 to normal. Such misprioritisations can introduce serious security incidents, especially if a critical
or high-category alert is incorrectly treated as low priority and left unaddressed.

− In terms of false positives, in UNSW-NB15, all three models: L2DHF, L2D, and the predictive AI
produce zero false positives, likely due to the predictive AI’s perfect accuracy in initially prioritising
normal-category alerts.

In CICIDS2017, L2DHF generates 992 false positives, representing a 52% reduction compared to the
2,068 false positives produced by the predictive AI. In contrast, L2D produces only 48 false positives,
which may seem favourable at first glance. However, this lower count is misleading, as L2D results in a
substantially higher number of misprioritised severe alerts than L2DHF. For instance, 2,788 misprioriti-
sations compared to 237 in the medium category, and 206 misprioritisations compared to 4 in the high
category. Given the analyst’s limited time, models can only defer a subset of alerts for human correction.
L2D defers more normal-category alerts to the analyst, leaving many severe alerts unreviewed. This
leads to fewer false positives but a significantly higher number of misprioritisations for severe alerts. In
contrast, L2DHF focuses on deferring more severe alerts to the analyst, helping reduce misprioritisations
in these crucial categories. Although this results in more normal alerts going unreviewed, leading to a
higher false positive count, L2DHF’s result is preferable in terms of maintaining overall system security
and operational effectiveness.

− In terms of false negatives, in UNSW-NB15, both L2DHF and the predictive AI result in zero false nega-
tives, while L2D has only a negligible number, probably because the predictive AI consistently prioritises
normal-category alerts with complete accuracy. In CICIDS2017, L2DHF significantly outperforms both
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L2D and the predictive AI. While L2D and the predictive AI result in 2,816 (21 critical + 8 high + 2,787
medium) and 3,007 (21 critical + 19 high + 2,967 medium) false negatives respectively, L2DHF reduces
this number to just 3, representing an almost 100% reduction of false negatives.

6.3. Unprocessed alerts and deferred alerts by the deferral model

This section examines the number of unprocessed alerts by the deferral model and the number of deferred
alerts sent to the analyst, offering a clearer understanding of model performance in enhancing AP and reducing
analyst workload. Our previous analyses have shown that alerts not processed by the DRL agent (acting as
the deferral model) tend to have significantly lower AP accuracy. This can substantially increase the analyst’s
workload during subsequent investigation steps, as more detailed analysis is needed to identify any missed
critical alerts. Therefore, models that enable the DRL agent as the deferral model to process a higher number
of alerts generally demonstrate better overall performance.
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Figure 7: Number of unprocessed alerts by the deferral models (left) and deferred alerts to the analyst (right) over time, UNSW-NB15.

Figures 7 and 8 show the number of unprocessed alerts by the deferral model, along with the number of
alerts deferred to the analyst over time for UNSW-NB15 and CICIDS2017, respectively2. Figures 9 and 10
provide comparative boxplots of unprocessed and deferred alerts across models. Key insights are discussed
below:

− L2DHF Performance: L2DHF eliminates unprocessed alerts for UNSW-NB15 by 100% over time,
dropping from an average of 17 in the first 500 time steps to 0 in the last 500. However, for CICIDS2017,
unprocessed alerts remain consistently high, averaging around 363, with no noticeable decline due to the
large volume of alerts sent to the DRL agent, which exceeds the number that can be deferred to the analyst
because of the analyst limited time. This issue could be mitigated by incorporating multiple analysts into
L2DHF, as will be discussed later.

2The predictive AI is not included in this analysis as it lacks a deferral model.
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Figure 8: Number of unprocessed alerts by the deferral models (left) and deferred alerts to the analyst (right) over time, CICIDS2017.

In UNSW-NB15, L2DHF decreases deferred alerts from an average of 16 in the first 500 time steps to
10 in the last 500, marking a 37% reduction over time and significantly lowering the analyst’s workload.
Figure 9 shows that L2DHF consistently results in fewer deferred alerts versus DRLHF, with an average
of 14 compared to 17 in DRLHF, representing an approximate 18% reduction in average analyst workload
compared to DRLHF. In CICIDS2017, the number of deferred alerts remains constant averagely at 13
across both the first and last 500 time steps. Although no reduction is observed over time in this case,
the value of 13 is the minimum average overall among the evaluated methods, resulting in a 19–23%
reduction in analyst workload when compared to DRLHF (average deferred alerts: 17) and L2D (average
deferred alerts: 16), as shown in Figure 10.

− DRLHF Performance: Similar patterns emerge across both datasets with DRLHF. The number of
unprocessed alerts remains high, averaging around 373 for UNSW-NB15 and 338 for CICIDS2017.
Additionally, DRLHF increases the number of deferrals over time to maximise the utilisation of the
analyst’s time budget to improve AP, leading to a rise in deferred alerts over time. Deferred alerts
increase from an average of 15 for UNSW-NB15 and 16 for CICIDS2017 in the first 500 time steps to
18 in the last 500, marking a 20% and 12.5% rise over time, respectively, and subsequently increasing
the analyst’s workload. Figures 9 and 10 also show that DRLHF results in the highest average number of
deferred alerts among all models, thereby imposing the highest workload.

− L2D Performance: In L2D, the average number of deferred alerts remains constant over time for both
datasets, as shown in Figures 7 and 8. For CICIDS2017, a larger number of alerts have predictive AI
priorities below the confidence threshold, prompting the model to maximise deferrals in an attempt to fully
utilise the analyst’s time for priority revision. As a result, the average number of deferred alerts reaches
16. Additionally, unprocessed alerts average 52. In contrast, for UNSW-NB15, the number of deferred
and unprocessed alerts in L2D is minimal compared to L2DHF as illustrated in Figure 9. However,
considering L2D’s relatively poor AP accuracy compared to L2DHF, this indicates inefficiencies in how
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Figure 9: Comparative boxplots of unprocessed alerts (left) and deferred alerts (right), UNSW-NB15.
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Figure 10: Comparative boxplots of unprocessed alerts (left) and deferred alerts (right), CICIDS2017.

analyst time is utilised to improve AP. Deferring fewer alerts does not necessarily indicate better model
efficiency.

Based on these findings, we conclude that L2DHF is the most effective model. It enhances AP performance
by decreasing the number of unprocessed alerts, while simultaneously reducing deferred alerts, thus alleviating
analyst workload.

The challenge of unprocessed alerts stems from the analyst’s limited time budget. Given more time, the
analysts could process all alerts. One possible solution is to increase the number of analysts, allowing the
deferral model to distribute alerts more effectively. However, this solution comes with the trade-off of higher
personnel costs, as more analysts would incur higher labour costs. This study models the scenario with a single
analyst. Due to its superior AP accuracy and the reduction in deferred alerts, which minimises the need for
additional analysts, L2DHF emerges as the preferred model for handling unprocessed alerts, outperforming
both DRLHF and L2D.

Note: It is important to emphasise that L2DHF is not intended to replace human judgement, but to complement
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(b) CICIDS2017.

Figure 11: Execution time of models.

it. Human analysts remain indispensable due to the complex and evolving nature of SOC operations. L2DHF
aims to alleviate their workload while maximising AP performance. By deferring uncertain and novel cases to
human experts, L2DHF helps minimise errors, learns from human feedback to optimise its deferral strategy,
and improves AP accuracy. L2DHF also mitigates analyst workload by optimising the number of deferred
alerts.

6.4. Execution time

Figure 11 illustrates the execution times of the models across time steps for both datasets, reflecting the
time required to handle incoming alerts at each step. L2DHF consistently maintains efficient execution times,
ranging from approximately 10 to 40 seconds across time steps for both UNSW-NB15 and CICIDS2017. These
times represent the total execution time of each model’s AI module. For instance, L2DHF’s AI module includes
both the predictive AI and the DRL agent, while DRLHF’s consists solely of the DRL agent. The remaining
duration within each time step is available for the analyst to review alerts. This demonstrates L2DHF’s
suitability for real-time AP tasks, aligning well with the speed of alert generation in SOCs and the urgency
of their prioritisation. DRLHF shows an increasing execution time over the time steps, with higher execution
times than those of L2DHF after time step 1000 for UNSW-NB15 and in most time steps for CICIDS2017.

7. Threats to validity

This section outlines the key threats to the validity of our study, particularly focussing on the challenges of
involving real human analysts, employing realistic datasets in the experimental setup, and assumptions related
to analyst feedback and AVAR reliability.

7.1. Human analyst involvement

Integrating real human feedback poses a major challenge for RLHF frameworks. As noted by Christiano et al.
(2017), providing real human feedback as a direct reward is often impractical, given RLHF systems typically
require hundreds or thousands of interactions to learn effectively. Reducing the number of interactions is
necessary to make the training feasible with real human feedback but may come at the cost of learning
efficiency and overall performance of RLHF models. This issue is further amplified in the SOC context,
where security analysts are highly skilled professionals whose time is both limited and valuable. Engaging
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security analysts in prolonged interactive experiments over extended periods, such as weeks, would be not only
impractical but also disruptive to their operational duties.

To address this, we followed an established and pragmatic alternative of using ground truth labels as
a proxy for analyst feedback (Mozannar & Sontag, 2020; Cao et al., 2024). This approach has also been
adopted in a SOC-related research (Wang et al., 2024), where ground truth was used to emulate analyst input
in an RLHF-enabled anomaly detection system. Although it may not fully capture the subjectivity of human
decision-making, this practice facilitates experimentation at scale while mitigating the cost and complexity of
involving experts.

7.2. Realistic datasets

Effective experimentation for AP in SOCs necessitates access to cybersecurity datasets that reflect realistic
operational conditions. Ideally, it would involve real-world SOC data; however, realistic datasets are rarely
available due to confidentiality and security constraints. Acquiring realistic data is challenging due to the need
for diverse, up-to-date attacks, realistic operational settings, and traffic characteristics reflecting the real-world
conditions (with errors, imbalanced, etc.) (Duraz et al., 2023).

The datasets used in this study, UNSW-NB15 and CICIDS2017, have been widely adopted in ML-based
SOC and cybersecurity research (Wu et al., 2025; Kumar et al., 2025; Binbusayyis, 2024). They include
environments and traffic patterns that are representative of real-world operational conditions (Duraz et al.,
2023).

7.3. Analyst error and AVAR reliability

Our study assumes that human analysts always provide correct feedback when reviewing alerts. While
this assumption simplifies the experimental design and facilitates focused evaluation, it does not reflect the
variability in analyst decisions that exists in real SOCs, where even expert analysts are susceptible to error,
especially under conditions of cognitive load. Moreover, any incorrect analyst decisions are stored in AVAR
without opportunities for revision. This could degrade the long-term reliability of AVAR.

Future work could address these limitations by explicitly modelling the potential for analyst error. Addi-
tionally, mechanisms to ensure the quality of AVAR data could be implemented. For example, alerts could be
reviewed by multiple analysts before being permanently recorded, or regular audits by domain experts could
be introduced to filter inaccurate entries and maintain the integrity of AVAR.

8. Conclusion

This paper introduced Learning to Defer with Human Feedback (L2DHF), a novel approach to human-AI
teaming (HAT) aimed at improving alert prioritisation (AP) in security operation centres (SOCs). Central
to L2DHF is an adaptive deferral model powered by DRLHF, enabling the system to continuously refine its
deferral decisions based on human feedback. This leads to improved AP accuracy, reduced misprioritisations,
and decreased analyst workload.

Experimental results on the UNSW-NB15 and CICIDS2017 datasets show consistent improvements in AP
performance. L2DHF enhanced AP accuracy for critical alerts by 13-16% on UNSW-NB15 and 60-67% on
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CICIDS2017 compared to baseline models. On the CICIDS2017 dataset, L2DHF achieved a 100% reduction
in misprioritisaions of critical alerts, a 98% reduction in misprioritisaions of high-category alerts, and a 52%
reduction in false positives versus the baselines. Additionally, L2DHF decreased the number of deferred alerts
by 37% over time on UNSW-NB15, helping reduce analyst workload. Its execution time remained highly
efficient, supporting its suitability for real-time AP in SOCs.

Future work could address the challenge of unprocessed alerts by leveraging multiple analysts, with mech-
anisms for assigning alerts based on expertise and preferences. Further research might explore how the DRL
agent could provide personalised feedback to analysts, fostering a reciprocal loop to improve both deferrals
and analyst performance. Another promising direction is the integration of large language models (LLMs)
to support HAT in AP. LLMs could enable natural language interactions between analysts and AI systems,
generate alert summaries, and provide interpretable explanations to assist in decision-making.
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