arXiv:2506.18114v1 [cs.CR] 22 Jun 2025

Dynamic Temporal Positional Encodings for Early
Intrusion Detection in IoT

Ioannis Panopoulos
School of Electrical and Computer
Engineering, NTUA, Athens, Greece
ioannispanop @mail.ntua.gr

Stylianos I. Venieris
Samsung Al Center
Cambridge, UK
s.venieris @samsung.com

Abstract—The rapid expansion of the Internet of Things
(IoT) has introduced significant security challenges, necessitating
efficient and adaptive Intrusion Detection Systems (IDS). Tradi-
tional IDS models often overlook the temporal characteristics
of network traffic, limiting their effectiveness in early threat
detection. We propose a Transformer-based Early Intrusion
Detection System (EIDS) that incorporates dynamic temporal
positional encodings to enhance detection accuracy while main-
taining computational efficiency. By leveraging network flow
timestamps, our approach captures both sequence structure and
timing irregularities indicative of malicious behaviour. Addition-
ally, we introduce a data augmentation pipeline to improve model
robustness. Evaluated on the CICIoT2023 dataset, our method
outperforms existing models in both accuracy and earliness.
We further demonstrate its real-time feasibility on resource-
constrained IoT devices, achieving low-latency inference and
minimal memory footprint.

Keywords—Early intrusion detection, Internet of Things (IoT),
Transformer models, Temporal positional encodings.

I. INTRODUCTION

The Internet of Things (IoT) enables smart devices to ex-
change data in real time across various domains, such as smart
homes, healthcare, and industrial automation. These systems
integrate the physical and digital worlds, generating diverse
data types while often operating autonomously. However,
their widespread adoption introduces critical security risks
due to limited computational resources, weak authentication
mechanisms, and exposure to untrusted networks. As a result,
IoT devices become prime targets for cyberattacks, including
malware, DDoS, and MitM exploits. Ensuring IoT security is
crucial [1], as breaches can lead to data leaks, service disrup-
tions, and even physical harm in safety-critical applications.

Intrusion Detection Systems (IDS) help mitigate security
risks by monitoring network traffic or host activity to detect
malicious behaviour. They are broadly categorised into host-
based IDS (HIDS), which analyse system logs and resource

This research work was supported by the Hellenic Founda-
- tion for Research and Innovation (HFRI) under the 3rd Call

for HFRI PhD Fellowships (Fellowship Number: 5578).

Maria-Lamprini A. Bartsioka
School of Electrical and Computer
Engineering, NTUA, Athens, Greece

bartsiokamarilina@mail.ntua.gr

Dimitra I. Kaklamani
School of Electrical and Computer
Engineering, NTUA, Athens, Greece

dkaklam @mail.ntua.gr

Sokratis Nikolaidis
School of Electrical and Computer
Engineering, NTUA, Athens, Greece
sokratisnikolaidis @mail.ntua.gr

Iakovos S. Venieris
School of Electrical and Computer
Engineering, NTUA, Athens, Greece

venieris @cs.ece.ntua.gr

usage on individual devices, and network-based IDS (NIDS),
which inspect packet flows across a network. In recent years,
machine learning (ML) and deep learning (DL) have signifi-
cantly improved IDS capabilities, surpassing traditional rule-
based systems by detecting complex attack patterns and zero-
day threats. This is particularly important for IoT security,
where network traffic is highly dynamic. Deep learning models
such as CNNs [2], RNNs [3], Transformers [4], and hybrid
architectures [5] have been increasingly used for network flow
analysis, enabling scalable and real-time threat detection.

A key challenge in network security is real-time threat
detection to minimise response times and attack impact. Early
Intrusion Detection Systems (EIDS) [6] classify intrusions as
early as possible within a session. While Transformers excel
in sequential data processing, especially in natural language
processing (NLP), network traffic differs as a time series.
In this context, packet arrival times provide critical contex-
tual information that is often overlooked by existing IDS.
This work proposes a host-based Transformer EIDS for IoT,
integrating time-aware positional encodings to capture both
sequence structure and temporal dynamics. The system aims
for fast, accurate threat detection without sacrificing efficiency.
Our key contributions include:

¢ A host-based early intrusion detection system with novel

timestamp-based positional encoding mechanisms for
rapid and lightweight attack detection.

o An augmentation pipeline for network traffic data that

improves model robustness and generalisation.

o An evaluation of real-world feasibility, demonstrating the

system’s efficiency on resource-constrained IoT devices.

II. RELATED WORK & BACKGROUND
A. Intrusion Detection Systems

Deep learning-based IDS have gained considerable atten-
tion, with recent studies exploring models that process raw
network traffic directly, eliminating the need for handcrafted
features, which can be computationally expensive and time-
consuming. These approaches utilise architectures such as

https://arxiv.org/abs/2506.18114v1

CNNs [7], RNNs [8], Transformers [9], and hybrid mod-
els [10], among others. By extracting hierarchical and sequen-
tial representations from packet streams, these models improve
detection accuracy and adaptability to emerging attack pat-
terns.

Despite these advancements, only a limited number of stud-
ies [11]-[14] have trained models on variable-length network
flows, a crucial aspect of early threat detection. However,
these works overlook the temporal characteristics of packet
flows, which are essential for accurately identifying attacker
behaviour. Our approach bridges this gap by explicitly integrat-
ing packet timestamps into the detection process using novel
dynamic temporal positional encodings for Transformers.

B. Transformer Positional Encodings

In Transformer-based architectures, positional encodings
play a crucial role in enabling the model to process sequential
data effectively. Since Transformers lack an inherent notion of
order, these encodings provide information about the relative
or absolute positions of elements within a sequence.
Sinusoidal Positional Encoding. Originally introduced in the
Transformer architecture [15], sinusoidal positional encodings
are incorporated into the input embeddings to encode position-
specific information without requiring learned embeddings.
Given a sequence of length n, the sinusoidal positional en-
coding assigns each position p € {0,1,2,...,n — 1} a vector
of dimension dy, using the following formulas:

PE(p,2i) = sin (p/lOOOOQi/d“’)

PE(p,2i +1) = cos (p/mooo?i/ dm)

where ¢ = 0,1,...,dy/2 — 1 indexes the sine and cosine
components within the encoding dimension.

Fourier-Based Positional Encoding. Fourier-based positional
encodings [16] extend the idea of sinusoidal encodings by
leveraging a more general Fourier feature mapping. Instead
of using a fixed base, these encodings are derived from a
learnable frequency basis that enables richer and more flexible
positional representations. The Fourier positional encoding at
position p is defined as:

PE(p,2i) = sin(27 f;p)
PE(p,2i + 1) = cos(2m f;p)

where f; is a learnable frequency parameter associated with
the i-th sine-cosine pair in the encoding.

Rotary Positional Encoding. Another widely adopted method
is the rotary positional encoding (RoPE) [17], which integrates
positional information directly into the self-attention mecha-
nism. This approach enables the model to encode relative po-
sitional dependencies naturally, enhancing its ability to capture
long-range relationships in sequential data. Standard RoPE
applies a rotation matrix to both the query and key vectors
in the self-attention mechanism. Let x = (2o, %1, ...,%d,—1)

Data Preparation

o — L
network traffic Flow packet packet
) s é Identification Filtering Preprocessing
Data Test Set
Splitting

Training Set

Inference

Monitoring J

Training & Evaluation

{ Evaluation
Subflow

Models
Generation On-the-Fly Augmentation & Train (4}
L Jitter Traffic Packet Packet Noise Training
Training & Injection Scaling Drop Insertion Injection Step
lidation Sets.

Fig. 1. The Three-Stage Architecture of the Proposed EIDS.

represent a packet embedding. For each index ¢, the corre-
sponding subvector, consisting of two consecutive embedding
elements (zo;, 2;4+1), is transformed as follows:

[o } _ [cos(p@i) —sin(p@i)] [-]

xrz%tﬂ sin(pb;) cos(pb;) T2i+1

where 0; is the rotational angle defined as #; = 10000~%/4m,
Some recent studies have explored time-aware positional
encodings by leveraging timestamps in sequential data, but
these methods often introduce significant computational over-
head [18], [19], making them impractical for resource-
constrained environments. Additionally, existing works focus
solely on extending sinusoidal positional encodings [20], [21],
limiting their applicability to alternative encoding strategies
that may be better suited for irregularly spaced packets. To our
knowledge, this is the first study to apply time-aware positional
encodings to network traffic analysis and systematically eval-
uate their impact across three different encoding mechanisms.

III. OUR APPROACH

Host-based intrusion detection systems are particularly ef-
fective in identifying attacks that target a single host. These
attacks can be classified as either one-to-one, where a single
attacker targets a single victim, or many-to-one, where mul-
tiple sources coordinate to overwhelm a single victim. This
study focuses on one-to-one attacks, as they present a greater
challenge for detection due to their stealthy nature.

To effectively detect such attacks, an analysis at the flow
level is crucial. According to RFC 7011 [22], a traffic flow
is a set of packets or frames passing through an observation
point over a specified time interval. In the context of our host-
based IDS, the observation point is the IoT device vulnerable
to attacks. Each packet within a flow shares common attributes,
with one of the most widely accepted definitions being the 5-
tuple expression: source and destination IP addresses, source
and destination transport layer ports, and the protocol in use.

Fig. 1 illustrates the proposed system for early intrusion
detection, comprising three main stages. The Data Preparation
stage (Section III-A), which is common to both training and
inference, involves processing raw network traffic and labelled
PCAP files to ensure that data is structured appropriately
for subsequent analysis. In the Training & Evaluation stage

(Section III-B), the processed data is first split into training
and test sets. The training data undergoes On-the-Fly Aug-
mentation, which includes a pipeline of techniques targeted to
network data, followed by the training step. The trained models
are then evaluated using the test set. Finally, the Inference
stage employs the trained models for real-time monitoring of
network traffic.

A. Data Preparation

Our goal in converting raw network traffic into a format
suitable for deep neural network (DNN) training is to max-
imise computational efficiency and enable rapid processing. To
achieve this, we depart from traditional methods that rely on
extracting predefined features and instead utilise raw packet
bytes as direct input to our model. The following subsections
describe the three modules involved in this process.

1) Flow Identification: The initial step in the proposed
system involves maintaining a record of all network flows
associated with the host, regardless of whether they originate
from network captures or real-time network traffic. Formally, a
flow F' can be represented as an ordered sequence of packets:

F={P,P,, .., P}, PcR? (1)

where P; is the i-th packet, n is the length of the flow and d is
the length of a packet in number of bytes. In our system, each
flow can have a maximum length NV, therefore, the number of
packets in any given flow satisfies the condition 1 <n < N.

2) Packet Filtering: The second step involves isolating
network packets relevant to the threats targeted by the IDS.
By filtering out irrelevant packets before further analysis, the
system reduces computational complexity and directs its focus
toward potentially malicious traffic. Certain network protocols,
such as HTTP, ARP, and ICMP, are commonly exploited for
attacks, making their targeted analysis beneficial for threat
detection.

3) Packet Preprocessing: The final step, packet preprocess-
ing, converts raw network packets into a structured format
suitable for deep learning models. It removes irrelevant head-
ers, including the Ethernet header and IP addresses, to prevent
potential model overfitting to specific address patterns. Each
packet is then truncated or padded to a fixed length, denoted
as d in Equation (1), ensuring uniform input dimensions.
Lastly, byte values are normalised to [0,1] to improve training
stability [23]. Packet timestamps are also extracted to capture
inter-arrival times (IAT), providing crucial temporal context.
Stored as a separate vector T, timestamps start at O for the
first packet, with subsequent values representing the absolute
time elapsed since the first packet’s arrival.

B. Training

The training phase of the proposed system is designed to
develop deep learning models capable of identifying one-to-
one attacks based on raw network packet data. This phase
follows the data preparation stage, utilising the preprocessed
packet representations and corresponding timestamp vectors
as input.

1) Data Splitting: First, the dataset is divided into training
and test sets. Since Transformers process batches of fixed-
length sequences, all network flows are padded to a uniform
length before training. To achieve this, each flow in the training
set is zero-padded to match the maximum flow length N,
ensuring consistency. This process also generates attention
masks, which guide the Transformer’s attention mechanism.

2) Augmentation: Before each training iteration, augmenta-
tion is applied to the training flows to enhance generalisation,
robustness, and early detection capabilities. To achieve this,
subflows are generated by retaining only the first & packets of
each flow, where £ varies from 1 to the full flow length. This
approach trains the model to classify flows based on partial
information, rather than relying on the entire sequence. Such
early classification is crucial for reducing response times by
detecting threats from only a few initial packets.

Additionally, on-the-fly (epoch-wise) augmentation tech-
niques are applied to each (sub)flow to increase dataset
diversity and mitigate overfitting. These augmentations are
performed independently on each training sample, exposing
the model to a broader range of realistic, slightly modified net-
work flows. By incorporating packet timestamps, timestamp-
based augmentations further enhance dataset variability. Five
augmentation techniques, each targeting specific flow charac-
teristics, are applied sequentially, as illustrated in Fig. 1.
Jitter Injection. This technique simulates real-world network
jitter by introducing small, random variations in packet arrival
times. For each timestamp in a flow, the minimum temporal
distance between the previous and next timestamp, denoted
as tmin, 1 computed. A random perturbation is then applied,
drawn from the continuous uniform distribution U(—0.7 -
tmin, 0.7 « tmin), ensuring realistic timing fluctuations.

Traffic Scaling. This method emulates varying network speeds
by applying a randomly selected scaling factor from the set
{0.5,0.75,1.0,1.25,1.5} to the inter-packet times. Scaling
up simulates slower networks, whereas scaling down mimics
high-speed links. This variation helps the model adapt to
diverse network conditions, enhancing its ability to generalise
across different traffic speeds.

Packet Drop. This augmentation technique randomly drops
a number of packets from each flow. The maximum number
of packets that can be dropped depends on the length of the
flow, calculated as max_packets_to_drop = |0.25 - n — 0.5],
where n is the length of the flow. The actual number of
packets to drop is drawn from the discrete uniform distribution
U{0, max_packets_to_drop}.

Packet Insertion. The packet insertion technique randomly
adds a number of zero-byte packets into a flow. The maximum
number of zero packets to be inserted is based on the flow
length and is calculated as max_packets_to_insert = |0.15 -
n — 0.5]. The actual number is again drawn from the discrete
uniform distribution U {0, max_packets_to_insert}.

Noise Injection. The final augmentation method involves
adding noise to the packets. For each flow, we choose to
modify at most |n/3| packets, and for each modified packet,
at most [d/100] bytes are altered. The positions of the

altered bytes are randomly selected from a discrete uniform
distribution, while the noise itself is drawn from a continuous
normal distribution with zero mean and a standard deviation
of 0.1.

3) Early Detection Loss Function: To enhance early clas-
sification performance, we introduce Early Detection Loss
(EDL), a custom training loss function that assigns greater
penalties to misclassifications occurring in shorter network
flows. During training, the standard cross-entropy loss is first
calculated individually for each sample in a batch of size b.
The overall batch loss is then computed as a weighted average
of these individual losses:

b—1
L=>) wCE)
=0

where w; = e~%1'™ represents the weight associated with
the i-th sample based on its flow length n;, and C'E; is the
corresponding cross-entropy loss. By exponentially reducing
the weight as n; increases, EDL incentivises the model to
optimise for accurate classifications in the earliest possible
stage of network flow analysis.

C. Model

1) Base Model: This subsection outlines the architecture
of our base model, which refers to the core Transformer
architecture without positional encodings. Our design is based
on the standard Transformer framework proposed in [15], with
key modifications to better suit network flow analysis. Unlike
traditional Transformer-based models that require an embed-
ding layer to map discrete tokens to dense representations, our
approach processes raw packet byte values directly, treating
them as token embeddings. To align the input representation
with the model’s internal feature space, a fully connected layer
transforms the input dimension, d, into the model’s hidden
dimension, d,,. Additionally, we replace the GELU activation
function with ReLU, optimising computational efficiency and
training stability.

Since our task is classification, we utilise only the Trans-
former encoder. After the final Transformer block, we apply
global average pooling over the sequence, aggregating packet-
level representations into a fixed-length vector. This represen-
tation is then passed through a fully connected layer, followed
by a softmax activation function to generate class confidence
scores. A detailed overview of the final tuned values and model
size analysis is provided in Section V-A2.

2) Dynamic Temporal Positional Encodings: Conventional
positional encodings rely on predefined position indices, as-
suming a uniform and fixed spacing between sequence ele-
ments. While this assumption is appropriate for structured data
such as text, it becomes problematic in network traffic analysis,
where packet flows exhibit variable inter-arrival times. As a
result, traditional positional encodings may fail to effectively
capture the temporal structure of network traffic, limiting their
utility in intrusion detection.

To overcome this limitation, we introduce dynamic temporal
positional encodings, which replace the predefined position

indices P = {0,1,2,...,n— 1} with the actual packet times-
tamps in the flow, denoted as T' = {tp};‘;é. This adaptation
allows the model to encode the inherent temporal irregularities
in network traffic more accurately. Our approach is applied
to sinusoidal, Fourier-based, and rotary positional encodings,
resulting in three novel time-aware encoding mechanisms
tailored for sequential network data. Beyond network traffic
analysis, the proposed encodings can be extended to various
types of time series data, where samples are recorded at uneven
intervals.

IV. IMPLEMENTATION

The implementation of our system is structured into three
main components: network data processing, model develop-
ment, and deployment on edge devices. We use Scapy, a
Python package for parsing and processing network traffic,
to extract relevant packet flows and features from raw PCAP
files. The Transformer-based detection model is developed
using TensorFlow. To ensure efficient real-time inference on
resource-constrained IoT devices, we deploy the trained mod-
els on the Raspberry Pi Zero 2 W using LiteRT, a lightweight
runtime optimised for deep learning execution. This approach
enables low-latency, high-accuracy intrusion detection, making
the system suitable for practical IoT security applications.

V. EVALUATION
A. Experimental Setup

1) Dataset: For our experiments, we use the CICIoT2023
dataset [24], a publicly available benchmark dataset specif-
ically designed for intrusion detection in IoT environments.
Given our system’s focus on one-to-one attack detection,
we concentrate specifically on web-based threats within the
dataset. These attacks exploit vulnerabilities in web applica-
tions and communication protocols and often serve as entry
points for larger cyberattacks. To evaluate our system, we
selected five distinct web-based attack types—SQL Injection,
Command Injection, Backdoor Malware, Uploading Attack,
and Cross-Site Scripting (XSS)—along with benign traffic,
resulting in a six-class classification task (¢ = 6).

In the context of one-to-one web-based attacks, the con-
ventional 5-tuple flow definition leads to multiple short-lived,
two-packet flows due to dynamic or randomised ports. To
address this, we redefine a flow using a 3-tuple representa-
tion (IP., IPgs, Proto), grouping all exchanges between the
attacker and victim regardless of port variations. Here, 1Py, is
the source IP address (initiating communication), [Py is the
destination IP address, and Proto indicates the protocol in use,
which in this case is HTTP.

2) Hyperparameter Tuning: The choices for data prepa-
ration and base model hyperparameters were guided by the
need for fast inference and a lightweight design suitable for
real-world network environments. Table I presents the selected
values. In this configuration, the base model comprises only
5,086 trainable parameters, excluding positional encodings.
This lightweight architecture facilitates rapid decision-making

while maintaining the necessary representational power to
distinguish between normal and attack traffic.

TABLE 1
SYSTEM HYPERPARAMETERS AND THEIR CORRESPONDING VALUES

Hyperparameter | Symbol | Value

Packet length d 448

Maximum flow length N 30

Hidden dimension dm 8

Number of Transformer blocks L 1
Number of attention heads h

Attention head dimension dp 8

FFN intermediate dimension dge 16

Dropout rate Ddrop 0.1

Number of output classes c 6

3) Training Process: The primary challenge in training
our system was the limited number of samples. Each web-
based attack in CICIoT2023 has only three recorded sessions,
resulting in three flows per attack class. To balance the dataset,
we extract three benign flows for the benign class. Thus, our
initial dataset consists of a total of 3 -6 = 18 samples.
Ensemble Learning. Given the limited training data, we opt
for an ensemble learning approach instead of training a single
model. Multiple models are trained on different dataset splits
to enhance diversity and generalisation. Each split uses two
of the three available samples per class for training, with the
third reserved for testing. Out of 729 possible splits (3%), we
select 29 diverse configurations, ultimately retaining only the
best-performing models to build a robust ensemble trained on
meaningful data partitions.

Augmentation and Oversampling. Each class in our dataset
contains flows exceeding N = 30 packets, yielding 60 training
samples per class after subflow generation. To address the
small dataset size, we apply deterministic oversampling as
an additional augmentation step, duplicating each sample
five times, resulting in 300 samples per class. This fixed
duplication is effective, as random augmentations introduced at
each training epoch per sample (see Section III-B2) maintain
variability and prevent overfitting.

Training Configuration. For model optimisation, we employ
the Adam optimiser with a fixed learning rate of 0.0002.
Training follows the Early Detection loss function described in
Equation (2) and is performed with a batch size of 4 samples.

4) Evaluation Metrics: To assess the effectiveness of our
system, we design an evaluation process that closely simulates
its real-world deployment scenario (Inference stage in Fig. 1).
Confidence-Based Performance Metrics. To assess classi-
fication performance, we employ a set of confidence-based
metrics. Given a confidence threshold 7 applied to the top-1
softmax score, we evaluate how quickly the system reaches a
confident decision. The process begins with the first packet of
each test flow, gradually adding packets until the model’s con-
fidence exceeds 7. If the threshold is not met after processing
all N packets, classification is based on the full sequence.

100

. I I I

100
50 I
L wm HOH

Accuracy

o

w
o

N
o
L

Maximum Earliness
=
o

o

FAR

1.0
[Baseline Models
Lé‘? =71 Proposed Models
g 0.5
w
0.0 a—— - — . _
> @ & S K D SR o
& ° < &) X
60@ & & Q,o‘ &S & &8
& ¥ << & Qé
PO & Q <@
& Q)
Q

Fig. 2. Confidence-Based Evaluation.

A key metric is Earliness, which measures the number
of packets needed before the model reaches the confidence
threshold and a correct prediction is made. At the threshold
point, we also compute Top-1 Accuracy, False Negative Rate
(FNR), and False Alarm Rate (FAR). A high FNR poses a
security risk due to undetected attacks, while minimising FAR
prevents unnecessary alerts. Lastly, we utilise the Early Risk
Detection Error (ERDE) [25], a metric that evaluates both the
correctness of the model and the delay in reaching a decision.
Resource-Constrained Deployment Evaluation. Beyond
classification performance, we assess the feasibility of deploy-
ing our system on resource-constrained edge devices, ensuring
its practicality for real-world IoT applications. To this end, we
implement the system on a Raspberry Pi Zero 2 W, a compact,
low-power embedded device featuring a 1GHz quad-core 64-
bit ARM Cortex-A53 processor and 512MB of RAM, making
it representative of typical IoT hardware limitations.

B. Results

We evaluate our approach against several well-established
baselines and relevant prior works. Specifically, we compare
it to the non-dynamic variants of sinusoidal, Fourier-based,
and rotary positional encodings, which introduce minimal
parameter cost—most adding only 0—4 parameters, except for
the sinusoidal encoding, which contributes d, - N = 240.

Furthermore, drawing from the related work discussed in
Section II, we benchmark our system against four neural
network architectures proposed for EIDS in [11]-[14], referred
to as eRNN, eTransformer, eAtt, and eGlo.

1) Earliness & Accuracy Metrics: Fig. 2 presents the
performance of the evaluated five-model ensemble systems at a
99% confidence threshold across all metrics, except FNR, as it
remains O for all systems except RoPE (4%) and eTransformer
(8%). The maximum earliness values correspond to the highest
accuracy achieved by each system, as accuracy is considered
the most critical metric. Lower earliness could be attained for
all models if a slight reduction in accuracy were acceptable.

The results demonstrate that the proposed dynamic encod-
ings consistently outperform both their non-dynamic coun-
terparts and baseline models from related work. While some
models achieve similar accuracy, they often do so at the cost
of increased earliness, making them less suitable for real-
time intrusion detection. Among the evaluated configurations,
the ensemble incorporating the dynamic sinusoidal positional
encoding achieves the best trade-off between accuracy and
earliness. Specifically, it reaches an accuracy of 96.67%, a
maximum earliness of 4 packets, a false negative rate of 0%,
a false alarm rate of 20%, and an ERDEj score of 0.0656,
highlighting its effectiveness in early intrusion detection.

2) Latency & Memory Footprint: Fig. 3 depicts the trade-
off between latency and memory footprint when deploying the
evaluated systems on the Raspberry Pi Zero 2 W. Compared
to baseline models, the proposed dynamic encodings achieve
a favourable balance between computational efficiency and
resource usage. Notably, all three proposed systems main-
tain a latency of under 2 ms while keeping their memory
footprint below 20 MB. The zoomed-in section of the figure
further highlights their efficiency, demonstrating that dynamic
sinusoidal and dynamic RoPE encodings, which achieve high
accuracy, also exhibit lower latency than most tested configu-
rations, reinforcing their suitability for real-world deployment.

80
Baseline Models eTransformer
{1 ® Proposed Models

70 eRNN

60 1 1 8 eAtt
— 501
w 1.6 Dyn Fourier
S AR
— Sinusoidal
> 40 1.4
;':) eGlo
[}
o 1.2
3 30 - RoPE

1.0
20 A
Y 0.8 ° Dyn RoPE
Dyn Sinusoidal
4 °
10 yé 0.6 Fourier
0 El 170 17.5 18.0 185 19.0 19.5

20 30 40 50 60 70
Memory Footprint (MB)

Fig. 3. Latency vs. Memory Footprint.

VI. CONCLUSION

This work introduces a Transformer-based Early Intrusion
Detection System (EIDS) that enhances IoT threat detection
using dynamic temporal positional encodings. By incorpo-
rating packet timestamps, the model improves detection ac-
curacy and earliness. Evaluation on CICIoT2023 shows that
dynamic encodings outperform traditional methods, achieving
high accuracy, lower false alarm rates, and faster classification.
Real-world tests confirm the system’s feasibility on resource-
constrained edge devices, ensuring low latency and minimal
memory usage. Future directions include expanding evaluation
to more datasets, investigating multi-device intrusion detec-
tion, and introducing quantisation.

REFERENCES

[1] A. E. Omolara et al., “The internet of things security: A survey encom-
passing unexplored areas and new insights,” Computers & Security, vol.
112, p. 102494, 2022.

[2] L. Mohammadpour et al., “A Survey of CNN-Based Network Intrusion
Detection,” Applied Sciences, vol. 12, no. 16, 2022.

[3] 1. Ullah and Q. H. Mahmoud, “Design and Development of RNN
Anomaly Detection Model for IoT Networks,” IEEE Access, 2022.

[4] L. D. Manocchio et al., “FlowTransformer: A transformer framework
for flow-based network intrusion detection systems,” EXWA, 2024.

[5] M. F. Saiyedand and I. Al-Anbagi, “Deep Ensemble Learning With
Pruning for DDoS Attack Detection in IoT Networks,” IEEE TMLCN,
vol. 2, pp. 596-616, 2024.

[6] M. Loépez-Vizcaino et al., “Early Intrusion Detection for OS Scan
Attacks,” in IEEE NCA, 2019, pp. 1-5.

[71 A. Tekerek, “A novel architecture for web-based attack detection using
convolutional neural network,” Computers & Security, 2021.

[8] M. Shahhosseini et al., “A Deep Learning Approach for Botnet Detec-
tion Using Raw Network Traffic Data,” JNSM, vol. 30, p. 44, 2022.

[9] X. Han et al., “Network intrusion detection based on n-gram frequency
and time-aware transformer,” Computers & Security, vol. 128, 2023.

[10] X. Zhang et al., “A Multiple-Layer Representation Learning Model for
Network-Based Attack Detection,” IEEE Access, 2019.

[11] T. Ahmad and D. Truscan, “Early Detection with Explainability of
Network Attacks Using Deep Learning,” in I[EEE ICSTW, 2024.

[12] M. M. Islam et al., “An Evaluation of Transformer Models for Early
Intrusion Detection in Cloud Continuum,” in /EEE CloudCom, 2023.

[13] T. Ahmad et al., “Preliminary Results in Using Attention for Increasing
Attack Identification Efficiency,” in IEEE ICSTW, 2023, pp. 159-164.

[14] ——, “Early Detection of Network Attacks Using Deep Learning,” in
IEEE ICSTW, 2022, pp. 30-39.

[15] A. Vaswani et al., “Attention is All you Need,” in NeurIPS, 2017.

[16] Y. Li et al., “Learnable Fourier Features for Multi-dimensional Spatial
Positional Encoding,” in NeurIPS, 2021.

[17] J. Su et al., “RoFormer: Enhanced transformer with Rotary Position
Embedding,” Neurocomputing, vol. 568, p. 127063, 2024.

[18] A. Rashed et al., “Context and Attribute-Aware Sequential Recommen-
dation via Cross-Attention,” in ACM RecSys, 2022, p. 71-80.

[19] J.Jiet al., “TITD: enhancing optimized temporal position encoding with
time intervals and temporal decay in irregular time series forecasting,”
Applied Intelligence, vol. 55, no. 6, p. 415, 2025.

[20] H. Ryu et al., “TI-former: A Time-Interval Prediction Transformer for
Timestamped Sequences,” in IEEE/ACIS SERA, 2023, pp. 319-325.

[21] A. Sharma et al., “TA-SAITS: Time Aware-Self Attention based Impu-
tation of Time Series algorithm for Partially Observable Multi -Variate
Time Series,” in ICMLA, 2023, pp. 2228-2233.

[22] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Infor-
mation,” RFC Editor, RFC 7011, 2013.

[23] L. Huang et al., “Normalization Techniques in Training DNNs: Method-
ology, Analysis and Application,” I[EEE TPAMI, vol. 45, no. 8, 2023.

[24] E. C. P. Neto et al., “CICIoT2023: A Real-Time Dataset and Benchmark
for Large-Scale Attacks in IoT Environment,” Sensors, 2023.

[25] D. Fernandez et al., “A Practical Application of a Dataset Analysis in
an Intrusion Detection System,” in /[EEE NCA, 2018, pp. 1-5.

