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Abstract—Fully Homomorphic Encryption (FHE) is an encryp-
tion scheme that not only encrypts data but also allows for com-
putations to be applied directly on the encrypted data. While
computationally expensive, FHE can enable privacy-preserving
neural inference in the client-server setting: a client encrypts
their input with FHE and sends it to an untrusted server. The
server then runs neural inference on the encrypted data and
returns the encrypted results. The client decrypts the output
locally, keeping both the input and result private from the
server. Private inference has focused on networks with dense
inputs such as image classification, and less attention has been
given to networks with sparse features. Unlike dense inputs,
sparse features require efficient encrypted lookup operations
into large embedding tables, which present computational and
memory constraints for FHE.

In this paper, we explore the challenges and opportuni-
ties when applying FHE to Deep Learning Recommendation
Models (DLRM) from both a compiler and systems perspec-
tive. DLRMs utilize conventional MLPs for dense features
and embedding tables to map sparse, categorical features to
dense vector representations. We develop novel methods for
performing compressed embedding lookups in order to reduce
FHE computational costs while keeping the underlying model
performant. Our embedding lookup improves upon a state-
of-the-art approach by 77× [1]. Furthermore, we present an
efficient multi-embedding packing strategy that enables us to
perform a 44 million parameter embedding lookup under FHE.
Finally, we integrate our solutions into the open-source Orion
framework and present HE-LRM, an end-to-end encrypted
DLRM architecture. We evaluate HE-LRM on UCI (health
prediction) and Criteo (click prediction), demonstrating that
with the right compression and packing strategies, encrypted
inference for recommendation systems is practical.

1. Introduction

Fully Homomorphic Encryption (FHE) is a crypto-
graphic scheme that allows computations to be performed
directly on encrypted data without requiring any decryption.
By enabling secure computations in untrusted environments,
FHE offers a powerful solution for privacy-preserving ap-
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Figure 1. Overview of Deep Learning Recommendation Models
(DLRM) [2]. DLRMs process both dense and sparse features: dense
features pass through an MLP (Bottom) whereas each sparse feature
retrieves an embedding vector from a lookup table. The dense output and
embeddings interact before passing through a final MLP (Top) to make
a prediction. HE-LRM utilizes Fully Homomorphic Encryption (FHE) to
perform end-to-end encrypted inference of this model, maintaining data
privacy throughout the entire computation.

plications in sensitive domains such as healthcare, finance,
and personalized services. However, the high computational
costs and the challenges of writing correct FHE programs
limits its practicality to small-scale or narrowly scoped tasks.

Recent advances in FHE, from algorithmic improve-
ments such as faster bootstrapping [3], [4], [5], [6], [7],
[8], key-switching [9], [10], compiler optimizations [11],
[12], [13], [14], [15], [16], [17], [18] and hardware ac-
celeration [19], [20], [21], [22], [23], [24], have brought
FHE closer to practical deployment for deep learning tasks.
While prior works have explored FHE-based inference for
simple neural networks or vision models, large-scale private
recommendation models remain largely out of reach.

In particular, Deep Learning Recommendation Models
(DLRMs), which enable personalized ranking and recom-
mendation, pose unique challenges for privacy-preserving
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deployment. These models have the particularity that they
process two types of inputs: dense numerical features (e.g.,
user age, device characteristics) and sparse categorical fea-
tures (e.g., user location, user IDs, item categories), which
index into large embedding tables. We refer to Figure 1
for an illustration of a general DLRM model. Embedding
tables are often tied to sensitive user attributes such as
demographics, behavior, and preferences. This motivates the
need for a privacy-preserving DLRM capable of performing
inference over encrypted data.

This paper presents a fully homomorphic encryption so-
lution for DLRMs using the RNS-CKKS FHE scheme [25]
to enable inference on encrypted user data without compro-
mising privacy. To the best of our knowledge, no solution
exists that runs such models under FHE. As mentioned
above, a key challenge in deploying (private) DLRMs is
that embedding tables can grow prohibitively large, and
performing efficient indexing under FHE is difficult. To
address this, we propose an improvement over Kim et al.’s
solution [1] for homomorphic lookup table evaluation. We
perform a similar compression of embedding tables but
overcome many of their limitations such as wasted slots
in a ciphertext, high CKKS multiplicative depth, and even
security considerations, while at the same time allowing for
a similar exponential compression factor. Furthermore, we
extend our technique to include a multi-embedding packing
strategy to operate over multiple embedding tables in a
parallel fashion.

We design our FHE-based recommendation model,
which we refer to as HE-LRM inspired by the DLRM
architecture. We implement HE-LRM in the open-source
Orion framework [18], leveraging their state-of-the-art pack-
ing strategies, automatic bootstrap placement, and scale
management. Moreover, the Orion framework allows us to
develop our HE-LRM components directly in PyTorch, al-
lowing for faster iteration and rapid prototyping throughout
the development process.

We demonstrate the efficiency of our solution by running
HE-LRM on two datasets. First, we test our model on the
(smaller) UCI health dataset to predict heart diseases. In this
case, we use the x2 activation function rather than ReLU.
We report an FHE latency of approximately 24 seconds with
a validation accuracy of 85%. We also run HE-LRM on the
Criteo Kaggle dataset for which the size of the embedding
tables becomes critically large. We define a threshold to
determine which embedding tables to compress (when the
number of rows exceeds the threshold) and varying our
threshold, we demonstrate FHE latency from 488 seconds
down to 227 seconds when the compression ratio is 31180×,
while the training loss and test AUC are minimally impacted
by the compression. We also find the SiLU activation,
which admits a lower-degree polynomial approximation than
ReLU, significantly reduces the number of required boot-
straps and improves efficiency. For example, the SiLU-based
DLRM requires only 5 bootstraps and completes embedding
lookups in 44 seconds, compared to 12 bootstraps and 51
seconds for its ReLU counterpart for a 102× compressed
model. Our main results are reported in Table 1.

TABLE 1. SUMMARY OF OUR EXPERIMENTAL RESULTS WHEN
RUNNING HE-LRM ON THE UCI HEALTH DATASET AND THE CRITEO

KAGGLE DATASET. AVERAGED OVER THREE RUNS.

Dataset # Parameters FHE Latency (s)

UCI Health 224 24.22

Criteo Kaggle

17K 227.7

144K 228.2

764K 230.0

9.1M 288.0

44.4M 488.9

Finally, we provide a discussion of the broader limi-
tations and challenges of private recommendation systems,
highlighting both the promise and open questions in de-
ploying such models securely. Concretely, we make the
following contributions.

1) HE-LRM, an end-to-end FHE-based DLRM model
that performs encrypted inference on both dense
and sparse features.

2) An FHE-friendly embedding compression tech-
nique to efficiently achieve an exponential compres-
sion factor for large embedding tables that outper-
forms state-of-the-art by 77×.

3) A multi-embedding packing strategy that leverages
a block-diagonal structure optimized for baby-step-
giant-step linear transformations.

4) An evaluation of our HE-LRM on the Criteo and
UCI datasets, along with a detailed analysis of
inference latency, accuracy, and memory footprint
under FHE constraints.

2. Background

In this section, we provide a high-level overview of the
RNS-CKKS fully homomorphic encryption scheme and also
outline the DLRM architecture.

2.1. CKKS

CKKS [26], [27] is a SIMD style homomorphic encryp-
tion scheme that encrypts a vector of complex or real values
into a ciphertext. This scheme relies on Ring Learning
with Errors (RLWE) ciphertexts in R2

Q for a given ring
R = Z[X]/(XN +1), where N = 2k, for k > 0, is the ring
dimension and RQ = R/QR describes the ring R reduced
modulo an integer Q =

∏L
i=0 qi. The integer L is known

as the multiplicative depth and represents the maximum
number of rescaling levels available before decryption fails.
CKKS supports element-wise operations such as addition
and multiplication as well as cyclic rotation. Based on the
characteristics of the CKKS scheme, it becomes a natural
choice for applications such as deep learning recommenda-
tion models, which accept real-valued vectors as input. We
now describe some of the core operations used with CKKS.
Encoding. Consider a real (or complex) vector x ∈ CN/2.
This vector can be encoded into elements of RQ using an
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Figure 2. Latencies (single-threaded) of primitive homomorphic operations
as a function of level averaged over 30 runs. Both ciphertext-ciphertext
multiplication and ciphertext rotation require a compute and memory in-
tensive key-switching operation. Multiplication time includes rescaling (for
both cases) and key-switching (for CT-CT multiplication). Due to rescaling,
CKKS multiplications require at least two limbs for both operands.

approximate inverse of a scaled complex canonical embed-
ding. More precisely, one applies an inverse Fast Fourier
Transform on the elements of x and scales each output
by a scaling factor ∆. Finally, each element is rounded to
the nearest integer as encryption is performed over integers
modulo Q. This step outputs a plaintext polynomial m(X)
which packs N/2 complex values. These N/2 values are
referred to as the available slots in a CKKS polynomial.
Encryption The plaintext polynomial m(X) can be en-
crypted into a ciphertext (a,b) ∈ R2

Q with a given public
key and the addition of some random noise.
Addition. CKKS supports element-wise plaintext-ciphertext
and ciphertext-ciphertext additions. The resulting ciphertext
after this operation corresponds to the SIMD addition of the
underlying complex vectors.
Multiplication. Similar to addition, CKKS supports mul-
tiplication between either a plaintext and ciphertext or
between two ciphertexts. Multiplication is followed by a
rescaling procedure to avoid an exponential growth in
the scaling factor. The resulting polynomial after this op-
eration has coefficients in ZQℓ−1

instead of ZQℓ
where

Qℓ =
∏ℓ

i=0 qi for 0 < ℓ ≤ L which corresponds to the
consumption of a level in the chain of moduli.
Rotation. Cyclic rotations shift the elements of the input
vector x by 0 < k < N/2 slots. The resulting ciphertext
after this operation corresponds to the same underlying
vector with shifted elements by k slots.
Key-switching. Key-switching is a standard operation in
CKKS which converts a ciphertext encrypted under one
secret key into a ciphertext that decrypts correctly under
another secret key. This procedure is necessary after certain
operations such as ciphertext-ciphertext multiplication or
ciphertext rotation so that the result remains compatible
with the decryption key. The transformation is done using
a special switching key, which allows this change without
decrypting the ciphertext.

Bootstrapping. In CKKS, a ciphertext can be bootstrapped
to increase its number of available levels. This operation is
necessary after the moduli chain has been depleted (ℓ = 0)
via multiplications and no more levels are available for
further computations. Among all CKKS operations, boot-
strapping is the most computationally expensive, taking
roughly 20 seconds on a single-threaded CPU [28].

Figure 2 illustrates the latencies of the main CKKS
homomorphic operations for both plaintexts (PT) and ci-
phertexts (CT) in terms of the level ℓ.

2.2. Deep Learning Recommendation Model

Deep Learning Recommendation Models (DLRM) [2]
are an example of a neural network-based recommendation
model introduced by Facebook Research to handle both
categorical (sparse) and continuous (dense) features. In order
to process both types of inputs, the DLRM architecture
combines multi-layer perceptrons (MLP) to process the
continuous features and transforms categorical features into
continuous embeddings through learned lookup tables. All
processed inputs are then combined with some interaction
operation. The model outputs a probability which corre-
sponds to the likelihood of a user clicking an ad, a quantity
referred to as click-through rate. More precisely, the DLRM
architecture performs the following steps:

1) A bottom MLP processes the dense inputs. This
MLP consists of a series of linear layers with ReLU
activation functions.

2) The sparse (categorical) features are transformed
into dense embedding vectors. One embedding ta-
ble per categorical feature is used to retrieve these
vectors.

3) The dense output from the bottom MLP and the
embedding vectors are combined via an interaction
operation, which can either be a dot product be-
tween all pairs of embedding vectors and the dense
feature or a simple concatenation of the embedding
vectors and the dense feature. In this work, we opt
for the latter.

4) The concatenated features are then then fed into a
top MLP that consists of a series of linear layers
with ReLU activations.

5) The output of the top MLP is passed through a
sigmoid function to produce a click-through prob-
ability.

We refer to [2] for more details about the algorithm and
https://github.com/facebookresearch/dlrm. for the
open-source implementation in both PyTorch and Caffe2.
While originally developed for click-through rate prediction
in targeted advertising, the DLRM architecture is flexible
and can be adapted to process any input which contains
both categorical and dense features and produce probability
estimates for a wide range of applications. In this paper, we
additionally apply the DLRM architecture to the the UCI
Heart Disease dataset.

https://github.com/facebookresearch/dlrm


3. Threat Model

We assume a semi-honest threat model [29] in which
an adversary faithfully takes part in the private inference
protocol but may try to learn additional information from
the messages they receive. This threat model (also known
as honest-but-curious) is also assumed in a majority of prior
works in private inference [18], [30], [31], [32], [33], [34].

We also assume that the client knows the input dimension
to the neural network for which they query. In the context
of CKKS and especially private CNN inference, this as-
sumption has been implicit: the client encrypts their image
into the slots of a CKKS ciphertext before sending them to
server to be processed. The ordering of the pixels within the
encrypted slots must be known by the server in order for
the server to perform the encrypted computation correctly.

In this paper, we make this assumption explicit given
that the inputs are no longer only dense features but also
the sparse features used for the embedding tables. To this
end, we assume that the client knows the input size to
the Bottom MLP and the sizes (number of rows) of each
embedding table. Crucially, the client does not know the
embedding dimension (number of columns) or parameters
of the embedding tables, the interaction method, or the
parameters of the MLPs.

4. The Orion Framework

In this section, we explain our rationale for choosing the
Orion framework and discuss our implementation of DLRM
within it. Orion is a tool that translates deep neural net-
works written in PyTorch [35], a widely used deep learning
library, into efficient FHE programs. Its high-level interface
abstracts and automates the programming complexities that
traditionally complicate FHE neural inference. This automa-
tion allows researchers to quickly iterate on ideas without
dealing with low-level FHE implementation details. For
most feed-forward neural networks, Orion automates SIMD
data packing for linear layers, bootstrap placement, and scale
management. Orion also handles polynomial approximations
of activation functions and dynamically manages evaluation
keys by loading and storing them as needed. We discuss
data packing and bootstrap placement below.
Efficient linear transforms: In the clear, linear layers (e.g.,
fully connected, convolutional, FFN transformer blocks,
etc.) dominate the inference latency of modern neural net-
works. The same trend holds when inputs are encrypted.
Here, homomorphic linear transforms require many cipher-
text rotations, and each rotation involves a costly key-switch
operation as described in Section 2.1. Considerable effort
has gone into reducing these costs, in part because they
comprise a large portion of bootstrap latency in CKKS.

One notable method resulting from these efforts is
the double-hoisting baby-step giant-step algorithm [28]
(DH-BSGS). Double-hoisting amortized key-switching costs
across many ciphertext rotations and BSGS significantly re-
duces the number of ciphertext rotations needed for matrix-

Listing 1: The Top MLP of DLRM within Orion.
import orion.nn as on

class TopMLP(on.Module):
def init (self, input len):

super(). init ()
self.fc1 = on.Linear(input len, 512)
self.fc2 = on.Linear(512, 256)
self.fc3 = on.Linear(256, 1) # decision

self.relu1 = on.ReLU(degrees=[15,15,27])
self.relu2 = on.ReLU(degrees=[15,15,27])
self.sigmoid = on.Sigmoid(degree=31)

def forward(self, x):
x = self.relu1(self.fc1(x))
x = self.relu2(self.fc2(x))
x = self.sigmoid(self.fc3(x))
return x

vector products. Orion adopts this method for all linear lay-
ers in neural networks. For an in-depth analysis of encrypted
matrix-vector products in RNS-CKKS, we refer the reader
to Section 3 of Orion [18].

In this work, we utilize DH-BSGS linear transformations
for all embedding table lookups. This optimization is central
to the improvements over prior work and is further discussed
in Section 5.

Automatic bootstrap placement: Orion formulates boot-
strap placement as a shortest-path problem over a directed
acyclic graph (DAG). Solving this problem determines the
optimal ciphertext level for each Orion module that min-
imizes the overall encrypted inference latency. The run-
time of linear layers is estimated using a cost model, and
the aggregate latency accounts for the overhead introduced
by necessary bootstrapping operations. Importantly, Orion
supports bootstrap placement in modern, residual neural
networks. These networks contain multiple paths from input
ciphertext to output prediction. We find this property useful
for DLRM, where inputs can either be sparse or dense, and
thus take separate paths through the network. A benefit of
extending PyTorch is that the infrastructure already exists to
generate static computational graphs from neural networks.
These graphs can be minimally post-processed to create
the DAGs used in automatic bootstrap placement. Once the
locations of bootstraps are known, their Orion modules are
automatically inserted into the network graph and used in
each encrypted inference. The concept of bootstrapping is
entirely abstracted from the end user. We refer readers to
Section 5 of Orion [18] for further details.

Programmability: We demonstrate Orion’s programmabil-
ity through our implementation of the top MLP within
DLRM, shown in Listing 1. The implementation requires
minimal changes from standard PyTorch: we simply replace
each nn module with our equivalent on module and specify
polynomial degrees to replace the ReLU activation function.
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Figure 3. Left: A standard embedding lookup with a vocabulary size of
k = 16 and embedding dimension d = 3. Right: Compressed tables can
be learned [36] which decompose a large embedding into ℓ smaller tables
of size p × d such that pℓ = k. Input tokens are first mapped to coded
tokens: Zk → Zℓ

p. Each coded token retrieves a row from the compressed
table and output rows are summed to produce a single embedding vector.
[36] learns a mapping that is of size O(k) whereas we employ a fixed
bit-decomposition, detailed in Section 6.1.

5. Starting Point: CodedHELUT (ICML ’24)

Given that Orion automatically supports the Bottom and
Top MLPs in DLRM, we turn our attention to efficiently per-
forming embedding lookups under FHE. Our starting point
is the Coded Homomorphic Evaluation of Lookup Tables
(CodedHELUT) algorithm from [1], which we describe in
this section and improve upon in Section 6. We note that effi-
cient FHE embedding table lookup extends beyond DLRMs
and may also be of interest for encrypted language model
inference since LLMs also require embedding lookups.

5.1. Embedding Tables

As discussed in Section 2.2, the categorical (sparse)
features are represented by embedding vectors stored in em-
bedding tables. While a cleartext DLRM can perform stan-
dard embedding lookups directly, the homomorphic setting
requires careful design of an efficient retrieval algorithm.

Embedding tables in DLRMs are parameterized as ma-
trices E ∈ Rk×d where k is the number of unique categories
and d is the hidden or embedding dimension. An example
embedding table can be seen in the left of Figure 3. For
standard cleartext computations, the inputs to the embedding
table are simply indices i ∈ Zk, which are used to retrieve
rows (i.e., E[i]), from the embedding table for further pro-
cessing by the DLRM. However, this process of extracting
rows using indices is challenging in the context of CKKS
where the only available operations are SIMD addition,
multiplication, and cyclic rotation of encrypted vectors.

A straightforward FHE-friendly solution to this lookup
problem is to treat the embedding lookup as a linear transfor-
mation by an encrypted one-hot encoded index. First, define

Number of slots in one
ciphertext, n = N/2 = 215 

Figure 4. Embedding tables for the 26 categorial features in the Criteo
dataset sorted by size (number of rows). There are a total of 33.8 million
rows for all features.

the one-hot encoding function as OHE : Zk → {0, 1}k such
that for any i ∈ Zk, we have

OHE(i) = (e0, . . . , ek−1) where ej =

{
1 if j = i

0 otherwise

Then, by encrypting this basis vector OHE(i) under FHE,
the server can perform the vector-matrix multiplication
OHE(i) · E homomorphically. This encrypted computation
would be equivalent to the cleartext index lookup of E[i].
The primary drawback of this method is that each one-hot
encoding requires k slots of a CKKS ciphertext where only
a single element within these k slots is non-zero. Figure 4
shows that realistic DLRMs exhibit large embedding table
sizes. For a DLRM tailored to the Criteo dataset, the naı̈ve,
one-hot encoding for each embedding table would require
33.8 million slots. And for standard FHE parameters with
128-bit security with a slot count of 215, the sparse input for
Criteo would require approximately 1000 CKKS ciphertexts.

5.2. Compressed Tables with CodedHELUT

To avoid requiring k slots for an embedding table con-
taining k rows, prior work [1] uses compressed embedding
tables learning through Deep Compositional Code Learning
[36]. In this setup, a k-sized embedding table is decomposed
into ℓ-many, p-sized tables such that k = pℓ. In this way,
an index i ∈ Zk is first mapped to a sequence of ℓ tokens
(i0, . . . , iℓ−1) ∈ Zℓ

p and each coded token retrieves a row
from each of the smaller tables. Finally, the output embed-
dings from each of the ℓ tables is summed to produce the
final output embedding vector. This compression technique
reduces a table by an exponential factor (from k = pℓ rows
to only pℓ rows) and experiments over the GlovE and GPT-
2/Bert embedding tables display its efficacy in reducing table
sizes (see Section 5 in [1]). Figure 3 shows this technique:
an uncompressed table of size k = 16 is reduced to ℓ = 2
embedding tables of size p = 4, effectively halving the total
embedding table size.

The prior work of [1] leverages this compression tech-
nique, but performs the one-hot encoding server-side. They
do this by building an encrypted indicator function (EIF),
which effectively transforms a sequence of coded tokens
into their one-hot equivalent. This process is decomposed
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Figure 5. Left: An example of compressed embedding tables with a total of pℓ = 8 rows whereas the original embedding table (not shown) had
pℓ = 42 = 16 rows. A token (e.g., “cat”) is decomposed into a sequence of coded tokens which are used for indexing into each compressed table,
followed by a summation to produce a single embedding vector of size d = 3. Right: Prior work [1] performs this compressed lookup homomorphically
by utilizing pℓ slots per ciphertext and performing one homomorphic Indicator0 function followed by d multiplications with the concatenated columns of
the compressed tables. These operations are then followed by d log(pℓ) rotations and summations (see Table 4 of [1]). Rotation and summation within a
ciphertext produces wasted slots filled with invalid data. In this example, two separate tokens (“cat” and “dog”) fit into a single 16-slotted ciphertext.

into two steps. First, a squaring method approximates a
standard indicator function δa : Zp → {0, 1} for a ∈ Zp

by computing,

SqMethoda
r,p(x) =

(
1− 2

(x− a)2

p2

)2r

for a well-defined r chosen large enough to ensure a reason-
able approximation bound (see [1, Theorem 3.1]). Second, a
cleaning function Cleanse given as a degree-3 polynomial
is applied to the output of SqMethod to efficiently round
the value to 0 or 1. Thus, the EIF is a composition of the
two previous steps,

Indicatora(ct) = Cleanses ◦ SqMethoda
r,p(ct),

where ct is a given ciphertext and s is the number of calls to
Cleanse for which an upper bound is given in [1, Propo-
sition 3.3]. Given the aforementioned EIF, [1] provides
two algorithms (with and without compressed embeddings)
for lookup table evaluations with encrypted data. The full
algorithm from [1] is shown in Figure 5. We detail each of
the steps. Step 1: transform the initial token into the coded
tokens. In this case, the token “cat” (14) is transformed
into coded tokens (2, 3). Step 2: replicate each of the ℓ
coded tokens p times into the first pℓ slots of a CKKS
ciphertext and send to the server. In Figure 5, we have
p = 4 and ℓ = 2 and therefore place our replicated coded
tokens in the first 8 slots of the ciphertext. Step 3: the server
subtracts the ciphertext with a plaintext mask and performs
Indicator0, effectively performing the one-hot encoding
server-side. Step 4: multiply the encrypted one-hot encoding
with each concatenated columns of the embedding tables
(called TableMult). Step 5: perform a logarithmic number of
rotations and summations to compute the final embedding

vector. We refer to [1, Algorithm 3 and Algorithm 4] for
more details. We implement Kim et al.’s [1] solution’s
directly in Orion (see Listing 2) and run all experiments
on the same machine in order to make a fair comparison.

5.3. Limitations of CodedHELUT

We address several of the limitations of the CodedHE-
LUT method presented in [1].
Slot Utilization: The CodedHELUT method requires
O(log pℓ) rotations for each output ciphertext to compute
the desired embedding vector as shown in Figure 5. Their
approach uses the standard logarithm-based rotation-and-
summation, which we call the Rot-Sum algorithm (see
Figure 4 of HECO [16] for a diagram of Rot-Sum). There
are two issues with using the Rot-Sum method. First, the slot
occupancy for pℓ must necessarily be inflated to the closest
power of 2. As an example, summing 6 slots with Rot-Sum
requires padding up to 8 slots with two zeros and applying
Rot-Sum to all 8 slots. Second, a consequence of applying
Rot-Sum within a ciphertext is that most slots are filled with
undesired partial sums or invalid data. We visualize this in
Figure 5 where, for every pℓ = 8 slots, there are pℓ−1 = 7
slots that contain invalid data. In contrast, our BSGS-based
embedding lookup supports arbitrary dimensions and does
not waste any slots by summing the coded tables across
ciphertexts rather than within ciphertexts.
Output ordering: While the CodedHELUT algorithm pro-
duces the correct embedding, this particular embedding vec-
tor is sharded across d ciphertexts where d is the embedding
vector dimension. This can be seen in Figure 5 where the
desired embedding vector (e.g., the vector [29, 31, 33]) is
fragmented across the three output ciphertexts. In order to



Listing 2: Indexing embedding tables using EIF.
import torch.nn as nn
import orion.nn as on

class Cleanse(on.Module):
def init (self, iters):

super(). init ()
polys = []
for i in range(iters): # -2xˆ3 + 3xˆ2

poly = on.Activation(coeffs=[-2, 3, 0, 0])
polys.append(poly)

self.polys = nn.Sequential(*polys)

def forward(self, x):
for poly in self.polys:

x = poly(x)
return x

class EIF(on.Module):
def init (self, p, r, iters):

super(). init ()
self.cleanse = Cleanse(iters)
self.sq = on.SqMethod(p, r)

def forward(self, x):
x = self.sq(x)
x = self.cleanse(x)
return x

class Embedding(on.Module):
def init (self, p, l, r, iters, dim):

super(). init ()
self.EIF = EIF(p, r, iters)
self.query = on.Table(l, p, dim)

def forward(self, x):
x = self.EIF(x)
x = self.query(x)
return x

perform the subsequent concatenation or linear transfor-
mation in either DLRMs or LLMs, this fragmented em-
bedding vector must be consolidated into contiguous slots.
Performing this consolidation requires 1) further rotations
to align the embedding elements and 2) masking to remove
the junk data from the wasted slots, which increases level
consumption. On the other hand, our BSGS-based method
produces the correct embedding vectors in contiguous slots
while consuming only a single level.
Level Consumption: Beyond the levels consumed to con-
solidate the output embedding vector, the indicator function
incurs a multiplicative depth of 2 + r+ 2s (see Section 3.3
of [1]). Based on both the FHE parameters and the iteration
parameters r and s, the indicator function may require an
expensive bootstrap operation. Indeed for a 128-bit secure
FHE configuration, we find that we must judiciously set
both the ciphertext and auxiliary moduli to ensure that the
Indicator function does not overflow the available levels.
Conversely, our embedded lookup only consumes one level
regardless of the embedding size.
Security Issue: The embedding compression technique used
by CodedHELUT requires that the server learns both the

Listing 3: Our compressed embedding in Orion.
import orion.nn as on

class CompressedEmbedding(on.Linear):
def init (self, p, l, dim):

super(). init (p*l, dim, bias=False)

def populate table(self, data):
self.weight.data = data

def forward(self, x):
return super().forward(x)

compressed embedding tables as well as the mapping be-
tween original tokens to coded tokens (see Figure 3 of [1]).
Moreover, it is the client’s task to first map the original
token to the coded tokens and then encrypt their coded
tokens. There are two possible protocols that enable their
compressed table technique which we now detail.
Server-side API: In this scenario, the client must query
the server to transform their original token into the coded
tokens. This compromises the client’s privacy as the client
must send their original token in the clear. Therefore, a
server-side API leaks a portion of the client’s input directly
to the server.
Client-side API: the mapping is sent to the client who then
generates their coded tokens locally. However, the particular
mapping utilized by [1] ensures that semantically similar
input tokens map to a similar set of coded tokens. Thus
the client will learn some semantics about the rows of
the embedding tables and their relationships. Second, each
mapping must itself be a table with the same number of rows
as the original embedding tables. In the client-side API, the
client is now responsible for storing these mapping tables. In
contrast, our mapping (Section 6.1) is deterministic, requires
no additional storage, and can be done locally without
knowing anything other than the embedding table sizes.

6. HE-LRM Architecture

We now describe our end-to-end FHE-friendly DLRM
architecture, which we refer to as HE-LRM. Each HE-LRM
inference takes as input an encryption of the concatenated
dense and sparse features and returns an encrypted, un-
normalized logit to the client. We discuss our method for
compressing embedding tables, our protocol for paralleliz-
ing multiple embedding tables, and implementation details
within the Orion framework.

6.1. Simplified Compressed Embedding Tables

Recall that prior work [1] built their CodedHELUT
algorithm to integrate with the compositional embedding
tables from [36], a method that compresses an embedding
table of size k×d into ℓ compressed embedding tables, each
of size p × d such that k = pℓ. This technique learns both
the compressed embedding tables and the mapping from
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Figure 6. A comparison of encrypted embedding lookups using a fixed set of FHE parameters (see configs/resnet.yml in Orion) for different
settings of k = pℓ and embedding dimensions, d. The CodedHELUT method proposed in [1] first uses the Encrypted Indicator Function (EIF) to perform
the one-hot encoding server side. This function requires a bootstrap operation given the multiplicative depth of EIF. For the embedding lookup stage,
swapping out their proposed TableMult algorithm with a double-hoisted BSGS linear transformation already reduces runtime as TableMult requires separate
rotations for every hidden dimension, d. Our proposed solution performs the one-hot encoding client-side while still requiring the same slot count as the
prior method and directly leverages DH-BSGS. Moreover, our embedding lookup has a multiplicative depth of one, regardless of the embedding size.

input tokens i ∈ Zk to a sequence of tokens in Zℓ
p, and this

mapping is stored as its own lookup table.
Given the security considerations with regards to query-

ing or storing the mapping tables (see Section 5.3), we
instead opt for a much simpler compression technique that
can been seen as a generalization of the Quotient-Remainder
(QR) method from [37]. The QR method decomposes a
single k-sized embedding table into two tables: a Quotient
and Remainder table by computing (i mod q, i%q) for some
q < k. These two QR tables are then trained end-to-end.

We extend the QR method by instead performing a bit
decomposition of an original input token i ∈ Zk into base p
to form a tuple of tokens in Zℓ

p. This process still produces
a maximum of ℓ = ⌈log(k, p)⌉ tokens and allows a similar
exponential compression factor of an embedding table of
size k × d into ℓ-many p× d embedding tables.

We use Figure 5 (left) as a concrete example of our
compression technique. Suppose that we have an embedding
table with k = 16 rows and d = 3 as the hidden dimension.
By choosing a base p = 4, each input index i ∈ Z16 can be
represented as a tuple in Z2

4 given that ℓ = 2 = ⌈log(16, 4)⌉.
In Figure 5, the original input token i = 14 becomes a
tuple of tokens (i0, i1) = (2, 3). Each coded token then
retrieves a row from its corresponding embedding table, and
all retrieved output vectors are summed to produce a single
embedding vector of size d.

It is important to note that unlike [36], our compression
technique does not require learning or storing the mapping
from an index to a set of coded tokens. Rather, our mapping
is a deterministic function that can be done entirely by the
client given that they know the size of the compressed em-
bedding tables, which is encompassed by our threat model.
Performing this one-hot encoding prior to encryption allows
us to forgo the encrypted indicator function and directly treat
the embedding layer as a linear transformation. Listing 3
shows our embedding lookup which inherits directly from

Orion’s Linear module and leverages the double-hoisted
baby-step giant-step algorithm. Figure 6 compares the Cod-
edHELUT+TableMult, CodedHELUT+BSGS, and our so-
lution in terms of latency for various hidden dimensions.
Replacing TableMult with a linear transformation reduces
the runtime since less homomorphic rotations are required.
Furthermore, our method outperforms CodedHELUT for all
considered hidden dimensions with up to a 77× speedup for
the largest dimension of 768.

We train DLRM models on the Criteo
Kaggle 7-Day Dataset (https://www.kaggle.com/c/
criteo-display-ad-challenge/data) which, as seen by Figure
4, has a maximum embedding table size of approximately
10 million rows. For each training run, we set a maximum
embedding table size; any embedding table larger than
this threshold are compressed using our generalized QR
technique by selecting a bit decomposition base p. We
present our loss curves, test AUC measurements, and FHE
latencies in Section 7.

To perform the compressed embedding lookup homo-
morphically, we perform the one-hot encoding of each
coded token and concatenate these one-hot vectors into a
single ciphertext. Then, by concatenating and transposing
the compressed tables, we may apply the standard BSGS
linear transformation to produce the correct embedding in
contiguous slots. This process is shown in Figure 7 for
embedding E0 that has been compressed into two tables.

6.2. Parallel Embedding Table Lookup

Our discussion in the previous sections was limited to
performing an encrypted lookup into a single (compressed
or uncompressed) embedding table. However, state-of-the-
art DLRMs usually contain more than one sparse feature
given the problem specification. Indeed, the UCI Healthcare
dataset [38] and the Criteo Kaggle dataset which we target

https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data


1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

1
0
1
0
0
0
0
1

8
10
12x =

0000
0000
0000

0000
0000
0000

22
23
24

E0
(compressed)

E1
(uncompressed)

Figure 7. Our embedding lookup technique. The first embedding table E0

has been compressed into two tables (light and dark green). The one-hot
coded tokens for E0 are packed into contiguous slots and the corresponding
matrix-vector product extracts the appropriate embedding. Furthermore, we
pack multiple embedding tables diagonally into a single weight matrix. In
this example, two embedding lookups are performed simultaneously using
a single homomorphic matrix-vector product. This diagonal packing aligns
well with the diagonal-based BSGS matrix-vector products used in Orion.

require 8 and 26 embedding tables, respectively. Further-
more, both datasets contains embedding tables of different
sizes (different number of rows per categorical feature). Un-
der the constraints of FHE, we are posed with the following
question: how can we efficiently perform encrypted lookups
when we have multiple embedding tables of different sizes?

A straightforward solution to this multi-embedding table
case is to simply encrypt each compressed index separately
and perform the methods discussed before. However, this
method would require one CKKS ciphertext per embedding
table and may be wasteful when compressed tables have a
total size less than the number of available CKKS slots. For
our use cases with both UCI and Criteo, we find that an
aggressive compression ratio induces this exact scenario.

To this end, we propose a multi-embedding packing
strategy which places unique embedding tables diagonally
across a standard weight matrix by starting each subsequent
embedding table at the bottom right corner of the previous
embedding table. This packing strategy is akin to calling:
torch.block_diag(*list_of_embeddings) (we
use this exact command in our implementation). An example
of our packing strategy can be seen in Figure 7 where
exactly two unique feature embedding tables are stored in
a single weight matrix. The client simply one-hot encodes
each index for each table (again, either compressed or
uncompressed) and concatenates these one-hot vectors into
a single vector, which can then be encrypted. The resulting
matrix-vector product precisely extracts the correct columns
of the packed embedding matrix and places the embedding
vectors into contiguous slots within an output ciphertext.

Importantly, this diagonal multi-embedding packing
strategy aligns well with diagonal-based BSGS matrix-
vector product strategies discussed in Section 4. Moreover,
diagonally aligning embedding tables incurs little FHE over-
head as long as the sum of the embedding dimensions does
not exceed the slot count.

6.3. Implementation Details

In this section, we discuss some of the sharper bits
of ensuring proper execution of the HE-LRM architecture
within Orion. We refer the reader to Figure 8 for our full
implementation of HE-LRM.

6.3.1. HE-LRM Inputs. Orion generalizes ciphertexts to
ciphertensors objects that can encrypt more elements than
the slot count set by the FHE parameters. Their method
works by partitioning the input data into slots-many chunks
where each chunk is encrypted into a separate ciphertext.
This naturally enables large-scale matrix-vector products
that require more than one input or output ciphertext.

For HE-LRM, we one-hot encode each embedding to-
ken. For uncompressed tables, this is the standard one-hot
encoding. And for compressed tables, the token is first bit
decomposed as discussed in Section 6 and each bit is one-
hot encoded and then concatenated. Finally, the dense input
and all one-hot encodings are concatenated together to form
a single ciphertensor object that is sent to the server.

6.3.2. Server-Side Extraction. The server must then ex-
tract both the dense and sparse features from the received
ciphertensor object. We implement a custom extraction mod-
ule in Orion that uses 1) plaintext masks to isolate the dense
and sparse features and 2) performs homomorphic rotations
to align the data within the ciphertensors accordingly. This
extraction process only consumes one multiplicative level.

6.3.3. Concatentation Layer. After both the Bottom MLP
and embedding table lookups, the outputs must then be
concatenated into a single ciphertensor object to be pro-
cessed by the Top MLP. We perform this concatenation via
a linear transformation applied to both the Bottom MLP and
extracted embeddings. The linear transformation aligns the
data separately before an on.Add module combines the
two dense and embedding vectors together in the correct
slots. Both linear transformations only have one non-zero
diagonal: an offset identity matrix to align data appropriately
while preserving shape semantics.

7. Results

In this section, we report our results and discuss our
findings for both training FHE-amenable DLRMs and per-
forming end-to-end FHE inference of HE-LRMs.

7.1. Experimental Setup

Hardware: We conduct all of our experiments on an Intel
Xeon Gold 5218 processor running at 2.30GHz with 64
CPU cores and 512 GB of RAM. We find this amount
of RAM necessary to run our largest compressed DLRM
models under FHE. We train all DLRMs on NVIDIA 3090
GPUs, and experimental results (training losses, AUCs, and
FHE latencies) are all averaged over 3 runs.
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Figure 8. The HE-LRM architecture. Beginning from the left, the client first records both their dense and sparse features for some outsourced
recommendation system (e.g., a medical inquiry). The client then one-hot encodes (either compressed or uncompressed) their sparse features, appends
these one-hot vectors to the dense features, and encrypts the resulting vector. The server performs the appropriate homomorphic operations to extract the
dense and sparse features into two separate ciphertexts. The dense features are processed through the Bottom MLP whereas the one-hot sparse features are
used as input to the diagonally-packed embedding tables in order to perform parallel embedding table lookups. The resulting vectors are concatenated and
are further processed through a Top MLP before sending the encrypted logit back to the client. We implement this entire process in the Orion framework.

Software: Our implementation builds upon the CAFE
framework (https://github.com/HugoZHL/CAFE), which
provides an optimized DLRM implementation. We
implement the generalized QR decomposition technique
within CAFE. We use the hyperparameters set by their
repository. We port all DLRM models directly into the
Orion framework and implement all necessary components
(extraction, concatenation, embeddings). Unless stated
otherwise, we choose an FHE parameter set that enables
bootstrapping while maintaining 128-bit security. The exact
parameters can be found in configs/resnet.yml in
Orion.

Datasets: We evaluate HE-LRMs on two datasets: the
UCI Heart Disease (id=45) and Criteo 7-day click-through
datasets. The UCI Heart Disease dataset is used to predict
the detection of heart disease based on 13 attributes (5 dense
and 8 sparse). Features include age, resting blood pressure,
and maximum achievable heart rate. There are 303 training
samples; we use 80% of the samples for training set and
20% for the validation set. This dataset serves as a basis
for testing the validity of our methodology as well as the
latency of small DLRMs, in a privacy-sensitive setting. The
Criteo dataset includes 13 continuous features (normalized
integers) and 26 categorical features where each feature
has been anonymized. There are approximately 45 million
training samples and this dataset is used to predict the click-
through-rate for a provided advertisement. The first 6 days
of data are used for training while the seventh day serves
as the validation set. We are able to train a DLRM on the
Criteo dataset from scratch in about 2 hours on a single
3090 GPU.

TABLE 2. COMPRESSION RATIO AND RESOURCE REQUIREMENTS FOR
DIFFERENT EMBEDDING TABLE THRESHOLDS.

Threshold Compression
Ratio

Slots
Needed

Peak RAM
(GB)

500 31180× 1096 64

5000 3746× 9027 70

50000 707.1× 47759 74

500000 59.28× 569545 140

5000000 12.18× 2772109 320

7.2. Training Compressed DLRMs

To enable efficient FHE operations on large embedding
tables, we implement our generalized bit-decomposed em-
bedding table compression strategy within the CAFE frame-
work and train DLRMs on the Criteo dataset. First, we set
a particular embedding table size threshold. For each sparse
feature in the Criteo dataset, we compare the corresponding
embedding size (i.e., number of rows) with our threshold.
If the number of rows is larger than the threshold, we apply
our bit-decomposed compression strategy to this particular
embedding table. Otherwise, we employ the full embedding
table. In all of our experiments, we set the base of the
decomposition to be p = 4.

Similar to prior work [39], we define the Compression
Ratio (CR in Table 2) as the ratio of the total number of
embedding rows in the full DLRM to the total number em-
bedding rows in a compressed model. We vary the threshold
to roughly track an order of magnitude of increases in the
compression ratio. Table 2 shows our chosen thresholds
and their exact CR. An aggressive threshold of 500 rows

https://github.com/HugoZHL/CAFE
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Figure 9. Training curves and performance trade-offs for compressed
DLRM models across different compression ratios. Top Left: Final test
AUC shows degradation with increased compression for both ReLU and
SiLU activations. Top Right: Final training loss comparison between
activation functions. SiLU routinely performs worse than ReLU-based
DLRMs. Bottom: Training loss curves for our compressed DLRMs with
ReLU. Models that have higher compression rates exhibit slightly elevated
loss throughout the training process. Given the time-based nature of the
Criteo dataset, all loss curves follow an expected diurnal pattern.

compresses a majority of the 26 sparse features for Criteo
and reduces the entire embedding size by 31180×. Table
2 also shows the peak RAM usage when running FHE
inference for each configuration as measured by htop [40].

Figure 9 (bottom) displays training runs for each com-
pression threshold configuration, We find that all models
follow similar training dynamics and fall naturally on the
loss spectrum based on the compression ratio: a less (more)
compressed model has a slightly lower (higher) loss over the
entire training run. The diurnal trend in the loss is expected.
The Criteo dataset is processed in-order over the course of
6 days for training, and each new day initially increases the
loss before the loss begins to decrease again.

We also train each DLRM configuration with the SiLU
activation function rather than the standard ReLU activation
function. We do this since SiLU is a smoother activation
function and therefore is easier to approximate in FHE using
a composition of polynomials when compared to ReLU.
However, we find that for each configuration, the SiLU
networks exhibit both lower test AUC and higher training
losses. As we will show in the following section, this
introduces a latency-performance tradeoff in which SiLU
models have much lower FHE latencies but perform worse
out of distribution.

SiLU

ReLU

Figure 10. End-to-end (aggregate) FHE latency for a single Criteo sample
passed through our compressed HE-LRMs averaged over three runs. Exact
compression ratios and peak RAM usage are listed in Table 2.

7.3. HE-LRM Latencies

UCI Heart Disease: We first apply our HE-LRM architec-
ture to the underlying DLRM model trained for the UCI
Heart Disease dataset. This dataset has 5 dense features and
8 sparse features with sizes [2, 4, 2, 3, 2, 3, 4, 3] giving an
input ciphertext where 28 slots are needed. Given the size
of the input, we scale down the DLRM model and use the
x2 activation function rather than ReLU. Nonetheless, this
model achieves a validation accuracy of 85% and serves as
a useful testing framework for our implementation.

We are able to fit all embedding tables into a single
matrix-vector product by using our multi-embedding diag-
onal packing technique described in Section 6.2. Averaging
over three runs, we achieve an end-to-end latency of 24.22
seconds for this model. Given our FHE parameter set, this
model requires exactly one bootstrap which takes up 75%
of the runtime.

Criteo Kaggle: Figure 10 presents our key end-to-end FHE
latency results for a single Criteo input across our com-
pressed DLRM configurations averaged over three runs. We
highlight two key observations from our results.

Observation 1: All highly compressed models exhibit
similar FHE latencies. The three most aggressively com-
pressed models (≈ 103× to 105× compression ratio) all ex-
hibit similar latencies of approximately 230 seconds for the
ReLU based models. This similarity is due to two factors.
First, our multi-embedding parallel packing scheme allows
us to perform a single-ciphertext linear transformation for
two smallest models. Both 104× and 105× have 512 non-
zero diagonals in the plaintext blocked embedding matrix
whereas the 103× model has 1024 non-zero diagonals and
requires two ciphertexts to hold the one-hot inputs. Thus, the
embedding lookup takes 3-5 seconds for these three highly
compressed models. Second, apart from the embedding size,
the DLRM architecture is the same for all models, meaning
that all FHE operations are identical outside of the embed-



ding lookup. Indeed, Orion places the bootstrap operations
in the same locations for all three networks.

On the other hand, the larger models (102× and 101×)
require many ciphertexts to store all one-hot coded tokens.
Table 2 shows the total number of slots required by these
models: the 102× and 101× compressed models require
18 and 85 ciphertexts to hold all one-hot encoded inputs,
respectively. This inflates the matrix-vector product latency;
for example the largest model takes 213.9 seconds to per-
form the embedding lookup.

Observation 2: Changing the activation function impacts
the FHE level management policy. In more detail, the SiLU
activation is a smoother function when compared to ReLU
and can be approximated by a lower degree polynomial.
This lower degree approximation, in turn, requires overall
less bootstraps for HE-LRM and affects the overall level
management policy output by Orion. Concretely, the SiLU
based model requires just 5 bootstrap operations whereas the
ReLU based models require 12 bootstraps. Furthermore, the
level management policy constructed by Orion performs the
embedding layers in the SiLU networks at ℓ = 3 whereas
the embedding is performed at ℓ = 4 for the ReLU models.
For this reason, the 102× model takes only 44 seconds for
the SiLU-based DLRM, but takes 51 seconds for the ReLU-
based DLRM.

8. Limitations and Considerations

In this section, we highlight several practical limitations
that emerged during our exploration of secure recommen-
dation systems. Unlike image recognition models, which
have been the primary focus of previous private inference
research, recommendation systems present more subtle and
nuanced challenges. In some cases, these issues raise fun-
damental questions about the viability of deploying such
systems in practice. To better describe these limitations, we
divide recommendation systems into two categories: static
systems and dynamic systems.

Static recommendation systems do not require a history
of prior user interactions to accurately predict the current
outcome. For this reason, we consider static systems a
natural extension of traditional image recognition models,
differing mainly in their ability to handle sparse, categorical
inputs. For example, the UCI Heart Dataset DLRM is a
static recommendation system, since it requires only the user
data provided within a single inference to make accurate
predictions. These characteristics make static systems well-
suited for private inference.

In contrast, dynamic recommendation systems progres-
sively learn the dense and sparse features needed for accu-
rate predictions through repeated user interactions over time.
Typical examples include personalized advertisements on
social media or product recommendations on e-commerce
sites. These systems naturally arise when companies have
both financial incentives and legal permissions to keep ex-
tensive histories of user interactions. As a result, most rec-
ommendation systems deployed today fall into the dynamic
category. This unfettered access to cleartext user interaction

histories significantly complicates the adoption of private
inference. After all, why would companies willingly put
a primary source of their revenue at risk without external
pressure (e.g., GDPR or CCPA)? Below, we discuss several
potential solutions, highlight their inherent trade-offs, and
raise additional questions to further explore this issue.
“Why not anonymize user data instead?” True anonymiza-
tion makes it impossible for the server to provide targeted
recommendations, despite being able to train a capable
model. Pseudo-anonymization exists in practice, however
still requires a link between the user and their data.
“What if I encrypt just my important data?” It is likely that
the server can infer the contents of the encrypted data based
on user history (e.g., search history can often reveal a user’s
location without location services enabled).
“What if the embedding table(s) are public?” In the context
of DLRMs, public embedding tables leak information about
all users of the recommendation service. In the context
of LLMs, embedding tables are considered as part of the
network parameters and are generally kept private.
“How can servers practically deliver personalized rec-
ommendations if the inference results remain encrypted?”
Servers can deliver personalized recommendations from en-
crypted results using auxiliary protocols such as private
information retrieval (PIR).
“What are the drawbacks server-side for enabling encrypted
recommendations?” Privacy-preserving techniques such as
FHE and PIR will allow the server to compute or re-
trieve personalized ad recommendations without accessing
the user’s profile. However, this also means that the server
cannot directly observe which ad was shown or clicked. This
limits traditional tracking and conversion.
“Why not encrypt everything?” If all data is encrypted, it
would be necessary for servers to train directly on encrypted
data, meaning that network performance is not readily avail-
able to the server (i.e., even the loss value is encrypted so
observing training dynamics is not possible).

9. Related Work

We review related work on private inference, embedding
compression techniques, and FHE compilers, with a focus
on approaches relevant to encrypted inference in large-scale
machine learning models, such as recommendation systems.

9.1. Private Inference

In a client-server model, private inference protects the
model weights from clients, while also ensuring that the
server does not learn any information from the client’s pri-
vate data. Private inference has been extensively explored in
recent years, mainly from a cryptographic perspective using
methods such as homomorphic encryption or multiparty
computation. In particular, private inference protocols rely-
ing on homomorphic encryption process the entire network
on the server side and replaces the nonlinear layers with



either low-degree polynomials [41] or high-degree compos-
ite approximations [42]. The former replacement strategy
reduces the computational overhead at the cost of a potential
accuracy loss.

While early works such as CryptoNets [30], Min-
iONN [43], GAZELLE [44], or DiNN [45] demonstrated the
feasibility of evaluating neural networks on encrypted data,
subsequent efforts have adapted homomorphic encryption
for more complex tasks, including natural language process-
ing and recommendation systems. In the context of NLP, a
central challenge lies in the private evaluation of embedding
layers, which typically involve large token dictionaries and
table lookups.

Focusing on CKKS-based solutions, prior approaches
have avoided large-sized LUT evaluations in different ways,
by either sending high-dimensional encrypted one-hot vec-
tors to the server [46], or by performing the embedding
layer in plaintext on the client side [47], [48], under the
assumption that the client has access to the embedding
model. However, both methods have limitations, particularly
when embedding tables are proprietary and bandwidth ef-
ficiency is critical. To address this, [1] proposed a solution
that enables efficient encrypted evaluation of large LUTs
within the CKKS framework along with some compression
techniques which we discuss in the next section.

9.2. Compressing Embedding Tables

Embedding tables are a fundamental component in deep
learning recommendation models that process categorical
inputs with very large vocabularies. However, these tables
can grow extremely large, consuming significant memory
and bandwidth and becoming a bottleneck for training
and inference. To address these challenges, many embed-
ding compression techniques have been proposed to reduce
storage and computational overhead while preserving the
model’s performance. These methods are broadly catego-
rized as follows.
Quantization-based embedding compression. Quantiza-
tion techniques reduce the size and computational cost of
embedding tables by either converting floating-point values
in embedding tables into lower-precision data types or by us-
ing clustering-based methods to share representations across
similar embeddings. The former approach includes methods
like uniform or row-wise quantization, which directly reduce
memory usage by limiting numerical precision. Quantization
methods can either be applied during training (quantization-
aware training, QAT) [49], [50], [51] or post training [52],
[53].

Clustering-based quantization techniques, such as prod-
uct quantization or residual vector quantization, represent
embeddings using a small number of learned centroids.
These centroids are stored in compact data structures called
codebooks, and each embedding vector is approximated by
selecting and combining one or more codewords from these
codebooks. This approach, often referred to as codebook-
based compression, enables efficient storage and fast recon-
struction of embeddings. It is leveraged in works like [36],

where embeddings are expressed as compositions of shared
codebook entries to achieve high compression rates.
Hashing-based embedding compression. One of the most
widely used hashing-based strategies for compressing em-
bedding tables is the Hashing Trick [54], which maps large
input IDs into a smaller embedding space using a hash
function. This reduces memory requirements by allowing
multiple inputs to share the same embedding slot. How-
ever, this comes at the cost of potential collisions where
unrelated IDs may be mapped to the same representation.
This can affect the model’s ability to differentiate between
distinct inputs and introduce semantic overlap that reduces
the model’s overall performance. To reduce hash collision,
Facebook introduced the Quotient-Remainder trick [37].
Hashing-based techniques are used in [55], [56] for example
often in combination with other aforementioned methods.
Adaptive compression methods. Adaptive compression
methods dynamically allocate memory based on feature
importance. Instead of applying a fixed compression strat-
egy uniformly across all features, these methods focus
more on frequently accessed or high-impact features, while
compressing infrequent ones a lot less. One example is
CAFE+ [39] which uses a feature monitor to continuously
keep track of the importance of each feature. CAFE+ also
combines this dynamic strategy with hash-based and quan-
tized representations to achieve high compression rates in
extremely large-scale DLRMs.
Decomposition methods. Decomposition-based approaches
such as Tucker decomposition, Tensor-Train or CP, reduce
embedding size by representing high-dimensional tables
using structured low-rank formats. In the context of DL-
RMs, [57] applies tensor-train decomposition to express
large embedding tables as a sequence of smaller matrix
products.

9.3. FHE Compilers

Compiler toolchains for FHE can be broadly categorized
into circuit-level and domain-specific compilers. Circuit-
level tools [11], [15], [16], [58], [59] focus on low-level
optimization and scheduling for general-purpose programs.
While they provide fine-grained control over the crypto-
graphic operations, they generally target small workloads
and lack support for complex machine learning tasks.

On the other hand, domain-specific compilers are de-
signed to support machine learning workloads by abstracting
cryptographic details and providing more high-level pro-
gramming interfaces. Earlier works include CHET [13] and
EVA [12], both implemented in the SEAL library [60].
Subsequent frameworks such as nGraph-HE [61], [62],
TenSEAL [63], SEALion [64] and Concrete-ML [65] pro-
vide python-based interfaces to run encrypted inference
for simple classifiers or quantized networks. More recently
compilers such as Dacapo [66], HeLayers [67], Phelipe [14]
and Orion [18] improve upon these later worksby introduc-
ing automating bootstrap placement and support for deeper
models.



10. Conclusion

In this paper, we presented the first implementation of
a private Deep Learning Recommendation Model (DLRM)
using Fully Homomorphic Encryption (FHE), which we call
HE-LRM. Unlike classical neural networks, DLRMs accept
both dense and sparse features as input where sparse features
are processed via large embedding lookup tables. To this
end, we apply an FHE-friendly compression technique to
embedding tables and improve upon existing methods with
up to a 77× speedup. Furthermore, we present a multi-
embedding packing strategy that enables parallel embedding
table lookups in FHE. We apply HE-LRM to two datasets,
UCI Heart Disease and Criteo Kaggle, demonstrating private
inference in 24 seconds and 227 seconds respectively, while
empolying our compression technique to the larger embed-
ding tables of the Criteo dataset. We also exhibit training
curves and performance trade-offs for compressed DLRMs
showing that training loss curves and final test AUC are
minimally impacted by our compression technique. These
results demonstrate the feasibility of deploying FHE-based
recommendation systems and provide the first end-to-end
instantiation of a private recommendation model.
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